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We give a sufficient and necessary condition concerning a Browder’s convergence type theorem
for uniformly asymptotically regular one-parameter nonexpansive semigroups in Hilbert spaces.

1. Introduction

Let C be a closed convex subset of a Hilbert space E. A mapping T on C is called a
nonexpansive mapping if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C. We denote by F(T) the set
of fixed points of T . Browder, see [1], proved that F(T) is nonempty provided that C is, in
addition, bounded. Kirk in a very celebrated paper, see [2], extended this result to the setting
of reflexive Banach spaces with normal structure.

Browder [3] initiated the investigation of an implicit method for approximating fixed
points of nonexpansive self-mappings defined on a Hilbert space. Fix u ∈ C, he studied the
implicit iterative algorithm

zt = tu + (1 − t)Tzt. (1.1)

Namely, zt, t ∈ (0, 1), is the unique fixed point of the contraction x �→ tu + (1 − t)Tx, x ∈ C.
Browder proved that limt→+0zt = Pu, where Pu is the element of F(T) nearest to u. Extensions
to the framework of Banach spaces of Browder’s convergence results have been done by
many authors, including Reich [4], Takahashi and Ueda [5], and O’Hara et al. [6].
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2 Fixed Point Theory and Applications

A family of mappings {T(t) : t ≥ 0} is called a one-parameter strongly continuous
semigroup of nonexpansive mappings (nonexpansive semigroup, for short) on C if the following
are satisfied.

(NS1) For each t ≥ 0, T(t) is a nonexpansive mapping on C.

(NS2) T(s + t) = T(s) ◦ T(t) for all s, t ≥ 0.

(NS3) For each x ∈ C, the mapping t �→ T(t)x from [0,∞) into C is strongly continuous.

There are many papers concerning the existence of common fixed points of {T(t) : t ≥ 0};
see, for instance, [7–13]. As a matter of fact, Browder [8] proved that if C is bounded, then
⋂

t≥0F(T(t)) is nonempty.
Browder’s type convergence theorem for nonexpansive semigroups is proved in [11,

14–18] and others. For example, the following theorem is proved in [17].

Theorem 1.1 (see [17]). Let C be a closed convex subset of a Hilbert space E. Let {T(t) : t ≥ 0}
be a nonexpansive semigroup on C such that

⋂
t≥0F(T(t))/= ∅. Let {αn} and {tn} be sequences in R

satisfying

(C1) 0 < αn < 1 and 0 ≤ tn;

(C2) limntn = limnαn/tn = 0, where 1/0 = ∞.

Fix u ∈ C and define a sequence {xn} in C by

xn = αnu + (1 − αn)T(tn)xn. (1.2)

Then {xn} converges strongly to the element of
⋂

t≥0F(T(t)) nearest to u.

We note that (C1) is needed to define {xn}.
A nonexpansive semigroup {T(t) : t ≥ 0} on C is said to be uniformly asymptotically

regular (u.a.r.) if for every t ≥ 0 and for every bounded subset K of C,

lim
s→∞

sup
x∈K

‖T(s + t)x − T(s)x‖ = 0 (1.3)

holds. The following is proved by Domı́nguez Benavides et al. [16]; see also [15].

Theorem 1.2 (see [16]). Let E, C, and {T(t) : t ≥ 0} be as in Theorem 1.1. Assume that {T(t) : t ≥
0} is u.a.r. Let {αn} and {tn} be sequences in R satisfying (C1) and

(D2) limnαn = 0 and limntn = ∞.

Fix u ∈ C and define a sequence {xn} in C by (1.2). Then {xn} converges strongly to the element of
⋂

t≥0F(T(t)) nearest to u.

There is an interesting difference between Theorems 1.1 and 1.2, that is, {tn} in
Theorem 1.1 converges to 0 and {tn} in Theorem 1.2 diverges to∞. By the way, very recently,
Akiyama and Suzuki [14] generalized Theorem 1.1. They replaced (C2) of Theorem 1.1 by



Fixed Point Theory and Applications 3

the following:

(C2′) {tn} is bounded;
(C3′) limnαn/(tn − τ) = 0 for all τ ∈ [0,∞).

