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Abstract: In this paper a Markov chain Monte Carlo (MCMC) technique is developed for the
Bayesian analysis of structural credit risk models with microstructure noises. The technique
is based on the general Bayesian approach with posterior computations performed by Gibbs
sampling. Simulations from the Markov chain, whose stationary distribution converges to the
posterior distribution, enable exact finite sample inferences of model parameters. The exact
inferences can easily be extended to latent state variables and any nonlinear transformation of
state variables and parameters, facilitating practical credit risk applications. In addition, the
comparison of alternative models can be based on devian information criterion (DIC) which is
straightforwardly obtained from the MCMC output. The method is implemented on the basic
structural credit risk model with pure microstructure noises and some more general specifica-
tions using daily equity data from US and emerging markets. We find empirical evidence that

microstructure noises are positively correlated with the firm values in emerging markets.
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1 Introduction

Credit risk is referred to as the risk of loss when a debtor does not fulfill its debt contract
and is of natural interest to practitioners in the financial industry as well as to regulators.
For example, it is common practice that banks use securitization to transfer credit risk from
bank’s balance sheets to the market. The credit problem can well become a crisis when some
of the risk lands back on banks. The turbulence in international credit markets and stock
markets at the end of 2007 has largely been caused by this subprime credit problem in the
US. To a certain degree, the 1997 Asian financial crisis was also caused by this credit risk
problem. Not surprisingly, how to the credit risk is assessed is essential for risk management
and for the supervisory evaluation of the vulnerability of lender institutions. Indeed, the
Basel Committee on Banking Supervision has decided to introduce a new capital adequacy
framework which encourages the active involvement of banks in measuring the likelihood of
defaults. The growing need for the accurate assessment of credit risk motivates academicians
and practitioners to introduce theoretical models for credit risk.

A widely used approach to credit risk modeling in practice and also in the academic arena
is the so-called structural method. This method of credit risk assessment was first introduced
by Black and Scholes (1973) and Merton (1974). In this approach the dynamic behavior of
the value of a firm’s assets is specified. If the value becomes lower than a threshold which is
usually a proportion of the firm’s debt value, the company is considered to be in default. For
example, in Black and Scholes (1973) and Merton (1974), a simple diffusion process is assumed
for a firm’s asset value, and the firm will default if its asset value is lower than its debt on the
maturity date of the debt.

Since the firm’s asset value is not directly observed by econometricians, the econometric
estimation of structural credit risk models is nontrivial. To deal with the problem of unobserv-
ability, Duan (1994) introduces a transformed data maximum likelihood (ML) method, using
observed time series data on publicly traded equity values. The idea essentially is to use the
change-of-variable technique via the Jacobian, relying critically on the one-to-one correspon-
dence between the traded equity value and the unobserved firm’s asset value. Since then, this
method has been applied in a number of studies; see for example, Wong and Choi (2006),
Ericsson and Reneby (2004) and Duan et al (2003). Duan et al (2004) showed that the method

is equivalent to the Moody’s KMV model, a popular commercial product.



It is well known in the market microstructure literature that the presence of various mar-
ket microstructure effects (such as price discreteness, infrequent trading and bid—ask bounce
effects) contaminates the efficient price process with noises. There have been extensive studies
on analyzing the time series properties of microstructure noises. Some earlier contributions
include Roll (1984) and Hasbrouck (1993). In recent years, various specifications have been
suggested for modelling microstructure noise in ultra-high frequency data in the context of
measuring daily integrated volatility. Examples include the pure noise (ie iid) model (Zhang et
al (2005), Bandi and Russell (2008)), stationary models (Ait-Sahalia et al (2009) and Hansen
and Lunde (2006)) and locally nonstationary models (Phillips and Yu (2006, 2007)). The con-
sensus emerging from the literature is that if the microstructure noise were ignored, one would
get an inconsistent estimate of the quantity of interest. This implication is also confirmed in
Duan and Fulop (2009) in the context of credit risk modelling.

However, if the observed equity prices are contaminated with microstructure noises in struc-
ture credit risk models, the one-to-one correspondence between the traded equity value and the
unobserved firm'’s asset value is broken, and hence the method developed in Duan (1994) is not
applicable anymore. A fundamental difficulty is that neither the efficient prices nor microstruc-
ture noises are observable. As a result, the change-of-variable technique becomes infeasible. In
an important contribution, Duan and Fulop (2009) developed a simulation-based ML method
to estimate the Merton model with Gaussian iid microstructure noises. The ML method is
designed to deal with nonlinear non-Gaussian state space models via particle filtering. In the
credit risk model with microstructure noises, the nonlinear relationship between the contam-
inated traded equity value and firm’s asset value is given by the option pricing model but is
perturbed by microstructure noises. This gives the observation equation. The state equation
specifies the dynamics of the asset value in continuous time, usually with a unit root.

The standard asymptotic theory for the ML estimator, such as asymptotic normality and
asymptotic efficiency, is then called upon to make statistical inferences about the model pa-
rameters and model specifications. Most credit risk applications require the computation of
nonlinear transformation of model parameters and the unobserved firm’s asset value. The in-
variance principle is employed for obtaining the ML estimates of these quantities. The delta
method is utilized to obtain the asymptotic normality and to make statistical inferences asymp-
totically. Duan and Fulop (2009) followed this tradition. Using simulations, Duan and Fulop
checked the reliability of the standard asymptotic theory. Their results indicate that the asymp-



totic theory does not work well for the trading noise parameter while ML provides accurate
estimates.

