
Communications in Applied Analysis 13 (2009), no. 4, 633–646

NONEXPANSIVE MAPPINGS AND MONOTONE VECTOR

FIELDS IN HADAMARD MANIFOLDS

VICTORIA MARTÍN-MÁRQUEZ
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ABSTRACT.

This paper briefly surveys some recent advances in the investigation of nonexpansive mappings

and monotone vector fields, focusing in the extension of basic results of the classical nonlinear

functional analysis from Banach spaces to the class of nonpositive sectional curvature Riemannian

manifolds called Hadamard manifolds. Within this setting, we first analyze the problem of finding

fixed points of nonexpansive mappings. Later on, different classes of monotonicity for set-valued

vector fields and the relationship between some of them will be presented, followed by the study

of the existence and approximation of singularities for such vector fields. We will discuss about

variational inequality and minimization problems in Hadamard manifolds, stressing the fact that

these problems can be solved by means of the iterative approaches for monotone vector fields.

AMS (MOS) Subject Classification. 49M30, 90C26.

1. INTRODUCTION AND MOTIVATION

Riemannian manifolds constitute a broad and fruitful framework for the devel-

opment of different fields in mathematic, such as convexity, dynamical systems, opti-

mization or mathematical programming, and other scientific areas, where some of its

approaches and methods have successfully been extended from Euclidean spaces. The

nonpositive sectional curvature is an important property which is enjoyed by a large

class of Riemannian manifolds and it is strong enough to imply tight topological

restrictions and rigidity phenomena. Hence Riemannian manifolds with this prop-

erty have awakened the interest of many researches. Specially, Hadamard manifolds,

which are complete simply connected and finite dimensional Riemannian manifolds of

nonpositive sectional curvature, have worked out a suitable setting for diverse disci-

plines, being an example of hyperbolic spaces and geodesic spaces such as Busemann

nonpositive curvature (NPC) spaces and CAT(0) spaces, see [24, 20, 53].
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Within the setting of Riemannian manifolds we are particularly concerned about

two problems: the approach of fixed points of nonexpansive mappings and the exis-

tence and approximation of singularities of monotone vector fields.

In a metric space X, a mapping T : X → X is nonexpansive if for any two points

x, y ∈ X the following inequality holds:

d(T (x), T (y)) ≤ d(x, y).

The study of the asymptotic behavior of such mappings and its relevant role in the

fixed point theory have seen a significant increase in interest on the part of scientists

from nonlinear analysis and many other disciplines where it finds application. Two

types of algorithms for approximating fixed points of nonexpansive mappings have

been successfully considered in the normed linear framework: Halpern’s iteration,

given by the formula

xn+1 = αnu + (1 − αn)Txn, n ≥ 0, (1.1)

where u ∈ X is an arbitrary point; and Mann’s iteration, whose iterative scheme is

xn+1 = αnxn + (1 − αn)Txn, n ≥ 0. (1.2)

A large number of works about the convergence and some modifications of these two

methods can be found (see [44, 55, 28] and reference therein), but just few results

have been obtained out of the framework of linear spaces. With preciseness, some

progresses have been made in the setting of geodesic spaces, hyperbolic metric spaces

and in the special case of Hadamard manifolds. See [16, 17, 45, 23, 24, 27].

If we denote by X∗ the dual space of the Banach space X, recall that a (set-

valued) operator A : X → 2X∗

is said to be monotone provided that

(x∗ − y∗, x − y) ≥ 0, ∀x, y ∈ D(A) and x∗ ∈ A(x), y∗ ∈ A(y),

where D(A) denotes the domain of A defined by D(A) := {x ∈ X : A(x) 6= ∅}. The

concept of a monotone operator has turned out to be very powerful in various areas of

mathematics such as operator theory, numerical analysis, differentiability of convex

functions and partial differential equations, because it is broad enough to cover both

linear positive semi-definite operators and subdifferentials of convex functions (see

[42, 31, 32]). It is the latter one which has received most of the recent attention in

diverse frameworks, due to its increasing importance in optimization theory.

