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Abstract

We give presentations, in terms of generators and relations, for the monoids SBn(M) of
singular braids on closed surfaces. The proof of the validity of these presentations can also be
applied to verify, in a new way, the presentations given by Birman for the monoids of Singular
Artin braids.

1 Introduction

In this paper we deal with the braid groups of a closed surface M . These groups are a natural
generalization of Artin braid groups [A] and of the fundamental group of M . They are also
subgroups of some Mapping Class groups of M , and finally they are fundamental groups of the so
called Configuration spaces of M (see [B] for a general exposition).

They can be defined as follows. Fix n (n ≥ 1) distinct points {P1, . . . , Pn} ∈ M . A n-braid on
M is an n-tuple b = (b1, . . . , bn) of disjoint smooth paths bi in M×[0, 1], such that for all i, the path
bi runs, monotonically on t ∈ [0, 1], from (Pi, 0) to some (Pj , 1). These n-braids are considered
modulo isotopy (deformation of braids fixing the ends), and there exists a multiplication of braids,
given by concatenation of paths. The set of isotopy classes of n-braids on M , along with this
multiplication, forms the braid group with n strings on M , denoted by Bn(M).

The following is a simple presentation of Bn(M), in terms of generators and relations, where
M is a closed, orientable surface of genus g [G-M]:

• Generators: σ1, . . . , σn−1, a1, . . . , a2g.

• Relations:

(R1) σiσj = σjσi (|i − j| ≥ 2)

(R2) σiσi+1σi = σi+1σiσi+1 (1 ≤ i ≤ n − 2)

(R3) a1 · · · a2ga
−1
1 · · · a−1

2g = σ1 · · ·σn−2σ
2
n−1σn−2 · · ·σ1

(R4) arA2,s = A2,sar (1 ≤ r, s ≤ 2g; r 6= s)

(R5) (a1 · · · ar)A2,r = σ2
1A2,r (a1 · · · ar) (1 ≤ r ≤ 2g)

(R6) arσi = σiar (1 ≤ r ≤ 2g; i ≥ 2)

where
A2,r = σ−1

1

(
a1 · · · ar−1a

−1
r+1 · · · a

−1
2g

)
σ−1

1 .

The generators are represented in Figure 1, where we have drawn the the canonical projections
on M of the considered braids, and M is represented as a polygon of 4g sides, pairwise identified.
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Figure 1: The generators of Bn(M).

We can also find in [G-M] a similar presentation, when M is a non-orientable, closed surface.
In the same way that singular Artin braids were defined (see [B2]) to study Vassiliev invariants

for these braids, we can define singular braids on M . Their definition is the same that the
one of non-singular braids, but this time we allow a finite number of singular points (transverse
intersection of two strings). The isotopy classes of these singular braids, with the analogous
multiplication, form the monoid of singular braids with n strings on M , denoted by SBn(M).
This monoid is used in [G-MP] to define the Vassiliev invariants of braids on closed, orientable
surfaces, proving, among other results, that these invariants classify these braids.

In [B2] we can find presentations for SBn, the monoids of singular Artin braids, in terms
of generators and relations. The main result of this paper is to give presentations for SBn(M).
We will see, as well, that the proof of this results furnishes a new proof of the validity of the
presentations in [B2].

2 Presentation of SBn(M)

We shall now give a presentation of Bn(M), when M is a closed, orientable surface of genus g ≥ 0.
The non-orientable case is completely analogous, and is treated in a final remark at the end of
this paper. We define, for all i = 1, . . . , n− 1, the singular braid τi as in Figure 2, where the only
non-trivial strings are the i-th and the (i + 1)-th ones, which intersect to form a singular point.
The result is the following:

Theorem 2.1. The monoid SBn(M) admits the following presentation:

• Generators: σ1, . . . , σn−1, a1, . . . , a2g, τ1, . . . , τn−1.

