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Photosynthesis, the primary source of biomass and oxygen into the biosphere, involves the
transport of electrons in the presence of oxygen and, therefore, chloroplasts constitute an
important source of reactive oxygen species, including hydrogen peroxide. If accumulated
at high level, hydrogen peroxide may exert a toxic effect; however, it is as well an
important second messenger. In order to balance the toxic and signaling activities of
hydrogen peroxide its level has to be tightly controlled. To this end, chloroplasts are
equipped with different antioxidant systems such as 2-Cys peroxiredoxins (2-Cys Prxs),
thiol-based peroxidases able to reduce hydrogen and organic peroxides. At high peroxide
concentrations the peroxidase function of 2-Cys Prxs may become inactivated through
a process of overoxidation. This inactivation has been proposed to explain the signaling
function of hydrogen peroxide in eukaryotes, whereas in prokaryotes, the 2-Cys Prxs of
which were considered to be insensitive to overoxidation, the signaling activity of hydrogen
peroxide is less relevant. Here we discuss the current knowledge about the mechanisms
controlling 2-Cys Prx overoxidation in chloroplasts, organelles with an important signaling
function in plants. Given the prokaryotic origin of chloroplasts, we discuss the occurrence
of 2-Cys Prx overoxidation in cyanobacteria with the aim of identifying similarities between
chloroplasts and their ancestors regarding their response to hydrogen peroxide.
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INTRODUCTION
Oxygenic photosynthesis is an essential process for life on Earth
because it allows the use of light and water to produce biomass and
oxygen. However, it is also a process potentially harmful due to the
transport of electrons in the presence of oxygen, which inevitably
produces reactive oxygen species (ROS). Several environmental
challenges such as drought, low or high temperature, high light
intensity, or salinity, alter chloroplast ROS homeostasis produc-
ing oxidative stress (Miller et al., 2010). To adequately respond
to these stressful conditions chloroplasts are equipped with dif-
ferent antioxidant systems both enzymatic and non-enzymatic. It
should be taken into account that besides their harmful effect, ROS
have also signaling function (Laloi et al., 2007). This is the case of
hydrogen peroxide, which is produced at high rate in chloroplasts
of photosynthetic cells and has an important signaling activity
(Mubarakshina et al., 2010), as confirmed by genome-wide expres-
sion analyses in tobacco and Arabidopsis (Vandenabeele et al., 2003;
Vanderauwera et al., 2005).

Peroxiredoxins (Prxs), thiol-based peroxidases able to reduce
hydrogen peroxide, peroxynitrite and organic peroxides, are
among the most abundant chloroplast enzymatic antioxidant sys-
tems. Prxs are universally present in any type of organisms from
bacteria to animals and plants (Dietz, 2003, 2011; Wood et al.,
2003a; Rhee et al., 2005; Hall et al., 2009). These enzymes are

