On the locally finite chain algebra of a proper homotopy type

Hans-Joachim Baues

Antonio Quintero

Abstract

In the classical paper [A-H] Adams-Hilton constructed a free chain algebra which is an important algebraic model of a simply connected homotopy type. We show that this chain algebra (endowed with an additional structure given by a "height function") yields actually an invariant of a proper homotopy type. For this we introduce the homotopy category of locally finite chain algebras without using the usual methods of pro-categories. As examples we consider the locally finite chain algebras of \mathbb{R}^{n+1} , $S^2 \times S^2 - \{point\}$, and $\mathbb{C}P_2 - \{point\}$.

1 Proper homotopy types of locally finite polyhedra.

Let Top be the category of topological spaces. A map $f : X \to Y$ is proper if both f is closed and the fibre $f^{-1}(y)$ is compact for each point $y \in Y$. Let Toppbe the subcategory of Top consisting of topological spaces and proper maps. The unit interval $I = [0, 1] \subset \mathbb{R}$ yields the cylinder $IX = X \times I$ in Top and Topp such that these categories are I-categories in the sense of [BAH;I §3], compare [BP;I.3.9] or [ADQ1]. Hence the homotopy categories Top/\simeq and $Topp/\simeq$ are defined, and isomorphism types in these categories are homotopy types and proper homotopy types respectively. We are interested in new algebraic invariants of the proper homotopy type of a locally finite polyhedron. A polyhedron X is a topological space homeomorphic to a simplicial complex; if every vertex belongs to only finitely many simplices the polyhedron is locally finite, this is the case if and only if the space X is

Bull. Belg. Math. Soc. 3 (1996), 161-175

Received by the editors May 1995.

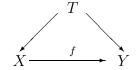
Communicated by Y. Félix.

¹⁹⁹¹ Mathematics Subject Classification : Primary: 55P15, 55P99. Secondary: 55P35, 55U15. Key words and phrases : Adams-Hilton model, proper algebra, proper homotopy type.

locally compact. For example, all topological manifolds have the proper homotopy type of a finite dimensional locally finite polyhedron (see [K-S; p. 123]).

Given a topological space X a collection $S = \{A_j; j \in J\}$ of subsets $A_j \subset X$ is said to be locally finite if every point in X has a neighbourhood U such that the set $\{j \in J; U \cap A_j \neq \emptyset\}$ is finite; that is, every point has a neighbourhood which meets only finitely many members of S. A polyhedron is locally finite if and only if the collection of all the closed simplices is locally finite.

A tree T, in this paper, is a contractible locally finite 1-dimensional simplicial complex. We shall consider the category $Topp^T$ of objects in Topp under T, such objects are proper maps $T \to X$ and morphisms in $Topp^T$ are commutative diagrams

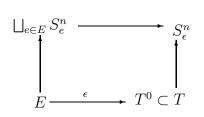


in *Topp*. The category $Topp^T$ is a cofibration category, see [BAH;I.3.3 and II.1.4]. The tree T plays the role of "base point" in proper homotopy theory. The category $Topp^T$ is the analogue of the category Top^* of pointed spaces $* \to X$ in classical homotopy theory. A "pointed" object $T \to X$ is *cofibrant* if the map $T \to X$ is a cofibration in *Topp*. An object in $Topp^T$ is T-connected if X is path-connected and if $T \to X$ induces a homeomorphism, $Ends(T) \to Ends(X)$, between the spaces of Freudenthal ends ([Fr]).

(1.1) Lemma: For each locally finite path-connected polyhedron X there exists a tree T such that X is T-connected.

In fact, T can be chosen to be a suitable maximal tree in the 1-skeleton of X ([BP;III.1.9]), and in this case X is cofibrant.

(1.2) **Definition:** Let T^0 be the 0-skeleton of the tree T, and let E be a countable set. A *height function* is a finite-to-one function $\epsilon : E \to T^0$. The *spherical object* S^n_{ϵ} is obtained by attaching *n*-dimensional spheres S^n_e to the vertices of T; more precisely, S^n_{ϵ} is the push-out in Top



Hence S_{ϵ}^n is a cofibrant object. Let

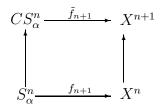
$$\pi_n^{\epsilon}(X) = [S_{\epsilon}^n, X]^T$$

be the set of homotopy classes in $Topp^T$ of maps $S^n_{\epsilon} \to X$. For $n \ge 1$ $\pi^{\epsilon}_n(X)$ is a group which is abelian for $n \ge 2$. The properties of the proper homotopy group $\pi_n^{\epsilon}(X)$ are studied in [BP;Ch. II]. The space X is properly simply connected if both X is T-connected and $\pi_1^{\epsilon}(X) = 0$ for all height functions ϵ . This implies that X is simply connected in Top^* .

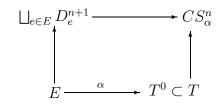
(1.3) Definition: A finite dimensional proper CW-complex under T (or a T-CW-complex) is a finite dimensional CW-complex X with the following properties

(i) The 1-skeleton X^1 is a 1-dimensional spherical object.

