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Abstract. An analogue of the Paley–Wiener theorem is developed for weighted

Bergman spaces of analytic functions in the upper half-plane. The result is applied

to show that the invariant subspaces of the shift operator on the standard Bergman

space of the unit disk can be identified with those of a convolution Volterra operator

on the space L2(R+, (1/t)dt).

1. Introduction

Let Π+ denote the upper half of the complex plane. Recall that the Hardy space
H2(Π+) consists of the functions F analytic on Π+ with finite norm

‖F‖H2(Π+) =

{
sup

0<y<∞

∫ ∞

−∞

|F (x + iy)|2 dx

}1/2

.

A classical theorem of Paley and Wiener ([6]; see [8] or [2]) states that H2(Π+)
is isometrically isomorphic under the Fourier transform to L2(R+), the space of
functions square-integrable over the positive real line. In fact, to each function
F ∈ H2(Π+) there corresponds a function f ∈ L2(R+) such that

F (z) =

∫ ∞

0

f(t)eizt dt , z ∈ Π+ ,

and

‖F‖2
H2(Π+) = 2π

∫ ∞

0

|f(t)|2 dt .

Moreover, Plancherel’s theorem asserts that the Fourier transform

F̂ (t) =
1

2π

∫ ∞

−∞

F (x)e−itx dx , t ∈ R ,

coincides with f . In particular, F̂ (t) = 0 for almost every t < 0.
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We begin this note with an analogue of the Paley–Wiener theorem for Bergman
spaces, which will be applied to the shift operator on the standard Bergman space
A2(D) over the unit disk D. Before stating the results, we need to introduce some
terminology.

For α > −1, the weighted Bergman space A2
α(Π+) on the upper half plane consists

of those functions F analytic in Π+ for which

‖F‖2
A2

α(Π+) =

∫

Π+

|F (x + iy)|2 yα dx dy < ∞ .

For β > 0, let L2
β(R+) denote the space of complex-valued measurable functions f

on R
+ for which

‖f‖2
L2

β
(R+) =

2π Γ(β)

2β

∫ ∞

0

|f(t)|2 t−β dt < ∞ .

We can now state the Bergman-space analogue of the Paley–Wiener theorem.

Theorem 1. For each α > −1, the space A2
α(Π+) is isometrically isomorphic

under the Fourier transform to the space L2
α+1(R

+) . More precisely, F ∈ A2
α(Π+)

if and only if it is the Fourier transform

F (z) =

∫ ∞

0

f(t)eizt dt , z ∈ Π+ , (1)

of some function f ∈ L2
α+1(R

+), in which case ‖F‖A2
α(Π+) = ‖f‖L2

α+1
(R+).

The theorem says in particular that the unweighted Bergman space A2(Π+),
where α = 0, is isometrically isomorphic to the space L2

1(R
+) with norm

‖f‖2
L2

1
(R+) = π

∫ ∞

0

|f(t)|2

t
dt .

This correspondence will allow us to view the shift operator as an operator on
L2

1(R
+) . The shift operator S is defined on A2(D) by Sf(w) = wf(w) for w ∈ D.

Theorem 2. The shift operator on the Bergman space A2(D) is unitarily equivalent

to the operator I − 2T on L2
1(R

+), where

Tf(t) = e−t

∫ t

0

esf(s) ds , f ∈ L2
1(R

+) .

Note that T is a convolution operator Tf = h ∗ f with kernel

h(t) =

{
e−t t > 0

0 t < 0 .
(2)

It can also be viewed as a Volterra operator combined with multiplication by e−t.
A subspace M of A2(D) is said to be invariant if S(M) ⊂ M . Beurling [1] showed

that the invariant subspaces of the shift operator on the Hardy space H2(D) have the
simple form ϕH2(D) where ϕ is an inner function. On the other hand, the invariant
subspaces of the Bergman space are much more complicated and have never been
completely described (see for instance [3] for further discussion). Theorem 2 has
the following immediate corollary.

Corollary. Under the unitary equivalence of Theorem 2, the invariant subspaces

of the shift operator on A2(D) correspond to the invariant subspaces of the operator

T on the space L2
1(R

+).

The correspondence of the corollary will be illustrated by two examples. We will
also obtain an analogue of the Paley–Wiener theorem for weighted Dirichlet spaces.
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2. Proof of Theorem 1

After discovering Theorem 1 we were informed that it is a “folk theorem”, es-
sentially known although there appears to be no proof in the literature. The proof
we give here is not the shortest possible, but it reveals an interesting connection
with Laguerre polynomials.