On the other hand, extensions of concepts and techniques for optimization in R
n

to Riemannian manifolds are natural, and this has been done frequently in order to

develop theoretical results and get efficient algorithms, see [50, 53, 20]. The study of

this optimization methods’ extension to solve minimization problems on Riemannian

manifolds has been the subject of many works, solving non-convex constrained mini-

mization problems in Euclidean spaces by means of convex problems on Riemannian
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manifolds, see [7, 8, 13, 15, 14, 39, 40]. A generalization of the convex minimization

problem is the variational inequality problem. In the study of this problem in the

framework of Riemannian manifolds several classes of monotone vector fields have

been introduced (see [34, 35, 10] for single-valued vector field and [9] for point-to-set

vector fields) and convergence properties of iterative methods to solve them have been

presented (see for instance [11, 13]).

A more general problem is the search of zeros of monotone operators, i.e. solu-

tions of the inclusion 0 ∈ A(x). In this direction, the concept of maximal monotone

operators and its relationship with the notion of upper semicontinuity have been very

useful, see [41, 2]. In [26] both definitions for set-valued vector fields were extended

to Hadamard manifolds and proved to be equivalent. Many diverse approaches for

approximating zeros in the setting of Banach spaces have been investigated by many

authors (see [5, 6, 21, 29, 47]). It is worth mentioning the widely studied proxi-

mal point algorithm, inspired by Moreau and Martinet [29, 30, 33] and defined by

Rockafellar [47] by means of the following iterative scheme

0 ∈ A(xn+1) + λn(xn+1 − xn),

where {λn} is a sequence of real positive numbers and x0 is an initial point. Another

successful iterative method is the extragradient algorithm proposed first by Korpele-

vich [25] and studied by many authors (see, for instance, [18, 51]). As regards the

counterpart of these methods in Hadamard manifolds, convergence of the proximal

point algorithm was proved for subdifferential of convex functions in minimization

problems (see [15]) and for maximal monotone vector fields in general (see [26]). An

extragradient-type method for continuous monotone vector fields was developed by

Ferreira et al [13].

Most of this extended methods requires the Riemannian manifold to have non-

positive sectional curvature, specially, to be a Hadamard manifold. This is due to

the fact that, in general, the exponential map cannot be defined in the whole tangent

bundle and it is not invertible (see reference in section 2 for details). Then we will

focus in the case of Hadamard manifolds, remarking the statements which remain

true in Riemannian manifolds in general.

The purpose of this paper is to describe the role of nonexpansive mappings and

monotone vector fields in Hadamard manifolds, as well as the problems mentioned

above which involve such operators and make its closeness quite clear. In section

2 we introduce some notations and we provide references about basic concepts on

Riemannian manifolds. The fixed point problem for nonexpansive mappings will be

discussed in section 3. Section 4 is devoted to introduce different classes of mono-

tonicity, establishing some relationship between them, and analyze the existence and

approximation of singularities of monotone vector fields. We deal with variational
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inequality and minimization problems in Hadamard manifolds in sections 5, stressing

the fact that these problems can be solved by means of the iterative approaches for

monotone vector fields.

2. NOTATION

In this section we fix the notations used throughout this paper. We assume that

the reader is familiar with the basic concepts and properties on Riemannian manifold.

As general references in Riemannian geometry, we recommend [12, 43, 48, 53, 54].

Moreover, basic knowledge of fixed point theory [24], monotone operators [41, 56],

variational inequalities [22] and optimization theory [1, 49] could ease the reading of

these notes.

Let M be a Hadamard manifold, that is a complete simply connected m-dimensional

Riemannian manifold of nonpositive sectional curvature. Given p ∈ M we denote the

tangent space of M at p by TpM and the tangent bundle of M by TM =
⋃

p∈M TpM .

