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Hoong Chuin Lau, William Yeoh, Pradeep Varakantham, Duc Thien Nguyen, Huaxing Chen
Living Analytics Research Centre
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Singapore 679668
{hclau,williamyeoh,pradeepv,dtnguyen,hxchen}@smu.edu.sg

Abstract

Orienteering problems (OPs) are a variant
of the well-known prize-collecting traveling
salesman problem, where the salesman needs
to choose a subset of cities to visit within
a given deadline. OPs and their extensions
with stochastic travel times (SOPs) have
been used to model vehicle routing problems
and tourist trip design problems. However,
they suffer from two limitations – travel times
between cities are assumed to be time in-
dependent and the route provided is inde-
pendent of the risk preference (with respect
to violating the deadline) of the user. To
address these issues, we make the following
contributions: We introduce (1) a dynamic
SOP (DSOP) model, which is an extension of
SOPs with dynamic (time-dependent) travel
times; (2) a risk-sensitive criterion to allow
for different risk preferences; and (3) a local
search algorithm to solve DSOPs with this
risk-sensitive criterion. We evaluated our al-
gorithms on a real-world dataset for a theme
park navigation problem as well as synthetic
datasets employed in the literature.

1 Introduction

An orienteering problem (OP) is a planning problem
where the goal is to find a sequence of vertices in a
graph that maximizes the sum of rewards from those
vertices subject to the constraint that the sum of edge
lengths along that sequence is no larger than a thresh-
old [34]. It was motivated by competitive orienteering

∗ This research is supported by the Singapore National
Research Foundation under its International Research Cen-
tre @ Singapore Funding Initiative and administered by the
IDM Programme Office. We also thank Ajay S. Aravamud-
han for his help with our experimental evaluations.

sports where competitors start and end at specified
locations and try to accumulate as much reward as
possible from visiting checkpoints within a given dead-
line. Aside from this problem, researchers have also
used OPs to model other problems like vehicle rout-
ing [11], production scheduling [2] and, more recently,
tourist trip design problems [35].

One of the limitations of OPs is that it assumes that
edge lengths are deterministic, which can be an in-
accurate assumption in applications with uncertainty.
Using vehicle routing problems as an example, the
travel time between cities, which are modeled with
edge lengths, depends on road congestion and is thus
not deterministic. Thus, researchers have extended
OPs to Stochastic OPs (SOPs), where edge lengths
are now random variables that follow a given distri-
bution and the goal is now to find a sequence that
maximizes the sum of expected utilities from vertices
in the sequence [6].

Although SOPs more accurately model applications
with uncertainty, there are two assumptions that limit
its applicability. Firstly, the assumption that the dis-
tribution of the random variables is time independent
can still be inaccurate. Using the vehicle routing prob-
lem again as an example, the level of congestion of a
road can change throughout the day – roads are more
likely to be congested during commuting hours and less
likely to be congested in the middle of the night. Thus,
the distribution of travel times on the road should also
change throughout the day. Therefore, in this paper,
we extend SOPs to Dynamic SOPs (DSOPs).

Secondly, the expected utilities do not capture the
risk preference of the user (with respect to violating
the deadline) who will be employing the solution. In
other words, the solution returned for a user with a
hard deadline is the same as the one for a user with
a soft deadline. Intuitively, the solution for the user
with a soft deadline should be longer, and thus more
rewarding, but riskier than the solution for the user
with a hard deadline. To address this issue, we intro-



duce a risk-sensitive criterion that captures this risk
preference. To illustrate the applicability of DSOPs,
we evaluated our algorithms on a real-world dataset for
a theme park navigation problem as well as synthetic
datasets employed in the literature.

2 Motivating Domain

Ubiquitous computing has made substantial progress
in recent years, particularly fueled by the increased
prevalence of “smart” devices like smart phones. The
widespread use of such devices presents a unique op-
portunity for the delivery of real-time contextualized
and personalized information to users. For instance,
operators of theme parks have now deployed smart
phone applications that allow users to access real-time
information like current queueing times at various at-
tractions so that they can better plan their itinerary
in the park.1 Unfortunately, access to current queue-
ing times only allows users to plan myopically, that is,
to choose which attraction to go to next. If users also
had access to predicted future queueing times, which
park operators should be able to provide based on his-
torical data, then the users might be able to make
longer term plans that take that information into ac-
count. Our research is motivated by this exact prob-
lem, where a visitor to a theme park likes to choose
(or be recommended) a sequence of attractions that
optimizes his/her visitor experience subject to the con-
straint that the total travel and queueing time in the
park is no larger than a threshold. In this paper, we
conduct experiments on a real-world dataset for this
problem.

3 Background

We now provide a brief description of OPs and SOPs.