One reason for the departure of the finite sample distribution from the asymptotic distri-
bution is the boundary problem. This reason has been put forward by Duan and Fulop and
effectively demonstrated via Monte Carlo simulations. We believe, however, there is another
reason for the departure. If the microstructure noise process is stationary, the model represents
a parametric nonlinear cointegrated relationship between the observed equity value and the un-
observed firm’s asset value. Park and Phillips (2001) showed that in nonlinear regressions with
integrated time series, the limiting distribution is non-standard and the rate of convergence de-
pends on the properties of nonlinear regression function. As a result, the standard asymptotic
theory for ML, such as asymptotic normality, may not be valid.

The first contribution of this paper is to introduce an alternative likelihood-based inferen-
tial method for Merton’s credit risk model with iid microstructure noises. The new method is
based on the general Bayesian approach with posterior computations performed by Gibbs sam-
pling, coupled with data augmentation. Simulations from the Markov chain whose stationary
distribution converges to the posterior distribution enable exact finite sample inferences. We
note that Jacquier, Polson and Rossi (1994) and Kim, Shephard, and Chib (1998), among oth-
ers, have suggested this approach in the context of a stochastic volatility model. We recently
became aware that this idea has independently been discussed by Korteweg and Polson (2008)
in the context of Merton’s credit risk model with i.i.d. microstructure noises.!

There are certain advantages in the proposed method. First, as a likelihood-based method,
MCMC matches the efficiency of ML. Second, as a by-product of parameter estimation, MCMC
provides smoothed estimates of latent variables because it augments the parameter space by
including the latent variables. Third, unlike the frequentist’s methods whose inference is almost
always based on asymptotic arguments, inferences via MCMC are based on the exact posterior
distribution. This advantage is especially important when the standard asymptotic theory is

difficult to derive or the asymptotic distribution does not provide satisfactory approximation

1Our work differs from this paper in several important respects. First, while we adopt the specification of
the state equation of Duan and Fulop (2009) by perturbing the log-price with an additive error, Korteweg and
Polson (2008) assume a multiplication error on the state variable and require the pricing function be invertible.
Second, our work goes beyond the estimation problem to encompass issues involving model comparisons. Third,
we examine more flexible microstructure noise behavior based on stock prices only whereas Korteweg and Polson
(2008) used the pure noise normality assumption based on multiple price relations.



to the finite sample distribution. In addition, with MCMC it is straightforward to obtain the
exact posterior distribution of any transformation (linear or nonlinear) of model parameters
and latent variables, such as the credit spread and the default probability. Therefore, the exact
finite sample inference can easily be made in MCMC, whereas the MLL method necessitates the
delta method to obtain the asymptotic distribution. When the asymptotic distribution of the
original parameters does not work well, it is expected that the asymptotic distribution yielded
by the delta method should not work well too. Fourth, numerical optimization is not needed in
MCMC. This advantage is of practical importance when the likelihood function is difficult to
optimize numerically. Finally, the proposed method lends itself easily to dealing with flexible
specifications.

A disadvantage of the proposed MCMC method is that in order to obtain the filtered
estimate of the latent variable, a separate method is required. This is in contrast with the ML
method of Duan and Fulop (2009) where the filtered estimate of the latent variable is obtained
as a by-product. Another disadvantage of the proposed MCMC method is that the model has
to be fully specified whereas the MLE remains consistent even when the microstructure noise
is nonparametrically specified, and in this case, MLE becomes quasi-MLE. However, other
MCMC methods can be used to deal with more flexible distributions for the microstructure
noise. In particular, the flexibility of the error distribution may be accommodated by using a
Dirichelt process mixture (DPM) prior, leading to the so-called semiparametric Bayesian model
(see Ferguson (1973) for the detailed account of DMP, and Jensen and Maheu (2008) for an
application of DMP to volatility modeling).

The second contribution of this paper is to provide generalized models of Duan and Fulop
(2009) so that we allow a more flexible behavior for microstructure noises. In particular,
we consider two models. In the first specification, we model the microstructure structure
noises using a Student t distribution. In the second specification, we allow the microstructure
structure noises to be correlated with the shocks to the firm values. We show that it is
straightforward to modify the MCMC algorithm to analyze the new models. Empirically, we
find evidence of a positive correlation between the microstructure noises and the firm values in
emerging markets.

The rest of the paper is organized as follows. Section 2 reviews the Merton’s model and
the ML method of Duan and Fulop (2009). In Section 3, we introduce the Bayesian MCMC

method. Like Duan and Fulop, we put the model into the framework of nonlinear state-



space methodology and describe the Bayesian approach to parameter estimation using Gibbs
sampling. Section 4 discusses how the proposed method can be used for credit risk applications
and for analyzing more flexible specifications for microstructure noise. We also discuss how to
the model comparison using the deviance information criterion (DIC) is performed. In Section
5, we implement the Bayesian MCMC method using several datasets, including one US dataset

used in Duan and Fulop (2009), and datasets from two emerging markets. Section 6 concludes.

2 Merton’s Model and ML Method

All structural credit risk models specify a dynamic structure for the underlying firm’s asset
and default boundary. Let V' be the firm’s asset process, and F the face value of a zero-coupon
debt that the firm issues with the time to maturity 7. Merton (1974) assumed that V; evolves

according to a geometric Brownian motion:
dInV; = (u — 0?/2)dt + odWy, Vy = c, (1)

where W (t) is a standard Brownian motion which is the driving force of the uncertainty in V;,

and c is a constant. The exact discrete time model is
InVipr = (u—0%/2)h +InV; + ovVhe, Vo =c, (2)

where ¢, ~ N(0,1), and h is the sampling interval. Obviously, there is a unit root in InV;.

