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THE FREUDENTHAL COMPACTIFICATION OF
TREE-LIKE GENERALIZED CONTINUA

WŁODZIMIERZ J. CHARATONIK, TOMÁS FERNÁNDEZ-BAYORT,
AND ANTONIO QUINTERO

Abstract. Tree-likeness of generalized continua is defined by means
of inverse limits of locally finite trees with proper bonding maps.
The main theorem of this paper shows that the Freudenthal com-
pactification preserves and reflects tree-likeness. Some consequences
of interest are given.

1. Introduction

Classical continuum theory is a powerful branch of topology concerning
compact spaces. However, the class of non-compact spaces is far from
being irrelevant and it seems natural to explore a generalized continuum
theory for locally compact spaces.

The proper category provides a very convenient framework for this
task. Recall that a continuous map f : X → Y is said to be proper if
for any compact subset K ⊂ Y , f−1(K) is compact in X. In particular,
classes of spaces and maps of interest in continuum theory are extended
to the proper category.

This paper is focused on the well-known class of tree-like spaces, usually
described as inverse limits of sequences of compact trees. Compactness
and connectedness of tree-like spaces readily follow from this description.
Unfortunately, connectedness does not need to be preserved by inverse
limits of non-compact spaces, and this requires connectedness in the def-
inition of a tree-like space in the proper category; that is, a generalized
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continuum is said to be a tree-like space if it can be expressed as the limit
of an inverse sequence of locally compact trees with proper bonding maps;
see [10].

By use of compactifications, non-compact spaces are transformed into
compact spaces, and an immediate question is to ask whether notions in
the proper category remain under compactifications. In this paper we will
show that, in fact, the tree-likeness of a generalized continuum is equiv-
alent to the tree-likeness of its Freudenthal compactification (Theorem
4.1) or, equivalently, of some compactification of X with 0-dimensional
remainder (Theorem 5.1). Some consequences are derived (Theorem 5.6
and Theorem 5.4).

2. The Freudenthal Compactification

Throughout this paper, a continuum (generalized continuum, respec-
tively) is a connected compact (locally compact, respectively) metric
space. By a graph we mean a locally finite 1-dimensional simplicial com-
plex and trees are contractible graphs.

Concerning inverse limits, we will use the notation X = lim←−p
{Xn; gn}

to represent inverse limits of sequences with proper bonding maps gn :
Xn+1 → Xn; see [10] for more details. This way a generalized continuum
X is tree-like if X = lim←−p

{Tn, gn} where each Tn is a tree.
It follows from [5, Exercise 4.4. F.(c)] that any generalized continuum is

separable and hence second countable and σ-compact [5, Corollary 4.1.16
and Exercise 3.8.C.(b)]. It is readily checked that local compactness,
together with σ-compactness, yields the existence of exhausting sequences
in a generalized continuum X; that is, increasing sequences of compact
subsets Xn ⊂ X with X =

∪∞
n=1 Xn and Xn ⊂ intXn+1.

Given an exhausting sequence {Xn}n≥1 of the generalized continuum
X, a Freudenthal end of X, ε = (Qn)n≥1, is a decreasing nested sequence
of quasicomponents Qn ⊂ X − intXn. Recall that the quasicomponent
of a point x is defined to be the intersection of all open and closed sets
containing x.

Let F(X) denote the set of all Freudenthal ends of X. The set X̂ =
X ∪ F(X) admits a compact topology whose basis consists of all open
sets of X together with the sets

Ω̂ = Ω ∪ {(Qn)n≥1; Qn ⊂ Ω for n large enough}

where Ω ⊂ X is any open set with compact frontier. The space X̂ is called
the Freudenthal compactification of X. Moreover, X̂ is metrizable and the
subspace of Freudenthal ends F(X) ⊂ X̂ turns out to be homeomorphic
to a closed subset of the Cantor set; see [1], [11]. In particular, X̂ is the
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union of the σ-compact space X and the 0-dimensional space F(X) and
then dim X̂ = dimX; see [6, Corollary 1.5.4].

Recall that the Freudenthal compactification of X is maximal among
the compactifications of X with 0-dimensional remainder; that is, if X̃ is a
metric compact space containing X as a dense open set and the difference
X̃−X is 0-dimensional, then there is a continuous map f : X̂ → X̃ which
extends the identity on X; see [16, Example 3.9].

Any proper map f : X → Y between generalized continua extends to
a continuous map f̂ : X̂ → Ŷ with a continuous restriction f∗ : F(X)→
F(Y ) which maps ε = (Qn)n≥1 to the nested sequence f∗(ε) = (Q′

n)n≥1

such that there is a subsequence n1 < n2 . . . with f(Qnk
) ⊂ Q′

k for all
k ≥ 1. The following lemma is easily proved.

Lemma 2.1 ([10, Corollary 4.2]). If f is onto, then f∗, and hence f̂ , are
onto.

The following well-known lemma pinpoints a crucial feature of the
Freudenthal compactification of any generalized continuum X.

Lemma 2.2. Any generalized continuum X admits a metric and an ex-
hausting sequence {Xk}k≥1 such that X̂ − intXk =

⊔
j∈Jk

Ak
j (k ≥ 1)

is a finite disjoint union of closed and open sets in X̂ − intXk with
diameterAk

j < 1
k for all j ∈ Jk. In particular, FrAk

j ⊂ FrXk.

Proof. Recall that X̂ is metrizable so that we can find a metric d for
the topology of X̂. For each k ≥ 1, we write the 0-dimensional compact
set of Freudenthal ends F(X) =

⊔
j∈Jk

F k
j as a finite union of pairwise

disjoint closed sets with diameterF k
j < 1

4k for all j ∈ Jk. Moreover, for
any 0 < λk < 1

4k smaller than min{ 12d(F
k
j , F

k
j′); j, j

′ ∈ Jk and j ̸= j′},
the closed sets

Ak
j = {x ∈ X̂; d(x, F k

j ) ≤ λk}
are pairwise disjoint with diameterAk

j < 1
k and F k

j ⊂ intAk
j for each

j ∈ Jk. In particular, FrAk
j = {x ∈ X̂; d(x, F k

j ) = λk} misses F(X),
and so the complement Xk = X̂ −

⊔
j∈Jk

intAk
j is a compact subset of

X. Moreover, one readily checks that FrXk =
⊔

j∈Jk
FrAk

j . Thus, X̂ −
intXk =

⊔
j∈Jk

Ak
j is a disjoint union of open and closed sets in X̂−intXk.

Note that Xk ⊂ intXk+1. �
Remark 2.3. (1) Notice that in Lemma 2.2 for each j ∈ Jk there exists
a unique j′ ∈ Jk−1 with Ak

j ⊂ Ak−1
j′ and that the Freudenthal ends

of X are in 1 − 1 correspondence with the sequences (Ak
j(k))k≥1 with

Ak
j(k) ⊂ Ak−1

j(k−1) for all k ≥ 2.
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(2) The proof of Lemma 2.2 also shows that the complement X̂−Xk =⊔
j∈Jk

Bk
j (k ≥ 1) is the finite disjoint union of the sets Bk

j = intAk
j which

are closed and open in X̂ −Xk with diameterBk
j < 1

k for all j ∈ Jk.