3.1 OPs

The orienteering problem (OP) [34] is defined by a tu-
ple 〈G,T,R, v1, vn, H〉. G = 〈V,E〉 is a graph with sets
of vertices V and edges E; T : vi× vj → R+ ∪{0,∞}
specifies a finite non-negative travel time between ver-
tices vi and vj if eij ∈ E and ∞ otherwise; and
R : vi → R+ ∪ {0} specifies a finite non-negative re-
ward for each vertex vi ∈ V . A solution in an OP is
a Hamiltonian path over a subset of vertices includ-
ing start vertex v1 and end vertex vn and whose total
travel time is no larger than H. Solving OPs optimally
means finding a solution that maximizes the sum of re-
wards of vertices in its path. Researchers have shown
that solving OPs optimally is NP-hard [11]. In this

1http://disneyparksmobile.com/ is one such example.

paper, we assume that the end vertex can be any ar-
bitrary vertex.

A simplified version of our motivating theme park nav-
igation problem, where travel and queueing times are
deterministic and static, can be modeled as an OP:
v1 corresponds to the entrance of the park, vn corre-
sponds to the exit of the park, other vertices vi cor-
respond to attractions in the park, and travel times
T (vi, vj) correspond to the sum of the travel time be-
tween attractions vi and vj and the queueing time at
attraction vj .

The start and end vertices in OPs are typically distinct
vertices. In the special case where they are the same
vertex, the problem is called a orienteering tour prob-
lem (OTP) [27]. The difference between both formu-
lations is small. It is always possible to add a dummy
edge with zero travel time between the start and end
vertices to convert an OP to an OTP.

Researchers have proposed several exact branch-and-
bound methods to solve OPs [18] including optimiza-
tions with cutting plane methods [20, 9]. However,
since OPs are NP-hard, exact algorithms often suf-
fer from scalability issues. Thus, constant-factor ap-
proximation algorithms [4] are necessary for scalabil-
ity. Researchers also proposed a wide variety of heuris-
tics to address this issue including sampling-based al-
gorithms [34], local search algorithms [11, 7], neu-
ral network-based algorithms [38] and genetic algo-
rithms [32]. More recently, Schilde et al. developed
an ant colony optimization algorithm to solve a bi-
objective variant of OPs [29].

3.2 Stochastic OPs

The assumption of deterministic travel times is un-
realistic in many real-world settings. Using our mo-
tivating theme park navigation problem as an exam-
ple, the travel time of a patron depends on factors
like fatigue. Thus, researchers have extended OPs to
Stochastic OPs (SOPs) [6], where travel times are now
random variables that follow a given distribution, and
the goal is to find a path that maximizes the sum of
expected utilities from vertices in the path. The ran-
dom variables are assumed to be independent of each
other. The expected utility of a vertex is the difference
between the expected reward and expected penalty of
the vertex. The expected reward (or penalty) of a ver-
tex is the reward (or penalty) of the vertex times the
probability that the travel time along the path thus
far is no larger (or larger) than H. More formally, the
expected utility U(vi) of a vertex vi is

U(vi) = P (ai ≤ H)R(vi)− P (ai > H)C(vi)

where the random variable ai is the arrival time at
vertex vi (that is, the travel time from v1 to vi), R(vi)



is the reward of arriving at vertex vi before or at H
and C(vi) is the penalty of arriving at vertex vi after
H. Campbell et al. have extended OP algorithms
to solve SOPs including an exact branch-and-bound
method and a local search method based on variable
neighborhood search [6]. Gupta et al. introduced a
constant-factor approximation algorithm for a special
case of SOPs, where there is no penalty for arriving at
a vertex after H [12].

4 Dynamic Stochastic OPs

Stochastic OPs (SOPs) assume independence of travel
time distributions across different edges. However, in
many problems, there is a considerable dependence of
travel times on the arrival time at a vertex. Using
our motivating theme park navigation problem again
as an example, the travel time of a user depends on
factors like fatigue, and the level of fatigue of a patron
increases as they spend more time in the park.

To capture dependencies between travel time distribu-
tions, we introduce an extension to SOPs called Dy-
namic SOPs (DSOPs). The key difference from SOPs
is that the travel time distribution in DSOPs for mov-
ing from vertex vi to vj is dependent on the arrival
time ai at vertex vi. In this paper, we will assume
Ti,j to be a discrete set of distributions, where each
element of the set corresponds to a range of values for
ai. Therefore, the travel time distribution for an ar-
rival time of ai is represented as T ai

i,j and hence the
probability that travel time is m is given by T ai

i,j(m).

4.1 Risk-Sensitive Criterion

While expected utility is a good metric in general, the
approach by [6] suffers from many limitations. Firstly,
it is a point estimate solution which does not consider
the “risk” profile of the user. By “risk”, we do not
refer to the term used in a financial sense, but rather
the level of conservativeness measured in terms of the
probability of completing the path within the deadline.
In other words, a risk-seeking user will be prepared to
choose a sequence of attractions that have a large util-
ity, but with a higher probability of not completing the
path within the deadline, compared to a risk-averse
user who might choose a more “relaxed” path with
lower utility. Secondly, the underlying measurement
of expected utility is not intuitive in the sense that a
utility value accrued at each attraction does not usu-
ally depend on the probability that the user arrives at
the attraction by a certain time; but rather, the utility
is accrued when the attraction is visited, and the user
is concerned with visiting all the attractions (i.e. sum
of utilities) within a certain time threshold.