The firm is assumed to have two types of outstanding claims, namely, an equity and a
zero-coupon debt whose face value is F' maturing at 7. The default occurs at the maturity
date of debt in the event that the issuer’s assets are less than the face value of the debt (ie
Vr < F). Since V; is assumed to be a log-normal diffusion, the firm’s equity can be priced with
the Black-Scholes formula as if it were a call option on the total asset value V' of the firm with
the strike price of F' and the maturity date 7. Similarly, one can derive pricing formulae for the
corporate bond (Merton, 1974) and spreads of credit default swaps, although these formulae
will not be used in this paper.

Assuming the risk-free interest rate is r, the equity claim, denoted by S, is

Sy = S(Vis0) = Vid(dyy) — Fe " T=Dd(dy,), (3)



where ®(-) is the cumulative distribution function of the standard normal variate,

In(V;/F) + (r+02/2)(T — t)

G = P !
and b — In(V;/F) + (r — o2/2)(T — t)
2t — .

oVT —t

When the firm is listed in an exchange, one may assume that .S; is observed at discrete time
points, say t = 71, -+ ,T,. When there is no confusion, we simply write ¢ = 1,--- ,n. Since
the joint density of {V;} is specified by (2), the joint density of {S;} can be obtained from
Equation (3) by the change-of-variable technique. As S is analytically available, the Jacobian
can be obtained, facilitating the ML estimation of § (Duan, 1994).

The above approach requires the equilibrium equity prices be observable. This assumption
appears to be too strong when data are sampled at a reasonably high frequency because the
presence of various market microstructure effects contaminates the equilibrium price process.
The presence of market microstructure noises motivates Duan and Fulop (2009) to consider

the following generalization to Merton’s model (we call it Mod 1):
InS; =InS(Vi;0) + ovy, (4)

where {v;} is a sequence of iid standard normal variates. Equation (2) and Equation (4) form
the basic credit risk model with microstructure noises which was studied by Duan and Fulop
(2009). Putting the model in a state-space framework, Equation (4) is an observation equation,
and Equation (2) is a state equation. Unfortunately, the Kalman filter is not applicable here
since the observation equation is nonlinear.

Let X = (InSy,---,InS,), h = (InVy,--- ,InV,,), and 6 = (u,0,9). The likelihood
function of Mod 1 is given by

p(X:0) = / p(X.h;0)dh = / p(X[b; w)p(h; 6)dh, (5)

where p(-) means the probability density function. In general, this is a high-dimensional integral
which does not have a closed form expression due to the non-linear dependence of In .S; on In V4.

To estimate the model via ML, built upon the work of Pitt and Shephard (1999) and
Pitt (2002), Duan and Fulop developed a particle filtering method. The particle filter is an



alternative to the Extended Kalman filter (EKF) with the advantage that, with sufficient
samples, it approaches the true ML estimate. Hence, it can be made more accurate than the
EKF. As in many other simulation based methods, the particle filter essentially approximates
the target distribution by the corresponding empirical distribution, based on a weighted set
of particles. To avoid the variance of importance weight to grow over time, it is important to
perform the resampling step.

Traditional particle filtering algorithms, such as the one proposed by Kitagawa (1995),

() when the system is advanced. To improve the efficiency, Pitt and Shephard

sample a point V,
(1999) proposed to sample a pair (V;(m), Vt(ﬁ)) Duan and Fulop adopted this auxiliary particle
filtering algorithm where the sequential predictive densities, and hence the likelihood function
are the by-products of filtering. Unfortunately, the resulting likelihood function is not smooth
with respect to the parameters. To ensure a smooth surface for the likelihood function, Duan
and Fulop followed the suggestion in Pitt (2002) by using the smooth bootstrap procedure for
resampling.

Since the log-likelihood function (denoted by ¢(6)) is readily available from the filtering
algorithm, it is maximized numerically over the parameter space to obtain the simulation-
based ML estimator (denoted by én) If M — oo, the log-likelihood value obtained from
simulations should converge to the true likelihood value. As a result, it is expected that for
a sufficiently large number of particles, the estimates that maximize the approximated log-
likelihood function are sufficiently close to the true ML estimates. Standard asymptotic theory
for ML suggests that,

V(b — 09) 5 N(0,171(9)), (6)

where 1(#) is the limiting information matrix, and the MLE is considered optimal in the Hajék-
LeCam sense, achieving the Cramér-Rao bound and having the highest possible estimation
precision in the limit when n — oo. It is obvious that in this standard asymptotic theory, the
rate of convergence is root-n.

Suppose C(#) is a nonlinear function of # and needs to be estimated. By virtue of the
principle of invariance, the ML estimator of C'() is obtained simply by replacing 6 in C(6)
with 6,, leading to C,, = C(6,), the ML estimate of C'(8). By the standard delta method

argument, the following asymptotic behavior for C,, is obtained:

~

Vi(C, — C(8)) % N(0, Vo), (7)



where 5C 5C
=_—I1 46

VC—@ ( )% (8)

Since C,, is the ML estimator, it retains good asymptotic properties of ML. For example, it
is expected to have the highest possible precision when n — oo. Not surprisingly, this plug-
in estimator was suggested for credit risk applications in Duan and Fulop. Two particular
examples mentioned in their paper are the credit spread of a risky corporate bond over the
corresponding Treasury rate, and the default probability of a firm.

Duan and Fulop (2009) carried out Monte Carlo simulations to check the reliability of
the proposed ML estimator and the standard asymptotic theory (6), based on 500 simulated
samples, each with 250 daily observations. When § = 0.004, it was found that both ¢ and
1 but not § can be accurately estimated. By examining the coverage rates, they concluded
that the asymptotic distribution conforms reasonably well to the corresponding finite sample
distribution for o and g but not for 6. Duan and Fulop (2009) further related the failure of
the asymptotic approximation for ¢ to the boundary problem. In particular, for 110 out of 500
sample paths, the estimate of § reached the lower bound. When § = 0.016, they found that
the standard asymptotic distribution worked much better for 9.

