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SUMMARY. We obtain the family of distributions for which the regression of one order

statistic on another, not necessarily adjacent, is linear. As a consequence, we present a charac-

terization of uniform distributions on an interval. We also characterize the distributions that

appear when we impose the condition of linearity of regression for record values.

1. Introduction

Ferguson (1967) characterized the distributions for which the regression of an
order statistic on an adjacent one is linear. He pointed out that it is not known
which distributions would be characterized if non-adjacent order statistics are
considered. In the concluding remarks of his paper, Nagaraja (1988) affirms that
the problem remains still unsolved. Another reference about this problem can
be found in Arnold, Balakrishnan, and Nagaraja (1992) (p. 155).

Nagaraja (1977, 1988) obtains a characterization based on the linear regres-
sion of two adjacent record values. As in the case of order statistics, the problem
is open if the condition of linearity of regression for nonadjacent record values
is imposed.

After reviewing previous results in section 2, we give the characterization
of the distributions which are characterized when the regression of two order
statistics, not necessarily adjacent, is linear. In Section 4, we deal with a similar
problem for record values.
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2. Previous Results

Let us denote by X(i:n) the ith order statistic of a simple random sample
(s.r.s.) of size n from a r.v. X, with c.d.f. F and density f . For any three fixed
integers, i, k and n, such that 1 ≤ i < i + k ≤ n, and a real number x satisfying
0 < F (x) < 1, the conditional density of X(i+k:n) given X(i:n) = x is

f(i,k,n,x)(y) = Cikn

(1−F (x))n−i (F (y)− F (x))k−1(1− F (y))n−if(y), if y > x

= 0, otherwise

with

Cikn =
(n− i)!

(k − 1)!(n− i− k)!
.

Denote by DF the set of real numbers such that 0 < F (x) < 1 and the
conditional expectation Rikn(x, F ) = E

[
X(i+k:n)/X(i:n) = x

]
exists. In that

case, for any x in DF ,

Rikn(x, F ) =
Cikn

(1− F (x))n−i

∫ ∞

x

y(F (y)− F (x))k−1(1− F (y))n−i−kf(y)dy.

Note also that, X(i+k:n) given X(i:n) = x is distributed as the k-th order
statistic of a simple random sample of size n − i from a left-truncated at x
random variable, Y (x), with c.d.f.

Fx(y) =
F (y)− F (x)

1− F (x)
, if y ≥ x.

Then
Rikn(x, F ) = E[Y (x)

(k:n−i)].

It will be useful to consider the quantile function of F , defined as

Q(u) = inf{x : F (x) ≥ u}, u ∈ (0, 1).

In the following lemma we quote without proof some properties of the quan-
tile function (e.g. see Port (1994), p. 98).

Lemma 2.1. Let F be a distribution function and Q its quantile function,
then

(a) Q is non-decreasing.
(b) Q is continuous at any point of (0, 1) save, perhaps, at a countable set of

points at which Q is left-continuous.
(c) If F is continuous, then Q is strictly increasing in (0, 1).
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(d) If Q is continuous in (0, 1), then F is strictly increasing in {x : 0 <
F (x) < 1}.

(e) If U is a U(0, 1) distribution, then the c.d.f. of Q(U) is F .
(f) Moreover,

(X(1:n), . . . , X(n:n))
d≡ (Q(U(1:n)), . . . , Q(U(n:n))).

(g) If F is absolutely continuous, the conditional expectation of X(i+k:n) given
X(i:n) = x, whenever it exists, is:

E
[
X(i+k:n)|X(i:n) = x

]
=

Ci,k,n

(1− u)n−i

∫ 1

u

Q(v)(v − u)k−1(1− v)n−i−kdv.

. . . (2.1)
with u = F (x).

Lemma 2.2. Let F be a continuous c.d.f., then
(a) Rikn(., F ) is continuous and non-decreasing.
(b) If F is strictly increasing, then Rikn(., F ) also is.

Proof. (a) The continuity of Rikn(., F ) follows from the continuity of F .
To show that Rikn(., F ) is non-decreasing, let us choose x1, x2 ∈ DF , such that
x1 ≤ x2. Consider the r.v.’s

Y
(xm)
(k:n−i) = Q(F (xm) + (1− F (xm))U(k:n−i)), m = 1, 2, . . . (2.2)

where U(k:n−i) is distributed as the kth order statistic of a s.r.s. of size n − i

from a U(0, 1) distribution. Then, the r.v.’s Y
(xm)
(k:n−i), m = 1, 2, are distributed as

the kth order statistic of a s.r.s of size n− i from the left-truncated distribution
Fxm

, m = 1, 2. As Q is non-decreasing, from (2.2), we have

Y
(x1)
(k:n−i) ≤ Y

(x2)
(k:n−i) . . . (2.3)

and taking expected values in (2.3), it follows that

Rikn(x1) ≤ Rikn(x2). . . . (2.4)

(b) Note that, if F is strictly increasing the inequalities (2.3) and (2.4) are
both strict.

