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SOME INEQUALITIES ON TOTALLY
REAL SUBMANIFOLDS IN LOCALLY

CONFORMAL KAEHLER SPACE FORMS

Alfonso Carriazo, Young Ho Kim∗ and Dae Won Yoon

Abstract. In this article, we establish sharp relations between the
sectional curvature and the shape operator and also between the
k-Ricci curvature and the shape operator for a totally real subman-
ifold in a locally conformal Kaehler space form of constant holo-
morphic sectional curvature with arbitrary codimension.

1. Introduction

Nash’s Theorem enables us to consider any Riemannian manifold
as a submanifold of Euclidean space. This gives us a natural motiva-
tion for the study of submanifolds of Riemannian manifolds. In this
case, we have intrinsic invariants as well as extrinsic invariants. Among
extrinsic invariants, the shape operator and the squared mean curva-
ture are the most important ones. Among the main intrinsic invariants,
sectional, Ricci and scalar curvature are the well-known ones. Gauss-
Bonnet Theorem, isoperimetric inequality and Chern-Lashof Theorem
provide relations between intrinsic invariants and extrinsic invariants for
a submanifold in a Euclidean space.

B.-Y. Chen ([1, 2]) established a inequality relating intrinsic quanti-
ties and extrinsic ones for submanifolds in a space form with arbitrary
codimension. In particular, in [1] he investigated a relation between the
sectional curvature and the shape operator for submanifolds in Riemann-
ian space forms. And, in [2] he established a sharp relation between the
k-Ricci curvature and the shape operator. On the other hand, for the
above mentioned contents K. Matsumoto, I. Mihai and A. Oiaga ([6])
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studied these relations of slant submanifolds in complex space forms, and
Y. H. Kim, D. W. Yoon and C. W. Lee ([4]) have recently investigated
these relations of slant submanifolds in Sasakian spaces.

In this paper, we study submanifolds of locally conformal Kaehler
space forms of constant holomorphic sectional curvature with arbitrary
codimension and establish relations between the sectional curvature and
the shape operator and also between the k-Ricci curvature and the shape
operator for totally real submanifolds in locally conformal Kaehler space
forms.

2. Preliminaries

Let M̃ be a Hermitian manifold with almost complex structure J and
a Hermitian metric g. A Hermitian manifold M̃ is called a locally con-
formal Kaehler manifold if each point p ∈ M̃ has an open neighborhood
U with a differentiable map φ : U −→ R such that

(2.1) g∗ = e−2φg|U
is Kaehler metric on U (See [3, 7]). On the other hand, the fundamental
2-form w of M̃ is defined by

(2.2) w(X, Y ) = g(JX, Y )

for any tangent vectors X,Y on M̃ .

Proposition 2.1 ([3]). A Hermitian manifold M̃ is a locally con-
formal Kaehler manifold if and only if there exists a global closed 1-form
α satisfying

(2.3)
(∇̃Zw)(X,Y )

= β(Y )g(X,Z)− β(X)g(Y, Z) + α(Y )w(X,Z)− α(X)w(Y, Z)

for any tangent vectors X, Y, Z on M̃ , where ∇̃ denotes the Levi-Civita
connection with respect to g and the 1-form β is given by β(X) =
−α(JX).

The 1-form α which satisfies is called the Lee form and its dual vector
field is the ÄLee vector field. A locally conformal Kaehler manifold having
the parallel Lee form is called a generalized Hopf manifold. As a matter
of fact, the Hopf manifold diffeomorphic to S1×S2n−1 is an example of
a locally conformal Kaehler manifold that is not Kaehlerian.
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On a locally conformal Kaehler manifold, a symmetric (0, 2)-tensor
P is defined by

(2.4) P (X, Y ) = −(∇̃Xα)Y − α(X)α(Y ) +
1
2
||α||2g(X, Y ),

and another skew-symmetric (0, 2)-tensor P̃ by P̃ (X,Y ) = P (JX, Y ),
where ||α|| is the norm of α with respect to g.

Let M be an n-dimensional submanifold of an m-dimensional locally
conformal Kaehler manifold M̃ . Let ∇ be the induced Levi-Civita con-
nection on M . Then the Gauss and Weingarten formulas are given
respectively by

(2.5) ∇̃XY = ∇XY + h(X, Y ),

(2.6) ∇̃XV = −AV X + DXV

for vector fields X,Y tangent to M and a vector field V normal to M ,
where h denotes the second fundamental form, D the normal connection
and AV the shape operator in the direction of V . The second funda-
mental form and the shape operator are related by

(2.7) g(h(X,Y ), V ) = g(AV X, Y ).