Let us show first that if F has the form (1) for some function f ∈ L2
α+1(R

+), then
F ∈ A2

α(Π+) and the two norms are equal. An application of Morera’s theorem
shows that F is analytic in Π+. Since the function f(t)e−yt belongs to L2(R+) for
each y > 0, it follows from Plancherel’s theorem that

‖F‖2
A2

α(Π+) =

∫ ∞

0

∫ ∞

−∞

|F (x + iy)|2 yα dx dy

=

∫ ∞

0

∫ ∞

−∞

∣∣∣∣
∫ ∞

0

f(t)eitxe−ty dt

∣∣∣∣
2

dx yα dy

=

∫ ∞

0

∫ ∞

0

∣∣f(t)e−ty
∣∣2 dt yα dy

=

∫ ∞

0

|f(t)|2
∫ ∞

0

e−2ty yα dy dt

= 2π

∫ ∞

0

|f(t)|2
Γ(α + 1)

(2t)α+1
dt = ‖f‖2

L2
α+1

(R+) .

A good reference for basic theory of Fourier transforms is Goldberg’s book [4].
It remains to prove that the isometry f 7→ F maps onto the whole space A2

α(Π+).
In other words, we must show that every function F ∈ A2

α(Π+) has a representation
of the form (1) for some function f ∈ L2

α+1(R
+). It will be sufficient to represent

every element of an orthogonal basis in this manner.
Recall first that the weighted Bergman space A2

α(D) of the unit disk D consists
of all analytic functions g for which the integral

‖g‖2
A2

α(D) =

∫

D

|g(w)|2(1 − |w|2)α du dv , w = u + iv ,

is finite. A change of variables shows that g ∈ A2
α(D) if and only if

G(z) = g

(
z − i

z + i

)
2α+1

(z + i)α+2

belongs to A2
α(Π+). In fact, the linear map that takes g ∈ A2

α(D) onto G ∈ A2
α(Π+)

is an isometric isomorphism. Such an isometry preserves inner products and there-
fore carries any orthogonal basis of A2

α(D) to an orthogonal basis of A2
α(Π+).

Since the polynomials are dense in A2
α(D) (see for instance [3]), the monomials

wn with n = 0, 1, 2, . . . form an orthogonal basis for A2
α(D). As a consequence, the

functions

Gn(z) =

(
z − i

z + i

)n
2α+1

(z + i)α+2
, n = 0, 1, 2, . . . ,

form an orthogonal basis for A2
α(Π+). The proof of Theorem 1 reduces to showing

that each basis element Gn is the image of some function fn ∈ L2
α+1(R

+) under
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the mapping defined by (1). For this purpose we need to compute the the Fourier
transform

Ĝn(t) =
1

2π

∫ ∞

−∞

e−itxGn(x) dx =
1

2π

∫ ∞

−∞

e−itx

(
x − i

x + i

)n
2α+1

(x + i)α+2
dx .

The calculation of Ĝn(t) will require some labor. We state the result as a lemma.

Lemma 1. The Fourier transform of Gn is

Ĝn(t) =





n! (2t)α+1e−t

iα+2Γ(n + α + 2)
L(α+1)

n (2t) , t > 0

0 , t < 0 ,

(3)

where L
(α)
n (t) denotes the Laguerre polynomial of degree n and index α.

The proof of Lemma 1 is deferred to Section 5, where we will say more about

Laguerre polynomials. It is clear from formula (3) that Ĝn ∈ L2
α+1(R

+), and
it also belongs to L1(R). Therefore, inversion of the Fourier transform yields a
representation

Gn(z) =

∫ ∞

0

eiztĜn(t) dt , z ∈ Π+ ,

of the form (1). Thus Theorem 1 will be proved once Lemma 1 is established.

3. Proof of Theorem 2

The linear mapping from f ∈ A2(D) to the function

F (z) = f

(
z − i

z + i

)
2

(z + i)2
, z ∈ Π+ , (4)

is an isometry of A2(D) onto A2(Π+) that carries the function Sf(w) = wf(w) to

z − i

z + i
F (z) = S̃F (z) .

This shows that the shift operator in A2(D) is unitarily equivalent to the operator

S̃ of multiplication by (z − i)/(z + i) in A2(Π+).
Now recall that the functions

Gn(z) =

(
z − i

z + i

)n
2

(z + i)2
, n = 0, 1, 2, . . . ,

form an orthogonal basis of A2(Π+), and observe that S̃Gn = Gn+1. Therefore,
the Fourier transform of Gn+1 has the form

Ĝn+1(t) =
1

2π

∫ ∞

−∞

e−itx x − i

x + i
Gn(x) dx .

Write
x − i

x + i
= 1 −

2

1 − ix



A PALEY–WIENER THEOREM FOR BERGMAN SPACES 5

and note that the function h given by (2) has the form

h(t) =
1

2π

∫ ∞

−∞

e−itx 1

1 − ix
dx ,

since ∫ ∞

−∞

eixt h(t) dt =

∫ ∞

0

e−(1−ix)t dt =
1

1 − ix
.