Lemma 2.3. If F is an absolutely continuous c.d.f. such that

Rikn(x, F ) = bx + a, for any x ∈ DF , . . . (2.5)
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then
(a) F is strictly increasing in {x : 0 < F (x) < 1}.
(b) b > 0.
(c) If b 6= 1, the c.d.f. Fµ(x) = F (x − µ), with µ = a/(1 − b), satisfies

Rikn(x, Fµ) = bx
(d) If b = 1, then a > 0.
Proof. (a) According to Lemma 2.1(d), it suffices to show that Q is con-

tinuous in (0, 1). For that, define the function

Sikn(u, Q) =
Ci,k,n

(1− u)n−i

∫ 1

u

Q(v)(v − u)k−1(1− v)n−i−kdv.

As Q is a quantile function, from Lemma 2.1(b), Q is continuous a.e. Thus Sikn

is continuous at any u ∈ (0, 1), and from (2.5) we have,

Sikn(u, Q) = bQ(u) + a, for any point of continuity of Q, . . . (2.6)

But as the LHS of (2.6) is continuous, the continuity of Q in (0, 1) follows.
(b) As F is strictly increasing, from Lemma 2.2(b), we conclude b > 0.
(c) This is a consequence of the following relation

Rikn(x, Fµ) = Rikn(x + µ, F )− µ.

(d) If X is a r.v. for which (2.5) holds with b = 1, we have

a = E
[
Rikn

(
X(i:n), F

)]
− E

[
X(i:n)

]
= E

{
E

[
X(i+k:n) −X(i:n)|X(i:n)

]}
= E

[
X(i+k:n) −X(i:n)

]
> 0.

Lemma 2.4. Consider the polynomial equation

Pk(z) =
1
b
Pk(n− i), b > 0 . . . (2.7)

with Pk(z) = z(z − 1) · · · (z − k + 1). Then,
(a) The real roots of (2.7) are at most double.
(b) If z0 is a complex root of (2.7), with Im(z0) 6= 0, then z0 is simple.
(c) There is a unique simple real root of (2.7) in (k − 1,+∞). Moreover,

(c.1) If 0 < b < 1, there is a unique real root in (n− i, +∞).

(c.2) If b > 1, there is a unique root in (k − 1, n− i).

(c.3) If b = 1, z = n− i is the unique root in (k − 1,+∞).
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(d) Pk(D)(t exp(αt)) = (P ′k(α)+Pk(α)t) exp(αt),with D the derivative oper-
ator (with respect to the variable t), and α a real number.

Proof. (a), (b) Note that if k > 2, Pk is a polynomial of degree k, which
has a local extremum (maximum or minimum) in each one of the open intervals
(j, j + 1), j = 0, . . . , k − 2, in other words, P ′k is a polynomial of degree k − 1
with k − 1 simple real roots. From this fact (a) and (b) are immediate.

(c) As Pk(z) is continuous, strictly increasing in (k− 1,+∞), Pk(k− 1) = 0,
and limz→∞ Pk(z) = +∞, then, for any α > 0, there is a unique (simple)
real root in (k − 1,+∞) of the equation Pk(z) = α. In particular, consider
α = b−1Pk(n− i) > 0.

Note that, if 0 < b < 1 then, Pk(n − i) < 1
b Pk(n − i) , therefore the root is

in the interval (n− i,+∞).
If b > 1, we have, 0 = Pk(k− 1) < 1

b Pk(n− i) < Pk(n− i), and therefore the
root is in (k − 1, n− i).

If b = 1, as k − 1 < n − i, then 0 = Pk(k − 1) < Pk(n − i), thus the root is
in (k − 1,+∞).

(d) The proof follows easily by using induction.

Lemma 2.5. Consider the functions,

Q1(v) = (1− v)r−(n−i),
Q2(v) = (1− v)r−(n−i) log(1− v),
Q3(v) = (1− v)r−(n−i) log(1− v) cos(s log(1− v)), s 6= 0,
Q4(v) = (1− v)r−(n−i) log(1− v) sin(s log(1− v)), s 6= 0.

If r ≤ k − 1, then∫ 1

u

Qj(v)(v − u)k−1(1− v)n−i−kdv, j = 1, 2, 3, 4 . . . (2.8)

is not convergent for any u ∈ (0, 1).