Given the above consideration, we are interested in

the problem that allows the user to tradeoff between
the level of conservativeness (or risk) against the total
utility. More precisely, given a value 0 ≤ ε ≤ 1, we are
interested in obtaining a path, where the probability
of completing the entire path within a deadline H is
at least 1− ε. Or more precisely,

P (an ≤ H) ≥ 1− ε (1)

where an is the arrival time at the last vertex of the
path. The objective value is therefore inversely pro-
portional to the value of ε.

5 Completion Probability
Approximations

In this section, we describe two ways of approximating
the completion probability P (an ≤ H), which is used
in Equation 1. Given the order π = 〈v1, v2, . . . , vk, vn〉,
we can use the following expression to compute the
completion probability:

P (an ≤ H) =∫ an≤H

an=0

∫ ak=an

ak=0

∫ ak−1=ak

ak−1=0

· · ·
∫ a1=a2

a1=0

T ak

k,n(an − ak)T
ak−1

k−1,k(ak − ak−1) · · ·T a1
1,2(a2 − a1)

d(a1) d(a2) . . . d(ak) d(an) (2)

where an is the arrival time at the exit node, and we
capture the dependencies on arrival times at each of
the vertices by reducing the range of feasible arrival
times (for the integrals) based on the previous activi-
ties in the order of vertices. Unfortunately, the compu-
tation of the expression is expensive since the integrals
have to be computed sequentially. To provide an in-
tuition for the time complexity, computing triple inte-
grals take around 30 minutes with an exponential dis-
tribution (most scalable of all distributions with inte-
gration) on our machine using the Matlab software. To
address this issue of scalability, we introduce two ap-
proximation approaches, a sampling-based approach
and a matrix-based approach.

5.1 Sampling-based Approach

One can approximate the completion probability
P (an ≤ H) of a path by randomly sampling the travel
time distributions for each edge along the path, and
checking if the arrival time an at the last vertex ex-
ceeds H. For example, assume that we want to com-
pute P (an ≤ H) for the path π = 〈v1, v2, . . . , vk, vn〉.
Using the starting time a1, we generate a travel time
sample from the distribution T a1

1,2 to represent the
travel time from vertex v1 to vertex v2, which is also
the arrival time a2 at vertex v2. We then generate a



travel time sample from the distribution T a2
2,3 to repre-

sent the travel time from vertex v2 to vertex v3. The
arrival time a3 at vertex v3 is thus the sum of both
travel times. We continue this process until we gener-
ate a travel time sample to represent the travel time
from vertex vk to vertex vn, and the arrival time an is
thus the sum of all travel times. We count this entire
process as a single sample. We can then approximate

P (an ≤ H) ≈ P̂ (an ≤ H) =
N+

N
(3)

where N+ is the number of samples whose arrival time
an ≤ H is no larger than the deadline H and N is
the total number of samples. Unfortunately, this ap-
proach does not provide any theoretical guarantees on
whether Equation 1 is truly satisfied. However, as we
increase the number of samples, the approximation for
the actual distribution becomes tighter.

5.2 Matrix-based Approach

Alternatively, one can exploit the fact that the depen-
dencies are primarily due to arrival time at a vertex
and not on the entire order of vertices before the cur-
rent vertex. At a higher level, it implies that the un-
derlying problem is Markovian and hence we can de-
compose the expression of Equation 2. We also make
conservative estimates of the probability such that we
can provide theoretical guarantees on whether Equa-
tion 1 is truly satisfied.

The key ideas here are (1) to divide the possible ar-
rival times ai at vertex vi into a finite number of ranges
ri,1, ri,2, . . . , ri,k, where ri,j is the j-th range of arrival
time at vertex vi and (2) to pre-compute for all pairs

of vertices vi and vj a conservative estimate P̂ (aj ∈
rj,q|ai ∈ ri,p) of the probability P (aj ∈ rj,q|ai ∈ ri,p)
of transitioning between ranges of arrival times ri,p
and rj,q. Thus, we can now decompose the expres-
sion of Equation 2 to an expression that exploits the
Markovian property along with ranges of arrival times:

P (an ≤ H) =∑
i

P (a1 ∈ r1,i) ·
∑
j

P (a2 ∈ r2,j |a1 ∈ r1,i)

· · ·
∑
y

P (ak ∈ rk,y|ak−1 ∈ rk−1,x)

·
∑
z

P (an ∈ rn,z|ak ∈ rk,y)

and conservatively approximate it by

P̂ (an ≤ H) =∑
i

P̂ (a1 ∈ r1,i) ·
∑
j

P̂ (a2 ∈ r2,j |a1 ∈ r1,i)

· · ·
∑
y

P̂ (ak ∈ rk,y|ak−1 ∈ rk−1,x)

·
∑
z

P̂ (an ∈ rn,z|ak ∈ rk,y)

It is clear that P̂ (an ≤ H) ≤ P (an ≤ H) is a

conservative estimate if P̂ (aj ∈ rj,q|ai ∈ ri,p) ≤
P (aj ∈ rj,q|ai ∈ ri,p) are all conservative estimates.