We will also use the following simple fact; see [10, Proposition 4.1].

Lemma 2.4. Let X = lim←−p
{Xn; gn} be a generalized continuum which

is the inverse limit of generalized continua Xn with proper onto bonding
maps gn. Then there is a continuous surjection

φ : X̂ −→ L = lim←−{X̂n; ĝn}

such that φ−1(L0) = F(X) where L0 = lim←−{F(Xn), gn∗} ⊂ L and φ|X is
the identity on X = L − L0. In particular, φ induces a homeomorphism
φ : X̂/F(X) ∼= L/L0.

Proof. If pi : X → Xi are the canonical projections of the inverse limit,
then the map φ : X̂ → L is defined by the induced maps p̂i : X̂ → X̂i;
that is, φ(x) = (p̂i(x))i≥1. Notice that each p̂i is onto by Lemma 2.1.
Furthermore, the equalities ĝ−1

i (F(Xi)) = F(Xi+1) and p̂−1
i (F(Xi)) =

F(X) for all i ≥ 1 yield φ−1(L0) = F(X) and X = L − L0 with φ|X
the identity on X. From this it readily follows that the induced map φ :

X̂/F(X)→ L/L0 is a continuous bijection and hence a homeomorphism.
�

The following example shows that the map φ in the previous lemma
does not have to be bijective.

Example 2.5. Consider the inverse sequence of one-ended graphs
{Gn, fn}n≥1 where Gn is the graph depicted in Figure 1.

Gn ≡

vn0 vn1 vn
n−1 vn

n
vn
n+1

w
n

1

wn

n−1

wn

0

Figure 1

The map fn : Gn+1 → Gn is the linear extension on each edge of
Gn+1 of the map between vertex sets given by fn(v

n+1
i ) = vni for i ≥ 0,
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f(wn+1
j ) = wn

j for j ≤ n− 1 and f(wn+1
n ) = vnn . It is clear that each fn is

a proper map and the inverse limit X = lim←−p
{Gn, fn} is homeomorphic

to the euclidean line; thus, X̂ is homeomorphic to an interval, while L =

lim←−{Ĝn, f̂n} is homeomorphic to the circle.

3. The Case-Chamberlin Characterization
of Tree-Likeness

In the proof of Theorem 4.1 the following purely homotopical charac-
terization of tree-like continua due to J. H. Case and R. E. Chamberlin
[2] will be crucial. Recall that a continuous map f : X → Y is termed
inessential if it is homotopic to a constant map.

Theorem 3.1 ([2, Theorem 1]). A 1-dimensional continuum X is tree-
like if and only if, for every graph G, every continuous map f : X → G
is inessential.

As consequences of Theorem 3.1 we have the following two lemmas
which will be used in the proof of Theorem 4.1. The first lemma is similar
to [7, Lemma 2]. We give here a proof for the sake of completeness.

Lemma 3.2. Let Z = lim←−{Zn, fn} be a 1-dimensional continuum which
is the inverse limit of contractible continua Zn. Then Z is tree-like.

Proof. We have Z =
∩∞

j=1 Pj where

Pj = {(xn)n≥1; fn(xn+1) = xn for n ≤ j} ⊂ Π∞
j=1Zj .

Moreover, each Pj is contractible since Pj is homeomorphic to Π∞
n=j+1Zn

by the map αj : Π
∞
n=j+1Zn → Pj which carries (xn)n≥1 to (x̃n)n≥1 where

x̃n = xn if n ≥ j + 1 and x̃n−1 = fn ◦ . . . ◦ fj(xj+1) if n ≤ j.
Let f : Z → G be any continuous map into a graph G. As G is an ANR

then there is an extension f̃ : U → G of f to some open neighborhood
Z ⊂ U in Π∞

j=1Zj .
By compactness there is j0 such that Pj ⊂ U for j ≥ j0. In particular,

we have a commutative diagram

Z

f

��

� � // Pj0
� � h // U

f̃
vvnnn

nnn
nnn

nnn
nnn

n

G

where the horizontal arrows are inclusions and f̃ ◦h is inessential since Pj0

is contractible. Hence, f is inessential and so Z is tree-like by Theorem
3.1. �
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The second lemma is part of the folklore of continuum theory.

Lemma 3.3. Assume that the inverse limit Z = lim←−{Gn, fn} of graphs is
a tree-like continuum. Then there is an increasing sequence {ns}s≥0 with
n0 = 1 such that the composite ρs = fns

◦ . . . ◦ fns+1−1 : Gns+1 → Gns is
inessential for all s ≥ 0.

Proof. Let qj : Z → Gj (j ≥ 1) denote the canonical maps of the inverse
limit which are the restrictions to Z of the projections pj :

∏∞
n=1 Gn →

Gj . We start by taking n0 = 1 and observing that Theorem 3.1 yields
that q1 is inessential. Let H : Z × I → G1 be a homotopy between
q1 and the constant map. As G1 is an ANR, there is a neighborhood
of Z, U ⊂

∏∞
n=1 Gn, such that the homotopy H extends to a homotopy

H̃ : U×I → G1 between p̃1 = p1|U and the constant map (see [4, Exercise
IV.8.13(2)]). Hence, p̃1 is an inessential map. In addition, as we have seen
in the proof of Lemma 3.2, we have Z =

∩∞
j=1 Pj with a homeomorphism

αj :

∞∏
n=j+1

Gn

∼=→ Pj = {(xn)n≥1; fn(xn+1) = xn for n ≤ j}

for each j ≥ 1. By compactness there exists n1 such that Pj ⊂ U for all
j ≥ n1, and we can form the composite

ρ = p̃1 ◦ k ◦αn1
◦ β : Gn1+1 → G1

where k : Pn1 ↪→ U is the inclusion and β : Gn1+1 →
∏∞

n=n1+1 Gn is
given by β(x) = (yn)n≥n1+1, where yn1+1 = x, and yn = ∗n ∈ Gn is any
fixed point for all n > n1+1. It readily follows that ρ is inessential and it
coincides with the composite f1 ◦ . . . ◦ fn1 : Gn1+1 → G1. This argument
is repeated for Gn1+1 in the role of G1, and we obtain inductively the
required subsequence. �

4. Main Theorem

This section is devoted to the proof of the main theorem establishing
that tree-like generalized continua are exactly those generalized continua
whose Freudenthal compactification is tree-like. More precisely, let GC
be the category of generalized continua and proper maps and C ⊂ GC
be the full subcategory of continua. Let ∧ : GC → C denote the functor
which carries X to its Freudenthal compactification X̂. We will prove the
following characterization theorem.