Proof. The proof is straightforward by using the classical criteria for the
convergence of integrals.

3. Linear Regression of Order Statistics

In this section, we characterize the distributions for which the regression of
two order statistics is linear. Our main result is presented in the following the-
orem.
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Theorem 3.1. Let X be a r.v. with distribution function F which is k times
differentiable in DF , such that

E
[
X(i+k:n)|X(i:n)

]
= bX(i:n) + a. . . . (3.1)

Then, except for location and scale parameters,

F (x) = 1− | x |δ, for x ∈ [−1, 0] , if 0 < b < 1 . . . (3.2)

F (x) = 1− exp(−x), for x ∈ [0,∞), if b = 1 . . . (3.3)

F (x) = 1− xδ, for x ∈ [1,∞), if b > 1 . . . (3.4)

where, δ = (r− (n− i))−1 and r is the unique real root greater than k− 1 of the
polynomial equation

Pk(x) =
1
b
Pk(n− i). . . . (3.5)

Proof. Let F be a c.d.f. for which (3.1) holds and Q its quantile function.
Expression (3.1) can be rewritten as

Ci,k,n

∫ 1

u

Q(v)(v − u)k−1(1− v)n−i−kdv = (bQ(u) + a)(1− u)n−i. . . . (3.6)

From Lemma 2.3(a), F is strictly increasing in DF , then f(x) = F ′(x) > 0,
for x ∈ DF , and as F is k-times differentiable, it follows that Q = F−1 is also k
times differentiable in (0, 1).

Differentiating k times both sides of (3.6), we obtain the ordinary differential
equation,

(1− u)kH(k)(u) = (−1)k 1
b
Pk(n− i)

{
H(u)− a(1− u)n−i

}
, . . . (3.7)

with,
H(u) = Q(u)(1− u)n−i.

The change of variables t = log(1− u) transforms (3.7) into the linear differ-
ential equation

Pk(D)(G(t)) =
1
b
Pk(n− i) {G(t)− a exp(t(n− i))} , . . . (3.8)

where, D is the derivative operator and G(t) = H(1− et).
Let us distinguish two cases: b 6= 1 and b = 1.

Case A: b 6= 1. According to Lemma 2.3(c), we can assume, w.l.o.g., that
a = 0. For obtaining the general solution of (3.8), we must solve the associated
polynomial equation (3.5).
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Let r1, · · · , rs and rs+1, · · · , rd be the simple and double real roots of (3.5) re-
spectively, and zh = rh + ish, h > d, (sh 6= 0) the (simple) complex roots. Then,
the complete set of solutions of the homogeneous linear differential equation
(3.8) is the linear space generated by

{exp (rht), h = 1, . . . , s; t exp (rht), h = s + 1, . . . , d;

t exp (rht) cos (sht), t exp (rht) sin (sht), h > d} .

Hence, if Q is the quantile function of a r.v. X for which (3.1) holds, it must
satisfy the following conditions:

(i) Q belongs to the linear space of functions generated by

(1− u)rh−(n−i), h = 1, . . . , s; . . . (3.9)

(1− u)rh−(n−i) log(1− u), h = s + 1, . . . , d; . . . (3.10)

(1− u)rh−(n−i) log(1− u) cos(sh log(1− u)), h > d; . . . (3.11)

(1− u)rh−(n−i) log(1− u) sin(sh log(1− u)), h > d. . . . (3.12)

(ii) The conditional expectation E[X(i+k:n)|X(i:n)] must exist, or equiva-
lently, the integral ∫ 1

u

Q(v)(v − u)k−1(1− v)n−i−kdv . . . (3.13)

must exist, for any u ∈ (0, 1).
(iii) Q is monotone strictly increasing.
Let us analyze the functions in the basis of the linear space of solutions

described in (i). The functions (3.11) and (3.12) change their signs infinitely
many times in a neighborhood of u = 1, so that they are not monotone, in other
words, they do not satisfy (iii). From Lemma 2.5, the integral (3.13) does not
converge for the functions of the form (3.9) or (3.10) which have rh ≤ k−1. But,
according to Lemma 2.4(c), there exist only one simple root of (3.5) greater than
k − 1, namely r, then the quantile functions which are solutions of our problem
are of the form

Q(u) = A(1− u)
1
δ , . . . (3.14)

where, δ = (r − (n− i))−1 and A a real number chosen in such a way that (iii)
holds, that is to say, A/δ < 0.