P̂ (a1 ∈ r1,i) depends on the starting time at vertex v1,
which is provided as an input. We now describe how to
compute the other probabilities P̂ (aj ∈ rj,q|ai ∈ ri,p).
If the range ri,p contains only a single point ai, then

P (aj ∈ rj,q|ai ∈ ri,p) =P (aj ∈ rj,q|ai)

=

∫
aj∈rj,q

T ai
i,j(aj − ai) d(aj)

(4)

However, the realization of the random variable ai
only occurs at runtime, and computing the integral
in Equation 4 at runtime is expensive. Thus, we
would like to compute a conservative estimate P̂ (aj ∈
rj,q|ai ∈ ri,p) of probability P (aj ∈ rj,q|ai ∈ ri,p) for
all possible realizations of ai ∈ ri,p. We thus compute
them as follows:

P̂ (aj ∈ rj,q|ai ∈ ri,p) =

min
ai∈ri,p

∫
aj∈rj,q

T ai
i,j(aj − ai) d(aj) (5)

The value in the integral is the probability of the ar-
rival time aj to be in the range rj,q for a given value
of ai. Thus, by taking the minimum of these proba-
bilities over all possible values of ai in the range ri,p,

the conditional probability P̂ (aj ∈ rj,q|ai ∈ ri,p) ≤
P (aj ∈ rj,q|ai ∈ ri,p) is a conservative estimate of the
true probability.

Once all the probabilities are pre-computed, they form
transition matrices

Pi,j =(
P̂ (aj ∈ rj,1)|ai ∈ ri,1) P̂ (aj ∈ rj,2)|ai ∈ ri,1) · · ·
P̂ (aj ∈ rj,1)|ai ∈ ri,2) P̂ (aj ∈ rj,2)|ai ∈ ri,2) · · ·

· · · · · · · · ·

)
(6)

which represent the transition probabilities from ver-
tices vi to vj . Finally, to compute P̂ (an ≤ H),
we compute the multiplication of matrices P1 · P1,2 ·
P2,3 · · ·Pk−1,k ·Pk,n and in the resultant matrix, sum
up all the probabilities for ranges of arrival times an
that are less than or equal to the deadline H.



Algorithm 1: Local Search Algorithm

/* Generate Initial Solution */
1 currentPath = ConstructionHeuristic()

/* Make Local Improvements */
2 bestPath = currentPath
3 numIterNoImprove = 0
4 currentMetric = random metric
5 T = starting temperature

6 for iterations = 1 to maxIterations do
7 T = T ·∆T
8 Z = numIterNoImprove

2·maxIterNoImprove

/* Perform 2-Opt Operation on currentPath */
9 currentPath = 2-Opt(currentPath)

/* Remove Vertices from currentPath */
10 while currentPath is infeasible OR rand() ≤ Z do
11 remove the second last vertex from currentPath
12 end

/* Insert Vertices to currentPath */
13 neighborPath = Insert(currentPath, currentMetric)

/* Update currentPath and bestPath */
14 ∆R = neighborPath.reward− currentPath.reward
15 if ∆R > 0 OR rand() ≤ e∆R/T then
16 currentPath = neighborPath
17 end
18 if currentPath.reward > bestPath.reward then
19 bestPath = currentPath
20 numIterNoImprove = 0
21 else
22 numIterNoImprove = numIterNoImprove + 1
23 if numIterNoImprove > maxIterNoImprove then
24 currentMetric = new random metric
25 numIterNoImprove = 0
26 end
27 end
28 end
29 return bestPath

6 DSOP Algorithms

In this section, we describe a branch-and-bound algo-
rithm and a local search algorithm that solves DSOPs.

6.1 Branch-and-Bound Algorithm

We provide a depth-first branch-and-bound algorithm,
where the root of the search tree is the start vertex and
the children of a vertex are all the unvisited vertices
minus the exit vertex. The branch of an arbitrary
vertex thus represents the path from the start vertex to
that vertex. The value of a vertex is the sum of rewards
of all vertices along its branch. The algorithm prunes
the subtree of a vertex if it fails to satisfy our risk-
sensitive criterion. For example, assume that a vertex
vk is on the branch π = 〈v1, v2, . . . , vk〉, where vertex
vi is on the i-th position on the branch. The algorithm
prunes the subtree rooted at vertex vk if the condition
in Equation 1 is not satisfied if one appends the exit

vertex to the end of the path. The algorithm returns
the vertex with the largest value and the branch of
that vertex with the exit vertex appended at the end
of the path as the best solution that satisfies the risk-
sensitive criterion.

6.2 Local Search Algorithm

Unfortunately, the branch-and-bound algorithm suf-
fers from scalability issues as the size of the search
tree is exponential in the number of vertices in the
graph. We thus introduce a local search algorithm
that is based on the standard two-phase approach –
a construction heuristic to generate an initial solution
followed by local improvements on that solution.