Theorem 4.1. The functor ∧ preserves and reflects tree-likeness; that
is, a generalized continuum is tree-like if and only if its Freudenthal com-
pactification X̂ is a tree-like continuum.

The proof of Theorem 4.1 splits into the two following propositions.
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Proposition 4.2. Let X be a tree-like generalized continuum. Then its
Freudenthal compactification X̂ is a tree-like continuum.

Proposition 4.3. Let X be a generalized continuum such that its Freuden-
thal compactification X̂ is a tree-like continuum. Then X is tree-like as
well.

For the proof of Proposition 4.2 we will need the following lemma.

Lemma 4.4. Let X be a continuum. Any continuous map f : X̂ → G

into a graph is homotopic to a map f ′ : X̂ → G such that f ′(F(X)) ⊂
Vert(G).

Proof. Given the barycentric subdivision G′ of G, let U = {Sv}v∈V ert(G′)

denote the open cover of G consisting of the open stars Sv = st◦(v;G′) of
all vertices of G′. We choose a Lebesgue number δ > 0 for the open cover
f−1U of X and apply Lemma 2.2 to find a compact set L ⊂ X such that
X̂ − intL = A1 ⊔A2 ⊔ · · · ⊔An decomposes into a finite disjoint union of
closed and open sets in X̂ − intL with diameterAi < δ. Hence, for each i
there exists a vertex v(i) for which f(Ai) ⊂ Sv(i). Notice that each Ai is
a closed set in X̂ which meets FrL. Here we use the connectedness of X.

At this point we observe that the Tietze extension theorem holds for
each Sv(i) (it is a retract of the open 2-disk) so that we can extend gi :
(Ai ∩ FrL) ⊔ (F(X) ∩Ai)→ Sv(i) given by g(x) = f(x) for x ∈ Ai ∩ FrL
and g(ε) = vi for all ε ∈ F(X) ∩Ai to a continuous map f ′

i : Ai → Sv(i).
Similarly, we find a homotopy Hi : Ai × I → Sv(i) between f |Ai and

f ′
i . Here we apply the Tietze extension theorem to the map H̃i : Ai ×
{0, 1} ∪ (Ai ∩ FrL)× I → S(v(i) where H̃i(x, 0) = f(x), H̃i(x, 1) = f ′

i(x),
and H̃i(z, t) = f(z) for z ∈ Ai ∩ FrL.

Finally, let f ′ : X̂ → G be the map f ′(x) = f(x) for x ∈ L and
f ′(y) = fi(y) if y ∈ Ai. Moreover, H : X̂×I → G given by H(x, t) = f(x)
if x ∈ L and H(y, t) = Hi(y, t) if y ∈ Ai yields a homotopy between f
and f ′ relative L. �
Proof of Proposition 4.2. We write X = lim←−p

{Tn, gn} as an inverse limit

of trees with proper bonding maps and consider any map f : X̂ → G to an
arbitrary graph G. We can assume that f(F(X)) ⊂ Vert(G) by Lemma
4.4 and so f(F(X)) ⊂ TG if TG ⊂ G is a maximal tree (i.e., a tree contain-
ing all vertices). Let f : X̂/F(X)→ G/TG denote the induced map. On
the other hand, by Lemma 2.4 there is a continuous surjection φ : X̂ −→
L = lim←−{T̂n; ĝn} which carries F(X) to L0 = lim←−{F(Tn), gn∗} ⊂ L and in-
duces a homeomorphism φ : X̂/F(X) ∼= L/L0 fitting in the commutative
diagram
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G

≃ π

��

X̂
φ //

p

��

foo L

q

��
G/TG X̂/F(X) ∼=

φ //foo L/L0

where π is a well-known homotopy equivalence. Moreover, since the
Freudenthal compactification of a tree is a dendrite, each T̂n is contractible
[8, Proposition 4 and Theorem 13] and so L is tree-like by Lemma 3.2.
Thus, Theorem 3.1 yields that the composite ρ = fφ−1q : L → G/TG

is homotopically trivial and so is π ◦ f = ρ ◦φ, and hence f since π is
a homotopy equivalence. The proof finishes by again applying Theorem
3.1. �

Next, we proceed to prove Proposition 4.3, and the proof of Theorem
4.1 will be accomplished. For this we start with the following definition.
By a ray-extension, we mean a polyhedron P = Q ∪ T which is obtained
by the attaching of a finite disjoint union of half-lines T =

⊔m
i=1 R+

to a compact connected polyhedron Q. For ray-extensions we have the
following improvement of the proper analogue of a classical theorem due
to Freudenthal which can be found in [18, Proposition 13].

Theorem 4.5. For any generalized continuum X with 1 ≤ dimX ≤
n, there exists a homeomorphism h : X ∼= lim←−p

{Pn; fn} where each Pn

is a ray-extension of dimension ≤ n. Moreover, the homeomorphism h

extends to a homeomorphism ĥ : X̂ ∼= lim←−{P̂n; f̂n} for the corresponding
Freudenthal compactifications.

We do not know of any reference for this specific result in the literature.
To ease the reading of the paper we give the proof of it in Appendix A.
Besides Theorem 4.5, the two other ingredients in the proof of Proposition
4.3 are the two following results. The first one is an easy lemma.

Lemma 4.6. Let f : X1 → X2 be a proper map between graphs which are
ray-extensions and such that f̂ : X̂1 → X̂2 is inessential. Then f is also
inessential.

Proof. By definition Xi = Gi ∪ Ti where Gi is a compact graph and Ti

is a finite disjoint union of half-lines attached at Gi (i = 1, 2). Then we
simply observe that in the commutative diagram
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X1

f //
_�

��

X2
_�

��

G1

. �

≃

=={{{{{{{

p�

≃   B
BB

BB
BB

G2

0 P

≃

aaCCCCCCC

nN

≃~~||
||
||
|

X̂1
f̂

// X̂2

the inclusions of the Gi’s are homotopy equivalences and so are the inclu-
sions Xi ⊂ X̂i for i = 1, 2. �

The second result is essentially proved in [9, Theorem 11]; see also [13,
Section 4]. We include the proof for the convenience of the reader.

Proposition 4.7. Let X be a 1-dimensional generalized continuum which
can be written as an inverse limit X = lim←−p

{Xn; fn} of graphs where the
bonding proper maps are inessential. Then X is tree-like.

Proof. Let πn : X → Xn denote the canonical maps of the limit. For each
n consider the universal covering space pn : X̃n → Xn and choose a point
x0 = (x0

n)n≥1 ∈ X. Since each map πn = fn ◦πn+1 is inessential, given
x̃0
n ∈ X̃n, there exists a lifting π̃n : X → X̃n with π̃n(x) = x̃0

n. Here we
use [19, Theorem 2.2.3]. Similarly, the same homotopy covering property
yields maps f̃n : X̃n+1 → X̃n with f̃n(x̃

0
n+1) = x̃0

n such that

(4.1) pn ◦ f̃n = fn ◦ pn+1.

