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SUMMARY 

Hydrogen sulfide (H2S) is a gasotransmitter produced endogenously by 

enzymes cystathionine γ-lyase (CSE), cystathionine β-synthetase (CBS) 

and 3-Mercaptopyruvate sulfurtransferase (3-MST), or exogenously by 

H2S-donor compounds. H2S modulates the inflammatory response 

though no clear consensus exists regarding its pro- or anti-inflammatory 

effects. In this study, exogenous H2S from NaHS and a novel slow H2S-

releaser, FW1256, reduced inflammatory mediators (TNFα, IL-6, NO, 

PGE2, IL-1β) produced from LPS-stimulated mouse macrophages. 

FW1256 inhibited NFκB activation in these cells and reduced pro-

inflammatory cytokine release in the LPS model of sepsis in the mouse. 

Using CRISPR-mediated gene editing, absence of CSE decreased 

iNOS and COX-2 expression in LPS-stimulated RAW264.7 cells, 

suggesting a differential role between exogenous and endogenous H2S. 

H2S from both NaHS and FW1256 also inhibited NLRP3 inflammasome 

activation in primary mouse macrophages, as evidenced by decreased 

IL-1β and IL-18 secretion. In addition, NaHS decreased caspase-1 

activation and reduced NLRP3 inflammasome mediated pyroptosome 

formation in these cells. Mechanistically, H2S disrupted protein-protein 

binding in the NLRP3 inflammasome complex, preserved mitochondrial 

integrity and reduced mitochondrial reactive oxygen species (ROS) 

production in these cells. In vivo, GYY4137 reduced IL-1β levels in LPS-

treated mice. Altogether, this study shows that exogenous H2S exerts 

anti-inflammatory effects in mouse macrophages via multiple molecular 

mechanisms.  
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CHAPTER 1: INTRODUCTION 

1.1 Hydrogen sulfide (H2S) 

 Hydrogen sulfide (H2S) is a gas found ubiquitously in nature. From sulfur 

springs to lagoons and marshes, it is produced as a by-product of 

decomposition of organic material caused by sulfate-reducing bacteria in the 

absence of oxygen, and is known to be a toxic environmental hazard 

(Beauchamp et al., 1984). H2S exerts most probably its toxic effects by binding 

to cytochrome oxidase in the mitochondria, hence preventing the conversion of 

molecular oxygen to water, thereby inhibiting mitochondrial function by 

impeding adenosine triphosphate (ATP) generation (Reiffenstein et al., 1992). 

Despite its toxicity, H2S is now gaining acceptance as the third biologically 

active endogenous gasotransmitter -- after its counterparts nitric oxide (NO) 

and carbon monoxide (CO) (Wang, 2014; Łowicka and Bełtowski, 2007). These 

gasotransmitters are endogenous gaseous molecules that can act as 

messengers in signalling pathways. 

 

1.1.1 Physical and chemical properties of H2S 

H2S is a colourless gas that is flammable and with the distinctive smell 

of rotten eggs. It is soluble in polar as well as non-polar solvents and is lipid 

soluble. Hence, it readily penetrates biological lipid membranes (Mathai et al., 

2009). As H2S is a weak acid that ionizes in polar solvents with a pKa value of 

6.9 for the anionic sulfide (HS-) and >12 for S2- in solvents at physiological pH, 

approximately two-thirds of total H2S dissociates into the anionic sulfide (HS-) 

and hydrogen ions (H+) (Kabil et al., 2014). The remaining one-third remains in 

the un-dissociated form.  
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1.1.2 Endogenous sources of H2S 

H2S is produced endogenously by three ‘H2S synthesizing enzymes’ 

namely cystathionine γ-lyase (CSE), cystathionine β-synthetase (CBS) and 3-

mercaptopyruvate sulfurtransferase (3-MST). CSE and CBS are pyridoxal-5’-

phosphate (PLP) dependent and utilize homocysteine, L-cysteine and 

cystathionine as substrates whilst 3-MST is non-PLP dependent and uses 3-

mercaptopyruvate as substrate (Shibuya et al., 2009a; Steegborn et al., 1999). 

3-MST, in conjunction with aspartate aminotransferase (AAT), which has 

cysteine aminotransferase (CAT) activity, can also generate sulfane sulfur 

which when reduced, releases H2S (Shibuya et al., 2009b). The enzymatic 

pathways for H2S biosynthesis in the cell are many and are depicted in Figure 

1.1.  

The initial clue suggesting H2S may be of biological relevance was the 

finding that endogenous sulfides are present in the mammalian brain (Goodwin 

et al., 1989; Warenycia et al., 1989). Thereafter, H2S was found to be produced 

from L-cysteine in mammalian brain, catalysed by the enzyme CBS, which is 

highly expressed in the hippocampus (Abe and Kimura, 1996). More than a 

decade later, the presence of H2S producing activity in the brains of CBS-/- mice 

prompted the discovery of a novel H2S producing pathway regulated by 3-MST 

and CAT (Shibuya et al., 2009b).   

CSE and CBS are both cytosolic enzymes while 3-MST is located inside 

the mitochondria. However under circumstances when intracellular calcium 

level is increased, CSE in smooth-muscle cells can translocate into  

mitochondria (Fu et al., 2012), suggesting that the intracellular 

compartmentalization of H2S-generating enzymes may be fluid. It was widely 
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accepted that CBS is predominantly found in cells of the nervous system (Abe 

and Kimura, 1996), while CSE is present in peripheral tissues as a smooth 

muscle relaxant (Hosoki et al., 1997). However, cumulative evidence has 

indicated that CBS is present in many other organs such as the kidney (Sen et 

al., 2009), intestine (Martin et al., 2010), pancreas (Kaneko et al., 2006) and 

placenta (Guzmán et al., 2006). It is positively regulated by S-

adenoxylmethionine, which allosterically activates CBS. Conversely, CBS 

activity is downregulated by both NO and CO (Taoka and Banerjee, 2001). CSE 

is found in a diverse number of organs and tissues. It is expressed in the 

vasculature (Hosoki et al., 1997), liver, kidney (Kabil et al., 2011), brain 

(Diwakar and Ravindranath, 2007) and uterus (Patel et al., 2009). Although 

CSE and CBS are both present in a number of these organs, CSE is more 

abundant than CBS in the murine kidney and liver, whilst CBS is more abundant 

than CSE in the murine brain. Interestingly, at high substrate concentrations, 

CBS was the major source of H2S production in the kidney and brain in vitro 

(Kabil et al., 2011). Like CBS and CSE, 3-MST is present in the liver, kidney, 

vasculature and brain and produces H2S and bound sulfane sulfur (Nagahara 

et al., 1998; Shibuya et al., 2009b). However unlike CBS and CSE which are 

present in the cytoplasm, 3-MST is in addition found in mitochondria as well 

(Nagahara et al., 1998). The synthesis of H2S by 3-MST requires the substrate 

3-mercaptopyruvate, which can either be produced by the metabolism of L-

cysteine and α-ketoglutarate by the enzyme cysteine aminotransferase (CAT, 

or known as aspartate aminotransferase), or from D-cysteine by the enzyme D-

amino acid oxidase (DAO). DAO and 3-MST are localized to peroxisomes and 
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mitochondria respectively, and together, the 3-MST/DAO pathway produces 

H2S by the interaction of both organelles (Shibuya et al., 2013). 

Endogenous H2S can also be produced non-enzymatically. Red blood 

cells supplemented with sulfur and glucose, containing electron carriers NADH, 

NADPH and reduced glutathione (GSH), spontaneously react with sulfur to 

produce H2S (Searcy and Lee, 1998). Iron-sulfur cluster-containing proteins 

carrying Fe2S2, Fe3S4 or Fe4S4 clusters are also a source of non-enzymatical ly 

generated H2S. Such proteins include ferredoxins and 'Rieske' proteins 

amongst others (Beinert et al., 1997). In addition, H2S can be released from 

bound sulfur in the presence of reducing agents like glutathione from 

persulfides in cells such as neurons and astrocytes (Ishigami et al., 2009). 
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Figure 1.1 Pathways for H2S biosynthesis in the cell.   

The endogenous production of H2S occurs via two main pathways - reverse 

transulfuration and cysteine oxidaton which take place partly inside 
mitochondria. 3-MST, 3-mercaptopyruvate sulfurtransferase; CBS, 

cystathionine β-synthetase; CSE, cystathionine γ-lyase;  H2S, hydrogen sulfide; 
NH3, ammonia. 
 