classified into different classes including typical 2-Cys Prxs, which
are homodimeric, atypical 2-Cys Prxs, which are monomeric, and
1-Cys Prxs. Both typical and atypical 2-Cys Prxs share a sim-
ilar reaction mechanism involving two conserved Cys residues,
termed peroxidatic and resolving, respectively (Wood et al., 2003a;
Hall et al., 2009). During the catalytic cycle the peroxidatic Cys
becomes transiently oxidized as sulfenic acid (-SOH) and then
condenses with the resolving Cys to form a disulfide bridge. In
the case of the typical 2-Cys Prxs, which are dimeric, the enzyme
is fully oxidized when both pairs of catalytic Cys residues (per-
oxidatic and resolving) form disulfides, which have to be reduced
to initiate a new catalytic cycle. This reduction is performed by a
thiol-oxidoreductase, which usually is thioredoxin (Trx), though
glutaredoxin and cyclophilins are also able to participate in this
step. At high peroxide concentrations, the sulfenic acid interme-
diate of the peroxidatic Cys may become overoxidized to sulfinic
(-SO2H) or even sulfonic (-SO3H) acids, which causes the inacti-
vation of the enzyme. Based on the different sensitivities of 2-Cys
Prxs to overoxidation, which is higher in enzymes from eukaryotes
than from prokaryotes, Wood et al. (2003b) proposed the flood-
gate hypothesis. According to this hypothesis, oxidizing conditions
promote the inactivation by overoxidation of sensitive 2-Cys Prxs
in eukaryotic organisms, provoking a transient further increase of
hydrogen peroxide, which may then be used as second messenger
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(Wood et al., 2003b). In contrast, in prokaryotic organisms, the
2-Cys Prxs of which were considered to be insensitive, hydro-
gen peroxide is efficiently reduced and does not accumulate, thus
having a less important function in signaling. Different reports
confirm the relevant role of the hydrogen peroxide-dependent
inactivation of 2-Cys Prxs in signaling processes in eukaryotic
organisms (Karplus and Poole, 2012; Rhee et al., 2012). A notion
reinforced by the recent finding that 2-Cys Prx overoxidation is a
conserved marker of circadian rhythmicity (Edgar et al., 2012).

In plants, Prxs are encoded by a gene family, which in
Arabidopsis is composed of ten members (Dietz, 2003). The first
plant Prx identified was a 1-Cys Prx highly expressed in barley
grains (Stacy et al., 1996). Later it was shown that this 1-Cys Prx
accumulates in the nucleus of cereal seed tissues that undergo
intense oxidative stress (Stacy et al., 1999; Pulido et al., 2009),
suggesting a function in the antioxidant protection of nuclear
structures. Chloroplasts are the organelles with the highest content
of Prxs. The Arabidopsis chloroplast contains two almost identical
typical 2-Cys Prxs, termed A and B, and atypical monomeric Prxs
Q and IIE (Dietz, 2003, 2011). Although 2-Cys Prxs are among the
most abundant plastidial proteins, a double mutant of Arabidopsis,
which is a severe knock down for 2-Cys Prxs, shows a surpris-
ingly mild phenotype (Pulido et al., 2010) suggesting that other
antioxidant systems, such as the ascorbate-glutathione cycle in
combination with superoxide dismutase, are able to compensate
for 2-Cys Prx deficiency. Moreover, it was shown that chloro-
plast 2-Cys Prxs are sensitive to overoxidation, hence behaving
as eukaryotic-type enzymes despite the endosymbiont origin of
this organelle (Kirchsteiger et al., 2009). A more in-depth anal-
ysis of 2-Cys Prx in cyanobacteria showed that the enzyme from
Anabaena is more sensitive to overoxidation than the Synechocystis
enzyme (Pascual et al., 2010).

In this review we will discuss our present knowledge of the
mechanisms controlling 2-Cys Prxs reduction and overoxidation
in chloroplasts with emphasis in the effect of the redox status
of 2-Cys Prxs on the activity of these enzymes. Moreover, we
will discuss how the redox status of the chloroplast influences
the signaling function of this organelle, which is essential to
harmonize the growth and development of the different plant
organs.

THE PATHWAYS OF 2-Cys Prxs REDUCTION IN
CHLOROPLASTS
The Arabidopsis chloroplast is equipped with two almost identical
typical 2-Cys Prxs, A and B, and atypical Prxs Q and IIE (Dietz
et al., 2006). Although all these enzymes are relatively abundant,
2-Cys Prxs are among the most abundant proteins of the chloro-
plast (Dietz, 2011). Concerning their suborganellar localization,
the presence of Prx IIE in the chloroplast stroma has been estab-
lished, though its interaction with internal membranes was not
analyzed (Bréhélin et al., 2003). Prx Q, which was described ini-
tially as associated to thylakoids (Lamkemeyer et al., 2006), was
later localized in the thylakoid lumen (Petersson et al., 2006).
Therefore, the exact localization of Prx Q still awaits confirmation
(Dietz, 2011). 2-Cys Prxs A and B are localized in the chloroplast
stroma in dimeric form, but become associated to the thylakoid
membrane in their oligomeric form (Konig et al., 2002).