In additional to the boundary problem, we believe there is another problem in the use of the
standard asymptotic theory (6). While the standard asymptotic theory is well developed for
stationary or weakly dependent processes, the asymptotic analysis becomes more complicated
for models with integrated variables. Often the asymptotic distribution becomes nonstandard
and the rate of convergence is not root-n. For example, in a simple linear process with a
unit root, Phillips (1987) obtained the asymptotic distribution of the ML estimator of the
autoregressive coefficient. The distribution is skewed to the left and the rate of convergence
is root-n. For linear cointegration systems, Johansen (1988) showed that the ML estimator
has a non-standard limiting distribution. The asymptotic theory is even more complicated for
nonlinear models with integrated time series, of which nonlinear cointegration is an important
special case. Park and Phillips (2001) developed the asymptotic theory for this class of models.
It was shown that the rate of convergence depends on the properties of the nonlinear regression

function and can be as slow as nl/4

. The limiting distribution is nonstandard and is mixed
normal with mixing variates that depend on the sojourn time of the limiting Brownian motion

of the integrated process.



Table 1: Simulation results obtained from 1000 sample paths, each with 250 daily observations
Parameter o | 6(x100) L
True Value | 0.3 1.6 0.2
Mean 0.295 1.597 0.205
Median 0.294 1.608 0.196
Minimum | 0.187 0.878 -0.745
Maximum | 0.398 | 2.143 1.042
Std Err 0.030 | 0.211 0.298
Skewness | 0.158 | -0.231 | -0.077
Kurtosis | 3.108 2.967 2.780
JB Stat 4.668 | 8.953 2.033
p-value 0.097 | 0.011 0.361

Clearly, the model considered in this paper is nonlinear cointegration. While both In V; and
In S; are nonstationary, their nonlinear combination is stationary. The theoretical results in
Park and Phillips (2001) indicate that the standard asymptotic theory may be inappropriate.
However, since In V; is latent in our model, it would be difficult, if not impossible, to apply the
theoretic results of Park and Phillips (2001) to our framework.

To examine the performance of the standard asymptotic distribution, we design a Monte
Carlo study which is similar to the design in Duan and Fulop (2009). The parameter values
are 0 = 0.3, 6 = 0.016, = 0.2. The interest rate is 5% and remains constant throughout
the sample period. The initial value of V} is fixed at $100 and F is fixed at $40, both being
assumed to be known. We acknowledge the fact that the specification of the initial value
has important implications both for the finite sample distributions and for the asymptotic
distributions because the state variable has a unit root; see, for example, Miiller and Elliott
(2003) for a detailed account for implications of initial conditions in unit root models. As
in Duan and Fulop, 250 daily observations (1-year data) are simulated in each sample. In
total, 1,000 sample paths are simulated. The initial maturity is set to 10 years and, by the
end of the sample period, reduces to 9 years. The filtering algorithm provided by Duan and
Fulop, namely localizedfilter.dll, is implemented with 5,000 particles generated to estimate the
parameters. There are two differences between our design and that of Duan and Fulop. First,
the initial value is fixed and assumed to be known in our design and this design represents the

simplest scenario. In Duan and Fulop, the last observation is fixed and the path simulation



is conducted backwards. Also, while we fix the initial value in our study, in Duan and Fulop
the initial value Vj is assumed to be the perturbed V}*, where V" is the first period asset value
obtained from the model without the microstructure noise. Second, in our design the number
of simulated paths chosen is 1,000 (instead of 500 as in Duan and Fulop) and the number of
particles 5,000 (instead of 1,000 as in Duan and Fulop), with the hope that the finite sample
distributions can be more accurately obtained. Bounds used for o, 6 and p are [0.01,20],
[1077,1000] and [—20,20], respectively. Note that when § = 0.016, Duan and Fulop found
little evidence of the boundary problem; see Table 6 in their paper.

Table 1 reports the mean, the median, the minimum, the maximum, the standard deviation,
the skewness, the kurtosis, the Jarque-Bera (JB) test statistic for normality and its p-value, all
computed from 1,000 samples. Figure 1 plots the finite sample distributions (ie the histograms)
and the standard asymptotic distributions. Several results emerge from the table and the
Figure. First, similar to what was found by Duan and Fulop, all the parameters cab be
accurately estimated, with the mean and the median being sufficiently close to the true value.
Consistent with what was found in Merton (1980) and Phillips and Yu (2005), p is more
difficult to estimate than ¢ when the time span of the data is small. Second, comparing the
minimum and the maximum with the bounds, we have found in all cases there is no boundary
problem. Thus, the finite sample distributions are not affected by the bounds. Third and
most interestingly, the JB statistics suggest that the finite sample distribution is strongly non-
normal for § and moderately non-normal for ¢ and, but for pu, it conforms well to normality. In
particular, the finite sample distribution for ¢ is skewed (-0.231). When comparing the finite
sample distribution with the standard asymptotic distribution in Figure 1, we have found that
for both o and §, the standard asymptotic distribution is not satisfactory. Apart from the
apparent skewness in the finite sample distribution of the MLEs of 4, there is strong evidence
of “peakness” in the finite sample distributions of the MLE of § and o, relative to the standard
asymptotic distributions. For u, the finite sample distribution conforms well to the standard
asymptotic distribution. In sum, the Monte Carlo results seem to confirm our conjecture that
for the model which involves nonlinear cointegration, the standard asymptotic theory may not

be applicable.
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Figure 1: Finite sample distribution (histogram) of MLE of o, § (multiplied by 100), & based
on the particle filtering method of Duan and Fulop (2009). The dotted line is the standard
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3 Bayesian MCMC