Let X (M) denote the set of all set-valued vector fields A : M → 2TM such that

A(x) ⊆ TxM for each x ∈ M . We assume that D(A) = {x ∈ M : A(x) 6= ∅}, the

domain of A, is closed and convex. Recall that a subset K ⊆ M is convex if for any

two points p and q in K, the geodesic joining p to q is contained in K.

For any x ∈ M and K ⊂ M closed convex set, there exists a unique x∗ ∈ K such

that d(x, x∗) ≤ d(x, y) for all y ∈ K. That unique point is called the projection of x

onto the convex set K and is denoted by PK(x).

We use Px,y to denote the parallel transport on the tangent bundle TM along

the geodesic γ starting at x and ending at y. This is an isometry from TxM to TyM .

Recall that the exponential map at p ∈ M , expp : TpM → M , is defined by

expp v = γv(1, x), where γv(., p) is the geodesic starting at p with velocity v. Then,

for any value of t, expp tv = γv(t, p). Since M is Hadamard, expp is a diffeomorphism

from M to R
m. Then, M has the same topology and differential structure as R

m.

Let f : M → (−∞, +∞] be a proper extended real-valued function with domain

D(f) := {x ∈ M : f(x) 6= +∞}. The function f is said to be convex if for any

geodesic γ in M , the composition function f ◦ γ : R → (−∞, +∞] is convex.

3. FIXED POINTS OF NONEXPANSIVE MAPPINGS

Let F := Fix(T ) denote the set of all fixed points of a nonexpansive mapping

T : K → K, where K is a closed convex subset of M , and assume that F 6= ∅. We

recall that from Brouwer’s theorem the existence of fixed points is ensured provided

that K is bounded. In order to solve the problem of approximating a fixed point

of T , Kirk provided in [24] an implicit algorithm in general metric spaces called

geodesic spaces which contains the class of Hadamard manifolds. Applying the general
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result due to Kirk to Hadamard manifolds, and writing the algorithm in terms of the

exponential map, one obtain the following theorem.

Theorem 3.1. [24] Let u ∈ K, and for each t ∈ [0, 1) let xt be the unique point such

that

xt = expu t exp−1
u T (xt).

Then limt→1− xt = x, the unique nearest point to x in F .

In an Euclidean space R
n, this iterative scheme turns into xt = (1− t)x+ tT (xt),

which coincides with the implicit Halpern-type algorithm called Browder’s iteration,

see [4]. An analogue of Halpern’s algorithm (1.1) was developed for nonexpansive

mappings on Hadamard manifolds, whose iterative scheme is

xn+1 = expu(1 − αn) exp−1
u T (xn), ∀n ≥ 0, (3.1)

where x0, u ∈ M and {αn} ⊂ (0, 1) and which coincides with the Halpern’s one in

the particular case of an Euclidean space.

Theorem 3.2. [27] Let u, x0 ∈ M . Suppose that {αn} ∈ (0, 1) satisfies

(H1) limn→∞ αn = 0;

(H2)
∑

n≥0 αn = ∞;

(H3) either
∑

n≥0 |αn+1 − αn| < ∞ or limn→∞(αn − αn−1)/αn = 0.

Then the sequence {xn} generated by the algorithm (3.1) converges to PF (u).

As regards Mann’s iteration (1.2), an extension of this algorithm and its con-

vergence results to the framework of metric spaces is due to Goebel-Kirk [23, 16]

and Reich-Shafrir [45]. In spaces of hyperbolic type, which includes Hadamard man-

ifolds, they provided an iterative scheme in terms of geodesic segments, coinciding

with Mann’s algorithm in Euclidean spaces. In particular, under the assumption that

{αn} is bounded away from 0 and 1, Reich and Shafrir proved the convergence of

such iteration to a fixed point of T defined in the Hilbert ball. Goebel and Reich [17]

studied the behavior of the sequence of the iterates xn+1 = T (xn) in hyperbolic metric

spaces for a class of nonexpansive mappings. Recently, the authors of [27] proved the

convergence of the algorithm

xn+1 = expxn

(1 − αn) exp−1
xn

T (xn), ∀n ≥ 0, (3.2)

in the setting of Hadamard manifolds.