6.2.1 Construction Heuristic

The construction heuristic is a greedy insertion algo-
rithm that greedily inserts the best unvisited vertex
at the best position in the current path according to
a given metric. The algorithm begins with the path
that starts at the start vertex and immediately exits
at exit vertex, and it terminates when it can no longer
insert any attraction at any position without violating
the condition in Equation 1.

In this paper, we use the following metric to evaluate
the value of inserting vertex vi at position p: ∆R

1+∆P ,
where ∆R and ∆P is the gain in reward and proba-
bility, respectively, for inserting vertex vi at position
p. Thus, ∆R = R(vi), which is the reward of ver-

tex vi, and ∆P = P̂ (an ≤ H) − P̂ ′(an ≤ H), where

P̂ ′(an ≤ H) and P̂ (an ≤ H) is the probability of ar-
riving at the exit vertex before and after insertion, re-
spectively. We use the same approach of multiplying
transition matrices described in Section 6.1 to speed
up the computation of the probabilities. Finally, we
add 1 to the gain in probabilities such that the denom-
inator is greater than 0.

This metric is motivated by similar metrics in knap-
sack problems, namely the utility of an item is the ratio
between the reward and size of that item [23]. We have
also tried 4 other variants of the above metric, namely

(1) 1
1+∆P , (2) ∆R, (3) (∆R)2

1+∆P , (4) ∆R√
1+∆P

, where we ig-

nored the effects of rewards in (1) and probabilities in
(2), and we amplified the effects of rewards in (3) and
probabilities in (4). However, our chosen metric was
shown to outperform these 4 variants empirically.

6.2.2 Local Improvements

We use a hybrid approach that consists of a variable
neighborhood search combined with simulated anneal-
ing to locally improve our initial solution found by the
construction heuristic. Algorithm 1 shows the pseu-
docode of this algorithm. After constructing the ini-



tial solution (line 1), the algorithm iteratively runs the
following four phases until the maximum number of it-
erations is reached (line 6):

Phase 1: If the path contains at least two vertices
(not including the start and end vertices), then the
algorithm performs a 2-Opt operation, that is, it
randomly swaps two of these vertices (line 9).

Phase 2: If the path is not feasible, that is, it does not
satisfy Equation 1, then the algorithm repeatedly
removes the second last vertex until the path is
feasible. (The algorithm does not remove the last
vertex because it is the exit vertex.) Once the path
is feasible, the algorithm repeatedly removes the
second last vertex probabilistically (lines 10-12).2

Phase 3: The algorithm repeatedly inserts unvisited
vertices greedily similar to the construction heuris-
tic (line 13). The difference here is that the met-
ric used can be one of five different metrics, ei-
ther the metric chosen for the construction heuris-
tics or one of its four variants described above.
The algorithm starts by choosing one of the five
metrics randomly (line 4). If there are no im-
provements in maxIterNoImprove iterations, the al-
gorithm chooses a new different metric randomly
(lines 25-26). These different metrics correspond
to the different “neighborhoods” in our variable
neighborhood search.

Phase 4: The algorithm then updates the current
path to the new neighboring path, which is a re-
sult from inserting unvisited vertices in Phase 3, if
the new path is a better path or with a probability
that depends on the simulated annealing tempera-
ture (lines 14-17).

Reusing Matrix Computations: We re-compute
the completion probability P̂ (an ≤ H) whenever we
make a local move during the search, that is, when
(a) two vertices are swapped, (b) a vertex is removed,
and/or (c) a vertex is inserted. To compute these prob-
abilities efficiently, we store the results of the products
of transition matrices for subsets of vertices. For ex-
ample, in a path π = 〈v1, v2, . . . , vi, . . . , vj , . . .〉, if we
swap vertices vi and vj , then the product of transition
matrices for the vertices before vi, the product of ma-
trices for the vertices between vi+1 and vj−1, and the
product of matrices for the vertices after vj+1 remain
unchanged. By storing all of these intermediate re-
sults, it is possible to make the computation of proba-
bilities very efficient. However, it requires a significant
amount memory for larger problems. In this paper, we
store only the products of matrices for the vertices be-
tween the start vertex and every subsequent vertex in
the path except for the exit vertex. For example, for a
path π = 〈v1, v2, v3, vn〉, we store the product of matri-

2The rand() function returns a random number in [0,1].

ces for vertices v1 and v2, which is P̂ (a2 ≤ H), and the
product of matrices for vertices v1, v2 and v3, which
is P̂ (a3 ≤ H). While this is not the most efficient ap-
proach, it provides a good tradeoff between memory
requirement and efficiency.

7 Experimental Results

We now empirically demonstrate the scalability of our
approaches on synthetic datasets employed in the lit-
erature as well as a real-world dataset for a theme
park navigation problem. We run our experiments on
a 3.2GHz Intel i5 dual-core CPU with 12GB mem-
ory, and we set the parameters for the local search
algorithm as follows: we set maxIterNoImprove to 50,
maxIterations to 1500, T to 0.1 and ∆T to 0.99. We
divide each travel time distribution to 100 ranges for
the matrix-based computations and use 1000 samples
for the sampling-based computations.