From the Bayesian viewpoint, we understand the specification of the structural credit risk model
as a hierarchical structure of conditional distributions. The hierarchy is specified by a sequence
of three distributions, the conditional distribution of In.S¢|In V;,d, the conditional distribution
of mV;|InV;_1, i, o, and the prior distribution of . Hence, our Bayesian model consists of the
joint prior distribution of all unobservables, here the three parameters, i, o, d, and the unknown
states, h, and the joint distribution of the observables, here the sequence of contaminated log-
equity prices X. The treatment of the latent state variables h as the additional unknown
parameters is the well known data-augmentation technique originally proposed by Tanner and
Wong (1987) in the context of MCMC. Bayesian inference is then based on the posterior
distribution of the unobservables given the data. In the sequel, we will denote the probability
density function of a random variable 6 by p(f). By successive conditioning, the joint prior

density is
n

(g, 0,6, h) = p(p, 0, 6)p(In Vo) [ [ p(n Vil In Viy, 1, o). 9)
t=1

We assume prior independence of the parameters u, ¢ and o. Clearly p(InVi|InVi_q, p, o)
is defined through the state equations (2). The likelihood p(X|u,o,d,h) is specified by the

observation equations (4) and the conditional independence assumption:

p(X|p,0,6,h) = [[p(n S, In V4, 6). (10)
t=1

Then, by Bayes’ theorem, the joint posterior distribution of the unobservables given the data
is proportional to the prior times likelihood, ie,

n n

P, 0,6, h|X) o p(p)p(a)p(8)p(In Vo) [ [ p(n Vil In Vi1, p, ) [ [ p(In St In V2, 6). (11)
t=1 t=1

Without data augmentation, we need to deal with the intractable likelihood function p(X|6)
which makes the direct analysis of the posterior density p(6|h) difficult. The particle filtering
algorithm of Duan and Fulop (2009) can be used to overcome the problem. With data aug-
mentation, we focus on the new posterior density p(6,h|X) given in (??). Note that the new
likelihood function is p(X|#, h) which is readily available analytically once the distribution of

€; is specified. Another advantage of using the data-augmentation technique is that the latent
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state variables h are the additional unknown parameters and hence we can make statistical
inference about them.

The idea behind the MCMC methods is to repeatedly sample from a Markov chain whose
stationary (multivariate) distribution is the (multivariate) posterior density. Once the chain
converges, the sample is regarded as a correlated sample from the posterior density. By the
ergodic theorem for Markov chains, the posterior moments and marginal densities can be
estimated by averaging the corresponding functions over the sample. For example, one can
estimate the posterior mean by the sample mean, and obtain the credit interval from the
marginal density. When the simulation size is very large, the marginal densities can be regarded
to be exact, enabling exact finite sample inferences. Since the latent state variables are in the
parameter space, MCMC also provides the exact solution to the smoothing problem of inferring
about the unobserved equity value.

While there are a number of MCMC algorithms available in the literature, in the paper
we use the Gibbs sampler which samples each variate, one at a time, from the full conditional
distributions defined by (??). When all the variates are sampled in a cycle, we have one sweep.
The algorithm is then repeated for many sweeps with the variates being updated with the most
recent samples. With regularity conditions, the draws from the samplers converge to draw from
the posterior distribution at a geometric rate. For further information about MCMC and its
applications in econometrics, see Chib (2001) and Johannes and Polson (2003).

Defining InV_; by InVi,...,InV;_1,In Vi1 1,...,InV,, the Gibbs sampler is summarized as
1. Initialize 6 and h.

2. Sample InV; from In V}|In V_4, X.

3. Sample o|X, h, u, 0.

4. Sample 6|X, h, pu,0.

5. Sample p|X, h,o,d.

Steps 2-5 forms one cycle. Repeating steps 2-5 for many thousands of times yields the
MCMC output. To mitigate the effect of initialization and to ensure the full convergence of
the chains, we discard the so-call burn-in samples. The remaining samples are used to make

inference.
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In this paper, we make use of the all purpose Bayesian software package WinBUGS to
perform the Gibbs sampling. As shown in Meyer and Yu (2000), WinBUGS provides an idea
framework to perform the Bayesian MCMC computation when the model has a state-space
form, whether it is nonlinear or non-Gaussian or both. As the Gibbs sampler updates only one
variable at a time, it is referred as a single-move algorithm.

In the stochastic volatility literature, the single-move algorithm has been criticized by Kim,
Shephard, and Chib (1998) for lacking simulation efficiency because the components of state
variables are highly correlated. Although more efficient MCMC algorithms, such as multi-
move algorithms, can be developed for estimating credit risk models, we do not consider that
possibility in the paper. One reason is that the chains generated from the single-move algorithm

mix very well in the empirical applications, as we will show below.

4 Credit Risk Applications, Flexible Modelling and Model Com-
parison

4.1 Credit Risk Applications

One of the most compelling reasons for obtaining the estimates for the model parameters and
the latent equity values is their usefulness in credit applications. For example, Moody’s KMV
Corporation has successfully developed a structural model by combining financial statement
and equity market-based information, to evaluate private firm credit risk. Another practical
important quantity is the credit spread of a risk corporate bond over the corresponding Treasure
rate.