We also use g for the induced Riemannian metric on M as well as the
locally conformal Kaehler manifold M̃ . Moreover, the mean curvature
vector H on M is defined by H = 1

ntraceh. A submanifold M in M̃ is
called totally geodesic if the second fundamental form vanishes identically
and totally umbilical if there is a real number λ such that h(X, Y ) =
λg(X, Y )H for any tangent vectors X,Y on M .

For an n-dimensional Riemannian manifold M , we denote by K(π)
the sectional curvature of M associated with a plane section π ⊂ TpM, p
∈ M . For an orthonormal basis {e1, . . . , en} of the tangent space TpM,
the scalar curvature τ and the normalized scalar curvature ρ are defined
respectively by

τ =
∑

i<j

Kij , ρ =
2τ

n(n− 1)
,

where Kij denotes the sectional curvature of the 2-plane section spanned
by ei, ej .

Suppose L is a k-plane section of TpM and X a unit vector in L. We
choose an orthonormal basis {e1, . . . , ek} of L such that e1 = X. Define
the Ricci curvature RicL of L at X by

(2.8) RicL(X) = K12 + · · ·+ K1k.
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We simply call such a curvature a k-Ricci curvature. The scalar curva-
ture τ of the k-plane section L is given by

(2.9) τ(L) =
∑

1≤i<j≤k

Kij .

For each integer k, 2 ≤ k ≤ n, the Riemannian invariant Θk on an
n-dimensional Riemannian manifold M is defined by

(2.10) Θk(p) =
1

k − 1
inf
L,X

RicL(X), p ∈ M,

where L runs over all k-plane sections in TpM and X runs over all unit
vectors in L.

Recall that for a submanifold M in a Riemannian manifold, the rel-
ative null space or the kernel of the second fundamental form of M at a
point p ∈ M is defined by

(2.11) Np = {X ∈ TpM |h(X,Y ) = 0 for all Y ∈ TpM}.

3. Totally real submanifolds in locally conformal Kaehler
space forms

Let M be an n-dimensional submanifold isometrically immersed in
an m-dimensional locally conformal Kaehler manifold M̃ . A locally con-
formal Kaehler manifold M̃ is said to be a locally conformal Kaehler
space form if the holomorphic sectional curvature of the 2-plane section
{X, JX} at each point of M̃ is a real constant c̃ along M̃ . A locally
conformal Kaehler space form will be denoted by M̃(c̃). Then, the Rie-
mannian curvature tensor R̃ on M̃(c̃) is given by
(3.1)

R̃(X, Y )Z =
c̃

4
{g(Y, Z)X − g(X, Z)Y + w(Y, Z)JX

− w(X, Z)JY − 2w(X,Y )JZ}
+

3
4
{g(Y,Z)P1X − g(X, Z)P1Y + P (Y, Z)X − P (X, Z)Y }

− 1
4
{w(Y,Z)P̃1X − w(X,Z)P̃1Y + P̃ (Y,Z)JX

− P̃ (X,Z)JY − 2P̃ (X, Y )JZ − 2w(X, Y )P̃1Z},
where g(P1X, Y ) = P (X, Y ), g(P̃1X, Y ) = P̃ (X, Y ).

A submanifold M isometrically immersed in M̃(c̃) is called totally real
if the almost complex structure J of M̃(c̃) carries each tangent space of
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M into its corresponding normal space. On the other hand, for a totally
real submanifold M on M̃(c̃) we have w(X,Y ) = 0 for vector fields X, Y
tangent to M . We denote by R the Riemannian curvature tensor field
of M . Then, the equation of Gauss on M is given by
(3.2)

g(R(X,Y )Z,W ) =
c̃

4
{g(X, W )g(Y, Z)− g(X, Z)g(Y, W )}

+
3
4
{g(X, W )P (Y, Z)− g(Y, W )P (X, Z) + P (X,W )g(Y,Z)

− P (Y, W )g(X, Z)}+ g(h(X, W ), h(Y, Z))− g(h(X, Z), h(Y, W )),

for any vector fields X, Y, Z, W tangent to M.
Let {e1, . . . , en} be any orthonormal basis in TpM . Then it is easily

seen that the scalar curvature τ of M at p is obtained by

(3.3) 2τ(p) = n2||H||2 − ||h||2 +
1
4
n(n− 1)(c̃ + 6σ),

where ||H||2 and ||h||2 are the squared mean curvature and the squared
norm of the second fundamental form respectively, and we have put
σ = 1

n

∑n
i=1 P (ei, ei).