We next consider for each n the subtree Tn = π̃n(X) ⊂ X̃n for which
the restrictions pn : Tn → Xn and πn : X → Tn are readily checked
to be proper. Moreover, one can easily show that f̃n(Tn+1) = Tn and
f̃n : Tn+1 → Tn is proper. Let Y = lim←−p

Tn be the inverse limit of

the sequence with f̃n as bonding maps and let qn : Y → Tn denote the
canonical maps.

Equality (4.1) yields that the restrictions pn induce a map p : Y → X
for which the map ϕ : X → Y defined by ϕ(x) = (πn(x))n≥1 is a section;
that is, p ◦ϕ = idX . Indeed, ϕ is well defined by the uniqueness of liftings
[19, Theorem 2.2.2] since both f̃n ◦ π̃n+1 and π̃n are liftings of πn at x̃0

n;
moreover, pϕ(x) = (pnπn(x))n≥1 = (πn(x))n≥1 = x.

In addition, as ϕ−1(A) ⊂ p(A) for any set A ⊂ Y , it follows that
ϕ is a proper embedding, and so ϕ(X) is a connected closed set of Y .
Furthermore, ϕ(X) = lim←−p

qn(ϕ(X)) by [10, Lemma 4.5], and so X is
homeomorphic to the tree-like space ϕ(X) obtained as an inverse limit of
the subtrees qn(ϕ(X)) ⊂ Tn. �
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We are now ready to prove Proposition 4.3

Proof of Proposition 4.3. Theorem 4.5 yields a homeomorphism X ∼=
lim←−p
{Xn; fn} extending to a homeomorphism X̂ ∼= lim←−{X̂n; f̂n} where the

Xn’s are ray-extensions. By hypothesis, X̂ is a tree-like continuum and
Lemma 3.3 allows us to assume without loss of generality that the bond-
ing maps f̂n are inessential. Then the proper maps fn are also inessential
by Lemma 4.6. We conclude by applying Proposition 4.7. �

5. Some Consequences of Theorem 4.1

Let us start by observing that the maximality of the Freudenthal com-
pactification and the ideas involved in the proof of Proposition 4.2 yield
the following improvement of Theorem 4.1.

Theorem 5.1. The following statements are equivalent:
(1) The generalized continuum X is tree-like.
(2) The Freudenthal compactification X̂ is tree-like.
(3) There is a tree-like compactification of X with 0-dimensional re-

mainder.

Proof. (1)⇒ (2) is part of Theorem 4.1. Moreover, (2)⇒ (3) is obvious.
In order to show (3) ⇒ (1), let Y be a tree-like compactification of

X with 0-dimensional remainder RY = Y − X. As the Freudenthal
compactification is maximal among these compactifications, there is a
continuous extension of the identity of X, φ : X̂ −→ Y .

Consider any map f : X̂ → G to an arbitrary graph G. As done in
the proof of Proposition 4.2, we can assume that f(F(X)) ⊂ Vert(G)
(Lemma 4.4) and so f(F(X)) ⊂ TG where TG ⊂ G is a maximal tree.
The induced map f : X̂/F(X)→ G/TG fits in the commutative diagram

G

≃ π

��

X̂
φ //

p

��

foo Y

q

��
G/TG X̂/F(X) ∼=

φ //foo Y/RY

where the homeomorphism φ is induced by φ and π is a well-known homo-
topy equivalence. Moreover, since Y is assumed to be tree-like, Theorem
3.1 yields that the composite ρ = fφ−1q : Y → G/TG is homotopically
trivial, and so is π ◦ f = ρ ◦φ and hence f , since π is a homotopy equiv-
alence. Therefore, X̂ is tree-like by again applying Theorem 3.1, whence
X is tree-like by Theorem 4.1. �
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Corollary 5.2. The class of tree-like generalized continua is closed under
inverse limits with proper bonding maps.

Proof. Let X = lim←−p
{Xn, fn} be a generalized continuum where each Xn

is a tree-like space. Hence, for every n ≥ 1, the Freudenthal compactifi-
cation X̂n is a tree-like continuum by Theorem 4.1 and so the continuum
L = lim←−{X̂; f̂n} is also tree-like by [15, Lemma 2.5.15]. Moreover, by
Lemma 2.4, L = X ∪ L0 where L0 = lim←−{F(Xn), fn∗}; therefore, L is
a tree-like compactification of X with 0-dimensional remainder L0. We
conclude by Theorem 5.1 that X is tree-like. �

We next use Theorem 4.1 to attain a proper analogue of the following
celebrated theorem due to T. Bruce McLean.

Theorem 5.3 ([17]). Let f : X → Y be a confluent map between con-
tinua. Assume that X is tree-like, then Y is also tree-like.

Recall that, given two spaces X and Y , by a confluent map we mean
a continuous surjection f : X → Y such that, for any subcontinuum
B ⊂ Y , we have f(A) = B for each connected component A ⊂ f−1(B).
Namely, we prove the following theorem which answers affirmatively [9,
Open Question 15].

Theorem 5.4. Let f : X → Y be an end-faithful proper confluent sur-
jection between generalized continua. If X is tree-like, then Y is tree-like
as well.

Recall that a proper map f : X → Y is said to be end-faithful if
the induced map f∗ : F(X) → F(Y ) is a bijection (or, equivalently, a
homeomorphism).

Proof of Theorem 5.4. By [3, Theorem 7.5], the Freudenthal extension of
f , f̂ : X̂ → Ŷ is also confluent. Moreover, X̂ is a tree-like continuum
by Theorem 4.1. Hence, Ŷ is also tree-like by Theorem 5.3; hence, Y is
tree-like by applying Theorem 4.1 again. �

Remark 5.5. As was observed in [9, Example 14], the end-faithfulness of
the map f cannot be dropped in Theorem 5.4; that is, Theorem 5.3 does
not hold with full generality in the proper category. We give the details
for the sake of completeness.

Let X ⊂ R2 be the two-ended generalized continuum depicted in Figure
2(a) below.

The space X is tree-like since so is its Freudenthal compactification
(that is, the space obtained by gluing the extremes of the sinoidal arcwise
components of two copies of the sin 1/x-curve). Here we use Theorem 4.1.
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Let Y be the generalized continuum in Figure 2(b) obtained by identi-
fying in X the two rays R1 and R2. Consider the quotient map f : X → Y .
It is obvious that f is proper; moreover, it is readily checked that f is
confluent since any continuum C ⊂ Y is an arc contained in either the
ray R2 = f(R1) or its complement Y −R2.

However, Y fails to be tree-like. Indeed, let D denote the decomposition
of Ŷ whose single non-degenerate element is the complement of the lower
arc in Figure 2(b) running from − 1

2 to 1
2 . Then the quotient map π : Ŷ →

Ŷ /D ∼= S1 is a monotone (and hence, confluent) map onto the circle. As
an immediate consequence of theorems 5.3 and 4.1, we get that Y is not
tree-like.