Theorem 3.3. [27] Suppose that {αn} ⊂ (0, 1) satisfy the condition
∞∑

n=0

αn(1 − αn) = ∞.

Let x0 ∈ M and let {xn} be the sequence generated by the algorithm (3.2). Then {xn}

converges to a fixed point of T .
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Note that the theorem above generalized the convergence result of the Mann’s

algorithm in the case of an Euclidean space. In order to illustrate the behavior of

both Halpern’s and Mann’s iteration in Hadamard manifolds, a numerical example

in a finite-dimensional hyperbolic space is presented in [27].

4. SINGULARITIES OF MONOTONE VECTOR FIELDS

The concepts of monotonicity and strict monotonicity of vector fields defined

on a Riemannian manifold were introduced by Németh in [35]. In [10] the strong

monotonicity was defined, and they established the relationship between different

classes of vector fields’ monotonicity and their differential operators’ definiteness. The

authors of [13] provided a class of monotone vector fields, those which are gradients

of convex functions, and the complementary vector field of a nonexpansive mappings

is proved to be monotone in [34]. For more examples and relations between different

kinds of generalized monotone vector fields in Riemannian manifolds see [35, 36, 37].

The first appearance of the concept of monotone set-valued vector field is found

in [9] where it is shown that the subdifferential operator of a Riemannian convex

function is a monotone set-valued vector field. The notion of maximal monotonicity

for set-valued vector fields was given in [26] for Hadamard manifolds. The definitions

below can be rewritten in general Riemannian manifold in term of geodesics.

Definition 4.1. Let A ∈ X (M). A is called

(a) monotone if for any x, y ∈ D(A) the following condition holds:

〈u, exp−1
x y〉 ≤ 〈v,− exp−1

y x〉, ∀u ∈ A(x) and ∀v ∈ A(y); (4.1)

(b) strictly monotone if (4.1) is satisfied with strict inequality for any x, y ∈ D(A);

(c) strongly monotone if there exists ρ > 0 such that, for any x, y ∈ D(A),

〈u, exp−1
x y〉 − 〈v,− exp−1

y x〉 ≤ −ρd2(x, y), ∀u ∈ A(x) and ∀v ∈ A(y); (4.2)

(d) maximal monotone if it is monotone and, for any x ∈ D(A) and u ∈ TxM , the

condition that

〈u, exp−1
x y〉 ≤ 〈v,− exp−1

y x〉, ∀y ∈ D(A) and v ∈ A(y) (4.3)

implies that u ∈ A(x).

With the aim of characterize the maximal monotone vector fields, the notions of

upper semicontinuity and upper Kuratowski semicontinuity (cf. [49, p. 55]) as well

as the local boundedness for operators in Banach spaces were extended to the setting

of Hadamard manifolds in the following definition (see [26]).

Definition 4.2. Let A ∈ X (M) and x0 ∈ D(A). A is called
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(a) upper semicontinuous at x0 if for any open set V satisfying A(x0) ⊆ V ⊆ Tx0
M ,

there exists an open neighborhood U(x0) of x0 such that Px,x0
A(x) ⊆ V for any

x ∈ U(x0);

(b) upper Kuratowski semicontinuous at x0 if for any sequences {xk} ⊆ D(A)

and {uk} ⊂ TM with each uk ∈ A(xk), the relations limk→∞ xk = x0 and

limk→∞ uk = u0 imply u0 ∈ A(x0);

(c) locally bounded at x0 if there exists an open neighborhood U(x0) of x0 such that

the set
⋃

x∈U(x0)
A(x) is bounded.