Using the notations of Duan and Fulop (2009), the credit spread is given by

1 Vo (T
C(Vm 0) = _T = In (F(I)(—dln) +e (T T")(I)(dgn)> -, (12)

where the expressions for di, and da, were given in Section 2. The default probability is given

by

(13)

P(VmG) — P <ln(F/Vn> — (M - 02/2)(T - Tn)) .

oVT — 1,
The Gibbs samplers for § and V,, can be inserted into the formulae (?7) and (??) to obtain

the Markov chains for the credit spread and the default probability. Because any measurable
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functions of a stationary ergodic sequence is stationary and ergodic, the chains provide exact

finite-sample inferences about these two quantities.

4.2 Flexible Modelling of Microstructure Noises

Modelling the microstructure noise as an iid normal variate is a natural starting point. Duan
and Fulop (2009) have convincingly shown that ignoring trading noise can lead to a significant
overestimation of asset volatility and that the estimated magnitude of trading noise is in line
with the prior belief. On the other hand, it is well known that the market microstructure effects
are complex and take many different forms. Therefore, it is interesting to know empirically
what the best way to model the microstructure noises in the context of structural credit risk
models is. With this goal in mind, we introduce two more general models.

In the first model, motivated from the empirical fact that the distributions of almost all
financial variables have fat tails, we assume the distribution of v; is a Student-t with an unknown
degree of freedom (call it Mod 2). That is,

InS; =InS(Vi;0) + dvg, v ~ t, (14)

and
Vi1 = (p—0/2)h +InV; + oVhe,

In the second generalized model, we allow the microstructure noise to be correlated to the

innovation to the equity value (call it Mod 3), that is,
InS; =InS(Vi;0) + vy,

InViy1 = (u—0%/2)h +InV; + oVhe,

where vy, €; are N(0,1) and corr(v, ) = p.

As discussed earlier, any implementation of the Gibbs sampler necessitates the specification
of each of the full conditional posterior densities and of a simulation technique to sample from
them. Any change in the model, such as a different prior distribution or different sampling
distribution, necessarily entails changes in those full conditional densities. WinBUGS releases
from the tedious task of calculating the full conditionals and chooses an effective method to
sample from them. As a result, one can experiment with different types of models with very

little extra programming effort. Modifications of the model are straightforward to implement
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by changing just one or two lines in the code. This ease of implementation appears to be in

sharp contrast to the simulation-based ML method via particle filtering.

4.3 Model Comparison

With alternative models being proposed, it is interesting to compare their relative perfor-
mances. Duan and Fulop (2009) conducted a likelihood ratio test to compare the model with
microstructure noises and the one without noises. Since their estimation method is ML with
the former model nesting the latter one, the likelihood ratio test is possible. Obviously, the
likelihood ratio test is not applicable in our context for two reasons. First, we have Bayesian
models. Second, the two generalized models do not nest each other.

In the Baysian context, one way of comparing the proposed models is by computing Bayes
factors. Alternatively, one can use information criteria. A popular method is the Akaike
information criterion (AIC; Akaike, 1973) for comparing alternative and possibly non-nested
models. AIC trades off a measure of model adequacy against a measure of complexity measured
by the number of free parameters. In a non-hierarchical Bayesian model, it is easy to specify
the number of free parameters. However, in a complex hierarchical model, the specification of
the dimensionality of the parameter space is rather arbitrary. This is the case for all the credit
risk models considered here. The reason is that when MCMC is used to estimate the models,
we augment the parameter space. For example, in Mod 1, we include the n latent variables
into the parameter space. As these latent variables are highly dependent with a unit root in
the dynamics, they cannot be counted as n additional free parameters. Consequently, AIC is
not applicable in this context (Berg, Meyer and Yu, 2004).

Let 6 denote the vector of augmented parameters. The deviance information criterion (DIC)
of Spiegelhalter, Best, Carlin and van der Linde (2002) is intended as a generalization of AIC

to complex hierarchical models. Like AIC, DIC consists of two components:
DIC = D + pp. (15)

The first term, a Bayesian measure of model fit, is defined as the posterior expectation of the

deviance

D = Eygx[D(0)] = Egx[—21n f(X]0)]. (16)
The ‘better’ the model fits the data, the larger the value for the likelihood. The variable D,

which is defined via —2 times log-likelihood, therefore attains smaller values for the ‘better’
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models. The second component measures the complexity of the model by the effective number
of parameters, pp, defined as the difference between the posterior mean of the deviance and

the deviance evaluated at the posterior mean  of the parameters:
pp = D — D) = Eyx[D(9)] — D(Egx[f]) = Egx[~2In f(X | )] +2In f(X[9).  (17)

By defining —21n f(X|#) as the residual information in the data X conditional on 6, and
interpreting it as a measure of uncertainty, Equation (??) shows that pp can be regarded as
the expected excess of the true over the estimated residual information in data X conditional on
0. That means we can interpret pp as the expected reduction in uncertainty due to estimation.

Spiegelhalter et al (2002) justified DIC asymptotically when the number of observations n
grows with respect to the number of parameters and the prior is non-hierarchical and completely
specified. As with AIC, the model with the smallest DIC is estimated to be the one that would
best predict a replicate dataset of the same structure as that observed. This focus of DIC,
however, is different from the posterior-odd-based approaches, where how well the prior has
predicted the observed data is addressed. Berg et al (2004) examined the performance of
DIC relative to two posterior odd approaches — one based on the harmonic mean estimate of
marginal likelihood (Newton and Raftery, 1994) and the other being Chib’s estimate of marginal
likelihood (Chib, 1995) — in the context of stochastic volatility models. They found reasonably
consistent performance of these three model comparison methods. From the definition of DIC it
can be seen that DIC is almost trivial to compute and particularly suited to compare Bayesian

models when posterior distributions have been obtained using MCMC simulation.