(ii) For $n \ge 1$ the (n + 1)-skeleton X^{n+1} is obtained by a push-out diagram in Top



where S_{α}^{n} with $\alpha = \alpha(n+1) : E_{n+1} \to T^{0}$ is an *n*-dimensional object and f_{n+1} is a proper map under *T*. Here CS_{α}^{n} is the 'cone' of the spherical object S_{α}^{n} given by attaching (n+1)-dimensional balls D_{e}^{n+1} with $S_{e}^{n} = \partial D_{e}^{n+1}$ to the vertices of T^{0} as in the push-out diagram with $E = E_{n+1}$



Hence the set of (n + 1)-cells of X - T can be identified with E, and therefore a height function $\alpha : cells(X - T) \to T^0$ is given where cells(X - T) is the set of cells in X - T.

(1.4) **Proposition:** Let X be a cofibrant finite dimensional locally finite polyhedron in $Topp^{T}$ which is properly simply connected. Then there exists a T-CW-complex Y with $Y^{1} = T$ and a proper homotopy equivalence $X \simeq Y$ in $Topp^{T}$.

Compare [BP; III.2.10].

The proposition will be used to replace locally finite polyhedra by equivalent T-CW-complexes.

Let $CW_1(T)$ be the full subcategory of $Topp^T$ consisting of T-CW-complexes X with $X^1 = T$ and let $CW_1(T)/\simeq$ be the associated homotopy category. Let CW_1 be the full subcategory of Top^* consisting of CW-complexes Y with $Y^1 = *$. We have the forgetful functor

$$\phi: CW_1(T) \longrightarrow CW_1$$

which carries X to the quotient X/T.

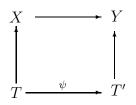
If T = * is a point we have the full inclusion

$$i: CW_1(*) \subset CW_1$$

where the objects of $CW_1(*)$ are the finite CW-complexes for which all the attaching maps are pointed. Any proper cellular map $\psi: T \to T'$ between trees induces the functor

$$\psi_{\#}: CW_1(T) \longrightarrow CW_1(T')$$

which carries X to the space Y obtained by the push-out in Top



These functors $\phi, i, \psi_{\#}$ induce functors between the corresponding homotopy categories.

(1.5) **Proposition:** If ψ is a proper homotopy equivalence then

$$\psi_{\#}: CW_1(T)/\!\!\simeq \longrightarrow CW_1(T')/\!\!\simeq$$

is an equivalence of categories.

Compare [BP;II.1.4]

(1.6) Remark: We point out that the proper homotopy types of trees are in 1-1 correspondence with homeomorphism types of closed subspaces of the Cantor set. The correspondence carries a tree T to the space of Freudenthal ends of T. Hence up to equivalence the homotopy category $CW_1(T)/\simeq$ is determined by the choice of a closed subset of the Cantor set ([BP; II.1.10]).

2 Chain algebras and locally finite chain algebras.

Let R be a commutative ring of coefficient with unit 1 which we assume to be a principal ideal domain.

Let A be a differential graded free R-module such that $A_n = 0$ for n < 0 and $dA_n \subset A_{n-1}$. Then A will be called a *chain algebra* (over R) if a product is defined in A such that

- (i) A is an algebra over R with unit element
- (ii) $A_p A_q \subset A_{p+q}$

(iii) $d(xy) = dx \ y + (-1)^p x \ dy$, if $x \in A_p$.

We also write p = |x| if $x \in A_p$. A function f from the chain algebra A to the chain algebra A' is called a *map* if it is a homomorphism of chain complexes and a homomorphism of algebras.

A free chain algebra is a chain algebra for which the underlying algebra A is free. In this case a graded set $B = \{B_n; n \ge 0\}$ is given such that $A = \otimes^*(B)$ is the tensor algebra generated by B. That is, $\otimes^*(B)$ is the free R-module generated by the free graded monoid, Mon(B), generated by B where Mon(B) consists of all words $b_1 \dots b_k$ with $b_i \in B$ for $1 \le i \le k$ and $k \ge 0$. The empty word for k = 0 is the unit. The degree is given by $|b_1 \dots b_k| = |b_1| + \dots + |b_k|$.

Let *Chain Algebras* be the category of free chain algebras and maps.

A monoid M yields the associated algebra over R denoted by R[M] which is the free R-module generated by M, in particular the tensor algebra generated by B is

$$\otimes^*(B) = R[Mon(B)]$$

We define a carrier function

$$\operatorname{car}:\otimes^*(B)\longrightarrow\mathcal{P}(B)$$

where $\mathcal{P}(B)$ is the set of subsets of $\overline{B} = \bigcup \{B_n; n \ge 0\}$. This function carries an element $x \in \bigotimes^*(B)$ to the following subset of \overline{B} . The element x can be expressed uniquely as a sum $\sum r_i y_i$ where y_i is a word in Mon(B). Let $car(x) = \bigcup car(y_i)$ where $car(b_1 \dots b_k) = \{b_1, \dots, b_k\} \subset \overline{B}$.

Given a tree T and a subset $X \subset T^0$ let $T[X] \subset T$ be the subtree generated by X; that is the intersection of all the subtrees containing X.