• Relations:

(R1-R6) Relations of Bn(M)

(R7) σiτj = τjσi (|i − j| ≥ 2)

(R8) τiτj = τjτi (|i − j| ≥ 2)

(R9) σiτi = τiσi (i = 1, . . . , n − 1)

(R10) σiσjτi = τjσiσj (|i − j| = 1)

(R11) (ai,rai+1,r)τi(a
−1
i+1,ra

−1
i,r ) = τi (i = 1, . . . , n − 1; r = 1, . . . , 2g)

(R12) τiaj,r = aj,rτi (j 6= i, i + 1; r = 1, . . . , 2g)

where

ai,r =

{
(σ−1

i−1 · · ·σ
−1
1 )ar(σ

−1
1 · · ·σ−1

i−1) if r is odd,
(σi−1 · · ·σ1)ar(σ1 · · ·σi−1) if r is even.
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P1 Pi Pi+1 Pn

M × {1}

M × {0}

Figure 2: The singular braid τi.

PnPi

αr

PnPiP1

αr

αr αr

P1

Figure 3: The braid ai,r = (σ−1
i−1 · · ·σ

−1
1 )ar(σ

−1
1 · · ·σ−1

i−1), when r is odd.

Remark that ai,r can be thought of as the i-th string crossing the “wall” αr, as we can see in
Figure 3 for the case when r is odd.

Proof of Theorem 2.1: First, it is evident that {σ1, . . . , σn−1, a1, . . . , a2g, τ1, . . . , τn−1} is a set
of generators of SBn(M), once that we know (by [G-M]) that {σ1, . . . , σn−1, a1, . . . , a2g} generates
Bn(M).

It is also easy to prove that the proposed relations hold: (R1-R6) hold in Bn(M), which is a
sub-monoid of SBn(M). (R7-R10) are known to hold in SBn, so they hold in a cylinder D× [0, 1],
where D is a disk containing the n points P1, . . . , Pn. We have just to extend the corresponding
isotopy to all M × [0, 1] by the identity. (R11) can be seen to hold in Figure 4, and finally (R12)
is clear, since the only nontrivial strings of τi and aj,r can be isotoped to have disjoint projections
on M , so these braids commute.

Pi Pi+1P1 PiP1 Pi+1Pn Pn

αrαr

αr αr

Figure 4: The braids ai,rai+1,rτi and τiai,rai+1,r are isotopic, when r is odd.

In order to show that the relations are sufficient, we need the following lemma:

Lemma 2.2. The monoid SBn(M) is left-cancelative. That is, for all a, b, c ∈ SBn(M), one has:
c a = c b ⇒ a = b.

Proof: Since σ1, . . . , σn−1, a1, . . . , a2g are invertible, for they belong to Bn(M), we just need to
prove that τia = τib ⇒ a = b for all a, b ∈ SBn(M) and all i = 1, . . . , n − 1.

Thus, let us suppose that there exists an isotopy Ht of M × [0, 1], such that H0 = idM×[0,1]
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and H1(τia) = τib. Call p the first singular point of τia (the one corresponding to τi), and let
pt = Ht(p). One has p0 = p1 = p.

Let V be the interior of a sphere of radius ε centered at p. We take ε small enough, such that
V ∩ (τia) is as follows:

V
p

Denote st = Ht(τia) and Vt = Ht(V ). We can suppose, without loss of generality, that Vt is
the interior of the sphere of radius ε centered at pt, and that Vt ∪ st is as in the above picture.

Now, for t ∈ [0, 1], denote by s̃t the braid which is obtained by modifying st, only inside Vt, as
follows:

We observe that s̃0 = a and s̃1 = b, so Ht is an isotopy which transforms a into b. Therefore,
a = b.

Let us then show that Relations (R1-R12) are sufficient. Let b, b′ ∈ SBn(M) be two isotopic
singular braids, written in the generators of Theorem 2.1. We must show that we can transform
b into b′ by using Relations (R1-R12).

Being isotopic, both braids have the same number of singular points, say k. If k = 0, the result
follows from [G-M], since (R1-R6) are sufficient relations for Bn(M).

Suppose that k > 0, and the result holds for braids with less than k singular points. We can
assume that the first letter of b is τi, for some i (otherwise we can multiply b and b′ on the left
by the greatest nonsingular “prefix” of b). We will show that, using (R1-R12), we can transform
b′ into a braid whose first letter is τi. The result then follows from Lemma 2.2, and by induction
hypothesis.