(d) upper semicontinuous (resp. upper Kuratowski semicontinuous, locally bounded)

on M if it is upper semicontinuous (resp. upper Kuratowski semicontinuous,

locally bounded) at each x0 ∈ D(A).

Clearly, the upper semicontinuity implies the upper Kuratowski semicontinuity,

and we can deduce that the converse is also true provided that A is locally bounded.

The authors of [26] proved that the maximality implies the upper Kuratowski semi-

continuity, and if the domain of the vector field is all the manifold then we get the

extension of the well-known equivalence between the maximal monotonicity and the

upper semicontinuity for a set-valued operator with closed and convex values in a

Hilbert space (cf. [41]).

Theorem 4.3. [26] Suppose that A ∈ X (M) is monotone and that D(A) = M . Then

the following statements are equivalent:

(i) A is maximal monotone.

(ii) A is upper semicontinuous on M and A(x) is closed and convex for each x ∈ M .

Recall that x ∈ D(A) is a singularity of A if 0 ∈ A(x). We denote the set of all

singularities of A by A−1(0) := {x ∈ D(A) : 0 ∈ A(x)}.

Regarding the existence of singularities, it is a direct consequence of the definition

that a strictly monotone vector field has at most one singularity. In [10, 13] it was

proved that strongly monotone single-valued vector fields on Hadamard manifolds

with D(A) = M have at least one singularity, that is, since the strong monotonicity

implies the strictly monotonicity, existence and uniqueness are ensured. This result

was extended to the set-valued case for maximal strong monotonicity, using the equiv-

alence established in Theorem 4.3 and the coercivity condition of finite-dimensional

Banach spaces.

When the domain of a monotone vector field A is open and convex, it is known

that in Riemannian manifolds the set of singularities is convex, see [13]. Some topo-

logical and metric consequences of the existence of strictly monotone vector fields

have been studied in both single-valued and set-valued case, involving the sectional

curvature, dimension or volume of the Riemannian manifold, see [9, 10].
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The study of approximating zeros of monotone operators within the framework

of a Banach space has awakened the interest of many researchers. Motivated by the

proximal point algorithm on R
m introduced and studied by Moreau [33], Martinet [29]

and Rockafellar [47], and with the aim of generalize the iterative method given in [15]

for approximating solutions of convex minimization problems, the following proximal

point algorithm for set-valued vector fields on Hadamard manifolds was presented.

Let x0 ∈ D(A) and {λn} ⊂ (0, 1). Having xn, define xn+1 such that

0 ∈ A(xn+1) − λn exp−1
xn+1

xn. (4.4)

Note that this algorithm is implicit. But defining the vector field Bn(x) :=

A(x) − λn exp−1
x xn for each x ∈ D(A) and n ≥ 0, if D(A) = M and A is maximal

monotone, Bn is maximal strongly monotone and then the algorithm (4.4) is well-

defined.

The convergence of the method was established in the following theorem.

Theorem 4.4. [26] Let A ∈ X (M) be such that A−1(0) 6= ∅. Suppose that A is upper

Kuratowski semicontinuous and monotone. Let {λn} ⊂ (0, 1) satisfy

sup{λn : n ≥ 0} < ∞. (4.5)

Let x0 ∈ D(A) and suppose that the sequence {xn} generated by the algorithm (4.4)

is well-defined. Then {xn} converges to a singularity of A.

In the assumptions of the previous theorem, if we assume that D(A) = M and A

is maximal monotone, we obtain as consequence that xn generated by (4.4) is well-

defined and converges to a singularity of A, which is the equivalence result for the

proximal point algorithm in a Hilbert space (see [47]).