(2.1) **Definition:** A locally finite chain algebra (with respect to the tree T)

$$A_{\alpha} = (\otimes^*(B), d, \alpha)$$

is a free chain algebra $A = (\otimes^*(B), d)$ together with a height function $\alpha : \overline{B} \to T^0$ (see (1.2)) such that the collection of subtrees

$${T[\alpha(b) \cup \alpha(\operatorname{car} d(b))]}_{b \in B}$$

is locally finite in T. A proper map

$$f: A_{\alpha} \longrightarrow A'_{\beta}$$

between locally finite chain algebras is a map of the underlying chain algebras such that the collection of subtrees

$${T[\alpha(b) \cup \beta(\operatorname{car} f(b))]}_{b \in B}$$

is locally finite. The composition of proper maps is defined by the composition of the underlying maps between chain algebras, indeed we have

(2.2) Lemma: The composition of proper maps is a proper map.

Clearly the identity is a proper map since a height function is finite-to-one. Hence the lemma shows that the category of locally finite chain algebras and proper maps is well-defined. We denote this category by Chain Algebras(T). **Proof of (2.2):** Let $f : A_{\alpha} \to A'_{\beta}$ and $g : A'_{\beta} \to A''_{\gamma}$ be two proper maps. If B, B', and B'' denote the basis of A_{α}, A'_{β} , and A''_{γ} respectively, the collections of finite subtrees

$${T[\alpha(b), \beta(\operatorname{car} f(b))]}_{b\in B}$$

and

$$\{T[\beta(b'), \gamma(\operatorname{car} g(b'))]\}_{b' \in B'}$$
(1)

are locally finite. Given a finite tree $K' \subset T$, let $B'_0 \subset B'$ be a finite set with

$$T[\beta(b'), \gamma(\operatorname{car} g(b'))] \cap K' = \emptyset$$

for each $b' \in B' - B'_0$.

Let $K \subset T$ be a finite subtree with $K' \cup \beta(B'_0) \subset K$. We take a finite subset $B_0 \subset B$ with

$$T[\alpha(b), \beta(\operatorname{car} f(b))] \cap K = \emptyset$$
(2)

for each $b \in B - B_0$. In particular, $\beta(\operatorname{car} f(b)) \cap \beta(B'_0) = \emptyset$, and so $\operatorname{car} f(b) \cap B'_0 = \emptyset$. We claim that

$$T[\alpha(b), \gamma(\operatorname{car} gf(b))] \cap K' = \emptyset$$
(3)

for each $b \in B - B_0$. Indeed, it is not hard to check the inclusions

$$T[\alpha(b), \gamma(\operatorname{car} gf(b))] \subset T[\alpha(b), \cup \{\gamma(\operatorname{car} g(b')); b' \in \operatorname{car} f(b)\}] \subset$$
$$\subset T[\alpha(b), \beta(\operatorname{car} f(b))] \cup \{T[\beta(b'), \gamma(\operatorname{car} g(b'))]; b' \in \operatorname{car} f(b)\}$$

And now equations (1) and (2) yield (3) since $(\operatorname{car} f(b)) \cap B'_0 = \emptyset$ as it was remarked above.

As in [BAH; I.7.11] we obtain the cylinder IA of the free chain algebra $A = (\otimes^* B, d)$ as follows. Let sB be the graded set with $(sB)_n = B_{n-1}$, and let B' and B'' be two copies of B. Then

$$IA = (\otimes^* (B' \cup B'' \cup sB), d)$$

is the free chain algebra with the differential given by

$$dx' = i_0 dx \quad dx'' = i_1 dx \quad dsx = x'' - x' - S dx$$

Here $x' \in B', x'' \in B''$, and $sx \in sB$ are the elements which correspond to $x \in B$, and $i_0, i_1 : A \to IA$ are defined by $i_0(x) = x$, and $i_1(x) = x''$. Moreover S

$$S: A \longrightarrow IA$$

is the unique homomorphism of degree +1 between graded *R*-modules which satisfies

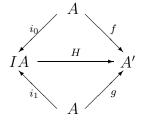
$$Sx = sx \text{ for } x \in B$$
$$S(xy) = (Sx)(i_1(y)) + (-1)^{|x|}(i_0x)(Sy) \text{ for } x, y \in A$$

Since A is free S is well-defined by these conditions. Moreover, (IA, i_0, i_1, p) is a cylinder object in the category of free chain algebras, where $p : IA \to A$ satisfies p(x') = p(x'') = x and p(sx) = 0.

As it was shown in $[BAH; I.\S7]$, this cylinder satisfies the axioms of an *I*-category, where cofibrations are maps of the form

$$A = (\otimes^* B, d) \subset A' = (\otimes^* B', d')$$

given by an inclusion of graded sets $B \subset B'$. A homotopy $H : f \simeq g$ between maps $f, g : A \to A'$ is given by a commutative diagram



in the category of free chain algebras. Let Chain Algebras/ \simeq be the homotopy category.

(2.4) **Definition:** Given a locally finite chain algebra $A_{\alpha} = (\otimes^* B, d, \alpha)$ we obtain the *cylinder*

$$I(A_{\alpha}) = (IA, I\alpha)$$

by the cylinder IA above and the height function $I\alpha$ with $(I\alpha)(x') = (I\alpha)(x'') = (I\alpha)(sx) = \alpha(x)$ for $x \in B$. A cofibration $A_{\alpha} \subset A'_{\beta}$ is given as above where β is an extension of α .

With the obvious changes the proof of [BAH; I.7.18] can be mimiced to get

(2.5) **Proposition:** The cylinder $I(A_{\alpha})$ is a well-defined locally finite chain algebra and it satisfies the axioms of an I-category.