Theorems 5.1 and 5.4 are now used to prove the following theorem.

Theorem 5.6. Any connected locally compact subspace U ⊂ X of a tree-
like space X is also tree-like. In particular, tree-likeness is inherited by
closed and by open subsets of tree-like spaces.
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Proof. Case 1: U is closed in X. Let X = lim←−p
{Tn, gn} where each Tn

is a tree. Then U = lim←−p
qn(U) by [10, Lemma 4.5]. Moreover, as the

bonding maps qn are proper, the image qn(U) is a connected closed set
of the tree Tn and hence a tree1. Therefore, U is also tree-like.

Case 2: U is open in X. Observe that U is still open in the Freudenthal
compactification X̂ so that Theorem 4.1 allows us to replace X by X̂ so
that we can assume without loss of generality that X is a compact tree-like
space. Furthermore, the closure U is already tree-like by case 1; hence,
we can also assume that U is dense in X. The complement X−U is then
a compact set of dimension ≤ 1. Here we use that tree-like spaces are
1-dimensional (this follows from connectedness and [6, Theorem 1.13.4]).
If dim(X − U) = 0, then X turns to be a compactification of U with
compact 0-dimensional remainder RX = X −U , whence U is tree-like by
Theorem 5.1.

Otherwise, if dim(X −U) = 1, let D be the decomposition of X whose
non-degenerate elements are the 1-dimensional components of X − U .
This decomposition is upper semicontinuous by [14, Theorem V.47.VI.6].
Hence, the quotient space X/D is a continuum [14, Theorem IV.43.IV.1].
In addition, as the natural projection π : X → X/D is a monotone map,
it follows from Theorem 5.4 that X/D is tree-like.

Furthermore, the image W = π(U) is a dense open set in X/D home-
omorphic to U since the restriction π|U is an open map. This way the
quotient space X/D is a tree-like compactification of W with compact
0-dimensional reminder X/D −W . Then U ∼= W is a tree-like space by
Theorem 5.1.

General Case: Let U ⊂ X be any connected locally compact set in X.
Let P = U be its closure in X. Then by case 1, P is tree-like. We claim
that U is also open in P , and then case 2 yields that U is tree-like.

In order to show that U is open in P , let p ∈ U be any point and
let Ω ⊂ U be a compact neighborhood of p in U . Here we use the local
compactness of U . Choose an open set V in P with intU Ω = V ∩ U . If
V − Ω ̸= ∅, then V − Ω = V − U is a non-empty open set in P missing
U ; this contradicts the density of U in P . Therefore, V −Ω = ∅, whence
V ⊂ Ω ⊂ U . This shows that p lies in the interior of U in P . �

1If C is a closed connected subset of a tree T , then C reduces to an arc in an open
edge of T if C does not contain vertices of T . Otherwise, C is the (locally finite) union
of the subtree generated by the vertices in Vert(T )∩C and (possibly) arcs in the open
stars of the vertices in C
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Appendix A. Proof of Theorem 4.5

This appendix contains a detailed proof of Theorem 4.5. We follow
the ideas and notation of [6, Theorem 1.13.2] and [12]. Let us start with
two preparatory lemmas, the first one being an immediate consequence
of Lemma 2.2; see Remark 2.3.

Lemma A.1. Any generalized continuum X admits an exhausting se-
quence {Xk}k≥1 such that X−Xk =

⊔
j∈Jk

W k
j (k ≥ 1) is a finite disjoint

union of closed and open sets in X −Xk of non-compact closure. More-
over, for each j ∈ Jk there is a unique j′ ∈ Jk−1 with W k

j ⊂ W k−1
j′ and

the Freudenthal ends of X are in 1− 1 correspondence with the sequences
(W k

j(k))k≥1 with W k
j(k) ⊂W k−1

j(k−1) for all k ≥ 2.

Definition A.2. Given two exhausting sequences of X, X = {Xk}k≥1

and X̃ = {X̃k}k≥1, we say that X is a shifting of X̃ if X̃k ⊂ intXk ⊂
Xk ⊂ intX̃k+1 (k ≥ 1).

Lemma A.3. Given a generalized continuum X, let {Xk}k≥1 be any
exhausting sequence of X which is a shifting of {X̃k}k≥1. Then there
exists a sequence of proper maps hk : X − intXk → [k,∞) such that
h−1
k (k) = X̃k+1− intXk, while h−1

k (n) = FrXn and h−1
k (n+ 1

2 ) = FrX̃n+1

for all n ≥ k + 1. Moreover, hk+1 = hk on X − intXk+2.

Proof. For each n ≥ k, write Dn = D1
n ∪D2

n where D1
n = X̃n+1 − intXn

and D2
n = Xn+1 − intX̃n+1. As metric spaces are perfectly normal, there

is a continuous map gk : Dk → [k, k + 1] with g−1
k (k + 1) = FrXk+1 and

g−1
k (k) = D1

k; see [5, Theorem 1.5.19]. Similarly, for n ≥ k + 1, we find
continuous maps gn,1 : D1

n → [n, n + 1
2 ] and gn,2 : D2

n → [n + 1
2 , n + 1]

such that g−1
n,1(n) = FrXn, g−1

n,1(n + 1
2 ) = g−1

n,2(n + 1
2 ) = FrX̃n+1, and

g−1
n,2(n+ 1) = FrXn+1. Then the map hk is defined as the union of maps
hk = gk

∪
n≥k+1(gn,1 ∪ gn,2). �

The basic ideas for the proof of Theorem 4.5 are well known (see the
proof of [6, Theorem 1.13.2]). The variations are due to the special kind
of open covers needed to produce ray-extensions. A prototype of these
covers is constructed as follows. We start with an exhausting sequence
X = {Xk}k≥1 as in Lemma A.1, which is also a shifting of some exhausting
sequence X̃ = {X̃k}k≥1 (for instance, X and X̃ can be chosen to be the
families of sets of even and odd indexes, respectively, of the exhausting
sequence in Lemma A.1). In particular, for each k ≥ 1, X − Xk =⊔

j∈Jk
W k

j is the disjoint union of a finite family of open and closed sets
in X − Xn of non-compact closure Wk = {W k

j }j∈Jk
. Then we consider
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open covers of X of the form

(A.1) U = U0 ∪Wk

where U0 is a finite cover of Xk with open sets in intX̃k+1. As dimX ≤ n,
then dimU0 ≤ n for the open set U0 =

∪
{U ;U ∈ U0} ⊂ intX̃k+1.

Therefore, any open cover of U0 admits a refinement of order2 ≤ n + 1
(see [6, Proposition 3.2.2]). Hence, the compact set Xk is covered by
finitely many open sets of that refinement, and these sets, together with
the given family Wk, can replace the original cover U . Thus, we can
assume without loss of generality that the subcover U0 in (A.1) has order
≤ n+ 1.