5 Empirical Analysis
5.1 Priors and Initial Values

We assume prior independence of the parameters i, o, and 6. We employ an uninformative prior
for p, u ~ N(0.3,4). A conjugate inverse-gamma prior is chosen for o, ie o ~ IG(3,0.0001).
Similarly, a conjugate inverse-gamma prior is chosen for o, ie o ~ IG(2.5,0.025). For x and p,
uninformative priors are used. In particular, xk ~ X%s) and p ~U(—1,1).

The initial values of i, 0%, and 6% are set at = 0.3, 6> = 1.0 x 1074, and ¢ = 0.02. In all
cases, after a burn-in period of 10,000 iterations and a follow-up period of 100,000, we stored

every 20th iteration.
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Model 1 for 3M

(5000 values per trace) (5000 values)

Trace of delta Kernel density for delta

delta
0.002 0.006
0 200 400
O
o
o

0 2000 4000 0 0.002 .004 0.006 0.008
Trace of mu Kernel density for mu
(5000 values per trace) (5000 values)

mu
0.5 0 0.5 1
0 1 2
o
=}
o

0 2000 4000 .
Trace of sigma Kernel density for sigma
(5000 values per trace) (5000 values)

sigma
5 1 0.15 0.2
0 20 40

0.0!

0 2000 4000 0 0.05 0.1 0.15

Figure 2: Trace and kernel density estimates of the marginal posterior distribution of parame-
ters in Mod 1.
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Table 2: Bayesian Estimation Results and ML Estimation Results for the Basic Model Using
Daily 3M Data

7 o 6 x 100
Mean | Std Err | Mean | Std Err | Mean | Std Err
Bayesian | 0.2797 | 0.1273 | 0.1270 | 0.0090 | 0.4689 | 0.0649
ML 0.2798 | 0.1358 | 0.1318 | 0.0089 | 0.4044 | 0.0919

5.2 US Data

We implement the MCMC method using data from a company, 3M, from the Dow Jones
Industrial Index. Duan and Fulop (2009) fitted Mod 1 to the same data. In addition to this
basic model, we also fit the two new flexible specifications to the data. There are two purposes
for using the same data as in Duan and Fulop. First, by comparing our estimates to the ML
estimates obtained by Duan and Fulop, we can check whether our method can produce sensible
estimates. Second, for the US data, we would like to know if the newly proposed models can
perform better than Mod 1.

As explained in Duan and Fulop, the daily equity values are obtained from the CRSP
database over year 2003. The initial maturity of debt is 10 years. The debt is available from
the balance sheet obtained from the Compustat annual file.? It is compounded for 10 years at
the risk-free rate to obtain F'. The risk-free rate is obtained from the US Federal Reserve. As
there are 252 daily observations in the data, we set h = 1/252 which is slightly different from
1/250 used in Duan and Fulop. The difference is so small that the impact on the estimates
should be negligible.

Table 2 reports the estimates of posterior means and the estimates of posterior standard
errors for 6 in the basic credit risk model with iid normal noises. For ease of comparison, we

also report the ML estimates and the asymptotic standard errors obtained in Duan and Fulop.

All the Bayesian estimates are very close to the ML counterparts. Furthermore, the two sets
of standard errors are also comparable. The results show the reliability of the MCMC method

for obtaining point estimates. The trace and kernel density estimates of marginal posterior

2 As a referee points out, however, some care needs to be taken when the book value is used to calculate the
market value of debt. While we accept this view, we use the same value of debt as in Duan and Fulop for the
purpose of comparison.
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Figure 3: Autocorrelation functions of parameters in Mod 1.

distribution of model parameters are shown in Figure 2. It can be seen that all the chains mix
very well. The marginal posterior distribution is quite symmetric for both ¢ and p but is slightly
asymmetric for §. All parameters pass the Heidelberger and Welch stationarity and halfwidth
tests. Geweke’s Z-scores for 0, i, o are all close to zero (0.335, -0.357, -0.224). The dependence
factors from the Raftery and Lewis convergence diagnostics (estimating the 2.5 percentile up
to an accuracy of +0.005 with probability 0.95) are 1.78, 1.03, 1.02 for §, i, o respectively. All
these statistics strongly suggest that the chains converge well and are indeed stationary. Figure
3 plots the autocorrelation function for each chain. In all cases, the autocorrelation becomes

negligible at a few lags, suggesting the convergence is fast.
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Table 3: Bayesian Estimation Results for Alternative Models Using Daily 3M Data

I o 0 x 100 K Or p DIC
Mean | Std Err | Mean | Std Err | Mean | Std Err | Mean | Std Err
Mod 1 | 0.2797 | 0.1273 | 0.1270 | 0.0090 | 0.4689 | 0.0649 -1812.37
Mod 2 | 0.2801 | 0.1259 | 0.1256 | 0.0090 | 0.4481 | 0.0588 | 16.29 5.601 | -1797.34
Mod 3 | 0.2803 | 0.1312 | 0.1301 | 0.0106 | 0.5479 | 0.0485 | 0.3359 | 0.3387 | -1791.21

Table 3 reports the estimates of posterior means and posterior standard errors for  and
DIC in all three specifications. In Mod 2, the posterior mean of x, the degree of freedom
parameter in the t distribution, is estimated to be 16.29. It suggests little evidence against
normality. In Mod 3, the posterior mean of p is estimated to be 0.3359 with posterior standard
error (0.3387. Not surprisingly, the credible interval contains zero. The estimate of x in Mod
2 and p in Mod 3 seem to suggest that the two flexible models do not offer improvements to
the model of Duan and Fulop. This observation is further reinforced by the DIC values for the
three models. Mod 1 has the lowest DIC, followed by Mod 2, and then by Mod 3.