In particular homotopies for proper maps are defined as above and one obtains the homotopy category *Chain Algebras* $(T)/\simeq$.

For locally finite chain algebras A_{α} , A'_{β} let $[A_{\alpha}, A'_{\beta}]^T$ be the set of homotopy classes of proper maps $A_{\alpha} \to A'_{\beta}$; this is the set of morphisms in the category *Chain Algebras*(T)/ \simeq . Given a height function $\epsilon : E \to T^0$, we obtain for each $n \geq 1$ the proper chain algebra

$$A(S_{\epsilon}^{n+1}) = (\otimes^* E_{(n)}, d = 0, \epsilon)$$

here $E_{(n)}$ is the graded set concentrated in degree n given by E. This chain algebra, as we will see, is the Adams-Hilton model of the spherical object S_{ϵ}^{n+1} . We define the *proper homology* of the proper chain algebra A_{α} by the set of homotopy classes

$$H_n^{\epsilon}(A_{\alpha}) = [A(S_{\epsilon}^{n+1}), A_{\alpha}]^T$$

As we will see, this homology is the analogue of the homotopy group $\pi_n^{\epsilon}(X)$ in section 1.

There is an obvious forgetful functor

$$\phi: Chain \ Algebras(T) \longrightarrow Chain \ Algebras$$

which carries A_{α} to A. If T = * we have the full inclusion

$$i: Chain Algebras(*) \subset Chain Algebras$$

of finitely generated free chain algebras. Moreover any proper cellular map $\psi: T \to T'$ between trees induces the functor

$$\psi_{\#}: Chain \ Algebras(T) \longrightarrow Chain \ Algebras(T')$$

which carries A_{α} to $A_{\psi\alpha}$. These functors $\phi, i, \psi_{\#}$ induce functors between the corresponding homotopy categories. Moreover, the category Chain Algebras(T) up to equivalence depends only on the proper homotopy type of T. In fact we have

(2.5) **Proposition:** If ψ is a proper homotopy equivalence between trees then $\psi_{\#}$ is an equivalence of categories.

Proof: Notice that for any two properly homotopic cellular maps $\psi, \psi' : T \to T'$ the collection of finite subtrees of T'

$$\{T[\psi\alpha(b),\psi'\alpha(b)]\}_{b\in B}$$

is locally finite. Therefore the identity $1: A_{\psi\alpha} \to A_{\psi'\alpha}$ is an isomorphism of locally finite chain algebras. In fact it induces a natural equivalence

$$H:\psi_{\#}\cong\psi'_{\#}$$

As an immediate consequence one gets that $\psi_{\#}$ is an equivalence of categories if ψ is a proper homotopy equivalence.

Similarly as in (1.6) above, the theory of locally finite chain algebras is determined by the choice of a closed subspace of the Cantor set.

3 Adams-Hilton models.

Adams and Hilton ([A-H]) constructed for a CW-complex X with $X^1 = *$ a free chain algebra

$$A(X) = (\otimes^* Cells(X - *), d)$$

where Cells(X-*) is the desuspension of the set of cells of X-*, that is $Cells(X-*)_n$ is the set of (n + 1)-cells in X - *. Moreover they constructed a homology equivalence

$$\theta_X : A(X) \longrightarrow C_*(\Omega X)$$

Here $C_*(\Omega X)$ denotes the singular chain complex of the loop space of X which by the multiplication in ΩX , is a chain algebra. The construction of θ_X is compatible with subcomplexes, that is for each subcomplex $K \subset X$ one has the commutative diagram

The vertical arrows are induced by the inclusions $Cells(K-*) \subset Cells(X-*)$, and $K \subset X$ respectively.

For a pointed map $f : X \to Y$ in CW_1 which we may assume to be cellular, we can choose up to homotopy a unique map \overline{f} for which the following diagram commutes up to homotopy

The homotopy class of \overline{f} is well-defined by the homotopy class of f and the choices of θ_X and θ_Y . Henceforth we assume that for all X in CW_1 the homology equivalence θ_X is chosen. Then we obtain the functor

$$A: CW_1 \simeq \longrightarrow Chain Algebras \simeq$$

which carries X to A(X) and the homotopy class of f to the homotopy class of \overline{f} .

The next result shows that the Adams-Hilton functor A admits a canonical analogue in proper homotopy theory. For this we use the functors $\phi, i, \psi_{\#}$ in section 1 and section 2.

(3.1) **Theorem:** There exists a commutative diagram of functors

$$\begin{array}{cccc} CW_1(T) \not\simeq & \dots & H & \dots & Chain \ Algebras(T) \not\simeq & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ CW_1 \not\simeq & & & & & Chain \ Algebras \not\simeq & \end{array}$$

Moreover the functor \square commutes with the functors i and $\psi_{\#}$. That is, $\square \psi_{\#} = \psi_{\#} \square$, and $\square i = iA$.