They also showed that the conjunction of (C2′) and (C3′) is best possible; see also [18].
In this paper, motivated by the previous considerations, we generalize Theorem 1.2

concerning {αn} and {tn}. Also, we will show that our new condition is best possible.

2. Main Results

We denote by N the set of all positive integers and by R the set of all real numbers. For t ∈ R,
we denote by [t] the maximum integer not exceeding t.

The following proposition plays an important role in this paper.

Proposition 2.1. LetC be a set of a separated topological vector space E. Let {T(t) : t ≥ 0} be a family
of mappings on C such that T(s) ◦ T(t) = T(s + t) for all s, t ∈ [0,∞). Assume that {T(t) : t ≥ 0} is
asymptotic regular, that is,

lim
s→∞

(T(t + s)x − T(s)x) = 0 (2.1)

for all t ∈ [0,∞) and x ∈ C. Then

F(T(t)) =
⋂

s≥0
F(T(s)) (2.2)

holds for all t ∈ (0,∞).

Proof. Fix t ∈ (0,∞). It is obvious that F(T(t)) ⊃
⋂

sF(T(s)) holds. Let z ∈ C be a fixed point
of T(t). For every h ∈ [0,∞), we have

T(h)z − z = lim
n→∞

(
T(h) ◦ T(t)nz − T(t)nz

)

= lim
n→∞

(T(h + nt)z − T(nt)z)

= lim
s→∞

(T(h + s)z − T(s)z)

= 0,

(2.3)

and hence z is a common fixed point of {T(t) : t ≥ 0}.

It is well known that every Hilbert space has the Opial property.

Proposition 2.2 (Opial [19]). Let E be a Hilbert space. Let {xn} be a sequence in E converging
weakly to z0 ∈ H. Then the inequality lim infn‖xn − z‖ ≤ lim infn‖xn − z0‖ implies z = z0.

We generalize Theorem 1.2.
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Theorem 2.3. Let C be a closed convex subset of a Hilbert space E. Let {T(t) : t ≥ 0} be a
u.a.r. nonexpansive semigroup on C such that

⋂
t≥0F(T(t))/= ∅. Let {αn} and {tn} be sequences in

R satisfying (C1) and

(D2′) limnαn = limnαn/tn = 0.

Fix u ∈ C and define a sequence {xn} in C by (1.2). Then {xn} converges strongly to the element of
⋂

t≥0F(T(t)) nearest to u.

Proof. Put F(T) =
⋂

t≥0F(T(t)). Let v be the element of F(T) nearest to u. Since

‖xn − v‖ = ‖(1 − αn)T(tn)xn + αnu − v‖

≤ (1 − αn)‖T(tn)xn − v‖ + αn‖u − v‖

≤ (1 − αn)‖xn − v‖ + αn‖u − v‖,

(2.4)

we have ‖xn − v‖ ≤ ‖u − v‖. Therefore {xn} is bounded. Hence {T(t)xn : n ∈ N, t ≥ 0} is also
bounded.

We put

M := sup{‖T(t)xn − u‖ : n ∈ N, t ≥ 0} < ∞. (2.5)

Let {f(n)} be an arbitrary subsequence of {n}. Then there exists a subsequence {g(n)} of {n}
such that {xf◦g(n)} converges weakly to x. We choose a subsequence {h(n)} of {n} such that

τ := lim
n→∞

tf◦g◦h(n) = lim sup
n→∞

tf◦g(n). (2.6)

Put yj = xf◦g◦h(j), βj = αf◦g◦h(j), and sj = tf◦g◦h(j). We will show x ∈ F(T), dividing the
following three cases:

(i) τ = ∞,

(ii) 0 < τ < ∞,

(iii) τ = 0.