The function of the chloroplast-localized Prxs was first
addressed by the generation of transgenic plants with antisense
suppression of 2-Cys Prx expression (Baier et al., 2000), and then
by the analysis of Arabidopsis mutants (Pulido et al., 2010). Single
mutants with reduced levels of 2-Cys Prx A or lacking 2-Cys Prx
B showed no phenotypic differences as compared with wild type
plants, suggesting redundant functions of these enzymes (Pulido
et al., 2010). Surprisingly, the double mutant �2cp, which is knock
out for 2-Cys Prx B and a severe knock down for 2-Cys Prx A,
shows almost wild type phenotype (Pulido et al., 2010). How-
ever, it was not possible to obtain a double knock out mutant,
which suggests that plants cannot survive without at least a small
amount of chloroplast 2-Cys Prxs. Most probably this is not exclu-
sively due to their peroxidase activity, which can be compensated
for by the other antioxidant systems of the chloroplast, such as
the ascorbate-glutathione cycle in combination with superoxide
dismutase. 2-Cys Prxs are complex enzymes showing different
activities associated with different quaternary structures. As ini-
tially shown for the enzyme from yeast (Jang et al., 2004), the
low-molecular-weight (LMW) form of 2-Cys Prxs shows pre-
dominantly peroxidase activity, whereas higher molecular weight
(HMW) forms lack peroxidase activity while gaining chaperone
activity. Interestingly, the switch from LMW to HMW is triggered
under conditions of oxidative stress.

Chloroplast 2-Cys Prxs have a reaction mechanism similar to
the enzyme from other eukaryotic organisms. The LMW form of
the enzyme is arranged as a head-to-tail homodimer, which in
its reduced form displays peroxidase activity (Figure 1). There-
fore, 2-Cys Prxs can be considered as symmetric enzymes having
two identical active sites. The catalytic cycle is initiated by the
attack of the peroxidatic Cys to the peroxide rendering the cor-
responding alcohol, or water in the case of hydrogen peroxide,
and the Cys residue oxidized to sulfenic acid (Figure 1). In a sec-
ond step, the sulfenic acid intermediate is condensed with the
resolving Cys producing a molecule of water and both Cys linked
by a disulfide bridge (Figure 1). For a new catalytic cycle this
disulfide has to be reduced. In chloroplasts Broin et al. (2002)
proposed that a previously identified protein, termed CDSP32,
which is formed by two Trx folds, with only one of them har-
boring a Trx active site, acted as reductant of 2-Cys Prxs. The in
vitro analysis of several plastidial Trxs led Collin et al. (2003) to
propose Trx x as the most efficient reductant of these enzymes.
Finally, the chloroplast localized NADPH-dependent thioredoxin
reductase C (NTRC), a peculiar NTR with a joint Trx domain at
the C-terminus (Serrato et al., 2002, 2004) was shown to com-
bine both NTR and Trx activity to efficiently reduce plastidial
2-Cys Prx (Moon et al., 2006; Pérez-Ruiz et al., 2006; Alkhalfioui
et al., 2007). The notion that NTRC is the most efficient reduc-
tant of chloroplast 2-Cys Prxs was subsequently confirmed in
further studies by in vivo analysis, based on fluorescence reso-
nance energy transfer (FRET) assays, which showed interaction
of 2-Cys Prx with NTRC but not with Trx x (Muthurama-
lingam et al., 2009). In addition, the redox status of 2-Cys Prxs
was similar in wild type and Trx x knock out mutant plants,
whereas the ntrc mutant showed a severely impaired redox sta-
tus (Pulido et al., 2010). In summary, as depicted in Figure 1,
chloroplast 2-Cys Prxs have a mode of action similar to the
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FIGURE 1 | Reaction mechanism and pathways for 2-Cys Prx reduction