It follows that the Fourier transform of S̃Gn is

Ĝn+1(t) = Ĝn(t) −
2

2π

∫ ∞

−∞

e−itx 1

1 − ix
Gn(x) dx

= Ĝn(t) − 2(h ∗ Ĝn)(t) ,

where

(h ∗ Ĝn)(t) =

∫ ∞

−∞

h(t − s)Ĝn(s) ds = e−t

∫ t

0

esĜn(s) ds .

Here we have used the fact that the Fourier transform of a convolution is the product
of Fourier transforms.

We have shown that the multiplication operator S̃, acting on a basis element
Gn of A2(Π+), is unitarily equivalent under the Fourier transform to the operator

I − 2T acting on Ĝn ∈ L2
1(R

+). But by Theorem 1, the Fourier transform is
an isometric isomorphism from A2(Π+) onto the space L2

1(R
+), so this unitary

equivalence extends to the full spaces. This completes the proof of Theorem 2.

4. Invariant subspaces of the Bergman shift

By the corollary to Theorem 2, the invariant subspaces of the shift operator
on A2(D) correspond, under the specified unitary equivalence, to the invariant
subspaces of the operator T in the space L2

1(R
+). We now give two explicit examples

of this correspondence.

Example 1. For any number a > 0, the closed subspace of L2
1(R

+) consisting of
functions that vanish on [0, a] is invariant under T . It is not hard to see that it
corresponds to the subspace

Ma = exp

{
−a

1 + w

1 − w

}
A2(D)

generated in the Bergman space by an atomic singular inner function. In particular,
this confirms the known fact that Ma is a proper invariant subspace of A2(D). It
also demonstrates the strict inclusion Mb ⊂ Ma for 0 < a < b.

Example 2. Let Nω be the subspace of functions in A2(D) that vanish at a
specified point ω ∈ D. Then f ∈ Nω if and only if 〈f, kω〉 = 0, where

kω(w) =
1

(1 − ωw)2
, w ∈ D ,
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is the reproducing kernel at ω for the space A2(D). The isometric isomorphism (4)
from A2(D) onto A2(Π+) is found to map the function kω to

Kω(z) =
2

(
(z + i) − ω(z − i)

)2 , z ∈ Π+ ,

and Nω corresponds to the subspace of functions F ∈ A2(Π+) with 〈F,Kω〉 = 0.
A calculation shows that the Fourier transform

K̂ω(t) =
1

2π

∫ ∞

−∞

e−itx Kω(x) dx

has the form K̂ω(t) = tfω(t), where

fω(t) =
4π

(1 − ω)2
exp

{
ω + 1

ω − 1
t

}
for t > 0

and fω(t) = 0 for t < 0. To see this, write λ = (ω + 1)/(ω − 1) and observe that
Re{λ} < 0 since |ω| < 1, so that

Fω(x) =

∫ ∞

−∞

eixt fω(t) dt =
2

(1 − ω)2

∫ ∞

0

e(λ+ix)t dt =
2

(1 − ω)2
1

λ + ix

has Fourier transform F̂ω(t) = fω(t). But F ′
ω(x) = iKω(x) and F̂ ′

ω(t) = itF̂ω(t), so

it follows that K̂ω(t) = tfω(t), as claimed.
Under the isometric isomorphism (4), the subspace Nω in A2(D) was seen to cor-

respond to the orthocomplement 〈Kω〉
⊥ of the subspace 〈Kω〉 generated in A2(Π+)

by the function Kω. But by Theorem 1 the space A2(Π+) is isometrically iso-
morphic under the Fourier transform to the weighted space L2

1(R
+), with inner

product

〈f, g〉 = π

∫ ∞

0

f(t) g(t)
1

t
dt .

In particular, the subspace 〈Kω〉
⊥ of A2(Π+) corresponds to the subspace 〈K̂ω〉

⊥ of

L2
1(R

+) under the Fourier transform. Since K̂ω(t) = tfω(t), we see that f ∈ 〈K̂ω〉
⊥

if and only if ∫ ∞

0

f(t) exp

{
ω + 1

ω − 1
t

}
dt = 0 .

This subspace 〈K̂ω〉
⊥ of L2

1(R
+) corresponds to the invariant subspace Nω of the

Bergman shift and is invariant under the operator T defined in Theorem 2.
More generally, for any simple zero-set Ω, the invariant subspace of functions in

A2(D) that vanish on Ω corresponds to the intersection of the subspaces 〈K̂ω〉
⊥ for

all ω ∈ Ω.