We use the functor \square for the definition of the following Hurewicz homomorphism

$$h^{\alpha}: \pi_n^{\alpha}(X) \longrightarrow H_{n-1}^{\alpha}(f(X))$$

which carries an element $\xi \in [S_{\alpha}^{n}, X]^{T}$ to the induced map $[\exists (\xi) \in [\exists (S_{\alpha}^{n}), \exists (X)]^{T}$, compare section 1 and section 2. This Hurewicz homomorphism is the proper analogue of the homomorphism

$$h: \pi_n(X) = \pi_{n-1}(\Omega X) \longrightarrow H_{n-1}(\Omega X)$$

which is used in the Milnor-Moore theorem ([M-M]). We shall study the proper analogue of the Milnor-Moore theorem concerning h^{α} elsewhere.

For the proof of the theorem we shall use the following additional properties of the Adams-Hilton construction. Given $f: X \to Y$ in CW_1 the map \overline{f} together with a homotopy

$$H_f: C_*(\Omega f)\theta_X \simeq \theta_Y f$$

in the category of differential chain algebras can be chosen to be filtration preserving; this means for any pair of subcomplexes $K \subset X$ and $L \subset Y$ with $f(K) \subset L$ the map \overline{f} admits a restriction $\overline{r} = \overline{f}|_{L}^{K}$ for which the diagram

commutes and for which the restriction of H_f is H_r , where $r : K \to L$ is the restriction of f. Moreover, given a filtration preserving map \overline{r} and H_r for r, we can choose \overline{f} and H_f to be filtration preserving such that \overline{f} extends \overline{r} and H_f extends H_r ; this is the extension property of the Adams-Hilton construction.

We have for a T-CW-complex X the equation

$$Cells(X - T) = Cells(X/T - *)$$

Hence the height function α for X in section 1 yields a height function

$$\alpha: Cells(X/T - *) \longrightarrow T^0$$

For the proof of the theorem we show

(3.2) Lemma : For X in $CW_1(T)$ the object $\square(X) = A(X/T)_{\alpha}$ is a well-defined locally finite chain algebra. This shows that $\phi \square(X) = A\phi(X)$.

A map $f: X \to Y$ in $CW_1(T)$ induces a map $\phi(f): X/T \to Y/T$ in CW_1 .

(3.3) Lemma: A filtration preserving chain algebra map $\overline{\phi(f)} : A(X/T) \to A(Y/T)$ associated to $\phi(f)$ above is proper with respect to the height functions α and β of X and Y respectively, and the homotopy class of $\overline{\phi(f)}$ in *Chain Algebras*(T) is well-defined by the homotopy class of f in $CW_1(T)$. Henceforth we shall denote $\overline{\phi(f)}$ simply by \overline{f} .

The functor \square carries a *T*-CW-complex *X* to $\square(X) = A(X/T)_{\alpha}$ in (3.2) and carries the homotopy class of $f: X \to Y$ in $CW_1(T)$ to the homotopy class of \overline{f} in (3.3).

(3.4) Lemma: $[\Pi]$ is a well-defined functor and satisfies the compatibility properties $\phi [\Pi] = A\phi$, $[\Pi] \psi_{\#} = \psi_{\#} [\Pi]$, and $[\Pi] i = iA$.

A key lemma for proving these propositions is the characterization of proper maps between T-CW-complexes in the next lemma. Given a subset $U \subset X$ of a T-CWcomplex X let $\langle U \rangle$ be the smallest T-CW-subcomplex containing U; that is the union of T and the smallest CW-subcomplex containing U.

(3.5) Lemma: Let X and Y be T-CW-complexes with height functions α and β respectively. Then a continuous map $f: X \to Y$ under T is proper if and only if the collection of subtrees

$$\{T[\alpha(cells(\langle e \rangle -T)) \cup \beta(cells(\langle f \langle e \rangle -T))]\}_{e \in cells(X-T)}$$
(1)

is locally finite in T.

Proof of (3.5): A *T*-CW-complex *X* is a finite dimensional locally finite CWcomplex, and hence *X* is strongly locally finite ([F-T-W]). That is, *X* is the union of a locally finite sequence of finite subcomplexes. Let $\{X_i; i \ge 1\}$ and $\{Y_i; i \ge 1\}$ be such sequences for *X* and *Y* respectively. It is not hard to show that $f: X \to Y$ is proper if and only if for each $Y_{(m)} = \bigcup \{Y_i; i \ge m\}$ we can find $X_{(n)} = \bigcup \{X_i; i \ge n\}$ such that $f(X_{(n)}) \subset Y_{(m)}$. Moreover, since *f* is a map under *T*, we have $X_{(n)} \cap T \subset Y_{(m)} \cap T$, and for any component $C \subset X_{(n)} \cap T$ we have $f(D_C) \subset D_{C'}$. Here $C' \subset Y_{(m)} \cap T$ is the unique component with $C = f(C) \subset C'$, and $D_C \subset X_{(n)}, D_{C'} \subset Y_{(m)}$ are the components defined by $C \subset D_C$ and $C' \subset D_{C'}$ respectively. Therefore, for any cell $e \subset D_C$ we have $\alpha(\langle e > -T \rangle \subset C \subset C'$, and then $\beta(\langle f < e > -T \rangle \subset C'$. Thus the family in (1) is locally finite since for a compact subset $K \subset T$ we can choose $Y_{(m)}$ with $K \cap Y_{(m)} = \emptyset$.

