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Möbius band.

Mathematics subject classification: 05C10 (Primary), 57M20, 57N05 (Se-
condary).
Keywords and phrases: Triangulation of surface, irreducible triangulation,
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1 Introduction

Let S ∈ {Sg, Nk} be the closed orientable surface Sg of genus g or the closed
non-orientable surface Nk of non-orientable genus k. In particular, S0 is the sphere
and N1 is the projective plane. Let D be an open disk in S and let S − D denote
S with D removed; therefore, the boundary ∂(S −D) (=∂D) is homeomorphic to a
circle. In particular, S0 −D is the disk and N1 −D is the Möbius band. We use the
notation Σ whenever we assume the general case: Σ ∈ {S, S − D} .

If a graph G is 2-cell embedded in Σ, the components of Σ−G are called faces. A
triangulation of Σ with a simple graph G (without loops or multiple edges) is a 2-cell
embedding T : G → Σ in which each face is bounded by a 3-cycle (that is, a cycle of
length 3) of G and any two faces are either disjoint, share a single vertex, or share a
single edge. We denote by V = V (T ), E = E(T ), and F = F (T ) the sets of vertices,
edges, and faces of T , respectively. The cardinality |V (T )| is called the order of
T . By G(T ) we denote the graph (V (T ), E(T )) of triangulation T . Two triangula-
tions T1 and T2 are called isomorphic if there is a bijection, called an isomorphism,
ϕ : V (T1) → V (T2) such that uvw ∈ F (T1) if and only if ϕ(u)ϕ(v)ϕ(w) ∈ F (T2).
Throughout this paper we distinguish triangulations only up to isomorphism. For
Σ = S −D, let ∂T (= ∂D) denote the boundary cycle of T . The vertices and edges
of ∂T are called boundary vertices and boundary edges of T .

A triangulation is called irreducible if no edge can be shrunk without producing
multiple edges or changing the topological type of the underlying surface. The
term “irreducible triangulation” is more accurately introduced in Section 2. The
irreducible triangulations of Σ form a basis for the family of all triangulations of
Σ, in the sense that any triangulation of Σ can be obtained from a member of
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the basis by repeatedly applying the splitting operation (introduced in Section 2)
a finite number of times. Barnette and Edelson [2] and independently Negami [9]
have proved that for every closed surface S the basis of irreducible triangulations
is finite. At present such bases are known for seven closed surfaces: the sphere
(Steinitz and Rademacher [10]), projective plane (Barnette [1]), torus (Lawrencenko
[6]), Klein bottle (25 Lawrencenko and Negami’s [8] triangulations plus 4 more
irreducible triangulations found later by Sulanke [12]) as well as S2, N3, and N4

(Sulanke [13, 14]). Boulch, Colin de Verdière, and Nakamoto [3] have established
upper bounds on the order of an irreducible triangulation of S − D. In this paper
we obtain a complete list of irreducible triangulations of N1 − D.

2 Preliminaries

Let T be a triangulation of Σ. An unordered pair of distinct adjacent edges vu
and vw of T is called a corner of T at vertex v, denoted by 〈u, v,w〉. The splitting of
a corner 〈u, v,w〉, denoted by sp〈u, v,w〉, is the operation which consists in cutting
T open along the edges vu and vw and then closing the resulting hole with two
new triangular faces, v′v′′u and v′v′′w, where v′ and v′′ denote the two images of
v appearing as a result of cutting. Under this operation, vertex v is extended to
the edge v′v′′ and the two faces having this edge in common are inserted into the
triangulation. Especially in the case {Σ = S − D ∧ uv ∈ E(T ) ∧ v ∈ V (∂T )}, the
operation sp〈u, v] of splitting a truncated corner 〈u, v] produces a single triangular
face uv′v′′, where v′v′′ ∈ E(∂(sp〈u, v](T ))).

Under the inverse operation, shrinking the edge v′v′′, denoted by sh〉v′v′′〈, this
edge collapses to a single vertex v, the faces v′v′′u and v′v′′w collapse to the edges vu
and vw, respectively. Therefore sh〉v′v′′〈◦ sp〈u, v,w〉(T ) = T . It should be noticed
that in the case {Σ = S − D ∧ v′v′′ ∈ E(∂T )}, there is only one face incident with
v′v′′, and only that single face collapses to an edge under sh〉v′v′′〈. Clearly, the
operation of splitting doesn’t change the topological type of Σ. We demand that
the shrinking operation must preserve the topological type of Σ as well; moreover,
multiple edges must not be created in a triangulation. A 3-cycle of T is called
nonfacial if it doesn’t bound a face of T . In the case in which an edge e ∈ E(T )
occurs in some nonfacial 3-cycle, if we still insist on shrinking e, multiple edges would
be produced, which would expel sh〉e〈(T ) from the class of triangulations. An edge
e is called shrinkable, or a cable if sh〉e〈(T ) is still a triangulation of Σ; otherwise the
edge is called unshrinkable, or a rod. The subgraph of G(T ) made up of all cables is
called the cable-subgraph of G(T ).