in chloroplasts. Typical 2-Cys Prxs are homodimeric enzymes arranged in
head-to-tail conformation. Catalysis is performed by two cysteine residues,
peroxidatic (Sp) and resolving (Sr). The peroxidatic cysteine reacts with
hydrogen peroxide producing a molecule of water and becoming oxidized
as sulfenic acid. In a second step the resolving cysteine condenses with
the sulfenic acid intermediate so that a molecule of water is produced and
both cysteines are linked by a disulfide bridge. For a new catalytic cycle the
disulfide has to be reduced. In plant chloroplasts both in vitro and in vivo
analyses suggest that NTRC is more relevant for 2-Cys Prx reduction than
other plastidial Trxs such as CDSP32 and Trx x.

enzymes from other eukaryotic organisms and is predominantly
reduced by NTRC. The required reducing power in form of
NADPH is produced either by the photosynthetic electron trans-
port chain, which occurs during the day, or from sugars by
the initial reactions of the oxidative pentose phosphate path-
way, which would be the predominant pathway during the night
(Spínola et al., 2008; Cejudo et al., 2012). Though not exper-
imentally established, it is expected that Trx x and CDSP32
use the reducing power of reduced ferredoxin (Fd) in a reac-
tion catalyzed by Fd-dependent Trx reductase (FTR). Results
from our group show that NTRC is unable to reduce plastidial
Trxs, such as Trx x or CDSP32 (Pérez-Ruiz et al., 2006; Bernal-
Bayard et al., 2012). Therefore, it seems that the two different
pathways, NTRC and FTR/Trx, for 2-Cys Prx reduction are not
connected.

CHLOROPLAST 2-Cys Prxs ARE SENSITIVE TO
OVEROXIDATION
The study of the reaction mechanism of chloroplast 2-Cys Prxs
revealed that the enzyme may become irreversibly oxidized dur-
ing the catalytic cycle and shows tendency to form oligomers
(Konig et al., 2002). These properties of chloroplast 2-Cys Prxs
gained interest when Wood et al. (2003b) proposed the floodgate
hypothesis according to which the signaling function of hydrogen
peroxide in eukaryotic organisms is due to the overoxidation of
the peroxidatic cysteine at the active site of 2-Cys Prxs. As men-
tioned above, during catalysis the peroxidatic cysteine becomes
transiently oxidized to sulfenic acid, which under oxidizing con-
ditions may be overoxidized to sulfinic or even sulfonic acid
(Figure 2). This overoxidation inhibits the peroxidase activity of
the enzyme thus allowing the local accumulation of hydrogen per-
oxide, which exerts its function as second messenger (Wood et al.,
2003b). Though initially it was thought that overoxidation was an
irreversible process, it was then found that sulfiredoxin (Srx) is
able to reverse the overoxidized form to the reduced form of the
enzyme in a reaction that required ATP and Mg2+ (Biteau et al.,
2003; Woo et al., 2003). Overoxidation favors the formation of the
HMW form of 2-Cys Prxs, which promotes the chaperone activity
of these enzymes (Figure 2). All these data, obtained from analyses
with yeast and human enzymes, indicated that the redox status of
2-Cys Prxs is essential to determine their peroxidase or chaperone
activity, making them efficient sensors and key components of the
response to oxidant conditions (Karplus and Poole, 2012).

In plants, the chloroplast is an essential organelle not only
because of photosynthesis, but also because it is the site of synthe-
sis of a variety of compounds, such as hormones, which play a role
in signaling. The role of the chloroplast as an important source
of hydrogen peroxide is well known (Mubarakshina et al., 2010).
Indeed, we have recently shown that restitution of the redox home-
ostasis exclusively in chloroplasts, by expressing NTRC in the ntrc
background mutant under the RbcS promoter, was necessary and
sufficient to recover wild type growth and development of lateral
roots regardless of the impaired redox homeostasis in root amylo-
plasts (Ferrández et al., 2012; Kirchsteiger et al., 2012). Therefore,
whether or not chloroplast 2-Cys Prxs undergo overoxidation and
the mechanisms controlling the redox status of the enzyme are
relevant questions to determine their antioxidant and/or signaling
function.