Conversely, assume that this family is locally finite. Given a compact subset $K \subset Y$ let $Y^{(t)} = \bigcup \{Y_i; i \leq t\}$ such that $K \subset Y^{(t)}$. We now choose $X_{(n)}$ such that $X_{(n)} \cap T \subset T - K$, and for each cell $e \in X_{(n)}$

$$T[\alpha(cells(\langle e \rangle - Y)), \beta(cells(\langle f \langle e \rangle - T))] \cap Y^{(t)} = \emptyset$$

Hence $\beta(\langle f \langle e \rangle \rangle -T) \cap Y^{(t)} = \emptyset$, and for each cell e' in $\langle f \langle e \rangle \rangle -T$ we have $e' \not\subset Y^{(t)}$. That is, $(\langle f \langle e \rangle \rangle -T) \cap Y^{(t)} = \emptyset$, and so $f(X_{(n)}) \subset X - K$. Therefore f is proper.

Proof of (3.2) and (3.3): Property (III) with $K = \langle e \rangle$ and $L = \langle \phi(f) \langle e \rangle \rangle$ implies that $\operatorname{car}(\overline{f}e) \subset cells(\langle f \langle e \rangle \rangle -T)$. This shows by (3.5) that \overline{f} in (3.3) is proper. Next the differential in A(X/T) is induced by the attaching map

$$f_{n+1}: S^n_{\alpha} \longrightarrow X^n$$

that is, $d(e) = \overline{f}^{n+1}(s_e)$ with $s_e \in A(S^n_{\alpha}/T)$ being the generator in degree n-1 corresponding to $S^n_e \subset S^n_{\alpha}$, see §2. Since \overline{f}_{n+1} is proper and since a *T*-CW-complex is finite dimensional we see that d satisfies the properness condition in section 2 and hence (3.2) holds.

Now let $H : f \simeq g : X \to Y$ be a homotopy in $CW_1(T)$. Then $\phi(H) : I_T X = IX/IT \to Y$ is a map in CW_1 and \overline{H} can be chosen to be an extension of \overline{f} and \overline{g} so that $\overline{H} : \overline{f} \simeq \overline{g}$ is a homotopy in $Chain \ Algebras(T)$.

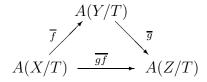
Proof of (3.4): Let $f: X \to Y$ and $g: Y \to Z$ be maps in $CW_1(T)$ and let $\overline{f}, \overline{g}$, and \overline{gf} be the associated maps in *Chain Algebras*(T). We have to show that there is a proper homotopy $G': \overline{gf} \simeq \overline{gf}$. Now we have a homotopy

$$G = -H_{gf} + g_*H_f + H_gI\overline{f} : \theta_Z\overline{gf} \simeq \theta_Z\overline{g}\overline{f}$$

Let \mathcal{J} be the set of triples j = (K, L, R) where $K \subset X$, $L \subset Y$, $R \subset Z$ are subcomplexes with $f(K) \subset L$ and $g(L) \subset R$ and hence $gf(K) \subset R$. For each such j the homotopy G restricts to a homotopy

$$G_j: \theta_R(\overline{gf}|_R^K) \simeq \theta_R(\overline{g}|_R^L)(\overline{f}|_L^K)$$

We now consider the following category $DA(\mathcal{J})$, objects A are chain algebras A together with a collection $\{A_j; j \in \mathcal{J}\}$ of chain subalgebras indexed by \mathcal{J} , and morphisms are collection preserving chain maps. We obtain the following objects and morphisms in $DA(\mathcal{J})$



The corresponding collections indexed by $j = (K, L, R) \in \mathcal{J}$ are defined by

$$A(X/T)_j = A(K/T), \quad A(Y/T)_j = A(L/T), \quad A(Z/T)_j = A(R/T)$$

The properties above show that the diagram is well-defined in $DA(\mathcal{J})$. Using the homotopy $G: \theta_Z \overline{gf} \simeq \theta_Z \overline{gf}$ we construct inductively a homotopy $G': \overline{gf} \simeq \overline{gf}$ in $DA(\mathcal{J})$. For the induction we use the skeleta and the assumption that f and gare cellular. Let \mathcal{J}^n defined as above by the *n*-skeleta of X, Y, and Z, and let g_n and f_n be restrictions to the *n*-skeleta and assume $G^n: \overline{g_n f_n} \simeq \overline{g_n f_n}$ in $DA(\mathcal{J}^n)$ is constructed. Let e be an (n+1)-cell in X then we have in \mathcal{J} the triple

$$j_e = (K_e = < e >, L_e = < f < e >>, R_e = < g < f < e >>>)$$

and an inclusion $\langle gfK_e \rangle \subset R_e$. Hence we obtain the following commutative diagram of unbroken arrows

$$A((I_TK_e)^{n+1}/T) \xrightarrow{\overline{g_{n+1}f_{n+1}} \cup G^n \cup \overline{g_{n+1}f_{n+1}}}_{A(R_e/T)} \xrightarrow{A(R_e/T)} A(R_e/T)$$

Let G_e^{n+1} be a lift of this diagram in the cofibration category of chain algebras ([BAH;II.1.11]). Then the homotopy $G^{n+1}: \overline{g_{n+1}f_{n+1}} \simeq \overline{g_{n+1}f_{n+1}}$ is defined on the cell Ie by $G^{n+1}(Ie) = G_e^{n+1}(Ie)$. This completes the induction since one can check that G^{n+1} is a homotopy in $DA(\mathcal{J}^{n+1})$; in fact this is a consequence of the inclusion of triples $j_e = (K_e, L_e, R_e) \subset (K, L, R)$ whenever $e \subset K$. Let G' be given by the sequence G^n $(n \geq 1)$. It is clear how to start the induction for n = 1 since all 1-skeleta coincide with T. The homotopy G' being a homotopy in $DA(\mathcal{J})$, can be checked to be also a homotopy in Chain Algebras(T). This completes the proof that Π is a well-defined functor. It is obvious that $\phi \Pi = A\phi$ and $\Pi i = iA$. Moreover $\Pi \psi_{\#} = \psi_{\#} \prod$ since $(\psi_{\#}X)/T = X/T$.