4. Sectional curvature and shape operator

B.-Y. Chen ([1]) established a relation between the sectional curva-
ture and the shape operator for submanifolds in real space forms. Also,
K. Matsumoto, I. Mihai and A. Oiaga ([6]) and Y. H. Kim, D. W. Yoon
and C. W. Lee ([4]) have recently investigated these relations for slant
submanifolds into complex space forms and Sasakian spaces, respec-
tively. We prove a similar inequality for an n-dimensional totally real
submanifold M into an m-dimensional locally conformal Kaehler space
form M̃(c̃) of constant holomorphic sectional curvature c̃.

Lemma 4.1. Let x : M −→ M̃(c) be an isometric immersion of an
n-dimensional totally real submanifold with normalized scalar curvature
ρ into an m-dimensional locally conformal Kaehler space form M̃(c̃) of
constant holomorphic sectional curvature c̃. Then, we have

(4.1) ||H||2 ≥ ρ− 1
4
(c̃ + 6σ),

equality holding at a point p ∈ M if and only if p is a totally umbilical
point.
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Proof. Let p be a point of M . We choose an orthonormal basis
{e1, e2, . . . , en} for the tangent space TpM and {en+1, . . . , e2m} for the
normal space T⊥p M at p such that the normal vector en+1 is in the
direction of the mean curvature vector and e1, e2, . . . , en diagonalize the
shape operator An+1. Then we have

(4.2) An+1 =




a1 0 0 . . . 0
0 a2 0 . . . 0
0 0 a3 . . . 0
...

...
...

. . .
...

0 0 0 . . . an




,

Ar = (hr
ij),

n∑

i=1

hr
ii = 0, 1 ≤ i, j ≤ n; n + 2 ≤ r ≤ 2m.

From the equation of Gauss (3.2)

(4.3) n2||H||2 = 2τ +
n∑

i=1

a2
i +

2m∑

r=n+2

n∑

i,j=1

(hr
ij)

2 − 1
4
n(n− 1)(c̃ + 6σ).

On the other hand,

(4.4)
∑

i<j

(ai − aj)2 = (n− 1)
n∑

i=1

a2
i − 2

∑

i<j

aiaj .

Therefore, from the above equation we have

(4.5) n2||H||2 = (
n∑

i=1

ai)2 =
n∑

i=1

a2
i + 2

∑

i<j

aiaj ≤ n
n∑

i=1

a2
i .

Combining (4.3) and (4.5)

(4.6) n(n− 1)||H||2 ≥ 2τ − 1
4
n(n− 1)(c̃ + 6σ) +

2m∑

r=n+2

n∑

i,j=1

(hr
ij)

2

which implies inequality (4.1). If the equality sign of (4.1) holds at a
point p ∈ M then from (4.4) and (4.6) we get Ar = 0 (r = n+2, . . . , 2m)
and a1 = · · · = an. Consequently, p is a totally umbilical point. The
converse is trivial.

Theorem 4.2. Let x : M −→ M̃(c̃) be an isometric immersion of an
n-dimensional totally real submanifold M into an m-dimensional locally
conformal Kaehler space form M̃(c̃) of constant holomorphic sectional
curvature c̃. If there exist a point p ∈ M and a number c > 1

4(c̃ + 6σ)
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such that inf K(p) = K ≥ c at p. Then the shape operator at the mean
curvature vector satisfies

(4.7) AH >
n− 1

n

{
c− 1

4
(c̃ + 6σ)

}
In at p,

where In is the identity map of TpM .

Proof. Assume that M is a totally real submanifold in M̃(c̃). Let
p ∈ M and a number c > 1

4(c̃ + 6σ) such that K ≥ c at p. Choose
an orthonormal basis {e1, . . . , en, en+1, . . . , e2m} at p such that en+1 is
parallel to the mean curvature vector H and e1, . . . , en diagonalize the
shape operator An+1. Then we have the relation (4.2). We have put
uij = uji = aiaj . From the Gauss’s equation we get

(4.8) uij ≥ c− 1
4
(c̃ + 6σ) +

2m∑

r=n+2

(hr
ij)

2−
2m∑

r=n+2

hr
iih

r
jj , 1 ≤ i 6= j ≤ n.