7.1 Synthetic Dataset Results

Our synthetic dataset is based on the dataset pro-
vided in [34] with 32 vertices. We assume that the
total travel time of each edge is the sum of the travel
time between the two vertices connected by that edge
and the queueing time at the target vertex of that
edge. As in [6], we assume that the total travel time
of each edge is a gamma distribution, whose mean is
the Euclidean distance between the vertices connected
by that edge. We vary the shape parameter 2 ≤ k ≤ 9
and scale parameter 1 ≤ θ ≤ 4 such that the mean of
the values µ ≈ kθ is approximately equal to the prod-
uct of the shape parameter k and the scale parameter
θ. A gamma distribution with k = 1 is an exponen-
tial distribution. As we wanted a more normal-like
distribution, we did not include this value of k in our
experiments. We also bound the possible values of k
such that shape of the distributions across time ranges
do not vary significantly, and we use the same bound
on the possible values of θ as in [6]. Lastly, we set
rewards for each vertex to a random number between
1 and 100.

Table 1 shows our results for the construction heuris-
tic algorithm (labeled CH) and local search algorithm
(labeled LS), where we calculate the completion prob-
ability of a path (see Equation 1) using both the
matrix-based approach (see Equations 5 and 6) and
the sampling-based approach (see Equation 3). We re-
port the completion probability of the best path found
by the local search algorithm using the matrix-based
approach (labeled PM ) and the sampling-based ap-
proach (labeled PS). We also report the the percent-
age of improvement in the reward of the path found
by the local search algorithm compared to the path
found by the construction heuristic algorithm (denoted



(a) Results averaged across all deadlines H and risk parameters ε

Matrix-based Approach Sampling-based Approach
Rewards Runtimes (s) Rewards Runtimes (s)

CH LS CH LS CH LS CH LS
θ = 1 87 88 (0.50) 0.5 568 876 1033 (18.75) 5.3 2443
θ = 2 129 134 (1.65) 0.8 987 695 792 (17.03) 2.7 1477
θ = 3 123 133 (3.97) 0.8 904 533 569 (6.63) 1.3 716
θ = 4 140 140 (0.00) 0.8 864 406 428 (6.39) 0.7 388

(b) Results averaged across all scale parameters θ and risk parameters ε

Matrix-based Approach Sampling-based Approach
Rewards Runtimes (s) Rewards Runtimes (s)

CH LS CH LS CH LS CH LS
H = 20 28 28 (0.00) 0.2 238 193 220 (12.71) 0.2 221
H = 40 94 94 (0.11) 0.5 520 432 498 (15.00) 0.8 690
H = 60 138 141 (1.43) 0.8 862 657 732 (11.10) 2.0 1303
H = 80 155 160 (2.00) 0.9 1050 847 952 (11.35) 3.7 1858
H = 100 185 196 (4.12) 1.3 1485 1008 1126 (10.84) 5.7 2208

(c) Results averaged across all deadlines H and scale parameters θ

Matrix-based Approach Sampling-based Approach
Rewards Runtimes (s)

PM PS
Rewards Runtimes (s)

PM PSCH LS CH LS CH LS CH LS
ε = 0.1 1 1 (0.00) 0.1 168 1.00 1.00 507 605 (18.48) 1.7 1077 0.17 0.90
ε = 0.2 46 46 (0.00) 0.2 332 0.90 0.99 585 669 (13.98) 2.1 1186 0.15 0.81
ε = 0.3 113 119 (3.38) 0.6 768 0.79 0.99 643 711 (10.03) 2.6 1270 0.13 0.73
ε = 0.4 194 197 (1.23) 1.1 1248 0.66 0.97 679 757 (10.81) 2.8 1376 0.09 0.63
ε = 0.5 246 256 (3.05) 1.6 1640 0.54 0.95 725 785 (7.71) 3.3 1371 0.07 0.55

Table 1: Experimental Results for Simpler Synthetic Datasets

in parentheses beside the local search rewards). The
branch-and-bound algorithm successfully terminated
for problems with small deadlines H and risk param-
eters ε only. Therefore, we did not tabulate its results
as it is unfair to only consider successful runs in com-
puting them. (We do not know the rewards and com-
pletion probabilities for unsuccessful runs.) We make
the following observations:

• Table 1(a) shows that for the matrix-based ap-
proach, the solution rewards increase between
θ = 1 and θ = 2, and remain relatively un-
changed for larger values of θ. As θ increases,
the variance of the gamma distributions increases
as well. When θ = 1, only very few ranges have
non-zero transition probabilities computed with
Equation 5. As a result, adding an additional edge
to a solution can result in a significant decrease
in completion probability. With larger values of
θ, more ranges have non-zero transition proba-
bilities, but the number of ranges and transition
probabilities do not change much with increasing
values of θ. Thus, the path length and, conse-
quently, reward and runtime, typically increases
as θ increases from 1 to 2, but remains relatively
unchanged for larger values of θ. The runtime de-
pends on the path length because the number of

positions to check to find the best position to in-
sert a vertex, which is done by the construction
heuristic algorithm and phase 3 in the local im-
provement phase, depends on the path length.