In the first case, we fix t ≥ 0. For sufficiently large j ∈ N, we have

‖T(t)x − yj‖ ≤ ‖T(t)x − T(t)yj‖ + ‖T(t)yj − yj‖

≤ ‖x − yj‖ + βj‖T(t)yj − u‖ +
(
1 − βj

)
‖T(t)yj − T

(
sj
)
yj‖

≤ ‖x − yj‖ + βjM +
(
1 − βj

)
‖T

(
sj − t

)
yj − yj‖

≤ ‖x − yj‖ + βjM +
(
1 − βj

)
βj‖T

(
sj − t

)
yj − u‖ +

(
1 − βj

)2‖T
(
sj − t

)
yj − T

(
sj
)
yj‖

≤ ‖x − yj‖ + βj
(
2 − βj

)
M +

(
1 − βj

)2‖T
(
sj − t + t

)
yj − T

(
sj − t

)
yj‖,

(2.7)
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and hence

lim inf
j→∞

∥
∥T(t)x − yj

∥
∥ ≤ lim inf

j→∞

∥
∥x − yj

∥
∥. (2.8)

By the Opial property, we obtain T(t)x = x. Thus x ∈ F(T).
In the second case, we have

‖T(τ)x − yj‖ ≤ ‖T(τ)x − T
(
sj
)
x‖ + ‖T

(
sj
)
x − T

(
sj
)
yj‖ + ‖T

(
sj
)
yj − yj‖

≤ ‖T(τ)x − T
(
sj
)
x‖ + ‖x − yj‖ + βj‖T

(
sj
)
yj − u‖

≤ ‖T
(∣
∣τ − sj

∣
∣
)
x − T(0)x‖ + ‖x − yj‖ + βjM,

(2.9)

and hence

lim inf
j→∞

∥
∥T(τ)x − yj

∥
∥ ≤ lim inf

j→∞

∥
∥x − yj

∥
∥. (2.10)

By the Opial property, we obtain T(τ)x = x. By Proposition 2.1, we obtain x ∈ F(T).
In the third case, we fix t ≥ 0. For sufficiently large j ∈ N, we have

‖T(t)x − yj‖ ≤ ‖T(t)x − T
([
t/sj

]
sj
)
x‖ + ‖T

([
t/sj

]
sj
)
x − T

([
t/sj

]
sj
)
yj‖

+
[t/sj ]−1∑

k=0

‖T
(
ksj

)
yj − T

(
(k + 1)sj

)
yj‖ + ‖T(0)yj − yj‖

≤ ‖T
(
t −

[
t/sj

]
sj
)
x − T(0)x‖ + ‖x − yj‖

+
[
t/sj

]
‖T

(
sj
)
yj − yj‖ + ‖T(0)yj − T

(
sj
)
yj‖ + ‖T

(
sj
)
yj − yj‖

≤ ‖T
(
t −

[
t/sj

]
sj
)
x − T(0)x‖ + ‖x − yj‖

+
[
t/sj

]
‖T

(
sj
)
yj − yj‖ + ‖yj − T

(
sj
)
yj‖ + ‖T

(
sj
)
yj − yj‖

= ‖T
(
t −

[
t/sj

]
sj
)
x − T(0)x‖ + ‖x − yj‖ +

([
t/sj

]
+ 2

)
‖T

(
sj
)
yj − yj‖

= ‖T
(
t −

[
t/sj

]
sj
)
x − T(0)x‖ + ‖x − yj‖ +

([
t/sj

]
+ 2

)
βj‖T

(
sj
)
yj − u‖

≤ max
{
‖T(s)x − T(0)x‖ : 0 ≤ s ≤ sj

}
+ ‖x − yj‖ +

(
tβj/sj + 2βj

)
M.

(2.11)

Hence (2.8) holds. Thus we obtain x ∈ F(T).
We next prove that {yj} converges strongly to v. Since

βj
∥
∥yj − v

∥
∥2 +

(
1 − βj

)
〈
(
yj − T

(
sj
)
yj

)
−
(
v − T

(
sj
)
v
)
, yj − v〉

= βj〈u − v, yj − v〉,

〈
(
yj − T

(
sj
)
yj

)
−
(
v − T

(
sj
)
v
)
, yj − v〉

≥ ‖yj − v‖2 − ‖T
(
sj
)
yj − T

(
sj
)
v‖‖yj − v‖ ≥ 0,

(2.12)
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we obtain ‖yj − v‖2 ≤ 〈u − v, yj − v〉. Since 〈u − v, x − v〉 ≤ 0, we have

∥
∥yj − v

∥
∥2 ≤ 〈u − v, yj − v〉

= 〈u − v, yj − x〉 + 〈u − v, x − v〉

≤
〈
u − v, yj − x

〉
,

(2.13)

and hence {yj} converges strongly to v. Since {xf(n)} is arbitrary, we obtain that {xn}
converges strongly to v.