Let p be the point of b′ corresponding (via isotopy) to the first singular point of b. This point p

must correspond to some τj , letter of b′. By (R10) and the braid relations (R1-R2), we can easily
deduce the following:

τj =

{
(σj−1σj−2 · · ·σi)(σjσj−1 · · ·σi+1)τi(σ

−1
i+1 · · ·σ

−1
j )(σ−1

i · · ·σ−1
j+1) if i < j,

(σj+1σj+2 · · ·σi)(σjσj+1 · · ·σi−1)τi(σ
−1
i−1 · · ·σ

−1
j )(σ−1

i · · ·σ−1
j+1) if i > j.

Hence, we can assume that the letter corresponding to p is τi.
Let us then write b′ = u τi v, where u, v ∈ SBn(M) and τi is the above letter. Since b is

isotopic to b′, we can assume, up to replacing τi by σiτiσ
−1
i (using (R9)), that the i-th string of u

ends at the point (Pi, s), for some s ∈ [0, 1]. Hence, its canonical projection on M is a loop in M

based at Pi, which induces an element µ ∈ π1(M, P1). This element can be modified as desired:
it suffices to use (R11), replacing τi by aε

i,ra
ε
i+1,rτi a−ε

i+1,ra
−ε
i,r (ε = ±1), to have µ transformed into

µ aε
i,r, where aε

i,r is the projection on M of the i-th string of aε
i,r. Since {ai,1, . . . , ai,2g} is a set of

generators of π1(M, Pi), we can assume that µ = 1.
Now notice that u has less than k singular points, hence any braid isotopic to u can be obtained

from it by applying (R1-R12), by induction hypothesis. We can then deform u in such a way that
its i-th string will not go through the “walls” α1, . . . , α2g (we can do this since µ = 1).

Let us go back to b, and consider a “band” Γ, determined by the i-th and the (i+1)-th strings
of b, and which goes from s = 0 to the first singular point of b, as in the figure below.
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Pi Pi+1

b

Γ

Consider also an isotopy Ht which transforms b into b′. Recall that b′ = u τiv, where the i-th
string of u does not go through the walls. We can now consider Γ1 = H1(Γ), and deform the
(i + 1)-th string of u along this band, in such a way that it will be as close to the i-th string as
desired (recall that we are allowed to deform u). We can then assume that neither the i-th nor the
(i + 1)-th string of u goes through the “walls” of the cylinder M × [0, 1]. Moreover, using (R9) we
can modify the number of crossings of these two strings, as desired (just replacing τi by σr

i τiσ
−r
i ,

r ∈ Z). Therefore, we can assume that they do not cross, i.e. there is no σj in u involving the
i − th and the (i + 1)-th strings.

We can also assume that these two strings are so close that one has the following property:
if there is a letter σε

j (ε = ±1) of u which involves the i-th or the (i + 1)-th string, then this
letter, together with either the previous or the following one, forms a sub-word of u of one of the
following four types:

σjσj+1 σ
−1
j+1σ

−1
j σ

−1
j σ

−1
j+1 σj+1σj

Γ1 Γ1

Γ1 Γ1

But in this case it is easy to see that, using relations (R7), (R8), (R10) and (R12), we can
“raise” the point p, until we get τi as the first letter of b′. So by Lemma 2.2 we can cancel τi, and
by induction hypothesis the resulting braids are equivalent by means of Relations (R1-R12). This
ends the proof of Theorem 2.1

Remark 2.3. There is an analogous presentation of SBn(M), when M is a non-orientable, closed
surface. We just need to consider the presentation given in [G-M] for Bn(M). Then replace, in the
presentation of Theorem 2.1, the generators a1, . . . , a2g by the corresponding generators on the
non-orientable surface, and Relations (R1-R6) by the relations given in [G-M]. The same proof
remains valid.

Remark 2.4. The presentation given in Theorem 2.1 can be easily simplified. It suffices to elim-
inate the generators τ2, . . . , τn−1, replacing in the relations τ3 by (σ2σ1σ3σ2)τ1(σ

−1
2 σ−1

3 σ−1
1 σ−1

2 ),
and eliminating all relations containing some τj (j 6= 1, 3), since they are obtained from the re-
maining ones. We proposed the presentation above since it is more useful for handling singular
braids.

Remark 2.5. We can also replace (R1-R6) by any other set of sufficient relations for the given
generators of Bn(M).

Remark 2.6. The above proof of Theorem 2.1, after eliminating every allusion to π1(M), is a
new proof of the validity of the presentation for SBn proposed in [B2].
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