Another approach for finding zeros of monotone operators is the well-known ex-

tragradient algorithm proposed first by Korpelevich [25] and studied by many au-

thors specially for solving variational inequalities (see, for instance, [18, 51]). An

extragradient-type method for approximating singularities of continuous monotone

vector fields defined on a constant curvature Hadamard manifold was presented and

proved to converge by Ferreira et al [13]. They also provided an example of compu-

tation of such algorithm in a finite-dimensional hyperbolic space,

We remark that in the definition and convergence of both previous algorithms we

need to impose restrictions on the manifold, namely nonpositive sectional curvature.

It would be desirable to extend these methods to an arbitrary Riemannian manifold,

but for the moment, we are unable to solve this problem because, in general, the

exponential map cannot be defined in the whole tangent bundle and it is not invertible.

It is worth mentioning that the concept of monotonicity has been introduced

in the setting of infinite-dimensional manifolds, together with other notions such
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as resolvent, Yosida approximation and accretive operators, and some convergence

results for approximating the solutions of the equation

0 ∈
d

dt
u(t) + Au(t), t > 0,

in this context, have been proved (see [19] and references therein).

5. VARIATIONAL INEQUALITY AND MINIMIZATION PROBLEMS

In this section we consider a convex subset K of M and V : K → TM a single-

valued vector field, that is, V (x) ∈ TxM for each x ∈ K. The problem of finding

x ∈ K such that

〈V (x), exp−1
x y〉 ≥ 0, ∀y ∈ K, (5.1)

is called a variational inequality on K. The first step in analyzing this problem on

Hadamard manifolds was taken by Németh [38, 13], establishing some existence and

uniqueness theorems and studying the properties of the solution set of a variational

inequality. He proved the existence of solutions of the variational inequality (5.1)

for continuous vector fields defined on a compact convex subset of M , by using an

extension of the well-known Brouwer fixed point Theorem to Hadamard manifolds

(see [38]), whose unclear proof was completed in [26]. This fact could be deduced

from more general results involving some abstract concepts as the Lefschetz number

on acyclic spaces (see [3]), and the NPC spaces (see [52]).

Lemma 5.1. [38] Let K be a compact convex subset of M . Let F : K → K be a

continuous map. Then F has a fixed point in K.

The following iterative approach to solve variational inequalities, deduced from

the proximal point algorithm (4.4), was developed in [26]. Clearly, a point x ∈ K is

a solution of the variational inequality (5.1) if and only if x satisfies that

0 ∈ V (x) + NK(x),

that is, x is a singularity of the set-valued vector field A := V + NK , where NK(x)

denote the normal cone of the set K at x ∈ K:

NK(x) := {u ∈ TxM : 〈u, exp−1
x y〉 ≤ 0, ∀y ∈ K}.

Applying the algorithm (4.4) to A, we get the following proximal point algorithm

with initial point x0 for finding solutions of the variational inequality (5.1):

0 ∈ V (xn+1) + NK(xn+1) − λn exp−1
xn+1

xn, ∀n ≥ 0. (5.2)

By the characterization of maximal monotone vector fields (Theorem 4.3), the con-

vergence of the proximal point algorithm (Theorem 4.4) and Lemma 5.1 we obtain

the well behavior of the algorithm (5.2).
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Theorem 5.2. [26] Let K be a closed convex subset of M and V : K → TM a

single-valued continuous monotone vector field. Let x0 ∈ K and {λn} ⊂ (0, 1) satisfy

(4.5). Then, the sequence {xn} generated by the algorithm (5.2) is well-defined and

converges to a solution of the variational inequality (5.1), whenever it exists.

As far as we know, it is still an open problem the formulation of an extragradient-

type algorithm to solve variational inequalities as defined in (5.1).