Using [20, Theorem 7], we obtain the following Moudafi’s type convergence theorem;
see [21].

Corollary 2.4. Let E, C, {T(t) : t ≥ 0}, {αn}, and {tn} be as in Theorem 2.3. Let Φ be a contraction
on C; that is, there exists r ∈ [0, 1) such that ‖Φx −Φy‖ ≤ r‖x − y‖ for x, y ∈ C. Define a sequence
{xn} in C by

xn = αnΦxn + (1 − αn)T(tn)xn. (2.14)

Then {xn} converges strongly to the unique point z ∈ C satisfying P ◦Φz = z, where P is the metric
projection from C onto

⋂
t≥0F(T(t)).

We will show that (D2′) is best possible.

Example 2.5. Put E = �2(N), that is, E is a Hilbert space consisting of all the functions x from
N into R satisfying

∑
k∈N |x(k)|2 < ∞ with inner product 〈x, y〉 =

∑
k∈N x(k)y(k). Define a

bounded closed convex subset C of E by

C =
{
x ∈ E : 0 ≤ x(k) ≤ pk

}
, (2.15)

where pk = 2−k/2. Define a u.a.r. nonexpansive semigroup {T(t) : t ≥ 0} on C by

(T(t)x)(k) = max
{
x(k) − tpk

2, 0
}
. (2.16)

Let {ek} be the canonical basis of E and put u =
∑∞

k=1 pkek. Let {αn} and {tn} be sequences in
R satisfying (C1) and define {xn} in C by (1.2). Then {xn} converges to a common fixed point
of {T(t) : t ≥ 0} only if limnαn = limnαn/tn = 0.

Proof. For α ∈ (0, 1) and t ≥ 0, we define x(α, t) by

x(α, t) = αu + (1 − α)T(t)x(α, t). (2.17)
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We note

x(α, t)(k) =

⎧
⎪⎨

⎪⎩

αpk, if α ≤ tpk,
(

1 + tpk −
tpk
α

)

pk, if α ≥ tpk.
(2.18)

So, x(α, t)(k) ≥ αpk. It is obvious that
⋂

t≥0F(T(t)) = {0}. We assume limnxn = limnx(αn, tn) =
Pu = 0. Then

0 = lim
n→∞

xn(1)
p1

≥ lim
n→∞

αn. (2.19)

Arguing by contradiction, we assume lim supnαn/tn > 0. Then there exist κ ∈ N and a
subsequence {f(n)} of {n} such that

αf(n)

tf(n)
≥ 2pκ. (2.20)

Since limnxf(n)(κ) = 0, we have

0 = lim
n→∞

xf(n)(κ)
pκ

= lim
n→∞

(

1 + tf(n)pκ −
tf(n)pκ

αf(n)

)

≥ lim sup
n→∞

(

1 −
tf(n)pκ

αf(n)

)

≥ 1
2
> 0,

(2.21)

which is a contradiction. Therefore we obtain limnαn/tn = 0.

By Theorem 2.3 and Example 2.5, we obtain the following.

Theorem 2.6. Let E be an infinite-dimensional Hilbert space. Let {αn} and {tn} be sequences in R

satisfying (C1). Then the following are equivalent:

(i) limnαn = limnαn/tn = 0,

(ii) if C is a bounded closed convex subset C of E, {T(t) : t ≥ 0} is a u.a.r. nonexpansive
semigroup on C, u ∈ C, and {xn} is a sequence in C defined by (1.2), then {xn} converges
strongly to the element of

⋂
t≥0F(T(t)) nearest to u.

Compare (D2′) with the conjunction of (C2′) and (C3′). We can tell that the difference
between both conditions is u.a.r.
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