Reproduced from (Huang and Moore, 2015) 
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1.1.3 Exogenous sources of H2S 

Exogenous H2S donors which generate what may be referred to as 

‘pharmacological’ H2S have been used extensively to evaluate the effect of H2S 

both in cells and animal disease models. Beyond their use as simple research 

tools, the recognition of the potential beneficial effects of such donors, has 

prompted the incremental development of novel and more potent H2S-based 

therapeutics (Wallace and Wang, 2015). These donors can be separated into 

two main classes depending on the speed with which they release H2S and 

their chemical characteristics viz. ‘fast’ and ‘slow’ H2S donors. 

As a highly flammable, explosive and a toxic gas, H2S administration in 

the gaseous form presents severe safety issues. In the literature, the widely 

accepted means of administering H2S is therefore via H2S releasing 

compounds. Very commonly used and especially in the early stages of H2S 

research, are inorganic sulfide salts such as sodium hydrosulfide (NaHS), 

Na2S2O3 and Na2S (Bhatia et al., 2008; Dufton et al., 2012; Li et al., 2005; 

Zhang et al., 2010). When dissolved in an aqueous solution, these compounds 

release an immediate and large bolus of H2S over a period of seconds to 

minutes (Whiteman et al., 2010). Hence, these compounds are referred to as 

‘fast’ H2S releasers. Cells exposed to H2S from these compounds would be 

expected to ‘experience’ a high concentration of H2S over a short period of time. 

This is in sharp contrast to cells exposed to ‘physiological’ H2S generated form 

natural substrates endogenously. Nonetheless, the use of these compounds 

may also have advantages. For example, fast H2S releasers have simple 

chemical structures and are thus straightforward to synthesise. Any biological 

effects produced by these compounds will almost certainly be mediated by H2S 
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which is not always the case with more complex donors. As such, fast H2S 

releasers are often useful in proof-of-concept experiments demonstrating that 

H2S can elicit a particular biological effect.  

Conversely, ‘slow’ H2S releasers are compounds that generate H2S in a 

sustained and controlled manner, lasting a period of hours to days. These 

synthetic compounds contain a H2S-donating moiety, hybridized to a parental 

small molecule structure, and will release H2S in a manner that is more likely to 

mimic conditions in which cells are typically exposed to endogenous H2S. A 

very widely used slow H2S releaser is GYY4137 (morpholin-4-ium-4-

methoxyphenyl (morpholino) phosphinodithioate) (Li et al., 2008). GYY4137 

has been shown to exhibit anti-inflammatory effects both in vitro and in vivo. It 

is anti-inflammatory in a rat model of endotoxic shock (Li et al., 2009), anti-

atherosclerotic in high fat fed apolipoprotein E-/- mice (Liu et al., 2013), and 

exhibits vasolidator and antihypertensive activity (Li et al., 2008). New H2S 

releasing phosphordithioates based on the structure of GYY4137, have also 

been synthesized and characterized and found to have antiproliferative activity 

against cancer cells (Feng et al., 2015).  

Besides the sulfide salts and synthetic H2S releasing compounds, H2S 

sources stemming from natural origins have also been used in H2S research. 

These include diallyl disulfide (DADS) and diallyl trisulfide (DATS) which are 

derived from garlic and sulforaphan, erucin and iberin which are found in 

vegetables like broccoli, wasabi, mustard and horseradish (Bełtowski, 2015; 

Kashfi and Olson, 2013). Although DADS and DATS have been characterized 

in vitro and in vivo (Benavides et al., 2007) the characterization of sulforaphan, 

erucin and iberin is still far from complete.   
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1.1.4 Catabolism of H2S 

The catabolism of H2S in the body is of utmost importance given that 

H2S is a toxic gas. H2S is eliminated from the body via the lungs and faeces, 

while its metabolites are removed in the urine. Three metabolic pathways 

govern the catabolism of H2S: oxidation, alkylation and reactions with disulfide- 

or metallo- bearing proteins (Beauchamp et al., 1984), with oxidation being the 

main catabolic pathway.  

As a reducing species, H2S is easily oxidized. Using Na235S, it has been 

shown that the rate of sulfide oxidation differed between organs. In rat lung, 

sulfide (S2-) was oxidized slowly to thiosulfate (S2O32-), while in rat kidney, 

sulfide was oxidized to sulfate (SO42-) with thiosulfate as an intermediate. 

Whereas in the rat liver, sulfide was rapidly oxidized and converted also 

completely to sulfate, with thiosulfate and sulphite as intermediates 

(Bartholomew et al., 1980). The mitochondrial sulfide oxidation pathway 

involves oxidation of thiosulfate to sulfate, in a glutathione-dependent manner. 

This process is governed by three enzymatic activities catalysed by (1) sulfide 

quinone oxidoreductase found on the inner mitochondrial membrane, which 

converts sulfide to persulfides and transfers electrons to the ubiquinone pool; 

(2) sulfur dioxygenase which oxidizes persulfide to sulfite (SO32-); and (3) sulfur 

transferase, which links a persulfide to sulfite, creating thiosulfate (Hildebrandt 

and Grieshaber, 2008). Upon oxidation, the final metabolites of H2S are sulfate, 

thiosulfate, sulfite and persulfide.  
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1.1.5  Detection methods of H2S 

Due to its chemical properties, the accurate measurement of H2S has 

proved to be a considerable challenge. For a detection method to be employed 

readily and widely, it has to be easy to use and have a high level of specificity 

and sensitivity. To date, several methods have been used for sulfide detection 

in solutions as well as biological systems. 

 Measuring sulfide concentrations using sulfide-ion microelectrodes has 

been carried out in biological samples (Chang et al., 2010; Chen et al., 2005; 

Whiteman et al., 2010). As this method involves the use of a glass pH electrode 

with electrodes which measure S2-, maintaining a constant pH during the course 

of measurements as well as establishing the standard curve under identical 

conditions, is crucial for obtaining reproducible data. In some studies, such 

probes have detected H2S in concentrations as low as nanomole per mg of 

protein (Chang et al., 2010) and low micromolar range of H2S in serum (Chen 

et al., 2005). The use of such electrodes has the added advantage that they do 

not require sulfide derivatization and hence can measure free sulfide 

concentrations. However, for some electrode surfaces with the Ag+/Ag2S 

system, sulfide measurements may be complicated by the presence of thiols 

(Nagy et al., 2014). 

 A second very common method is the methylene blue assay. Here, 

sulfide is chemiadsorbed by zinc acetate and converted into zinc sulfide. Upon 

contact with the oxidizing agent ferric chloride in a strong acid solution, it reacts 

with N,N-dimethyl-p-phenylnediamine to give a methylene blue dye, which is 

then measured spectrophotometrically at an absorbance wavelength of 670nm. 

The concentration of H2S is then determined from an established standard 
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curve derived from different concentrations of NaHS. Although easy to carry 

out, a drawback of this method is that the extreme acidic conditions required 

not only measure free H2S but also release sulfide from acid-labile pools such 

as sulfur present in iron-sulfur proteins (Johnson et al., 2005), and bound 

sulfane sulfur pools such as thiosulfate, persulfide, polysulfides. These are all 

present endogenously in biological systems (Beinert et al., 1997; Kimura, 2014; 

Searcy and Lee, 1998). The acidic conditions may also release sulfide from 

slow-releasing H2S donors thereby leading to issues interpreting released H2S 

levels when such donors have been used. Whilst the methylene blue method 

has its shortcomings and the absolute values may not be accurate, the relative 

difference comparing between biological groups may provide an indication as 

to whether an experimental treatment has resulted in a modulation of H2S levels. 

 Detection of minute amounts of H2S in biological samples with a 2 nM 

limit of detection (Shen et al., 2015) can also be achieved using the 

monobromobimane method followed by reverse phase high-performance liquid 

chromatography (RP-HPLC). This method requires the derivatization of H2S 

with monobromobimane to form sulfide-dibimane. Sulfide-dibimane is then 

separated by RP-HPLC and analysed by fluorescence detection (Shen et al., 

2011). While the monobromobimane method is highly sensitive and can be 

modified to measure other forms of sulfide such as acid-labile sulfur and bound 

sulfane sulfur, the procedures are complex and several caveats must be kept 

in mind to prevent inaccurate readings. Examples include the deoxygenation of 

all solutions prior to preparation of sulfide samples as well as ensuring that pH, 

time, oxygen tension and volatilization are all well controlled when performing 
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the chemical derivatization reaction of H2S with monobromobimane (Shen et 

al., 2015).  