We need the following lemmas in order to complete the proof of the
theorem.

Lemma 4.3. The following statements hold.
(1) For any fixed i ∈ {1, . . . , n}, we have

∑
j 6=i uij ≥ (n−1){c− 1

4(c̃+
6σ)}.

(2) uij 6= 0 for i 6= j.

(3) For distinct i, j, k, we have a2
i = uijuiku

−1
jk .

Proof. From (4.2) and (4.8), we get

n∑

j 6=i

uij ≥ (n− 1){c− 1
4
(c̃ + 6σ)}+

2m∑

r=n+2

{
∑

j 6=i

(hr
ij)

2 − hr
ii

∑

j 6=i

hr
jj}

= (n− 1){c− 1
4
(c̃ + 6σ)}+

2m∑

r=n+2

∑

i,j

(hr
ij)

2,

which yields statement (1). For statement (2), assume that uij = 0 for
i 6= j, then ai = 0 or aj = 0. ai = 0 implies that uit = 0 for any
i 6= t. Hence

∑
i6=t uit = 0 which contradicts statement (1). Statement

(3) follows from uijuik = a2
i ajak = a2

i ujk.

We put Sk = {B ⊂ {1, . . . , n} : |B| = k}. For any B ∈ Sk we denote
by B̄ = {1, . . . , n}\B.
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Lemma 4.4. For a fixed k, 1 ≤ k ≤ [n2 ], and each B ∈ Sk, we have

∑

j∈B

∑

t∈B̄

ujt ≥ (n− k)k{c− 1
4
(c̃ + 6σ)}.

Proof. Without loss of generality, we may assume B = {1, . . . , k}.
From (4.8) we find

∑

j∈B

∑

t∈B̄

ujt

≥ (n− k)k{c− 1
4
(c̃ + 6σ)}+

2m∑

r=n+2

k∑

j=1

n∑

t=k+1

{(hr
jt)

2 − hr
jjh

r
tt}

= (n− k)k{c− 1
4
(c̃ + 6σ)}+

2m∑

r=n+2

{
k∑

j=1

n∑

t=k+1

(hr
jt)

2 +
k∑

j=1

(hr
jj)

2},

which implies the lemma.

Lemma 4.5. For any 1 ≤ i 6= j ≤ n, we have uij > 0.

Proof. Assume u1n < 0. Then, by statement (3) of Lemma 4.3, we
get u1iuin < 0 for 1 < i < n. Without loss of generality, we may assume

(4.9)

{
u12, . . . , u1l, u(l+1)n, . . . , u(n−1)n > 0,

u1(l+1), . . . , u1n, u2n, . . . , uln < 0,

for some [n+1
2 ] ≤ l ≤ n− 1.

Let l = n − 1, then u1n + u2n + · · · + u(n−1)n < 0 which contradicts
to statement (1) of Lemma 4.3. Thus, l < n− 1. From statement (3) of
Lemma 4.3, we get

(4.10) a2
n =

uinutn

uit
> 0,

where 2 ≤ i ≤ l and l + 1 ≤ t ≤ n − 1. By (4.9) and (4.10) we have
uit < 0 which implies

l∑

i=1

n∑

t=l+1

uit =
l∑

i=2

n−1∑

t=l+1

uit +
l∑

i=1

uin +
n∑

t=l+1

u1t < 0.

This contradicts Lemma 4.4.

Now, we return to the proof of Theorem 4.2. From Lemma 4.5,
it follows that a1, . . . , an are of the same sign. Therefore, the shape
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operator AH is positive-definite. Assume aj > 0 for all j ∈ {1, . . . , n}.
Then from statement (1) of Lemma 4.3, we obtain

nai||H|| − a2
i = ai(a1 + · · ·+ an)− a2

i

= ai

∑

i6=j

aj =
∑

i6=j

aiaj =
∑

i6=j

uij

≥ (n− 1){c− 1
4
(c̃ + 6σ)},

which implies (4.7). This completes the proof of the theorem.

5. k-Ricci curvature and shape operator

In this section, we establish a relation between the k-Ricci curvature
and the shape operator for an n-dimensional totally real submanifold
M into an m-dimensional locally conformal Kaehler space form M̃(c̃) of
constant holomorphic sectional curvature c̃.