5. Laguerre polynomials

We now turn to a proof of Lemma 1, which evaluates the Fourier transforms of
basis elements Gn in terms of Laguerre polynomials. We begin by recording some
facts about Laguerre polynomials.
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The Laguerre polynomials L
(α)
n (t) arise from the generating relation

1

(1 − z)α+1
exp

{
−

tz

1 − z

}
=

∞∑

n=0

L(α)
n (t)zn . (5)

For α > −1 they have the orthogonality property
∫ ∞

0

e−ttαL(α)
n (t)L(α)

m (t) dx = Γ(α + 1)

(
n + α

n

)
δmn, n,m = 0, 1, 2, . . . (6)

They also have the explicit representation

L(α)
n (t) =

n∑

j=0

(
n + α

n − j

)
(−t)j

j!
=

Γ(n + α + 1)

n!

n∑

j=0

(
n

j

)
(−t)j

Γ(α + j + 1)
. (7)

Further information may be found in the books by Szegő [9] or Rainville [7].
Although Fourier transforms of the Laguerre functions can be deduced from

available formulas for their Laplace transforms, we carry out a proof of Lemma 1
for the sake of completeness. We will need another lemma.

Lemma 2. For β > −1 and x ∈ R ,
∫ ∞

0

tβ e−t eixt dt =
Γ(β + 1)

(1 − ix)β+1
.

Lemma 2 follows from a simple property of the gamma function. The proof is
omitted.

Proof of Lemma 1. By the identity

x − i

x + i
= 1 −

2i

x + i
= 1 −

2

1 − ix

and the binomial formula, we have

Ĝn(t) =
1

4π iα+1

n∑

j=0

(
n

j

)
(−1)j

∫ ∞

−∞

e−itx

(
2

1 − ix

)j+α+2

dx .

But inversion of the Fourier transform of Lemma 2 shows that

1

2π

∫ ∞

−∞

e−itx

(
2

1 − ix

)j+α+2

dx =





2j+α+2

Γ(j + α + 2)
tj+α+1 e−t , t > 0

0 , t < 0 .

This gives Ĝn(t) = 0 for t < 0. For t > 0 it gives

iα+1 Ĝn(t) = (2t)α+1e−t
n∑

j=0

(
n

j

)
(−2t)j

Γ(j + α + 2)

=
n!

Γ(n + α + 2)
(2t)α+1e−t L(α+1)

n (2t) ,

by comparison with the explicit representation (7) of the Laguerre polynomials.
This completes the proof of Lemma 1.

We remark that the same method can be applied to prove the classical Paley–
Wiener theorem for the Hardy space of the upper half-plane.
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6. Weighted Dirichlet spaces

As a direct corollary of Theorem 1, we can now formulate a Paley–Wiener theo-
rem for weighted Dirichlet spaces of the upper half-plane. For α > −1, a function
F analytic in Π+ is said to belong to the weighted Dirichlet space Dα(Π+) if its de-
rivative F ′ is in the weighted Bergman space A2

α(Π+). Upon identifying functions
that differ by a constant, the space Dα(Π+) becomes a Hilbert space with norm

‖F‖Dα(Π+) =

{∫

Π+

|F ′(x + iy)|2yα dx dy

}1/2

.

For α = 0, it is not hard to see that the space D0(Π
+) = D(Π+) is isometrically

isomorphic to the Dirichlet space D(D) on the unit disc modulo constant functions.
In fact, the composition operator Cσ induced by σ(z) = (z − i)/(z + i), z ∈ Π+, is
an isometric isomorphism from D(D) onto D(Π+).

Here is the Paley–Wiener theorem for weighted Dirichlet spaces.

Theorem 3. For each α > −1, a function F analytic in Π+ belongs to the space

Dα(Π+) if and only if it has the form

F (z) =

∫ ∞

0

eizt f(t) dt , z ∈ Π+ ,

up to an additive constant, where f is a measurable function on R
+ with

∫ ∞

0

|f(t)|2 t1−α dt < ∞ .

Moreover,

‖F‖2
Dα(Π+) =

Γ(α + 1)

2α

∫ ∞

0

|f(t)|2 t1−α dt .

The unweighted case of the theorem (α = 0) was previously proved by Higdon
[5], using the fact that Cσ is a unitary operator from D(D) onto D(Π+), together
with the classical Paley–Wiener Theorem for H2(Π+).

Proof of Theorem 3. If F ∈ Dα(Π+), then F ′ ∈ A2
α(Π+) and therefore, Theorem 1

provides us with a function g ∈ L2
α+1(R

+) such that

F ′(z) =

∫ ∞

0

eizt g(t) dt , z ∈ Π+ .

It follows that, up to an additive constant,

F (z) =

∫ ∞

0

eizt f(t) dt , z ∈ Π+ ,

where itf(t) = g(t). The remaining assertions follow directly from Theorem 1.

It may be remarked that this function F , represented by a Fourier transform, is
the unique member of its equivalence class with the property that F (x + iy) → 0
as y → ∞.
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