The only impediment to edge shrinkability in a triangulation T of a closed surface
S is identified in [1, 2, 6]: an edge e ∈ E(T ) is a rod if and only if e satisfies the
following condition:

(2.1) e is in a nonfacial 3-cycle of G(T ).
The impediments to edge shrinkability in a triangulation T of a punctured surface

S −D are identified in [3]: an edge e ∈ E(T ) is a rod if and only if e satisfies either
condition (2.1) or the following condition:
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(2.2) e is a chord of D — that is, the end vertices of e are in V (∂D) but
e /∈ E(∂D).

A triangulation is said to be irreducible if it is free of cables or in other words,
each edge is a rod. For instance, a single triangle is the only irreducible triangulation
of the disk S0−D although its edges don’t meet either of conditions (2.1) and (2.2).
Thus, we have yet one more impediment to edge shrinkability:

(2.3) e is a boundary edge in the case the boundary cycle is a 3-cycle.

Although condition (2.3) is a specific case of condition (2.1) (unless S = S0) and
is not explicitly stated in [3], it deserves especial mention.

3 The structure of irreducible punctured triangulations

In the remainder of this paper we assume that S 6= S0. Let T be an irreducible
triangulation of S −D. Let us restore the disk D in T , add a vertex p in D and join
p to the vertices in ∂D. We thus obtain a triangulation, T ∗, of the closed surface
S. In this setting we call D the patch, call p the central vertex of the patch, and
say that T is obtained from the corresponding triangulation T ∗ of S by the patch
removal. Notice that T ∗ may turn out to be an irreducible triangulation of S, but
not necessarily.

A vertex of a triangulation R of S is called a pylonic vertex if that vertex is
incident with all cables of R. A triangulation that has at least one cable and at
least one pylonic vertex is called a pylonic triangulation. It should be noticed that
there exist triangulations of the torus with exactly one cable, and thereby with two
different pylonic vertices; however, if a pylonic triangulation R has at least two
cables, R has a unique pylonic vertex.

Lemma 1. If T ∗ has at least two cables, then the central vertex p of the patch is
the only pylonic vertex of T ∗.

Proof. Using the assumption that T is irreducible and the fact that each cable of
T ∗ fails to satisfy condition (2.1), it can be easily seen that in the case T ∗ is not
irreducible, all cables of T ∗ have to be entirely in D ∪ ∂D and, moreover, there is
no cable that is entirely in ∂D. In particular, we observe that any chord of D is a
rod in T because it meets condition (2.2), and is also a rod in T ∗ because it meets
condition (2.1).

4 Irreducible triangulations of the Möbius band

Barnette’s theorem [1] states that there exist two irreducible triangulations of
N1; those are presented in Figure 1: P1 and P2. (For each hexagon identify each
antipodal pair of points in the boundary to obtain an actual triangulation of N1.)
By repeatedly applying the splitting operation to P1 and P2, we can generate all
triangulations of N1. Sulanke [11] has generated by computer all triangulations of
N1 with up to 19 vertices; in particular, among them there are 20 triangulations with
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up to 8 vertices. Independently, the authors of the present paper have identified the
same list of 20 triangulations by hand (Figure 1), using the automorphisms of P1

and P2. An automorphism of a triangulation P is an isomorphism of P with itself.
The set of all automorphisms of P forms a group, called the automorphism group of
P (denoted Aut(P )).
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Figure 1. All projective plane triangulations with up to 8 vertices
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Lemma 2 (see [11]). There are precisely one (up to isomorphism) triangulation of
N1 with 6 vertices, three with 7 vertices, and sixteen with 8 vertices. They are shown
in Figure 1, in which the bold edges indicate the cable-subgraphs of the triangulations.
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Figure 2. Irreducible triangulations of the Möbius band

Theorem 1. There are precisely six non-isomorphic irreducible triangulations of
the Möbius band, namely M1 to M6, shown in Figure 2 in which the left and right
sides of each rectangle are identified with opposite orientation to obtain an actual
triangulation of the Möbius band.

Proof. Observe that in Figure 1 only the following three non-irreducible members
have a pylonic vertex: P3 and P4 with pylonic vertex 6′′, and P19 with pylonic vertex
7′′. It can be easily proved that if a triangulation of N1 has at least two cables but has
no pylonic vertex, then no pylonic vertex can be created under further splitting of the
triangulation. On the other hand, it can be easily seen that any one splitting applied
to the pylonic triangulations P3, P4, or P19 destroys their pylonicity. Therefore, by
Lemma 1, each irreducible triangulation of N1 −D is obtainable either by removing
a vertex from an irreducible triangulation in {P1, P2}, or by removing the pylonic
vertex from a pylonic triangulation in {P3, P4, P19}. It is known [4,5,7] that Aut(P1)
acts transitively on the vertex set V (P1), while under the action of Aut(P2) the set
V (P2) breaks into two orbits as follows: orbit1 = {1, 2, 3, 7}, orbit2 = {4, 5, 6}.
Therefore, all irreducible triangulations of N1 − D are covered by the followings:
M1 = P1 minus vertex 1 (subtracted with the incident edges and faces), M2 = P2

minus vertex 1, M3 = P2 minus vertex 4, M4 = P4 minus vertex 6′′, M5 = P3 minus



IRREDUCIBLE TRIANGULATIONS OF THE MÖBIUS BAND 49

vertex 6′′, M6 = P19 minus vertex 7′′. To see that these triangulations are pairwise
non-isomorphic, observe that they have different vertex degree sequences except
for the pair {M3, M4}; however, all boundary vertices have degree 5 in M3 but
not all in M4.
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