 In recent years, the use of H2S sensitive fluorescent probes has been 

increasingly adopted by research groups as this approach is both highly 

selective and sensitive to H2S (Feng and Dymock, 2015). For this approach to 

be applied in different biological situations, the probe must exhibit rapid 

reactivity with H2S, be selective and sensitive for H2S over, for example, thiols 

and anions, be cell permeable if measurements of intracellular H2S are required, 

be non-toxic towards cells and also chemically stable. The mechanism of action 

by which these probes react with H2S are: (1) nucleophilic substitution-

cyclization reaction (Peng et al., 2014); (2) reduction of aromatic azide probes 

to produce a fluorescent product (Lin et al., 2013); or (3) de-complexing of a 

metal group from a non-fluorescent probe in response to H2S thereby activating 

its fluorescence (Wu et al., 2014a).  

In this project, we have used a near-infrared-fluorescent H2S probe 

belonging to the third class of probe using a copper(II)-cyclen complex which 

acts as a reaction centre for H2S and as a quencher for BODIPY (boron-

dipyrromethene) based fluorophores. This probe was characterized and was 

found to have a detection limit of 80 nM H2S in a chemical system. In addition, 

the assay was sufficiently sensitive to detect endogenous H2S in HEK293 cells 

overexpressed with CSE, as well as in vivo in mice injected with Na2S, making 

it a useful tool for detecting H2S release in biological systems (Wu et al., 2014a).  
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1.1.6 Other pharmacological tools and mouse knock-out models in H2S 

research and their limitations 

The effect of exogenous H2S in a biological system can be assessed 

using H2S donors whilst the response to endogenous H2S can be monitored by 

overexpressing H2S producing enzymes in cells. Another approach is the use 

of inhibitors of H2S synthesizing enzymes. Inhibitors of both CSE and CBS are 

readily available commercially. Examples of CSE inhibitors include DL-

propargylglycine (PAG) which inhibits CSE irreversibly by interfering with the 

accessibility of substrate to the active site of the enzyme (Sun et al., 2009), β-

cyanoalanine (BCA) which inhibits CSE reversibly (Pfeffer and Ressler, 1967) 

and L-aminoethoxyvinylglycine (AVG). Aminooxyacetic acid (AOAA) has been 

shown previously to be a specific inhibitor of CBS (d'Emmanuele di Villa Bianca 

et al., 2009; Oh et al., 2006; Roy et al., 2012) while trifluoroalanine and 

hydroxylamine are inhibitors of both CSE and CBS. O-(carboxymethyl) 

hydroxylamine hemihydrochloride (CHH) also inhibits CBS. Whilst L-aspartate 

can inhibit the production of H2S by 3-MST indirectly by inhibiting cysteine 

aminotransferase/aspartate aminotransferase (CAT/AAT) (Akagi, 1982), only 

very recently has the discovery of several 3-MST inhibitors by means of high-

throughput screening been reported (Hanaoka et al., 2017). 

One area of concern with regard to the use of several of these inhibitors 

is poor selectivity. For example, PAG binds to the pyridoxal 5’-phosphate (PLP) 

binding site of the CSE enzyme. Thus, it may affect other PLP-dependant 

enzymes. AOAA, an often stated selective inhibitor of CBS, has been reported 

also to inhibit human CSE in experiments using recombinant human CSE and 

CBS. In this work, AOAA was surprisingly a more potent inhibitor of CSE than 
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of CBS (Asimakopoulou et al., 2013). As an inhibitor of PLP-dependent 

enzymes, AOAA like PAG, has also been found to inhibit PLP-dependent 

enzymes such as 4-aminobutyrate aminotransferase (GABA-T) (WALLACH, 

1961) and aspartate aminotransferase (Kauppinen et al., 1987).  

Research into the biological effects of nitric oxide (NO) has been aided 

by the use of a range of so called ‘NO scavengers’ which bind to and hence 

inactivate NO (Barakat et al., 2014; Harbrecht, 2006; Queiroz et al., 2014). 

Unfortunately, very few H2S scavengers have been reported and are not 

commonly used in research of H2S in biological systems.  Vitamin B12a, also 

known as hydroxocobalamin, is one such compound which does sequester H2S 

dissolved in a cell free solution of PBS or saline (Van de Louw and Haouzi, 

2013). In vivo, hydroxocobalamin is an effective antidote against H2S poisoning 

in mice and prevents NaHS-induced hepatocyte cytotoxicity (Truong et al., 

2007). Hence, vitamin B12a may currently be the only option when it comes to 

scavenging H2S under experimental conditions. 

Besides the use of pharmacological tools, mouse knock-out models 

have been very useful in studying the role of H2S synthesizing enzymes in 

disease models in vivo. The majority of studies using H2S synthesizing enzyme 

knock out models have been performed in CSE-/- mice. CSE-/- mice were first 

reported to exhibit reduced H2S levels in blood serum and vessels.  These mice 

displayed an age-dependent development of hypertension and exhibited 

reduced endothelium-dependent vasorelaxation responses thereby providing 

evidence that endogenous H2S regulates vasodilation and blood pressure 

(Yang et al., 2008). CSE-/- mice fed with an atherogenic paigen-type diet 

developed early fatty streak lesions in the aortic root and had increased 
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cholesterol and low-density lipoprotein cholesterol amongst other markers for 

atherosclerosis. The accelerated atherosclerosis in these mice was halted by 

treatment with NaHS. This highlights the importance of the endogenous 

CSE/H2S pathway in controlling atherosclerosis (Mani et al., 2013). Other than 

its role in the cardiovascular system, CSE-/- mice reportedly display abnormal 

hindlimb clasping and clenching similar to that of mouse models of Huntington's 

disease. Subsequent exploration into the disease model revealed that depletion 

of CSE in Huntington's disease tissues could have mediated the disease 

pathophysiology (Paul et al., 2014).  

As compared to the CSE-/- mouse, the CBS-/- mouse model has been 

less extensively studied. CBS deficiency is a cause of homocystinuria (HCU), 

characterized by very high levels of blood plasma homocysteine. In patients 

with CBS deficiency, symptoms such as skeletal abnormalities, mental 

retardation and thrombosis are commonplace (Sachdev, 2005; Yap et al., 2000). 

90% of CBS-/- mice fed with a standard laboratory diet died before 1 month of 

age due to severe hepatopathy and growth retardation (Hamelet et al., 2007; 

Watanabe et al., 1995). In CBS-/- mice fed with standard A04 rodent chow 

enriched in choline chloride which is vital for their survival, these mice displayed 

lung fibrosis and air space enlargement (Hamelet et al., 2007). Due to the semi-

lethal phenotype, studying the effects of CBS deficiency in health and disease 

in adult mice, has been considered generally impractical for many years. 

However, an experimental substitute for CBS-/- mice has been recently reported. 

This mouse model of classical homocystinuria has the mouse cbs gene 

inactivated and has low-level expression of the human cbs transgene under the 

promoter of the human cbs promoter. Such mice exhibit mild hepatopathy but 
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do not incur neonatal death with approximately 90% of the mice living for at 

least 6 months (Maclean et al., 2010). Such a model may be a useful alternative 

to the previous CBS-/- mouse model to study the longer term effects of CBS 

deficiency into adulthood. 

Lastly, only lately has it been possible to produce 3-MST-/- mice 

(Nagahara, 2013). This mouse model was subsequently instrumental in the 

discovery that 3-MST is required for the production of hydrogen polysulfides 

(H2Sn) and H2S from 3-mercaptopyruvate in the brain of wild-type mice (Kimura 

et al., 2015). 
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1.1.7 Recent advances in H2S therapeutics 

Understanding the importance of H2S in inflammatory conditions has led 

to an increased effort in discovering H2S donors with greater potency. 

Specifically, development of H2S releasing hybrids and H2S donors that can 

preferentially target certain cell types or organelles have gained traction in 

recent years.  