If the cardinality of the open cover U is s, its nerve N(U) will be re-
garded as a subcomplex of dimension ≤ n of the canonical simplex ∆s−1 ⊂
Rs after identifying the sets in U with the vertices pi = (0, . . . , 1, . . . , 0)
of ∆s−1. If this simplex is metrized by d(x, y) = ∥x − y∥ where ∥z∥ =∑s

i=1 |λi| for z = (λ1, . . . , λs), it is obvious that diam σ ≤ diam ∆s−1 ≤ 2
for any simplex σ ∈ N(U).

Now we attach rays to the compact nerve N(U) to get a ray-extension
S(U) ⊂ Rs as follows. For each j ∈ Jk, let [k,∞)j denote a copy of the
ray [k,∞). Then the polyhedron

(A.2) S(U) = N(U)
∪
j∈Jk

[k,∞)j ⊂ Rsk

is obtained after identifying kj with the vertex of N(U) corresponding to
the set W k

j ∈ Wk. Notice that the mesh3 of S(U) is ≤ 2. Note also that
the connectedness of X implies that, for any U,U ′ ∈ U , there exists a
finite sequence U1, . . . , Um ∈ U with U1 = U , Um = U ′ and Ui∩Ui+1 ̸= ∅
(1 ≤ i ≤ m − 1). Thus, N(U), and hence S(U), is connected. However,
N(U0) needs not be connected.

Next, we proceed to define a proper map f : X → S(U). We start
by using the canonical barycentric map α : X → N(U) given by α(x) =∑

U∈U αU (x)U where αU (x) = d(x,X−U)∑
U∈U d(x,X−U) . In particular, we have

α(x) = 1 for all x ∈ FrX̃k+1. Note also α(Xk) ⊂ N(U0). Therefore,
the restriction αk+1 = α|X̃k+1 : X̃k+1 → N(U) extends to a proper map
f : X → S(U) by setting f(x) = hk(x)j for all x ∈ W k

j − intX̃k+1, where
hk : X − intXk → [k,∞) is the function in Lemma A.3. Here, hk(x)j
denotes the value hk(x) placed on the copy [k,∞)j . The map f will be

2The order of a cover U is the largest integer m (if it exists) such that U does not contain
m + 1 sets with non-empty intersection.

3The mesh of a family of sets is the supremum of the diameters of its sets.
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termed a relative barycentric map associated to the cover U . Note

(A.3) (a) f(x) = W k
j = kj if x ∈W k

j ∩ FrX̃k+1; and
(b) f(Xk) ⊂ N(U0).

We are now ready to prove Theorem 4.5.

Proof of Theorem 4.5. Consider a sequence U1, . . . ,Uk, . . . , of finite open
covers Uk = U0

k ∪ Wk as in (A.1) and relative barycentric maps fk :
X → S(Uk) with properties (i) and (ii) below. Let Cov(fk−1, S(Uk−1))
denote the open cover of Xk consisting of the counterimages by fk−1 of
the open stars st◦(v;S(Uk−1)

(1)) with v ranging over the set of vertices
in N(Uk−1)

(1)
∪

j∈Jk
[k − 1, k]

(1)
j . Here the upper index “(1)” stands for

the first barycentric subdivision. Notice that f−1
k−1(st

◦(v;S(Uk−1)
(1)) ⊂

intX̃k+1 for every vertex v.
(i) U0

k is a refinement of Cov(fk−1, S(Uk−1)).

(ii) The mesh of U0
k is < 1

2k
and the order of each U0

k is ≤ n+ 1.
Condition (i) allows us to define a map πk−1 between the sets of

vertices of S(Uk) and S(Uk−1) as follows. Given a vertex U ̸= W k
j

in N(Uk) corresponding to an open set U ∈ U0
k , we set πk−1(U) = v

where v ∈ N(Uk−1)
(1)

∪
j∈Jk−1

[k−1, k]
(1)
j is a vertex for which fk−1(U) ⊂

st◦(v;S(Uk−1)
(1)). Otherwise, if U = tj is a vertex in [k,∞)j (in particu-

lar, U = W k
j = kj), then we define πk−1(tj) = tj′ where j′ ∈ Jk−1 is the

unique index for which W k
j ⊂W k−1

j′ .

Actually, if S(Uk−1)
# = N(Uk−1)

(1)
∪

j∈Jk−1
([k − 1, k]

(1)
j ∪ [k,∞)j),

then πk−1 determines a proper simplicial map

(A.4) πk−1 : S(Uk)→ S(Uk−1)
#.

Indeed, there is nothing to be checked on [k,∞)j (j ∈ Jk). Let σ =
⟨U1, . . . , Us⟩ ∈ N(Uk). If Ui ̸= W k

j for all i, then fk−1(x) ∈∩s
i=1 st

◦(πk−1(Ui);S(Uk−1)
(1)) and πk−1(U1), . . . , πk−1(Us) lie in a sim-

plex of N(Uk−1)
(1)

∪
j∈Jk−1

[k − 1, k]
(1)
j . Otherwise, if some W k

j appears
as vertex of σ, it must be unique, say U1 = W k

j , and let x ∈
∩s

i=1 Ui.
The definition of πk−1 yields fk−1(x) ∈ st◦(πk−1(Ui);S(Uk−1)

(1)) for each
i ̸= 1. Moreover, as x ∈ W k

j , fk−1(x) ∈ [k, k + 1]j′ for some j′ ∈ Jk−1.
Hence, πk−1(Ui) = kj′ for all i. Finally, the properness of πk−1 is imme-
diate since it is readily checked that π−1

k−1(v) is a finite set for every vertex
v ∈ S(Uk−1)

#.
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Remark A.4. Notice that dimπk−1(S(Uk)) ≤ n since the only possible
simplices τ ∈ S(Uk) with dim τ ≥ n+1 must contain a vertex of the form
W k

j and then πk−1(τ) = kj′ for some j′ ∈ Jk−1.

Although fk−1 needs not agree with πk−1fk, the following properties
hold:

(A.5)
πk−1(σk(x)) ⊂ σk−1(x) for all x ∈ X,

πk−1(σk(x)) = σ#
k−1(x) if x ∈ Xm and k > m.