4 Examples.

Let \mathbb{R}_+ be the half-line $[0, \infty)$ which is a tree with 0-skeleton $\mathbb{R}^0_+ = \{x \in \mathbb{Z}; x \ge 0\}$. The product $S^n \times \mathbb{R}_+$ is a \mathbb{R}_+ -CW-complex. We assume $n \ge 2$ so that $S^n \times \mathbb{R}_+$ is properly simply connected. The closed cells are $x_t = S^n \times \{t\}$ and $y_t = S^n \times [t, t+1]$ for $t \in \mathbb{R}^0_+$. The height function α : $cells(S^n \times \mathbb{R}_+ - \mathbb{R}_+) \to \mathbb{R}^0_+$ is given by $\alpha(x_t) = \alpha(y_t) = t$. Moreover we obtain the locally finite chain algebra

$$[] (S^n \times \mathbb{R}_+) = A(S^n \times \mathbb{R}_+/\mathbb{R}_+)_{\alpha}$$

with degree $|x_t| = n - 1$, $|y_t| = n$, and $dx_t = 0$, $dy_t = -x_t + x_{t+1}$. More generally let X be a finite CW-complex with pointed attaching maps and trivial 1-skeleton $X^1 = *$. Then $X \times \mathbb{R}_+$ is again an \mathbb{R}_+ -CW-complex which can be obtained by gluing cylinders on X

$$X \times \mathbb{R}_+ = X \times I \cup_X X \times I \cup_X \dots$$

Hence

$$\prod (X \times \mathbb{R}_+) = A(X \times \mathbb{R}_+/\mathbb{R}_+)_{\alpha} = IA(X) \cup_{A(X)} IA(X) \cup_{A(X)} \dots$$

$$(4.1)$$

where IA(X) is the cylinder of the chain algebra A(X), see section 2. The explicit formula for this cylinder hence gives us the differential of $A(X \times \mathbb{R}_+/\mathbb{R}_+)$. For each cell $e \subset X - *$ we obtain the cells $e_t = e \times \{t\}$ and $e'_t = e \times (t, t+1)$ which yield all cells of $X \times \mathbb{R}^+ - \{*\} \times \mathbb{R}_+$. Hence we have

$$\prod (X \times \mathbb{R}_+) = (\otimes^* \{e_t, e'_t; e \in cells(X - *), t \in \mathbb{R}^0_+\}, d, \alpha)$$

with degrees $|e_t| = \dim(e) - 1$ and $|e'_t| = \dim(e)$, and $\alpha(e_t) = \alpha(e'_t) = t$. Using the differentials of IA(X) and the union above one easily obtains formulas for the differential d of $\prod (X \times \mathbb{R}_+)$. A particular example is $S^n \times \mathbb{R}_+$ above.

We can identify $S^n \times \mathbb{R}_+$ and $D^{n+1} - \{p\}$ where p is a point in the interior of the closed disk D^{n+1} . This gives us the possibility of computing for a simply connected manifold M the locally finite chain algebra $\prod (M - \{p\})$ where p is a point in M. As examples we consider the cases $M = S^2 \times S^2$ and $M = \mathbb{C}P_2$ for which we have the homeomorphisms

$$S^2 \times S^2 - \{p\} = (S^2 \vee S^2) \cup_w S^3 \times \mathbb{R}_+$$

$$\mathbb{C}P_2 - \{p\} = S^2 \cup_\eta S^3 \times \mathbb{R}_+$$

Here w is the Whitehead product and η is the Hopf map. These homeomorphisms yield the structure of properly simply connected \mathbb{R}_+ -CW-complexes. The associated locally finite chain algebras are given as follows.

$$ff(S^2 \times S^2 - \{p\}) = (\otimes^* \{a, b, x_t, y_s; t, s \in \mathbb{R}^0_+, t > 0\}, \ d, \ \alpha)$$

Here the degrees are |a| = |b| = 1, $|x_t| = 2$, and $|y_s| = 3$. The height function α satisfies $\alpha(a) = \alpha(b) = \alpha(y_0) = 0$ and $\alpha(x_t) = \alpha(y_t) = t$ for t > 0. The differential d is determined by $d(a) = d(b) = d(x_t) = 0$ and $d(y_0) = -(ab+ba) + x_1$, $d(y_t) = -x_t + x_{t+1}$ for t > 0. Similarly we have

$$[](\mathbb{C}P_2 - \{p\}) = (\otimes^* \{a, x_t, y_s; s, t \in \mathbb{R}^0_+, t > 0\}$$

with degrees and height function as above, and with the differential $d(a) = d(x_t) = 0$ and $d(y_0) = -aa + x_1$, $d(y_t) = -x_t + x_{t+1}$ for t > 0.