Non-steroidal anti-inflammatory drugs (NSAIDs) are an effective 

mainstay in treating the symptoms of inflammatory conditions. However, a 

harmful side effect stemming from the use of NSAIDs is gastric mucosal 

bleeding.  By combining the anti-inflammatory effect of both NSAIDs and H2S, 

NSAID-H2S releasing hybrids have been formulated. This is achieved by 

synthesizing NSAIDs with an anethole dithiolethione (ADT)-OH, a H2S 

releasing moiety. Stemming from this concept, the H2S-releasing derivative of 

the NSAID diclofenac (S-diclofenac) was synthesized and found to inhibit 

lipopolysaccharide (LPS)-induced inflammation in rats with significantly 

reduced gastric toxicity as compared to diclofenac (Li et al., 2007). In the model 

of carrageenan-induced hindpaw oedema in rats, S-diclofenac displayed 

greater potency in reducing inflammation and likewise caused markedly 

reduced gastrointestinal damage as compared to diclofenac (Sidhapuriwala et 

al., 2007; Wallace et al., 2007). Reduced gastrointestinal toxicity was also seen 

in another H2S-releasing hybrid, S-aspirin (Sparatore et al., 2009), while S-

naproxen (ATB-346) hastened the healing of gastric ulcers in rats, and was 

found to be more effective than naproxen in downregulating leukocyte 

infiltration and cyclooxygenase-2 (COX-2) activity in these rats (Wallace et al., 

2010). In rats with ligature-induced periodontitis. ATB-346 inhibited pro-



17 

 

inflammatory cytokine levels and alveolar bone loss in these mice, while 

preventing gastric mucosa damage (Herrera et al., 2015). Such examples 

highlight the possibility of combining the therapeutic potential of H2S with 

present day drugs used to treat inflammatory conditions.  

It was previously established that H2S donors reduce mitochondria-

induced cell death response and maintain mitochondrial integrity (Elrod et al., 

2007; Módis et al., 2013; Suzuki et al., 2011). With this in mind, a mitochondrial-

targeted H2S donor, AP39, was designed to provide a more specific and 

targeted response intracellularly. When used in nanomolar concentrations, 

AP39 was shown to increase H2S levels within the mitochondria of endothelial 

cells, conferred cytoprotective effect and attenuated the loss of cellular 

bioenergetics in these cells when subjected to oxidative stress (Szczesny et al., 

2014). Following from this study, others have demonstrated the efficacy of 

AP39 in animal models. AP39 improved the neurological outcome after cardiac 

arrest in mice (Ikeda et al., 2015), displayed protective effects against renal 

ischemia-reperfusion injury in rats (Ahmad et al., 2016b), preserved 

mitochondrial function in APP/PS1 mice and neurons, thereby protecting 

against Alzheimer’s disease (Zhao et al., 2016), and also showed protective 

effects in a mouse model of burn injury (Ahmad and Szabo, 2016). 

There has been much evidence documenting the efficacy of H2S donors 

used in basic research in cells and animals over the years. However, evidence 

for the safety of such donors in humans remain scarce and the push towards 

the use of H2S donors for therapy in humans still remains a challenge. One 

such H2S donor that has made its way into clinical trials is a H2S prodrug, 

SG1002. In preclinical studies, SG1002 protected against pressure overload -
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induced heart failure by reducing ventricular remodelling and dysfunction in 

mice (Kondo et al., 2013). The H2S prodrug also attenuated high fat diet-

induced cardiac dysfunction in mice (Barr et al., 2015). Subsequently when 

SG1002 underwent Phase I clinical trials, it was reported that oral ingestion of 

SG1002 was safe and well tolerated by both healthy patients and patients with 

heart failure. SG1002 also increased blood H2S levels and circulating NO 

bioavailability (Polhemus et al., 2015). Given the promising findings gleaned 

from the Phase I trial, this novel H2S donor warrants further study in a larger 

subsequent clinical trial.  
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1.2 Inflammation 

1.2.1 Role of macrophages and cytokines in inflammation – An overview 

Inflammation is a host defence mechanism whereby tissues of the body 

respond to an injury or invading foreign agent with the aim of repairing structure 

and function. In this process, the immune system seeks to eradicate the 

invading foreign agent in order to achieve tissue homeostasis. This is 

characterized by a cascade of signals leading to the immediate recruitment of 

innate immune cells such as neutrophils (Kolaczkowska and Kubes, 2013) and 

macrophages (Mosser and Edwards, 2008)  to the site of injury. Upon 

recruitment to the site of injury and, acting in concert with neutrophi ls, 

macrophages serve as a first line of defence against viral, parasitic and 

bacterial infections. The main role of the neutrophil is to eliminate the foreign 

body by phagocytosis and kill it by means of reactive oxygen species (ROS) or 

antibacterial proteins inside the phagosome (Kolaczkowska and Kubes, 2013). 

While macrophages similarly eliminate pathogens by phagocytosis followed by 

lysosomal inactivation, macrophages also secrete mediators that have 

antimicrobial effects or immune regulatory functions that can initiate cell to cell 

communication. 

 Macrophages have long been known to be found in all tissues in 

mammals (Okabe and Medzhitov, 2016), and may be derived from circulating 

monocytes or embryonic progenitors that are present before birth in developing 

tissues, such as the yolk sac and fetal liver (Ginhoux and Guilliams, 2016). 

Depending on their activation status, macrophages serve different functions. 

On one extreme, classically activated macrophages (M1 macrophages) occurs 

when naïve macrophages detect stimuli like LPS, interferon-γ (INF-γ) and 



20 

 

tumor-necrosis factor (TNF). On the other hand, polarization of naïve 

macrophages to the alternatively activated macrophages (M2 macrophages) 

occur in response to interleukin-4 (IL-4), transforming growth factor β (TGF-β) 

and IL-13 (Weisser et al., 2013).  

 While the role of M2 macrophages involve angiogenesis, debris 

scavenging and tissue remodelling – activities associated with the resolution of 

inflammation, the M1 macrophage release several pro-inflammatory cytokines 

such as interferon-γ (IFNγ), tumour-necrosis factor (TNF), IL-6, IL-1β, IL-18, IL-

23, anti-microbial effectors like nitric oxide (NO), prostaglandin E2 (PGE2), and 

chemokines such as CCL15, CCL20, CXCL9, CXCL10 and CXCL11 that 

induce chemotaxis of neighbouring immune cells to the site of infection (Mosser 

and Edwards, 2008). These pro-inflammatory cytokines are proteins which 

cause cell death of neighbouring cells and trigger the activation of other immune 

cells. Together, these inflammatory mediators secreted from classically 

activated macrophages initiate the inflammatory cascade.  
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1.2.2  Molecular pathways involved in inflammatory mediator production 

and release from macrophages 

 Macrophages sense and determine what are considered to be danger 

signals via pattern recognition receptors (PRR) such as toll-like receptors (TLRs) 

that are present on both the cell surface and intracellularly. Pathogen-

associated molecular patterns (PAMPs) and damage-associated molecular 

patterns (DAMPs) bind to TLRs eliciting an acute inflammatory molecular 

signaling cascade (Medzhitov and Horng, 2009). LPS, which is found on the 

outer membrane of Gram-negative bacteria, is a PAMP which is very commonly 

used to induce inflammation and a strong immune response both in vitro and in 

vivo experimentally. Once LPS binds to TLR4, the intracellular domain of TLR4 

interacts with the adaptor protein myeloid differentiation primary response gene 

88 (MyD88) and TIR-domain-containing adaptor-inducing interferon-β (TRIF) 

separately. MyD88 recruits TNF receptor associated factor 6 (TRAF6) and 

members of the interleukin-1 receptor-associated kinase (IRAK) family leading 

to the oligomerization and self-ubiquitination of TRAF6. MyD88 also recruits 

TAB2 and TAB3, which, in turn, activates TGF-β activated kinase 1 (TAK1). 

TAK1 phosphorylates IκB kinase β (IKKβ) to activate the IKK complex, resulting 

in the degradation of IκBα and thereby causing activation of nuclear factor 

kappa-light-chain-enhancer of activated B cells (NFκB), which is defined as 

translocation of the p50-RelA (or p50-p65) dimer into the nucleus to bind to 

DNA and elicit transcription of pro-inflammatory cytokines (Vallabhapurapu and 

Karin, 2009). Simultaneously, TAK1 activates the mitogen-activated protein 

kinase (MAPK) cascades leading to activation of transcription factor activator 

protein 1 (AP-1) which also binds to the DNA in the nucleus and triggers 
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production of cytokine genes (Takeuchi and Akira, 2010). This is referred to as 

the "classical or canonical NFκB pathway". In the non-canonical pathway, the 

protein p100 undergoes processing, thereby allowing the p52-RelB dimer to 

translocate into the nucleus to initiate the transcription of downstream genes. 

This pathway regulates biological functions such as lymphoid organogenesis, 

B-cell survival and maturation and dendritic cell activation. Unlike the canonical 

pathway which is activated by TLRs, the activation of the non-canonical 

pathway is triggered by a subset of TNF receptors such as B-cell activating 

factor receptor (BAFFR), CD40, lymphotoxin-β receptor (LTβR) and receptor 

activator of nuclear factor κ B (RANK) (Sun, 2011).  