Here, σk(x) and σ#
k (x) denote the support4 of fk(x) in S(Uk) and S(Uk)#,

respectively.
Indeed, there is nothing to be checked if x ∈ X − intX̃k+1 since

πk−1fk = fk−1 on this difference; moreover, if x ∈ intX̃k+1 and σk(x) =
⟨U1, . . . , Um⟩ ∈ N(Uk), then the support of πk−1fk(x) is a simplex η with
vertices (possibly repeated) πk−1(U1), . . . , πk−1(Um). If Ui ̸= W k

j for all
i (for instance, if x ∈ Xm with m < k), the definition of πk−1 yields
x ∈ Ui ⊂ f−1

k−1(st
◦(πk−1(Ui);S(Uk−1)

#) (1 ≤ i ≤ m), whence fk−1(x) lies
in the interior of η and so η = σ#

k−1(x) ⊂ σk−1(x).
It remains to check the case when some W k

j appears among the vertices
of σk(x), say U1 = W k

j . In this instance, πk−1 is the constant map kj′

on σk(x) for the unique index j′ ∈ Jk−1 with W k
j ⊂ W k−1

j′ . Therefore,
η = ⟨kj′⟩ reduces to a vertex. On the other hand, as x ∈ W k

j ⊂ W k−1
j′ −

Xk ⊂ intX̃k+1−Xk, we have kj′ < fk−1(x) < (k+1)j′ ; that is, σk−1(x) =

σ#
k−1(x) = [kj′ , (k+1)j′ ] is the support of fk−1(x) in S(Uk−1). This shows

(A.5).
The proof will be accomplished by showing a homeomorphism h : X ∼=

S where S = lim←−p
{S(Uk), πk}k≥1 is the limit of the inverse sequence

S(U1)
π1←− S(U2)

π2←− · · · πk−1←− S(Uk−1)
πk−1←− S(Uk)

πk←− . . .

since S = lim←−p
{πk−1S(Uk), πk}k≥2 and dimπk−1(S(Uk)) ≤ n for all k ≥ 2;

see Remark A.4.
Let qk : S → S(Uk) denote the canonical projection (k ≥ 1). It is not

hard to show that the projections qk inherit the properness of the bonding
maps πk; see [10, Lemma 3.1]. The following statement is the crucial fact
in the construction of the homeomorphism h. For r > k, let πr

k denote
the composite πr

k = πk ◦ . . . ◦πr : S(Ur+1)→ S(Uk−1). Given a sequence
of points yk ∈ S(Uk), assume that we have an inverse sequence

(A.6) F1
π1← F2

π2← . . .

4The support of a point x in a simplicial complex K is the unique simplex σ ∈ K which
contains x in its interior.
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where Fk ⊂ Yk =
∪
{σ ∈ S(Uk); yk ∈ σ} is a non-empty compact set for

each k ≥ 1. Then there exists m ≥ 1 such that Fk ⊂ N(U0
k ) for all k > m

and

(A.7) diam πr
k(Fr+1) ≤ 4(

n

n+ 1
)r−k for all r > k > m.

Indeed, choose m such that F1 ⊂ S0 = N(U0
1 )

∪
j∈J1

[1,m]j ⊂ S(U1).
Then the definition of the maps πk shows that Fk+1 ⊂ πk

1
−1

(S0) ⊂
N(U0

k+1) whenever k > m. Thus, all simplices σ ⊂ Yk+1 which meet Fk+1

do not contain any vertex W k
j (j ∈ Jk) and so dimσ ≤ n; see Remark

A.4. Moreover, (A.6) and the definition of πk imply that πk(σ) is part
of the barycentric subdivision of a simplex ρ ∈ S(Uk−1) which is a face
of some σ′ ⊂ Yk−1, and now [6, Lemma 1.13.1] yields d(πk(y), πk(y

′)) ≤
n

n+1d(y, y
′) for all y, y′ ∈ σ. Assumption (A.6) allows us to iterate this

inequality starting with any x, x′ ∈ µ ⊂ Yr+1 with µ ∩ Fk+1 ̸= ∅ to
obtain the inequality d(πr

k(x), π
r
k(x

′)) ≤ ( n
n+1 )

r−kd(x, x′) ≤ 2( n
n+1 )

r−k.
Here, we use that the mesh of any ray-extension in (A.2) is chosen to be
≤ 2. Therefore, we derive d(z, z′) ≤ d(z, yk+1) + d(yk+1, z

′) ≤ 4( n
n+1 )

r−k

if z, z′ ∈ Fr+1.
Let L stand for the inverse limit of the sequence in (A.6). Since qk(L) ⊂∩∞

r=k+1 π
r
k(Fr+1) for all k > m, we derive from (A.7) that the inverse limit

L = {∗} is a singleton.
Any x ∈ X induces the sequence fk(x) ∈ S(Uk), and by (A.5) the

inverse sequence

(A.8) σ1(x)
π1← σ2(x)

π2← . . .

is well defined. Then the previous observations show that the inverse
limit of this sequence, termed L(x), reduces to a point. This way we have
a well-defined map h : X → S by setting h(x) = L(x). Furthermore,
the proof of (A.7) shows that, for the sequence in (A.8), the following
inequality holds.

(A.9) diam πr
k(σr+1(x)) ≤ 2(

n

n+ 1
)r−k for all r > k > m and x ∈ Xm.

Here, we use (A.3) to get fk(Xm) ⊂ fk(Xk) ⊂ N(U0
k ), whence σk(x) does

not contain any vertex W k
j (j ∈ Jk) for k > m.

We will check that h is a homeomorphism by showing that h is a
continuous injection, as well as a proper surjection.

Clearly, h is injective since by condition (ii), given two points x ̸= x′ of
X, if x, x′ ∈ Xm we can find a natural number k > m such that no open set
in Uk containing x contains x′. Therefore, the vertex sets of the supports
σk(x) and σk(x

′) in N(Uk) must be disjoint (recall that x belongs to the
open sets which are the vertices of σk(x)) and the definition of h yields
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h(x) = L(x) ̸= L(x′) = h(x′). In order to prove that h is continuous,
it will suffice to check that the composite hk = qkh is continuous for all
k ≥ 1. Given a point x0 ∈ X, let m be the first natural number for which
x ∈ Xm. Since for any r > k we have hk = πr

khr+1, it will be enough to
check the continuity of hk with k > m. For this, given ϵ > 0, we choose
a natural number r such that r > k and ( n

n+1 )
r−k < ϵ

2 . The intersection
U =

∩
{U ;U ∈ Ur;x0 ∈ U} is an open neighborhood of x0 such that for

any x ∈ U we have

(A.10) σr+1(x0) ⊂ σr+1(x);

indeed, as σr+1(x0) = ⟨U0, . . . , Up⟩ contains fr+1(x0) in its interior, the
definition of fr+1 : X → S(Ur+1) yields that x0 ∈

∩p
i=1 Ui, and hence

x ∈ Ui for all i. Therefore, αUi(x) > 0 for all i and σr+1(x) contains the
vertices of σr+1(x0).

The inclusion (A.10) yields hk(x0) ∈ πr
k(σr+1(x0)) ⊂ πr

k(σr+1(x)) for
x ∈ U . Then, by (A.9), diam (πr

k(σr+1(x)) ≤ 2( n
n+1 )

r−k < ϵ and since
hk(x) ∈ πr

k(σr+1(x)), then d(hk(x0), hk(x)) < ϵ for x ∈ U ; that is, hk is
continuous. This proves that h is a continuous injection.