We have two subcases. Firstly, if b < 1, Lemma 2.4(c.1) implies that δ > 0,
and w.l.o.g., it can be assumed A = −1. In this case, it follows easily that Q is
the quantile function of (3.2). Secondly, if b > 1, Lemma 2.4(c.2) implies that
δ < 0, and choosing A = 1 we obtain the quantile of the c.d.f. (3.4).
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Case B: b = 1. From Lemma 2.3(d), a is positive. We must solve the non-
homogeneous linear differential equation (3.8). It can be shown, using Lemma
2.4(d), that a particular solution of (3.8) is

G0(t) = −a
Pk(n− i)
P ′k(n− i)

t exp((n− i)t)

The general solution of the homogeneous linear differential equation associated
to (3.8) is obtained by solving the polynomial equation Pk(z) = Pk(n − i). A
similar argument to the one used in CASE A shows that the quantile functions
which are solutions of our problem are of the form

Q(u) = −a
Pk(n− i)
P ′k(n− i)

log(1− u) + A,

and, w.l.o.g., choosing A = 0 and a = P ′
k(n−i)

Pk(n−i) , we obtain the quantile function
of the c.d.f. given in (3.3).

We obtain the following dual result easily.

Theorem 3.2 Let X be a r.v. with distribution function F which is k-times
differentiable in DF , such that

E
[
X(i:n)|X(i+k:n)

]
= cX(i+k:n) + d, . . . (3.15)

then, except for location and scale parameters,

F (x) = xθ, for x ∈ [0, 1] , if 0 < c < 1 . . . (3.16)

F (x) = exp(x), for x ∈ (−∞, 0], if c = 1 . . . (3.17)

F (x) =| x |θ, for x ∈ (−∞, 1], if c > 1 . . . (3.18)

where, θ = (r− (i + k− 1))−1 and r is the unique real root greater than k− 1 of
the polynomial equation

Pk(x) =
1
c
Pk(i + k − 1).

Proof. Let X be a r.v. for which (3.15) holds, then the r.v. Y = −X
satisfies

E
[
Y(n−i+1:n)|Y(n−i−k+1) = y

]
= −(c(−y) + d) = cy − d,

thus the c.d.f. of Y belongs to one of the three families described in Theorem
3.1.
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Note that, depending on the values of the slopes, we characterize in Theorem
3.2 three families of distributions which are just the same as those obtained by
Ferguson (1967) in the adjacent case.

Combining the results stated in Theorems 3.1 and 3.2 gives the following
characterizations of uniform distributions.

Corollary 3.1. If F is k times differentiable, and for certain integers i, n,
such that 1 ≤ i < i+ k ≤ n, the conditional expectations E

[
X(i+k:n)|X(i:n)

]
and

E
[
X(i:n)|X(i+k:n)

]
are both linear, then F is the c.d.f. of a uniform distribution

on a finite interval.

Corollary 3.2. Let F be a c.d.f. which is (n − 1)-times differentiable. F
is uniform on a finite interval iff E

[
X(i:n)|X(j:n)

]
is linear for any i, j such that

1 ≤ i, j ≤ n.

4. Linear Regression of Record Values

Let {Xn}n≥1 be a sequence of i.i.d. r.v.’s with common continuous distribu-
tion function F . The sequence of record times, {L(n)}n≥0, is defined recursively
as

L(0) = 1,
L(n) = min{j : j > L(n− 1) andXj > XL(n−1)}, n > 1,

and the sequence of record values is defined as {XL(n)}n≥0.
If Q, the quantile function of F , is strictly increasing and W follows a stan-

dard negative exponential distribution then

(XL(0), . . . , XL(j))
d≡ (Q(1− exp(−WL(0))), . . . , Q(1− exp(−WL(j)))),

and the joint density of WL(i) and WL(i+k), with 0 ≤ i < i + k is

fi,k(w, s) = Di,kwi(s− w)k−1 exp(−s) if 0 < w < s < ∞
= 0, otherwise . . . (4.1)

with

Di,k =
1

i!(k − 1)!

Theorem 4.1. Let F be a strictly increasing c.d.f. which is k-times differ-
entiable, such that

E
[
XL(i+k)|XL(i)

]
= bXL(i) + a, . . . (4.2)
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holds for certain a and b. Then, except for location and scale parameters,

F (x) = 1− | x |δ, for x ∈ [−1, 0] , if 0 < b < 1 . . . (4.3)
F (x) = 1− exp(−x), for x ∈ [0,∞), if b = 1 . . . (4.4)
F (x) = 1− xδ, for x ∈ [1,∞), if b > 1 . . . (4.5)

where, δ = (1− b1/k)−1b1/k.
If b ≤ 0, there is no c.d.f. for which (4.2) holds.

Proof. The proof of this result is similar to that of Theorem 3.1, so we
omit some of the details.