On the other hand, for the sampling-based ap-
proach, the solution rewards decrease as θ in-
creases. Since the sampling probabilities are rel-
atively accurate representations of the true prob-
abilities, as the variance increases, adding an ad-
ditional edge to a solution can result in a signif-
icant decrease in completion probability. Thus,
the path length and, consequently, reward and
runtime, typically decreases as θ increases.

• Table 1(a) also shows that as θ increases, for
the sampling-based approach, the improvement
of the local search algorithm over the construc-
tion heuristic algorithm decreases. The reason is
that as the variance of the gamma distributions
increases, there is less distinction between the dif-
ferent gamma distributions. Thus, many of the
neighboring solutions are very similar to the so-
lution found by the construction heuristic algo-
rithm. For the matrix-based approach, the im-
provements are all negligible. The path lengths
are short (with 1-3 vertices excluding the start
and end vertices), and thus there is no much room



(a) Results averaged across all risk parameters ε

Matrix-based Approach Sampling-based Approach
Rewards Runtimes (s) Rewards Runtimes (s)

CH LS CH LS CH LS CH LS
H = 20 29 29 (0.00) 0.2 262 430 537 (30.35) 0.9 1115
H = 40 102 103 (0.43) 0.5 571 864 1052 (22.27) 3.8 4526
H = 60 147 160 (6.77) 0.7 915 1156 1394 (20.92) 7.5 8255
H = 80 181 183 (0.44) 1.1 1326 1503 1588 (5.73) 13.6 9339
H = 100 247 263 (5.11) 1.8 2004 1579 1644 (4.14) 15.3 7716

(b) Results averaged across all deadlines H

Matrix-based Approach Sampling-based Approach
Rewards Runtimes (s)

PM PS
Rewards Runtimes (s)

PM PSCH LS CH LS CH LS CH LS
ε = 0.1 16 16 (0.00) 0.1 215 0.98 1.00 1004 1162 (24.68) 6.9 6165 0.00 0.90
ε = 0.2 83 83 (0.00) 0.4 500 0.87 0.97 1071 1222 (19.87) 8.2 6237 0.00 0.81
ε = 0.3 141 144 (1.37) 0.7 975 0.78 0.97 1109 1255 (18.38) 8.1 6561 0.00 0.73
ε = 0.4 204 224 (9.17) 1.2 1448 0.61 0.95 1144 1264 (11.25) 8.5 6054 0.00 0.64
ε = 0.5 264 272 (2.23) 1.8 1940 0.55 0.87 1205 1311 (9.24) 9.6 5934 0.00 0.56

Table 2: Experimental Results for More Difficult Synthetic Datasets

Rewards (Peak Days) Rewards (Non-Peak Days)
H = 2 H = 4 H = 6 H = 8 H = 10 H = 2 H = 4 H = 6 H = 8 H = 10

ε = 0.1 474 485 488 508 558 579 579 579 579 579
ε = 0.2 474 485 488 508 558 579 579 579 579 578
ε = 0.3 474 485 507 508 557 620 620 620 621 624
ε = 0.4 474 485 505 549 558 620 627 627 634 634
ε = 0.5 474 485 507 549 557 646 649 646 644 646

Table 3: Experimental Results for Real-World Theme Park Dataset

for improvement. We confirm this result with the
branch-and-bound algorithm, where it found sim-
ilar paths to those found by the local search al-
gorithm for problems where it successfully termi-
nated.

• Tables 1(b) and 1(c) show that asH or ε increases,
the solution reward increases for both matrix- and
sampling-based approaches, which is to be ex-
pected. Similarly, the runtime also increases since
the number of positions to check to find the best
position to insert a vertex also increases.

• Table 1(c) shows that the completion probabili-
ties PM and PS are all no less than 1 − ε for the
matrix- and sampling-based approaches, respec-
tively, which is to be expected.

We observe that the problems in this dataset are rel-
atively easy as all gamma distributions have the same
scale parameter and their means satisfy the triangle
inequality. Thus, we modified the dataset to increase
its difficulties in the following ways: (a) we choose the
scale parameter θ of the gamma distributions for each
edge randomly between 1 and 4 such that not all edges
have distributions with the same scale parameter, and
(b) we change the shape parameter k of the gamma

distributions for some subset of edges such that their
means no longer satisfy the triangle inequality. Ta-
ble 2 shows our results for this more difficult synthetic
dataset. We make the same observations here as in the
simpler dataset with the exception that the improve-
ments of the local search algorithm over the construc-
tion heuristic algorithm is now up to 30% as opposed
to 18% earlier.