 Cytokines that are transcribed upon activation of the NFκB pathway 

include TNFα (Collart et al., 1990; Shakhov et al., 1990), IL-6 (Libermann and 

Baltimore, 1990) and IL-1β (Hiscott et al., 1993). The gene regulation of COX-

2 and inducible nitric oxide synthase (iNOS), enzymes which synthesise PGE2 

and NO respectively, are also known to be upregulated by activation of the 

NFκB pathway (Tak and Firestein, 2001). Activation of the NFκB pathway can 

also be triggered by the binding of TNFα and IL-1β to TNF and IL-1 receptors 

respectively, which are present on the cell surface (Lawrence, 2009). In addition, 

expression of IL-6 gene is also induced in response to TNFα and IL-1β 

(Libermann and Baltimore, 1990). Hence, the molecular control of NFκB and 

cytokine expression is complex since auto-regulatory loops exists. 

 The control of the production of inflammatory cytokines, via NFκB 

activation or otherwise, is crucial since aberrant inflammatory cytokine 

signalling can cause uncontrolled inflammation and cell death, contributing to 

inflammatory diseases such as rheumatoid arthritis, atherosclerosis, 
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inflammatory bowel disease and systemic inflammatory response syndrome 

among many other conditions (Tak and Firestein, 2001).   

 

 
 

 
 

Figure 1.2. Signaling pathway of inflammatory cytokine production by 
macrophages. 

Binding of LPS to TLR4 activates a signalling cascade that results in the 
downstream phosphorylation of IκBα. This eventually leads to its degradation, 

which frees the p50-RelA (NFκB) dimer, which subsequently translocates into 
the nucleus to initiate the transcription of pro-inflammatory cytokines.  

 

Adapted from (Medzhitov and Horng, 2009)  
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1.2.3 Molecular targets of H2S in inflammatory pathways 

 The interaction of H2S with membrane ion channels accounts for many 

of the cellular effects of H2S. The first reported molecular target for H2S was the 

KATP channel, activation of which causes vasorelaxation (Zhao et al., 2001). 

Voltage-dependent calcium channels (VDCCs) are also targets for H2S in 

several cell types, albeit differing in effect in different cell types. For example, 

H2S inhibits L-type VDCC currents in rat cardiomyocytes (Zhang et al., 2012) 

and mouse pancreatic β-cells (Tang et al., 2013) whereas in neurons, the 

Cav3.2 T-type VDCC is conversely activated by both exogenous and 

endogenous H2S (Maeda et al., 2009; Sekiguchi et al., 2014). 

With respect to intracellular inflammatory pathways, H2S decreases the 

activation of several transcription factors including NFκB (Oh et al., 2006) and 

STAT3 (Li et al., 2008), which control the synthesis of a plethora of downstream 

pro-inflammatory cytokines and chemokines which contribute to inflammation. 

NaHS inhibits IκBα degradation and thus prevents NFκB from translocating into 

the nucleus (Pan et al., 2011). The slow-releasing H2S donor, GYY4137, also 

reduced NFκB activation in LPS-stimulated mouse macrophages and 

Coxsackie virus B3-infected rat cardiomyocytes (Whiteman et al., 2010; Wu et 

al., 2015). In another study in macrophages in vitro, LPS upregulated the 

expression of CSE and subsequently H2S formation through the toll-like 

receptor-4/p38 and NFκB pathways (Zheng et al., 2013). 

 Apart from transcription factors, H2S also affects kinases including those 

of the p38 MAPK pathway. H2S attenuates LPS-induced p38 MAPK 

phosphorylation in BV-2 microgial cells resulting in an anti-inflammatory effect 

in LPS-stimulated microgial and astrocytes (Hu et al., 2007). An anti-apoptotic 
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effect of H2S in human polymorphonuclear leukocytes has also been 

associated with inhibition of p38 MAPK (Rinaldi et al., 2006). 

 Similar to the NO-mediated, S-nitrosylation, H2S can trigger S-

sulfhydration of cellular proteins (Mustafa et al., 2009). This may be a natural 

mechanism by which H2S alters protein and enzyme functions within the cell.  

In this process, sulfur from H2S is added to the thiol groups of cysteine residues 

to yield a hydropersulfide (-S-SH) moiety (Mustafa et al., 2011). Proteins with 

the –S-SH group exhibit increased enzyme activity when compared with base 

cysteines with sulfur in the thiol state. This enhanced activity may translate to 

an altered state of biological activity. S-sulfhydration affects numerous proteins. 

The earliest proteins noted to be sulfhydrated by H2S were glyceraldehyde 3-

phosphate dehydrogenase and β-actin (Mustafa et al., 2009). Since then, many 

other proteins have been found to be sulfhydrated and their functions 

modulated in this way (Table 1).  

 To date, three common methods of detecting S-sulfhydration have been 

used. These are the modified biotin-switch assay and the maleimide assay 

(Mustafa et al., 2009), as depicted in Figure 1.2. In the modified biotin-switch 

assay, methyl methanethiosulfonate (MMTS) is used to bind and block free 

thiols (-SH) and not persulfides (-S-SH). The unreacted persulfides are then 

conjugated to biotin-HDPD before being immunoprecipitated by streptavidin-

coupled beads, which can then be detected and quantified by immunoblotting 

with an antibody against the protein of interest (Paul and Snyder, 2015). 

However, the chemical basis for this method has been questioned (Zhang et 

al., 2014a) as a study has shown that both thiols and persulfides have similar 

reactivity towards MMTS (Pan and Carroll, 2013). In this study, the authors 
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reacted MMTS with glutathione persulfide (GSSH) and papain persulfide before 

analysing the reaction products by mass spectrometry. They detected an 

increase in the molecular mass of the byproduct that could either be due to 

MMTS modification (-S-SCH3) or oxidation of thiols and persulfides to 

thiosulfate (-SO3-). As the difference in molecular mass between the -S-SCH3 

and -SO3H group are almost non-distinguishable (difference of only about 2Da), 

the authors synthesized an analogue of MMTS, S-4-bromobenzyl 

methanethiosulfonate (BBMTS), which would produce a larger mass change  

resulting from the thio-BBMTS adduct (+200Da). The reactivity of BBMTS was 

tested and found to be comparable to that of MMTS. Repeating the reaction 

between protein persulfides (GSH persulfide, papain persulfde and glutathione 

peroxidase 3 persulfide) with BBMTS, the authors observed strong mass 

spectrometry peaks corresponding to persulfide derivatives and concluded that 

protein persulfides reacts with MMTS and BBMTS reagents.  

 In the maleimide assay, maleimide which binds selectively with thiol 

groups irrespective of sulfhydration status of the protein of interest, is used. In 

this method, the protein of interest is isolated by means of immunoprecipitation. 

Thereafter, treatment of the immunoprecipitated protein with maleimide 

conjugated with a fluorescent dye enables the protein to be labelled at all 

sulfhydryl groups. An advantage of using maleimide is that nitrosylated or 

oxidized groups would not be detected. Next, treatment of the fluorescent-

maleimide labelled protein with dithiothreitol (DTT) would cause the cleaving of 

disulfide bonds from sulfhydrated proteins, but not unmodified ones. 

Subsequent separation of the fluorescently labelled protein using SDS-PAGE 

followed by the quantitation of the fluorescent intensity before and after DTT 
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treatment using an image analyser would indicate the extent of sulfhydration of 

the protein (Paul and Snyder, 2015).  