As explained before, with MCMC it is straightforward to obtain the smoothed estimates
of the latent firm asset values and any transformation of the model parameters and the latent
variables, such as the default probability. The default probability has been widely used to
rate firms. In Figure 4, we plot the observed equity values, the smoothed firm asset values
and default probabilities for 3M under the preferred model, Mod 1. As can be seen, when
the equity value goes up, the asset value goes up and the default probability goes down. The

smoothed estimates for the default probabilities are very small and seem reasonable for 3M.

5.3 Data from two Emerging Markets

We also implement the MCMC method using datasets of two firms, both from emerging mar-
kets. The first is the Bank of East Asia listed in Hong Kong Stock Exchange while the second
is DBS Bank listed in Singapore Stock Exchange. The daily closing prices over the two year
period, 2003-2004, are downloaded from finance.yahoo. The balance sheets obtained from the
company’s website give us information about the number of outstanding shares and the total
value of liabilities (debts). The initial maturity of debt is 10 years. We compound the debts
for 10 years at the risk-free rate to obtain F'. The risk-free rate is obtained from the Monetary

Authority of Hong Kong and the Monetary Authority of Singapore, respectively. There are 496
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Table 4: Bayesian Estimation Results for Alternative Models Using Daily Data for Bank of
FEast Asia listed in Hong Kong Stock Exchange

I o 0 x 100 K Or p DIC
Mean Std Err | Mean | Std Err | Mean | Std Err | Mean | Std Err
Mod 1 | 0.001116 | 0.1168 | 0.1647 | 0.0063 | 0.3245 | 0.03654 -3866.51
Mod 2 | 3.2x107% | 0.1146 | 0.1618 | 0.0068 | 0.3225 | 0.03652 | 15.42 5.983 | -3765.87
Mod 3 | 0.005943 | 0.1303 | 0.1856 | 0.0089 | 0.4532 | 0.05792 | 0.7566 | 0.1497 | -3911.20

(504) daily observations in the sample of Bank of East Asia (DBS Bank), and we set h = 1/248
(h = 1/252). Table 4 reports the estimates of posterior means and the estimates of posterior
standard errors for 8 in the basic credit risk model and the two flexible models for Bank of
East Asia. The estimates of §, o and s for Bank of East Asia seem to have the same order of
magnitude as those for 3M. For example, in Mod 2, the posterior mean of k is estimated to be
15.42 which suggests little evidence against normality. However, in Mod 3, the posterior mean
of p is estimated to be 0.7566 with the estimate of the posterior standard error being 0.1497.
This provides strong evidence for a positive correlation between the microstructure noises and
the firm values. This observation is further reinforced by the DIC values for the three models.
Mod 3 has the lowest DIC, followed by Mod 1, and then by Mod 2.

Table 5 reports the estimates of posterior means and the estimates of posterior standard
errors for 6 in the basic credit risk model and the two flexible models for DBS Bank. Once again,
the estimates of §, o and k are similar to those in the previous applications. For example, in
Mod 2, the posterior mean of x is estimated to be 17.04 which suggests little evidence against
normality. In Mod 3, the posterior mean of p is estimated to be 0.3804 with the estimate
of the posterior standard error being 0.2007. The 95% credible interval includes zero while
the 90% credible interval excludes zero. This provides some evidence for a positive correlation
between the microstructure noises and the firm values. According to DIC, Mod 1 and Mod

3 perform similarly, followed by Mod 2 with a big gap in the DIC values.

6 Conclusion

In this paper we introduce a Bayesian method to estimate structural credit risk models with
microstructure noises. We show that it is a viable alternative method to ML. The new method

is applied to estimate Merton’s model, augmented by various forms of microstructure noises.
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Figure 4: The observed equity values, the smoothed firm asset values and default probabilities
of 3M in Mod 1.

Table 5: Bayesian Estimation Results for Alternative Models Using Daily Data for DBS Bank
listed in Singapore Stock Exchange

I o 4 x 100 K Or p DIC
Mean | Std Err | Mean | Std Err | Mean | Std Err | Mean | Std Err
Mod 1 | 0.1623 | 0.1337 | 0.1893 | 0.00747 | 0.4375 | 0.0690 -3600.61
Mod 2 | 0.1624 | 0.1332 | 0.1891 | 0.00784 | 0.4209 | 0.0667 | 17.04 5.738 | -3541.55
Mod 3 | 0.1642 | 0.1442 | 0.2039 | 0.01151 | 0.5231 | 0.1127 | 0.3804 | 0.2007 | -3596.44
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We have found the empirical support that microstructure noises are positively correlated with
the firm values in emerging markets.

The proposed technique is very general and can be applied in other credit risk models
and other forms of microstructure noises. For example, the method can be extended to a
broader range of model specifications, including the Longstaff and Schwartz (1995) model with
stochastic interest rates, the Collin-Dufresne and Goldstein (2001) model with a stationary
leverage, and the double exponential jump diffusion model used in Huang and Huang (2003). In
more complicated models, the analytic relationship between In.S; and In V; may be unavailable,
and hence, the Bayesian method would be computationally more involved. However, the same
argument applies to alternative estimation methods, including ML.

The present paper only brings the credit risk models to daily data. With the availability
of intra-day data in financial markets, one is also able to estimate the credit risk models using
ultra-high frequency data, enabling more accurate estimations of model parameters, default
probability, etc. It is well known from the realized volatility literature that the dynamic prop-
erties of microstructure noises critically depend on the sampling frequency (Hansen and Lunde,
2006). It is expected that a more complicated statistical model is needed for microstructure

noises when ultra high frequency data are used.
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