Theorem 5.1. Let x : M −→ M̃(c̃) be an isometric immersion of an
n-dimensional totally real submanifold M into an m-dimensional locally
conformal Kaehler space form M̃(c̃) of constant holomorphic sectional
curvature c̃. Then, for any integer k 2 ≤ k ≤ n, and any point p ∈ M ,
we have

(1) If Θk(p) 6= 1
4(c̃ + 6σ), then shape operator at the mean curvature

satisfies

(5.1) AH >
n− 1

n

{
Θk(p)− 1

4
(c̃ + 6σ)

}
In at p,

where In denotes the identity map of TpM .

(2) If Θk(p) = 1
4(c̃ + 6σ), then AH ≥ 0 at p.

(3) A unit vector X ∈ TpM satisfies

(5.2) AHX =
n− 1

n

{
Θk(p)− 1

4
(c̃ + 6σ)

}
X

if and only if Θk(p) = 1
4(c̃ + 6σ) and X ∈ Np.

(4) AH = n−1
n {Θk(p)− 1

4(c̃ + 6σ)}In at p if and only if p is a totally
geodesic point.

Proof. Let {e1, . . . , en} be an orthonormal basis of TpM . Denote by
Li1···ik the k-plane section spanned by ei1 , . . . , eik . It follows from (2.8)
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and (2.9) that

(5.3) τ(Li1···ik) =
1
2

∑

i∈{i1,...,ik}
RicLi1···ik (ei),

(5.4) τ(p) =
1(

n−2
k−2

)
∑

1≤i1<···<ik≤n

τ(Li1···ik).

Combining (2.10), (5.3) and (5.4), we obtain

(5.5) τ(p) ≥ n(n− 1)
2

Θk(p).

We choose an orthonormal basis {e1, . . . , en, en+1, . . . , e2m} at p such
that en+1 is parallel to the mean curvature vector H(p) and e1, . . . , en

diagonalize the shape operator An+1. Then we have the relation (4.2).
Furthermore (4.1) can be rewritten as the form

(5.6) ||H||2 ≥ 2τ

n(n− 1)
− 1

4
(c̃ + 6σ),

which implies

(5.7) ||H||2 ≥ Θk(p)− 1
4
(c̃ + 6σ).

This show that H(p) = 0 may occurs only when Θk(p) ≤ 1
4(c̃ + 6σ).

Consequently, if H(p) = 0, statements (1) and (2) hold automatically.
Therefore, without loss of generality, we may assume H(p) 6= 0. From
the Gauss’s equation we get
(5.8)

aiaj = Kij − 1
4
(c̃ + 6σ) +

2m∑

r=n+2

(hr
ij)

2 −
2m∑

r=n+2

hr
iih

r
jj , 1 ≤ i 6= j ≤ n.

By (5.8) we have

(5.9)

a1(ai2 + · · ·+ aik)

= RicL1i2...ik
(e1)− 1

4
(k − 1)(c̃ + 6σ)

+
2m∑

r=n+2

k∑

j=2

(hr
1ij )

2 −
2m∑

r=n+2

k∑

j=2

hr
11h

r
ijij , 1 < i2 < · · · < ik,
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from this

(5.10)

a1(a2 + · · ·+ an) =
1(

n−2
k−2

)
∑

2≤i2<···<ik≤n

RicL1i2...ik
(e1)

− 1
4
(n− 1)(c̃ + 6σ) +

2m∑

r=n+2

n∑

j=1

(hr
1j)

2.

From (2.10) and (5.10) we have

(5.11) a1(a2 + · · ·+ an) ≥ (n− 1){Θk(p)− 1
4
(c̃ + 6σ)}.

Then

(5.12)
a1(a1 + · · ·+ an) = a2

1 + a1(a2 + · · ·+ an)

≥ a2
1 + (n− 1){Θk(p)− 1

4
(c̃ + 6σ)}.

Similar inequalities hold when the index 1 were replaced by j ∈ {2, . . . ,
n}. Hence, we have

aj(a1 + · · ·+ an) ≥ a2
j + (n− 1){Θk(p)− 1

4
(c̃ + 6σ)}, j ∈ {1, . . . , n},

which yields

AH ≥ n− 1
n

{Θk(p)− 1
4
(c̃ + 6σ)}In.

The equation does not hold because in our case H(p) 6= 0. The statement
(2) is obvious.