Overall, using the sampling-based approach, the lo-
cal search algorithm provides reasonably better so-
lutions compared to the construction heuristic algo-
rithm. However, it is not guaranteed that these so-
lutions are feasible, that is, they satisfy Equation 1.
However, the feasibility likelihood increases with the
number of samples. Thus, this approach is better
suited for users without strict feasibility requirements.
On the other hand, solution feasibility is guaranteed
for algorithms using the matrix-based approach. Un-
fortunately, the local search algorithm fails to rea-
sonably improve on the solutions found by the con-
struction heuristic algorithm. Thus, the construction
heuristic algorithm using the matrix-based approach
is better suited for users with strict feasibility require-
ments.



7.2 Real-World Dataset Results

For our real-world theme park dataset, the total travel
time of each edge is also a gamma distribution. We
choose the scale parameter θ and shape parameter k
such µ ≈ kθ and σ2 ≈ kθ2, where µ and σ2 is the mean
and variance, respectively, of our data points (across
several months) for the sum of travel time and queue-
ing time. Similar to the synthetic datasets, we also set
rewards for each vertex to a random number between 1
and 100. However, we do not bound the possible values
of the scale and shape parameters θ and k such that
the gamma distributions approximate the data points
as accurately as possible. Lastly, we segment our data
points into two categories, peak days and non-peak
days,3 and present results for both categories.

Table 3 shows our results for the local search algo-
rithm using the sampling-based approach to compute
the completion probabilities; the deadline H is mea-
sured in hours. We only show the solution rewards as
the other trends are similar to those observed for the
synthetic datasets. Similar to the synthetic datasets,
as H and ε increase, the solution reward also typically
increases. Additionally, the solution rewards for non-
peak days are larger than those for peak days. The
reason is that the queueing time at an attraction is
smaller on non-peak days than on peak days. Thus, it
is possible to visit more attractions, and thus accrue
more rewards, on non-peak days than on peak days.

8 Related Work

OPs have a long history and has been known by a
variety of other names including selective TSPs [18],
maximum collection problems [16] and bank robber
problems [1]. Vansteenwegen et al. recently presented
a broad overview of the problem, its variants and asso-
ciated solution methods [36]. In contrast, to the best
of our knowledge, there has not been much work in
stochastic variants of OP thus far. Aside from the
work on SOPs [6], two closely related problems with
stochastic travel times are time-constrained TSPs with
stochastic travel and service times [33] and stochastic
selective TSPs [31]. These problems assume that the
traveling time distributions are time independent, un-
like our dynamic SOPs. Lastly, aside from travel time,
researchers have also investigated stochasticity in the
reward values of vertices [15].

SOPs also bear some similarity with Markov random
fields (MRFs) [37] and Bayesian networks [28]. They
are both graphical models, where nodes in a graph
correspond to random variables and edges in a graph
correspond to potential functions between pairs of ran-

3Peak days are Fridays, Sundays and Mondays accord-
ing to our theme park operator.

dom variables. While MRF graphs can be cyclic,
Bayesian network graphs are strictly acyclic. The goal
in these two models is to compute the maximum a pos-
teriori (MAP) assignment, which is the most probable
assignment to all the random variables of the under-
lying graph in MRFs [37, 17, 30] and Bayesian net-
works [24, 14, 39]. Thus, the main difference between
MAP assignment problems and SOPs is that MAP as-
signment problems are inference problems while SOPs
are planning problems. DSOPs can potentially be rep-
resented using the TiMDP model [5]. However, the
objective in TiMDPs is to maximize expected reward,
which is unlike in DSOPs, where we also consider the
robustness criterion.

With respect to modeling and accounting for dif-
ferent risk preferences, there are generally the fol-
lowing three approaches: (1) Stochastic dominance,
whose theory was developed in statistics and eco-
nomics [19, 13]. Stochastic dominance defines par-
tial orders on the space of random variables and allow
for pairwise comparison of different random variables.
(2) Mean-risk analysis, whose models originate from
finance. They include the well known mean-variance
optimization model in portfolio optimization, where
the variance of the return is used as the risk func-
tional [21]. (3) Chance constraints or percentile opti-
mization, whose models were initiated and developed
in operations research [22, 25]. Recently, researchers
have provided a thorough overview of the state-of-
the-art of the optimization theory with chance con-
straints [26]. Our approach of defining a risk-sensitive
measure that allows the user to specify a level of risk
(failure tolerance) is along the lines of using chance
constraints to model and account for different risk pref-
erences. While it has been applied to solve planning
and scheduling problems [3, 8, 10], to the best of our
knowledge, it has yet to be applied to solve OPs.

9 Conclusions

Researchers have used OPs to model vehicle routing
and tourist trip design problems. However, OPs as-
sume that the travel times are independent of the time
of day and the route returned is independent of the
risk preference of the user. Therefore, we make the
following contributions in this paper: (1) we introduce
a dynamic and stochastic OP (DSOP) model that al-
low for time-dependent travel times; (2) we propose a
risk-sensitive criterion that allow for different risk pref-
erences; and (3) we develop a local search algorithm
to solve DSOPs with this risk-sensitive criterion. We
also empirically show that this approach is applicable
on a real-world theme park navigation problem. We
anticipate that such user-centric route guidance will
be more widely used as users carry smart devices and
use mobile applications with increasing intensity.
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