 The detection of S-sulfhydration in proteins by the red maleimide assay 

requires the use of the reducing agent DTT. However, there is a lack of clarity 

on the unspecificity of DTT, such that it can also reduce disulfide bonds in 

addition to persulfide bonds (Zhang et al., 2014a). As such, a third method 

known as the tag-switch method was developed as an alternative for the 

detection of S-sulfhydration in proteins. In this method, methylsulfonyl 

benzothiazole (MSBT) is first used to block and form adducts on all free thiols 

(-SH) and persulfides (-SSH) in the protein of interest. As these two types of 

adducts have different reactivity towards nucleophiles, the adduct formed from 

thiols (-S-MBST) would be unreactive. The adduct formed from the persulfide 

(-S-S-MBST) can instead react with a cyanoacetate-based CN-biotin 

compound, hence ‘switching the tag’ from the persulfide adduct (-S-S-MBST) 

to the biotin tag (-S-CN-biotin). With the biotin tag, the presence of persulfides 

on the protein of interest can be detected by streptavidin tagged with a 

fluorophore (Park et al., 2015). 
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Table 1.1 Proteins modified by S-sulfhydration 

 

Modified Proteins References 

Glyceraldehyde 3-phosphate dehydrogenase (Mustafa et al., 2009) 

β-Actin (Mustafa et al., 2009) 

Protein Tyrosine Phosphatase 1B (PTP1B) (Krishnan et al., 2011) 

Kir6.1 subunit of ATP-sensitive potassium channel (Mustafa et al., 2011) 

p65 subunit of NFκB (Sen et al., 2012) 

Parkin (Vandiver et al., 2013) 

Keap1 (Yang et al., 2013) 

MEK1 (Zhao et al., 2014) 

p66Shc (Xie et al., 2014) 

TRP channels (Liu et al., 2014) 

Pyruvate carboxylase (Ju et al., 2015) 

α subunit (ATP5A1) of ATP synthase (Modis et al., 2016) 

Transcription factor Specificity Protein 1 (SP1) (Saha et al., 2016) 

 

Adapted from (Paul and Snyder, 2015) 
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Figure 1.3 Current strategies for detecting protein sulfhydration.  

Illustration depicting a protein with disulfide bonds (S-S), unmodified cysteine 
(-SH) and hydropersulfide moeity (-S-SH), treated with methyl 
methanethiosulfonate (MMTS), red maleimide (-Mal) and dithiothreitol (DTT). 

The formula for quantitating sulfhydrated proteins using the maleimide assay is 
shown in the lower panel. 
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1.3 NLRP3 inflammasome 

1.3.1 NLRP3 inflammasome in health and disease 

 Although the transcription and translation of IL-1β and IL-18 are 

downstream of NFκB activation, both IL-1β and IL-18 within the cell exists as 

non-secreted pro-forms. For them to be proteolytically cleaved and activated as 

the secreted form, caspase-1, which is produced in cells as a catalytically 

inactive zymogen is required. Secreted IL-1β and IL-18 are potent pyrogens 

which, when released systemically, initiate numerous downstream cascades 

and affect many other immune cells. IL-1β generates systemic and local 

responses to infection and injury by causing fever via COX-2 enzyme induction. 

IL-1β also activates lymphocytes and promotes leukocyte infiltration at sites of 

infection and injury. Dysregulation of IL-1β genetics can be found in patients 

with periodic fever syndrome or in cryopyrin associated periodic syndrome 

(CAPS), an autoinflammatory syndrome (Sims and Smith, 2010). IL-18 also has 

wide systemic effects by inducing IFN-γ production which then increases 

natural killer cells, CD8+ T cell and macrophage activity, as well as upregulating 

iNOS enzyme and IgG2 production from plasma B cells (Dinarello, 2009; Sims 

and Smith, 2010). Due to the widespread systemic effects of IL-1β and IL-18, 

regulation of its release need to be tightly controlled.  

 For IL-1β and IL-18 to be released in their active secretable forms, 

proteolytic processing by the inflammasome complex is required. The 

inflammasomes are multimeric protein complexes that comprise an 

inflammasome sensor molecule, an adaptor protein encoded by the PYD and 

CARD domain containing (PYCARD) gene which is common to all types of 

inflammasomes and is also known as the apoptosis-associated speck-like 
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protein with a caspase-recruitment domain protein (ASC), and pro caspase-1, 

which is cleaved from its immature (pro-) form to a catalytic active form 

(p20/p10) also upon the formation of the inflammasome (Martinon et al., 2002). 

Co-localization of these 3 components results in the triggering of the 

inflammasome complex and subsequent activation of caspase-1.  

 The activation of the NLRP3 inflammasome requires two signals (Fig 

1.3). The first signal, known as the priming signal, is mediated by NFκB which, 

through stimulation of TLRs, pro-IL-1β, pro-IL-18 and the nucleotide-binding 

oligomerization domain (NOD)-like receptor (NLR) sensor molecule of the 

inflammasome, are transcribed and subsequently translated. The priming 

signal also induces the deubiquitination of NLRP3 by the deubiquitinating 

enzyme BRCC3, which is required for NLRP3 inflammasome activation (Guo 

et al., 2015; Py et al., 2013) However, it is the second signal which ultimately 

switches on the inflammasome, and this is triggered by a plethora of 

substances or agonists that are present during tissue damage or an infection 

(summarised in Table 1.2) with different substances activating specific 

nucleotide-binding oligomerization domain receptors or in short, NLR sensor 

molecules. These include the NLRP1 (NOD-, Leucine rich repeats (LRR)-, and 

pyrin domain-containing 1), NLPR3, NLRP6, NLRP7, NLRP12 or NLRC4 which 

is also known as IPAF. Two other inflammasomes that do not contain NLR but 

instead contain the pyrin and HIN domain-containing protein (PYHIN) include 

absent in melanoma 2 (AIM2) and IFNγ-inducible protein 16 (IFI16) (Latz et al., 

2013).      

 The best characterized inflammasome is the NLRP3 inflammasome. 

This is activated by a wide range of stimuli and is implicated in an array of 
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diseases including bacterial infection (Mariathasan et al., 2006), gout (Martinon 

et al., 2006), atherosclerosis (Duewell et al., 2010), Alzheimer’s disease 

(Heneka et al., 2013), asbestosis (Hillegass et al., 2013) and diabetes (Jourdan 

et al., 2013).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 Mechanisms of NLRP3 inflammasome activation  

NLRP3 inflammasome activation requires two signals. The first priming signal 
involves an NFκB activating signal triggered by stimuli such as 
lipopolysaccharide (LPS) activating Toll-like receptor 4 (TLR4), leading to the 

transcription and translation of NLRP3, pro IL-1β and pro IL-18. The priming 
signal also induces deubiquitination of NLRP3 by BRCC3. The second 

activating signal is initiated by NLRP3 agonists such as extracellular ATP and 
the pore-forming toxin, nigericin. These agonists provide a second signal in the 
form of mitochondrial reactive oxygen species (mtROS), mitochondrial DNA 

(mtDNA) in the cytoplasm and K+ efflux. Activation of the NLRP3 inflammasome 
leads to maturation of pro caspase-1 into active caspase-1. Active casase-1 

then cleaves pro IL-1β and pro IL-18, thereby releasing IL-1β and IL-18 out of 
the cell. The NLRP3 inflammasome comprises of the NLRP3, ASC and pro 
caspase-1 proteins. LRR, leucine-rich repeat; NACHT, nucleotide-binding and 

oligomerization domain; PYD, pyrin; CARD, caspase recruitment domain.  
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Table 1.2 Regulatory receptors of the inflammasomes and their agonists 

Agonist 

NOD-like 
Receptor 
(NLR) / 

PYHIN 

Disease/Condition/Functions References 

Muramyldipeptide 
(MDP) 

NLRP1 Bacterial infections (Faustin et al., 
2007) 

Anthrax Toxin NLRP1 Bacillus anthracis infections (Levinsohn et 

al., 2012) 

ATP NLRP3 Extracellular ATP in cancer, 
graft-versus-host disease, 

hypersensitivity, sterile 
inflammation 

 

Extracellular ATP from 

apoptotic and necrotic cells 
as a 'danger signal' 

(Mariathasan 
et al., 2006) 

Nigericin  NLRP3 Microbial toxin from  
Streptomyces hygroscopicus 

(Mariathasan 
et al., 2006) 

β Amyloid NLRP3 Alzheimer's disease (Heneka et al., 

2013) 

Asbestos NLRP3 Abestosis (Hillegass et 
al., 2013) 

Alum NLRP3 Aluminium adjuvants (Franchi and 

Núñez, 2008) 

Cholesterol NLRP3 Cardiovascular disease (Duewell et 
al., 2010) 

Silica NLRP3 Silicosis (Peeters et al., 

2013) 

Monosodium 
Urate Crystals 

NLRP3 Gout (Martinon et 
al., 2006) 

Microbial 

metabolites 

NLRP6 Maintenance of bacterial 

homeostasis in the gut 

(Levy et al., 

2017) 

Microbial 
acylated 
lipopeptides 

NLRP7 Mycoplasma spp. infections (Khare et al., 
2012) 

Yersinia pestis NLRP12 Bubonic plagues (Vladimer et 
al., 2012) 