Let f : M → (−∞, +∞] be a convex function. The minimization problem

min
x∈M

f(x) (5.3)

has been the subject of various works from different approaches. Iterative and nu-

merical methods were developed by Udriste in [53], where a general descent algorithm

and the steepest descent method (or so-called gradient method) were extended to the

framework of Riemannian manifolds. The latter one, involving the gradient function

of the objective function f , was improved by introduction of a proximal regular-

ization, see [8], allowing to solve constrained non-convex problem in R
n when the

constrain set is a Hadamard manifold. Jost [20] presented an iterative procedure

using the Moreau-Yosida approximation for finding minimizers in a certain class of

Riemannian manifolds, and he gathered some specific minimization problems such as

the center of mass. The classical subgradient algorithm for nondifferentiable mini-

mization problems was extended to Hadamard manifolds by Ferreira and Oliveira,

see [14]. We also find the use of the subdifferential vector field of the function f ,

∂f(x) = {u ∈ TxM : 〈u, exp−1
x y〉 ≤ f(y) − f(x), ∀y ∈ M},

in another of their works, see [15], where they prove the convergence of the proximal

point algorithm,

0 ∈ ∂f(xn+1) − λn exp−1
xn+1

xn, ∀n ≥ 0, (5.4)

in the case when f is a real-valued convex function on M .

Theorem 5.3. [15] Let {xn} be the sequence generated by (5.4). If the sequence {λn}

satisfies
∑

n≥0 1/λn = +∞, then limn→∞ f(xn) = infx∈M f(x). In addition, if the

minimum of f is attained, then limn→∞ xn = x, and x is a minimizer of f .

This algorithm can be rescued from the general proximal point algorithm (4.4)

when f is lower semicontinuous because it is known that x ∈ M is a solution of (5.3)

if and only if x is a singularity of the subdifferential ∂f , and it was proved that the

subdifferential of f in that case is maximal monotone.

Theorem 5.4. [26] Let f be a proper lower semicontinuous convex function on M .

Then the subdifferential ∂f is a monotone and upper Kuratowski semicontinuous mul-

tivalued vector field. Furthermore, if in addition D(f) = M , then the subdifferential

∂f is maximal monotone.
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Hence the convergence is consequence of Theorem 4.4. Following the same rea-

soning we can obtain an algorithm for approximating solutions of a constrained min-

imization problem in a Hadamard manifold.

If we consider the following optimization problem with constrains,

min
x∈K

f(x), (5.5)

with f : M → R a convex function and K a closed and convex subset of M , this one

can be written as the minimization problem (5.3) with f replaced by fK := f + δK ,

where δK is the indicate function defined by δK(x) = 0 if x ∈ K and δK(x) = +∞

otherwise. Since ∂fK(x) = ∂f(x)+NK(x), ∀x ∈ K, (see [26]) the following algorithm,

0 ∈ ∂f(xn+1) + NK(xn+1) − λn exp−1
xn+1

xn, ∀n ≥ 0, (5.6)

converges to a solution of the minimization problem (5.5).

Theorem 5.5. [26] Let f : M → R be a convex function and K be a closed convex

set of M such that the solution set of the optimization problem (5.5) is nonempty. Let

x0 ∈ M and {λn} satisfy (4.5). Then, the sequence {xn} generated by the algorithm

(5.6) is well-defined and converges to a solution of the optimization problem (5.5).

As was proved by Rockafellar ([47, 46]) in the setting of Hilbert spaces, the

proximal point algorithm in Hadamard manifolds is also capable of computing a

saddle-point z̄ = (x̄, ȳ) ∈ M1 × M2 of the minimax problem:

L(x, ȳ) ≤ L(x̄, ȳ) ≤ L(x̄, y), ∀z = (x, y) ∈ M1 × M2, (5.7)

where M1 and M2 are Hadamard manifolds, and the function L : M1 × M2 → R

is a saddle-function, that is, L(x, .) is convex on M2 for each x ∈ M1 and L(., y)

is concave, (i.e −L(., y) is convex) on M1 for each y ∈ M2. Defining an associated

maximal monotone vector field whose singularities are the saddle-points of L, the

proximal point algorithm yields an iterative method for approximating solutions of

the minimax problem (5.7), see [26].
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