Two-dimensional gel electrophoresis analysis of 2-Cys Prx from
wild type and mutants deficient in either 2-Cys Prx A or 2-
Cys Prx B from Arabidopsis revealed the overoxidation of both
enzymes (Kirchsteiger et al., 2009). Surprisingly, the NTRC knock
out mutant showed lower level of 2-Cys Prx overoxidation than
wild type plants, despite the fact that the deficiency of NTRC
may cause oxidative stress. This was a first indication suggest-
ing that the reduction of the enzyme, as a pre-requisite for the
formation of the sulfenic acid intermediate, is required for the sub-
sequent overoxidation to sulfinic acid, as outlined in Figure 2. The
other component affecting the level of 2-Cys Prx overoxidation in
chloroplasts is Srx, which is encoded in plants by a single gene, the
protein showing dual targeting to chloroplast and mitochondria
(Liu et al., 2006; Iglesias-Baena et al., 2011). Chloroplast Srx was
shown to effectively reverse 2-Cys Prx overoxidation (Rey et al.,
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FIGURE 2 | NTRC and Srx determine the redox status of chloroplast

2-Cys Prxs. Under oxidant conditions, the sulfenic acid intermediate of the
peroxidatic cysteine residue may be further oxidized to sulfinic acid. The
reduction of the enzyme, which is most efficiently performed by NTRC, is a
pre-requisite for sulfenic acid formation and, thus, for overoxidation. Srx is
able to catalyze the reversion of the overoxidized to the reduced form of the

enzyme. Therefore, the redox status of chloroplast 2-Cys Prxs is highly
dependent of NTRC and Srx. The quaternary structure of 2-Cys Prxs
determines the activity of these enzymes. In the reduced form the enzyme is
a dimer and shows peroxidase activity; overoxidation favors the formation of
the decameric form, which lacks peroxidase activity and shows chaperone
activity.

2007; Iglesias-Baena et al., 2010), though enzyme was also shown
to have redox-independent nuclease activity (Chi et al., 2012). The
analysis of an Arabidopsis Srx knock out mutant revealed a func-
tion of the enzyme in the response to photooxidative stress (Rey
et al., 2007). In addition, it was shown that the overoxidation of
the chloroplast 2-Cys Prxs, like those of other eukaryotic organ-
isms, triggers the oligomerization of the enzyme, which diminishes
the peroxidatic activity while it increases the chaperone activity
(Barranco-Medina et al., 2009).

Factors affecting 2-Cys Prx overoxidation in chloroplasts are
summarized in the scheme outlined in Figure 2. The reduction
of the enzyme, which is predominantly performed by NTRC,
is a pre-requisite for the formation of the sulfenic acid inter-
mediate. At high peroxide concentrations this intermediate may
become increasingly overoxidized, which switches the perox-
idase to chaperone activity of the enzyme. Reversion of the
overoxidized form of 2-Cys Prx is catalyzed by Srx in a reac-
tion that requires ATP and Mg2+. According to this scheme, two
enzymes, NTRC and Srx, seem to play a central role in control-
ling the redox status of 2-Cys Prxs in chloroplasts. It has been
proposed that 2-Cys Prx may exert a critical function by balanc-
ing antioxidant and signaling activities of chloroplast produced
hydrogen peroxide (Dietz et al., 2006). This function is proba-
bly essential as suggested by the fact that the double knock out
mutant lacking both 2-Cys Prx A and B seems not viable. Nev-
ertheless, much effort is still required to determine the reason
why these enzymes have such an essential function for plant
survival.