It can be shown that, if b ≤ 0 there is no c.d.f. for which (4.2) holds. So, we
discuss the case b > 0.

The condition (4.2) can be rewritten as

1
(k − 1)!

∫ ∞

w

Q(1− e−s)(s− w)(k−1)e−s ds = (bQ(1− e−w) + a)e−w. . . . (4.6)

Differentiating k times both sides of (4.6), we obtain the following linear
differential equation

bH(k)(w) = (−1)k (H(w)− a exp(−w)) . . . (4.7)

with,
H(w) = Q(1− exp(−w)) exp(−w).

If b 6= 1, we can assume a = 0. In this case, the linear differential equation
(4.7) is homogeneous, and the solutions are obtained by solving the associated
polynomial equation bzk = (−1)k.

A detailed analysis of the solutions of (4.7) shows that the quantile functions
satisfying (4.6) are of the form

Q(u) = A(1− u)1/δ . . . (4.8)

with
δ = b1/k(1− b1/k)−1 and A/δ < 0.

From (4.8), and depending on the values of b, we obtain the c.d.f.s (4.3) and
(4.5).

If b = 1, then a > 0, and a particular solution of (4.7) is

H0(w) =
a

k
w exp(−w)

and the quantile functions which are solutions of (4.6), are of the form

Q(u) = A− a

k
log(1− u) . . . (4.9)
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which, except for location and scale parameters, is the quantile function corre-
sponding to (4.4).

In particular, if in Theorem 4.1 we consider the case of adjacent record values,
k = 1, we obtain the characterization given in Nagaraja (1977).

We can also give the following characterization.

Theorem 4.2. Let F be a strictly increasing c.d.f. which is k-times differ-
entiable, such that

E
[
XL(i)|XL(i+k)

]
= cXL(i+k) + d . . . (4.10)

holds for certain c and d, and i ≥ 0. Then, except for location and scale param-
eters,

F (x) = 1− exp(−xθ), for x ∈ [0,∞) , if 0 < c < 1 . . . (4.11)

F (x) = 1− exp(− exp(x)), for x ∈ (−∞,∞), if c = 1 . . . (4.12)

F (x) = 1− exp(− | x |θ), for x ∈ (−∞, 0] , if c > 1 . . . (4.13)

with θ = (r − (i + k))−1, and r the unique real root greater than k − 1 of the
equation

Pk(x) =
Pk(i + k)

c
. . . . (4.14)

If c ≤ 0, there is no c.d.f. for which (4.10) holds.

Proof. Again, the proof is similar to that of Theorem 3.1. If c ≤ 0, there
is no c.d.f. such that (4.10) holds. From now on, assume c > 0.

The condition (4.10) can be expressed as

(i + k)!
i!(k − 1)!

∫ s

0

Q(1− e−w)wi(s− w)k−1 dw = (cQ(1− e−s) + d)si+k . . . (4.15)

Differentiating k times both sides of (4.15), we obtain the following differen-
tial equation

H(k)(s) =
Pk(i + k)

c

(
H(s)s−k − dsi

)
. . . (4.16)

with
H(s) = Q(1− e−s)si+k

The change of variables t = log(s) transforms (4.16) into

Pk(D) (G(t)) =
Pk(i + k)

c
(G(t)− d exp((i + k)t)) . . . (4.17)
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with
G(t) = H(et).

If c 6= 1, then, w.l.o.g., it can be considered d = 0, and (4.16) is a homo-
geneous differential linear equation which solutions are obtained by solving the
associated polynomial equation (4.14).

The analysis of the solutions leads us to conclude that the quantile functions
which are solutions of (4.15) are of the form

Q(u) = A

(
log

1
1− u

)1/θ

. . . (4.18)

with θ = (r − (i + k))−1, and r the unique real root greater than k-1 of the
equation (4.14).

It is easy to show that, with adequate choices of A, the quantile function
(4.18) corresponds to the c.d.f.’s (4.11) and (4.13).

The solution in the case c = 1, except for location and scale parameters, is

Q(u) = log
(

log
1

1− u

)
. . . (4.19)

which is the quantile function of (4.12).

It can be easily checked that in the adjacent case, k = 1, we obtain the
characterization given in Nagaraja (1988). As a consequence of Theorems 4.1
and 4.2, we give the following characterization of exponential distributions.

Corollary 4.1. If F is k times differentiable, and for certain nonnegative
integer, i, the conditional expectations E

[
XL(i+k)|XL(i)

]
and E

[
XL(i)|XL(i+k)

]
are both linear, then, except for location and scale parameters, F is the c.d.f. of
an exponential distribution.
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