(3) Let X be a unit vector in TpM satisfying (5.2). By (5.10) and
(5.12) one has a1 = 0 and hr

1j = 0, for all j ∈ {1, . . . , n}, r ∈ {n +
2, . . . , 2m}, respectively. The above conditions imply Θk(p) = 1

4(c̃+6σ)
and X ∈ Np. The converse is clear.

(4) The equality (5.2) holds for any X ∈ TpM if and only if Np =
TpM , i.e., p is a totally geodesic point. This completes the proof of the
theorem.

6. Ricci curvature and squared mean curvature

In this section, we establish a relation between the Ricci curvature
and the squared mean curvature for an n-dimensional totally real sub-
manifold M into an m-dimensional locally conformal Kaehler space form
M̃(c̃) of constant holomorphic sectional curvature c̃.
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Theorem 6.1. Let x : M −→ M̃(c̃) be an isometric immersion of an
n-dimensional totally real submanifold M into an m-dimensional locally
conformal Kaehler space form M̃(c̃) of constant holomorphic sectional
curvature c̃. Then,

(1) For each unit vector X ∈ TpM , we have

(6.1) Ric(X) ≤ 1
4
{n2||H||2 + (n− 1)(c̃ + 6σ)}.

(2) If H(p) = 0, then a unit tangent vector X at p satisfies the
equality case of (6.1) if and only if X ∈ Np.

(3) The equality case of (6.1) holds identically for all unit tangent
vectors at p if and only if either p is a totally geodesic point or n = 2
and p is a totally umbilical point.

Proof. Let X ∈ TpM be a unit tangent vector at p. We choose an or-
thonormal basis {e1, . . . , en, en+1, . . . , e2m} in TpM̃ such that e1, . . . , en

are tangent to M at p with e1 = X. Then, from (3.3) we get
(6.2)

n2||H||2 = 2τ + ||h||2 − 1
4
n(n− 1)(c̃ + 6σ)

= 2τ +
2m∑

r=n+1

[(hr
11)

2 + (hr
22 + · · ·+ hr

nn)2 + 2
∑

1≤i<j≤n

(hr
ij)

2]

− 2
2m∑

r=n+1

∑

2≤i<j≤n

hr
iih

r
jj −

1
4
n(n− 1)(c̃ + 6σ)

= 2τ +
1
2

2m∑

r=n+1

[
(hr

11 + hr
22 + · · ·+ hr

nn)2

+ (hr
11 − hr

22 − · · · − hr
nn)2

]

+ 2
2m∑

r=n+1

∑

1≤i<j≤n

(hr
ij)

2 − 2
2m∑

r=n+1

∑

2≤i<j≤n

hr
iih

r
jj

− 1
4
n(n− 1)(c̃ + 6σ).

It follows that
(6.3)
1
2
n2||H||2 ≥ 2τ − 1

4
n(n− 1)(c̃ + 6σ)− 2

2m∑

r=n+1

∑

2≤i<j≤n

[hr
iih

r
jj − (hr

ij)
2].
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From the equation of Gauss, we have

(6.4)

∑

2≤i<j≤n

Kij =
2m∑

r=n+1

∑

2≤i<j≤n

[hr
iih

r
jj − (hr

ij)
2]

+
(n− 1)(n− 2)c̃

8
+

3
4
(n− 1)(n− 2)σ.

Substituting (6.4) in (6.3), we get
1
2
n2||H||2 ≥ 2Ric(X)− 1

2
(n− 1)(c̃ + 6σ),

or equivalently (6.1).
(2) Assume H(P ) = 0. Equality holds in (6.1) if and only if

{
hr

12 = · · · = hr
1n = 0,

hr
11 = hr

22 + · · ·+ hr
nn, r ∈ {n + 1, . . . , 2m}.

Then hr
1j = 0 for all j ∈ {1, . . . , n}, r ∈ {n+1, . . . , 2m}, that is, X ∈ Np.

(3) Then equality case of (6.1) holds for all unit tangent vectors at p
if and only if{

hr
ij = 0, i 6= j, r ∈ {n + 1, . . . , 2m},

hr
11 + · · ·+ hr

nn − 2hr
ii = 0, i ∈ {1, . . . , n}, r ∈ {n + 1, . . . , 2m}.

We distinguish two cases:
(a) n 6= 2, then p is a totally geodesic point;
(b) n = 2, it follows that p is a totally umbilical point.

The converse is trivial.
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