Salmonella or 
Pseudomonas 

NLRC4 / 
IPAF 

Bacterial infections (Franchi et al., 
2012) 
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Double stranded 
DNA (dsDNA) 

AIM2 Virus infection, cytoplasmic 
DNA  

(Fernandes-
Alnemri et al., 

2009) 

Herpesvirus 
(KSHV)  

IFI16 Kaposi sarcoma (Kerur et al., 
2011) 

 

1.3.2 Pyroptosis 

 Besides converting IL-1β and IL-18 from the pro-form to the active 

secreted form, the inflammasome has also been implicated in an inflammatory 

and programmed form of cell death known as pyroptosis (Fernandes-Alnemri 

et al., 2007; Sharma and Kanneganti, 2016). During pyroptosis, the cell 

membrane ruptures and release intracellular pro-inflammatory contents into the 

microenvironment (Bergsbaken and Cookson, 2007; Chen et al., 1996). This is 

in contrast to apoptosis, in which the cell membrane remains intact during 

blebbing, thus resulting in a non-inflammatory form of cell death. Active 

caspase-1 is central to initiating pyroptosis as it forms ion-permeable pores in 

the plasma membrane (Fink and Cookson, 2006). Although caspase-1 

activation is linked to the maturation of IL-1β and IL-18, it is still not clear 

whether all cells in which the inflammasome is activated, undergo pyroptotic 

cell death (Duprez et al., 2009). During pyroptosis, a pyroptosome is formed. 

This occurs when there is oligomerization of the adaptor protein ASC to form a 

supramolecular assembly of ASC which recruits and activates pro-caspase-1 

(Fernandes-Alnemri and Alnemri, 2008; Fernandes-Alnemri et al., 2007). This 

can be visualized as an ASC speck, one per cell. 

  Beyond pyroptosis, it was reported that the NLRP3 inflammasome, upon 

activation of caspase-1, oligomerizes and is released from macrophages 

(Baroja-Mazo et al., 2014). These speck-like particles trigger caspase-1 
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activation extracellularly and intracellularly during phagocytosis by 

macrophages in the vicinity. The presence of such ASC particles in the serum 

of patients with cryopyrin-associated periodic syndromes (CAPS) further 

supports the claim that pyroptosis perpetuates inflammation beyond 

inflammasome-mediated secretion of IL-1β and IL-18. Another study (Franklin 

et al., 2014) showed that inflammasome activation triggered ASC 

polymerization to form ASC specks. However, these specks, when released 

after pyroptotic cell death, could also trigger further maturation of IL-1β 

extracellularly. Uptake of extracellular ASC specks by macrophages 

augmented the inflammation by inducing lysosomal damage, nucleation of 

soluble ASC and activation of IL-1β in recipient cells. These findings implicate 

the ASC speck as, not only an inflammatory mechanism found intracellularly, 

but also, potentially as a form of cell-to-cell communication.   

 In light of these findings, the ASC speck is likely to be an inflammatory 

signal causing pyroptosis and initiating IL-1β secretion from the host 

macrophage as well as the recipient macrophage when it is released from the 

cell. However, it remains unclear whether the previously described 

pyroptosome is indeed the inflammasome or whether the two entities are 

distinct and independent of each other. 

  



36 

 

1.3.3 Molecular mechanisms governing NLRP3 inflammasome activation  

NLRP3 is the best characterized inflammasome sensor protein. Many 

molecular mechanisms governing its activation have been proposed to date. 

Despite the numerous studies performed, the exact role of each suggested 

mechanism remains inconclusive, and perhaps multiple mechanisms may be 

concurrently activated leading to caspase-1 maturation and subsequently, IL-

1β and IL-18 secretion. Moreover, determining which mechanism precedes or 

acts independently of the other has proved to be a great challenge and is still a 

matter of contention. While there is consensus that activation of the NLRP3 

inflammasome requires two separate signals, reports in recent years have 

highlighted the role of post-transcriptional modification of both signal 1 and 2 to 

be pivotal events in NLRP3 inflammasome activation (Ghonime et al., 2014; 

Juliana et al., 2012; Py et al., 2013).  

Two very commonly used inducers of the NLRP3 inflammasome are 

adenosine triphosphate (ATP) and the bacterial toxin, nigericin. Extracellular 

ATP, which physiologically is derived from neighbouring injured cells, binds to 

the purinoceptor P2X7. Upon binding of ATP, the cation channel opens leading 

to cell depolarization. Nigericin, a potassium ionophore activates NLRP3 by a 

mechanism involving pannexin-1 dependent potassium (K+) efflux 

(Mariathasan et al., 2006). Lysosomal membrane damage caused by 

phagocytosis of particulate matter such as amyloid β, silica crystals and 

aluminium salts, leading to the release of cathepsin B into the cytosol has also 

been linked to NLRP3 inflammasome activation (Halle et al., 2008; Hornung et 

al., 2008). Extracellular calcium ions (Ca2+) have previously been shown to be 

an NLRP3 activator (Lee et al., 2012). However, a recent study provided 
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contrary evidence to this, showing that the Ca2+ influx which occurs when the 

NLRP3 inflammasome is activated occurs downstream of the caspase-1 

activation cascade. Moreover, these authors found that the increased cytosolic 

Ca2+ induced by Ca2+ ionophore was not a sufficient signal for NLRP3 

inflammasome (Katsnelson et al., 2015). In trying to find a model to unify the 

seemingly different stimuli governing NLRP3 inflammasome activation, it was 

proposed that K+ efflux is the common trigger governing NLRP3 inflammasome 

stemming from ATP, nigericin, cathepsin B and Ca2+ signaling (Muñoz-Plani llo 

et al., 2013), re-affirming similar findings described in an earlier study done in 

1994 (Perregaux and Gabel, 1994). 

The involvement of mitochondria in NLRP3 inflammasome activation 

has also received much attention. In a landmark paper, the role of the 

mitochondria in NLRP3 inflammasome activation was first established (Zhou et 

al., 2011). Thereafter, different groups have advanced the idea that reactive 

oxygen species (ROS) derived from mitochondrial perturbations (mtROS) or 

otherwise due to various ‘signal 2’ stimuli lead to the activation of the NLRP3 

inflammasome. mtROS was shown to induce NLRP3-dependent lysosomal 

damage leading to inflammasome activation (Heid et al., 2013). The plasma 

membrane cation channel TRPM2 and the tripartite-motif protein 30 (TRIM30) 

have also been found to regulate NLRP3 inflammasome activation by 

modulating ROS production (Hu et al., 2010; Zhong et al., 2013). More recently, 

resveratrol was shown to suppress mitochondrial damage and thereby inhibited 

the activation of the NLRP3 inflammasome (Chang et al., 2015). NFκB, while 

being a key activator for inflammation, impairs inflammation by restricting 
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inflammasome activation via the elimination of damaged mitochondria, 

specifically by the NFκB-p62-mitophagy pathway (Zhong et al., 2016).  

In contrast, some have suggested that ROS production in the process of 

NLRP3-triggered inflammation falls upstream of NLRP3 induction, and not 

during activation (Bauernfeind et al., 2011; Won et al., 2015). Others have also 

failed to replicate experiments involving the activation of the NLRP3 

inflammasome by mtROS (Muñoz-Planillo et al., 2013; Won et al., 2015) as 

shown by Zhou et al. (Zhou et al., 2011), hence casting doubt on the veracity 

of previously published data.  

Lastly, mitochondrial DNA (mtDNA) linked to disrupted mitochondria 

integrity have also been implicated in the activation of the NLRP3 

inflammasome. The depletion of autophagic proteins lead to the build-up of 

dysfunctional mitochondria and cytosolic mtDNA in the cytoplasm. It has been 

reported that the cytoplasmic accumulation of mtDNA depended on NLRP3 

inflammasome and mtROS (Nakahira et al., 2011). In another study, oxidized 

mtDNA released from bone marrow derived macrophages (BMDMs) stimulated 

with LPS and ATP bound to and localized with NLRP3, thereby activating the 

NLRP3 inflammasome. Moreover, mtDNA deficient macrophages in this study 

did not secrete IL-1β despite being stimulated with NLRP3 inflammasome 

activators, strongly suggesting that oxidized mtDNA activates the NLRP3 

inflammasome (Shimada et al., 2012).  