THE CYANOBACTERIAL ORIGIN OF CHLOROPLAST 2-Cys Prx
OVEROXIDATION
According to the floodgate hypothesis, the signaling activity
of hydrogen peroxide in eukaryotic organisms is based on the
inactivation of 2-Cys Prxs by overoxidation, which allows the
transient increase in the peroxide necessary to act as second mes-
senger (Wood et al., 2003b). Structural analysis identified the
GG(L/V/I)G and YF motifs in sensitive enzymes, and established
that the peroxidatic cysteine is 14 Å away from the resolving

cysteine, which makes the eukaryotic enzymes about 100-fold
more sensitive to overoxidation than the prokaryotic ones (Wood
et al., 2003b). Chloroplast 2-Cys Prxs are sensitive to overoxidation
(Broin and Rey, 2003; Kirchsteiger et al., 2009; Iglesias-Baena et al.,
2010), thus behaving as expected for enzymes of a eukaryotic
organelle. Because it is well established that chloroplasts evolved
from a prokaryotic endosymbiont (Gould et al., 2008), it arises
the question whether 2-Cys Prx sensitivity was already present in
the prokaryotic endosymbiont or was a gain-of-function of these
enzymes that occurred during chloroplast evolution. To address
this question, Pascual et al. (2010) analyzed the presence of the
GG(L/V/I)G and YF motifs in the genes encoding 2-Cys Prxs from
different sources. This search confirmed the presence of sensi-
tive 2-Cys Prxs, characterized by the presence of both motifs, in
eukaryotes. However, it revealed an unexpectedly large number of
2-Cys Prx from prokaryotic organisms containing the GG(L/V/I)G
and YF motifs, thus being putatively sensitive to overoxidation.
Interestingly, the 2-Cys Prxs from several cyanobacteria, such
as Anabaena sp. PCC7120 and Synechocystis sp. PCC6803, were
found to contain these motifs. Biochemical analyses revealed that
2-Cys Prx from Anabaena sp. PCC7120 shows a level of sensitiv-
ity to overoxidation similar to that of the chloroplast enzymes,
whereas 2-Cys Prx from Synechocystis sp. PCC6803 is less sensitive
(Pascual et al., 2010). Moreover, in vivo analyses showed different
strategies of these cyanobacterial strains to respond to oxidative
stress. While Anabaena showed high sensitivity, Synechocystis sur-
vived higher concentrations of hydrogen peroxide. The strategy
based on high efficiency of hydrogen peroxide detoxification pro-
vides higher resistance though, as it is rapidly reduced, the peroxide
cannot be used for signaling. In contrast, the Anabaena strategy,
based on low capacity of detoxification, causes the increase of
hydrogen peroxide required to act as second messenger, though
it may have as well a harmful effect. Interestingly, the strategy of
chloroplasts, which are equipped with sensitive 2-Cys Prxs and
lack catalase, is very similar to the Anabaena strategy. This is in
agreement with the proposal that chloroplasts originated from
cyanobacterial strains similar to present day Anabaena species
(Deusch et al., 2008).
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CONCLUDING REMARKS AND FUTURE PROSPECTS
The inactivation of the peroxidase activity of 2-Cys Prxs, caused by
the overoxidation of their peroxidatic cysteines, has been proposed
to be essential for the signaling function of hydrogen peroxide in
eukaryotic organisms. In chloroplasts, which constitute an impor-
tant source of hydrogen peroxide and have a prominent signaling
function in plants, 2-Cys Prxs are among the most abundant pro-
teins. Despite the prokaryotic origin of the plant chloroplast, the
2-Cys Prxs of this organelle undergo peroxide-mediated overox-
idation, thus behaving as eukaryotic-type enzymes. The redox
status of chloroplast 2-Cys Prxs, mostly controlled by NTRC
and Srx, may balance the antioxidant and signaling functions of

chloroplast-produced hydrogen peroxide and, thus, its activity as
second messenger. Although much progress has been made on the
biochemical properties of 2-Cys Prxs, little is yet known about the
mechanisms explaining their function in signaling. The identifi-
cation of the targets of these enzymes may be of aid to establish
these functions.
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