To verify the properness of h, let K ⊂ S be any compact set. Then each
projection qk(K) is compact and so is the union Ak =

∪
{σ ∈ S(Uk);σ ∩

qk(K) ̸= ∅} for each k. Furthermore, we have

(A.11) πk(Ak+1) ⊂ Ak;

in fact, for any x ∈ σ such that there is y ∈ K with qk+1(y) ∈ σ, we
have by (A.4) that πk(σ) is a simplex in S(Uk)# and so there is a simplex
η ∈ S(Uk) with πk(σ) ⊂ η. Hence, both πk(x) and qk(y) = πkqk+1(y)
lie in η, whence πk(x) ∈ η ⊂ Ak. In particular, the inverse limit A =
lim←−{Ak, πk}k≥1 is a compact set. We will show h−1(K) ⊂ A and so
the closed set h−1(K) is compact. The inclusion is obvious if h−1(K)
is empty; otherwise, given z ∈ h−1(K), we have that h(z) = L(z) ∈
K = lim←−{qk(K);πk}k≥1 (the last equality holds by [5, Corollary 2.5.7]).
Then, necessarily, σk(z) ∩ qk(K) ̸= ∅ and σk(z) ⊂ Ak (k ≥ 1), whence
h(z) = L(z) ∈ A as claimed.

Finally, we will check that h is onto; that is, h−1(y) ̸= ∅ for any y ∈ S.
This will show that h is a proper surjection and the proof will be complete.

Note that for K = {y}, the set Ak in (A.11) coincides with Yk in (A.6)
for each k ≥ 1. We claim that each counterimage Bk = h−1

k (Ak) is not
empty. Indeed, if qk(y) ∈ σ for some σ ∈ S(Uk), let σ0 = ⟨U1, . . . , Us⟩ be a
maximal simplex in S(Uk) which contains qk(y), and x ∈

∩s
i=1 Ui. Then,

necessarily, σk(x) = σ0 ⊂ Ak, and so hk(x) = qk(L(x)) ∈ σk(x) ⊂ Ak;
that is, xk ∈ Bk. Furthermore, as h and qk are proper maps so is hk,
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whence all sets Bk are compact. In addition, (A.11) implies

Bk+1 = h−1
k+1(Ak+1) ⊂ h−1

k+1(πk(Ak)) = h−1
k (Ak) = Bk (k ≥ 1)

and so, by compactness of B1, we have B =
∩∞

i=k Bk ̸= ∅. Given any x ∈
B, we have that hk(x) = qkh(x) lies in the intersection Zk = Ak ∩ σk(x)
for every k ≥ 1. Moreover, (A.11) and (A.5) yield πk(Zk+1) ⊂ Zk. Hence,
the non-empty inverse limit lim←−{Zk, πk}k≥1 is contained in the singletons
h(x) = L(x) = lim←−{σk(x), πk}k≥1 and A = lim←−{Ak;πk} = {y} (see (A.6)).
Thus, h(x) = y, and we are done.

Finally, if Q = lim←−{Ŝ(Uk), π̂k}k≥1 is the inverse limit of the Freudenthal
compactifications, it is readily checked that S ⊂ Q and the homeomor-
phism h extends to a homeomorphism ĥ : X̂ → Q by setting ĥ(ε) =
(εkj(k))k≥1 ∈ Q where ε ∈ F(X) is the end determined by the sequence
(W k

j(k))k≥1, and εkj(k) ∈ F(S(Uk)) is the end of the ray [k,∞)j(k) ⊂
S(Uk). �

References

[1] B. J. Ball, Quasicompactifications and shape theory, Pacific J. Math. 84 (1979),
no. 2, 251–259.

[2] J. H. Case and R. E. Chamberlin, Characterizations of tree-like continua, Pacific
J. Math. 10 (1960), 73–84.

[3] Włodzimierz J. Charatonik, Tomás Fernández-Bayort, and Antonio Quintero, On
the Freudenthal extensions of confluent proper maps, Houston J. Math. 38 (2012),
no. 3, 963–989. (electronic)

[4] Albrecht Dold, Lectures on Algebraic Topology. Reprint of the 1972 edition. Clas-
sics in Mathematics. Berlin: Springer-Verlag, 1995.

[5] Ryszard Engelking, General Topology. Translated from the Polish by the author.
2nd ed. Sigma Series in Pure Mathematics, 6. Berlin: Heldermann Verlag, 1989.

[6] , Theory of Dimensions: Finite and Infinite. Sigma Series in Pure Math-
ematics, 10. Lemgo: Heldermann Verlag, 1995.

[7] Raúl Escobedo, María de J. López, and Jesús F. Tenorio, Disk-like products of
continua, Topology Appl. 154 (2007), no. 7, 1359–1362.

[8] Tomás Fernández-Bayort and Antonio Quintero, Dendritic generalized Peano con-
tinua, Topology Appl. 153 (2006), no. 14, 2551–2559.

[9] , Homotopic properties of confluent maps in the proper category, Topology
Appl. 156 (2009), no. 18, 2960–2970.

[10] , Inverse sequences with proper bonding maps, Colloq. Math. 119 (2010),
no. 2, 301–319.

[11] Hans Freudenthal, Über die enden topologischer räume und gruppen, Math. Z. 33
(1931), 692–713.

[12] Rolando Jimenez and Leonard R. Rubin, An addition theorem for n-fundamental
dimension in metric compacta, Topology Appl. 62 (1995), no. 3, 281–297.



FREUDENTHAL COMPACTIFICATION AND TREE-LIKENESS 193

[13] J. Krasinkiewicz, Curves which are continuous images of tree-like continua are
movable, Fund. Math. 89 (1975), no. 3, 233–260.

[14] Kazimierz Kuratowski, Topology. Vol. II. New edition, revised and augmented.
Translated from the French by A. Kirkor. New York-London: Academic Press,
1968.

[15] Sergio Macías, Topics on Continua. Boca Raton, FL: Chapman & Hall/CRC,
2005.

[16] J. R. McCartney, Maximum zero-dimensional compactifications, Proc. Cambridge
Philos. Soc. 68 (1970), 653–661.

[17] T. Bruce McLean, Confluent images of tree-like curves are tree-like, Duke Math.
J. 39 (1972), 465–473.

[18] E. G. Skljarenko, Uniqueness theorems in homology theory, Math. USSR-Sb. 14
(1971), 199–218.

[19] Edwin H. Spanier, Algebraic Topology. Corrected reprint. New York-Berlin:
Springer-Verlag, 1981.

(Charatonik) Missouri University of Science and Technology; Department
of Mathematics and Statistics; Rolla, MO 65409 USA

E-mail address: wjcharat@mst.edu

(Fernández-Bayort) Departamento de Matemáticas; I.E.S. Pablo Neruda;
C/ Manuel Rodríguez Navarro 4; 41950 Castilleja de la Cuesta, Sevilla,
Spain

E-mail address: tfernandez@andaluciajunta.es

(Quintero) Departamento de Geometría y Topología; Facultad de Matemáti-
cas; Universidad de Sevilla, Apartado 1160; 41080 Sevilla, Spain

E-mail address: quintero@us.es