Finally we consider the locally finite chain algebra of the euclidean space \mathbb{R}^{n+1} , $n \geq 2$. The \mathbb{R}_+ -CW-structure of \mathbb{R}^{n+1} is given by the identification

$$\mathbb{R}^{n+1} = S^n \times \mathbb{R}_+ / S^n \times \{0\}$$

Hence we get

$$f || (\mathbb{R}^{n+1}) = (\otimes^* \{ x_t, y_s; t, s \in \mathbb{R}^0_+, t > 0 \}, \ d, \ \alpha)$$

with degrees $|x_t| = n - 1$ $|y_s| = n$, and height function $\alpha(x_t) = t$, $\alpha(y_s) = s$. The differential is $d(x_t) = 0$ and $d(y_0) = x_1$, $d(y_t) = -x_t + x_{t+1}$ for t > 0. Clearly, since \mathbb{R}^{n+1} is contractible also the underlying chain algebra of $\prod (\mathbb{R}^{n+1})$ is homotopy equivalent to the trivial chain algebra. However it is well-known that \mathbb{R}^{n+1} is not contractible in the proper homotopy category. Similarly the locally finite chain algebra $\prod (\mathbb{R}^{n+1})$ is not homotopy equivalent to the trivial algebra in *Chain Algebras*(\mathbb{R}_+). This is also a consequence of the following computation of sets of homotopy classes in *Chain Algebras*(\mathbb{R}_+)/ \simeq .

(4.2) **Proposition:** Let $k, n \ge 2$. Then we have

$$\left[\prod (\mathbb{R}^{k+1}), \prod (\mathbb{R}^{n+1}) \right]^{\mathbb{R}_+} = \begin{cases} \mathbb{Z} \text{ for } (k-1) = (n-1)m, \ m \ge 1\\ 0 \text{ otherwise} \end{cases}$$

This result might be surprising since the underlying chain algebra of $\square(\mathbb{R}^{n+1})$ is very large. We know however, see [ADQ2], that the function

$$\pi_k(S^n) \xrightarrow{\cong} [\mathbb{R}^{k+1}, \mathbb{R}^{n+1}]^{\mathbb{R}_+}$$

which carries a map $f : S^k \to S^n$ to the proper map $\mathbb{R}^{k+1} \to \mathbb{R}^{n+1}$ induced by $f \times \mathbb{R}_+$, is an isomorphism. Here $\pi_k(S^n)$ is the usual homotopy group of a sphere while $[\mathbb{R}^{k+1}, \mathbb{R}^{n+1}]^{\mathbb{R}_+}$ is the homotopy set in $Topp^{\mathbb{R}_+}$. Similarly the proposition is a consequence of the isomorphism

$$\Theta: [A(S^k), A(S^n)] \xrightarrow{\cong} [\oiint (\mathbb{R}^{k+1}), \, \oiint (\mathbb{R}^{n+1})]^{\mathbb{R}_+}$$

where the left-hand side denotes the homotopy set in *Chain Algebras*. The isomorphism Θ carries the map $f : A(S^k) \to A(S^n)$ to the map induced by Ifon each cylinder in $\prod (S^n \times \mathbb{R}_+) = IA(S^n) \cup IA(S^n) \cup \ldots$, compare (4.1), with $\prod (\mathbb{R}^{n+1}) = \prod (S^n \times \mathbb{R}^+)/A(S^n \times \{0\}).$

References

- [A-H] J.F. Adams, P.J. Hilton. On the chain algebra of a loop space. Comm. Math. Helv. 30(1956) 305-330.
- [ADQ1] R. Ayala, E. Domínguez, A. Quintero. A framework for proper homotopy theory. Math. Proc. Camb. Philos. Soc. 107(1990), 447-482.
- [ADQ2] R. Ayala, E. Domínguez, A. Quintero. Calculations of cylindrical phomotopy groups. Proc. Edinburgh Math. Soc. 32(1989), 401-413.
- [BAH] H.J. Baues. Algebraic Homotopy. Cambridge Studies in Advanced Math., 15. Cambridge Univ. Press, 1989
- [BP] H.J. Baues. Foundations of proper homotopy theory. Preprint, Max-Planck Institut für Mathematik,1992
- [F-T-W] F. Farrell, L. Taylor, J. Wagoner. The Whitehead theorem in proper category. Comp. Math. 27(1973), 1-23.
- [Fr] H. Freudenthal. Über die Enden topologischer Raüme und Gruppen. Math. Zeit. 33(1931) 692-713.
- [K-S] R.C. Kirby, L.C. Siebenmann. Foundational essays on topological manifolds, smoothings, and triangulations. Annals of Math. Studies, 88. Princeton Univ. Press, 1977.
- [M-M] J.W. Milnor, J.C. Moore. On the structure of Hopf algebras. Ann. of Math. 81(1965), 211-264.

H.J. Baues. Max-Planck-Institut für Mathematik. Gottfried-Claren-Straße 26. 53225 Bonn (Germany).

A. Quintero. Departamento de Geometría y Topología. Universidad de Sevilla. Apdo. 1160 41080 Sevilla (Spain).