 The molecular mechanisms governing NLRP3 inflammasome activation 

are complex. In the last decade, various studies have implicated K+ efflux, Ca2+ 

influx, mtROS and mtDNA as molecular events behind the ‘signal 2’ ATP or 

nigericin stimulus. However, conflicting opinions as to whether some or all of 
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these mechanisms are essential for inflammasome activation still exists. Hence, 

successfully integrating all these signals together to achieve a unifying model 

should be the next goal for a clearer understanding of how the NLRP3 

inflammasome is activated.  
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1.3.4  Effects of gasotransmitters on the NLRP3 inflammasome 

 Nitric oxide (NO), which is produced by the enzyme inducible nitric oxide 

synthase (iNOS), was the first gasotransmitter reported to inhibit NLRP3 

inflammasome activation (Hernandez-Cuellar et al., 2012). The authors 

observed S-nitrosylation of the NLRP3 protein in macrophages treated with the 

NO donor S-Nitroso-N-Acetyl-D,L-Penicillamine (SNAP), and hence suggested 

that this post-translational modification may have accounted for the observed 

inhibition of NLRP3 inflammasome activation. When considering the role of NO 

in affecting mtROS production induced by LPS and ATP, the authors found that 

SNAP only modestly reduced mtROS production. Thus, they effectively 

dismissed the reduction in mtROS as the mechanism of action (Hernandez-

Cuellar et al., 2012).  In a later study, the effects of NO in controlling NLPR3 

inflammasome activation in a mouse model of tuberculosis was described.  

These authors reported that NO inhibited the assembly of the NLRP3 

inflammasome due to thiol nitrosylation of NLRP3 (Mishra et al., 2013). 

Subsequently, NO was shown to inhibit NLRP3 activation in macrophages both 

in vitro and in a mouse model of LPS-induced septic shock (Mao et al., 2013). 

While the involvement of mtROS presented in this work contrasts with a 

previous study (Hernandez-Cuellar et al., 2012), it is important to note that the 

conclusions derived in (Hernandez-Cuellar et al., 2012) was based on the 

effects of exogenous NO on NLRP3 inflammasome activation whereas the 

conclusions in (Mao et al., 2013) derive from the study of endogenous NO. 

 The second and final gasotransmitter reported to have an antagonistic 

effect on NLRP3 inflammasome activation is carbon monoxide (CO). CO, which 

is produced endogenously as a byproduct of heme oxygenase-1 (HO-1) 
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catalysed heme catabolism inhibits mitochondrial ROS production, reduced 

mitochondrial membrane potential and translocation of mitochondrial DNA to 

the cytoplasm in macrophages stimulated with LPS and ATP. This was 

concurrent with the inhibition of NLRP3 inflammasome mediated caspase-1 

activation, and IL-1β and IL-18 secretion (Jung et al., 2015) .  
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1.4  Aims of Current Research 

It is becoming increasingly clear that endogenous H2S plays multiple 

roles in the inflammatory process. However, whether exogenous H2S 

generated by either fast or slow H2S donor drugs, exhibits anti-inflammatory 

activity and can thence be used therapeutically remains unclear. Numerous 

factors likely determine the overall effect of H2S donors in inflammation. These 

include the dose and timing of administration of the donor as well as the choice 

of H2S donor. Thus, a ‘fast releasing donor’ will lead to large but transient 

increases in concentrations of H2S within the body whilst a ‘slow-releasing 

donor’ will expose cells to much lower concentrations of the gas over a more 

prolonged time period.  Considerations such as these will likely be critical in 

determining whether an H2S donor exacerbates or dampens inflammation.  

 Classically activated macrophages play a key role in initiating the 

inflammatory cascade via secretion of a multitude of pro-inflammatory 

mediators. As such, the initial aim of the present research was to determine 

whether H2S, generated by a ‘fast releasing’ donor inhibits or promotes the 

release of pro-inflammatory mediators (TNFα, IL-6, PGE2 and NO) from 

macrophages in cell culture. Thereafter, using a CRISPR approach to knock 

down the H2S synthesizing enzyme, CSE, in macrophages, we sought to 

investigate the significance of CSE in regulating the release of pro-inflammatory 

mediators from macrophages and determining whether exogenous H2S was 

able to reverse the effect.  

 The current literature supports the possibility that slow-releasing H2S 

donors are anti-inflammatory and therapeutically compatible. Thus, a further 

aim of this work was to screen and subsequently characterize novel slow H2S-
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releasing donors exhibiting anti-inflammatory properties in activated 

macrophages and in intact animals in vivo.      

 The NLRP3 inflammasome activation pathway has received much 

attention and scrutiny by immunologists in the last decade. It is now clear that 

the NLRP3 inflammasome is a crucial ‘gatekeeper’ of IL-1β and IL-18 secretion 

in a wide range of sterile and non-sterile inflammatory conditions. Moreover, 

other gasotransmitters including CO and NO have recently been found to exert 

some form of control over the activation of the NLRP3 inflammasome. The final 

aim of the current research was therefore to investigate whether H2S also 

affects the function of the NLRP3 inflammasome and if so, the molecular 

mechanism by which it acts.  
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CHAPTER 2: MATERIALS & METHODS 

2.1 Cell culture 

RAW264.7, J774A.1 and HEK293T cells from the American Type Culture 

Collection (ATCC) were cultured in Dulbecco's Modified Eagle's Medium 

(DMEM) (Gibco) supplemented with 10% v/v heat inactivated fetal bovine 

serum (FBS) (Gibco), L-glutamine (4mM), sodium pyruvate (1mM), HEPES 

buffer (20mM) (Hyclone), penicillin (100 U/ml) and streptomycin (100μg/ml). 

RAW264.7 and J774A.1 cells were cultured in non-tissue culture treated petri 

dishes (Biomedia) and HEK293T cells were cultured in tissue culture treated 

dishes (NUNC). All cell lines were maintained at 37°C in a 5% CO2 humidified 

environment.  

 

2.2 Mice 

Male C57BL/6 mice (20-25g, 6-10 weeks) were maintained in the Comparative 

Medicine Department of this University. All animal experiments were approved 

by the Institutional Advisory Care and Use Committee (IACUC) of the National 

University of Singapore (protocol numbers 108/11 and R14-1388). Mice were 

killed by exposure to an increasing concentration of CO2. Blood was obtained 

by cardiac puncture, collected in plasma separator tubes with lithium heparin 

(BD microtainer) and centrifuged (5000 rpm, 10 min, 4°C) to prepare plasma 

which was stored at -80°C for cytokine analysis. Peritoneal cavities of mice 

were lavaged with 5ml ice cold sterile PBS and centrifuged to remove any cells. 

The lavage fluid was stored at -80°C for subsequent cytokine analysis.  
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2.3 Treatments on LPS-stimulated RAW264.7 macrophages 

RAW264.7 cells were seeded in 24-well cell culture treated plates (NUNC) at a 

density of 2 x 105 cells per well or in 6 well cell culture treated plates at a density 

of 1 x 106 cells per well in DMEM supplemented with 10% v/v FBS the day 

before the experiment was carried out. Cells were pretreated with NaHS 

(200μM or 500μM) (Sigma-Aldrich Ltd.) 30 min prior to a 6 h stimulation with 

lipopolysaccharide (1μg/ml) from E. coli (0111:B4) (Sigma-Aldrich Ltd.) with or 

without 2 additional doses of NaHS (200μM or 500μM) at subsequent 2 h 

intervals. Time expired NaHS (tx-NaHS) was prepared by dissolving NaHS in 

cell culture media and left exposed to air in a sterile environment overnight. In 

some experiments, vitamin B12a (Sigma-Aldrich Ltd.) was added into the cell 

culture media together with the H2S releasing compound. 

 

2.4 CRISPR plasmid synthesis and knock-down of genes 

The CRISPR plasmid pSpCas9(BB)-2A-GFP (PX458) (Ran et al., 2013) was 

purchased from Addgene (plasmid #48138). PX458 was linearized with BbSI 

fast restriction digest enzyme (Thermo Scientific Ltd.). Guide RNAs (gRNAs) 

were designed by the CRISPR Design Tool (crispr.mit.edu) and commercially 

synthesized (AITbiotech). The forward and reverse sgRNAs were annealed in 

CutSmartTM buffer (New England Biolabs) by incubation in a 95°C water bath 

and left to cool till room temperature. Annealed sgRNA and the linearized 

plasmid was ligated with T4 DNA ligase (Thermo Scientific Ltd.) for 2 h at 22°C. 

Resulting plasmids were sequenced to ensure successful ligation. RAW264.7 

cells were then transfected with 2.5μg of CRISPR plasmid using Lipofectamine 

3000 (Life Technologies Ltd.) in accordance to the manufacturer’s protocol. 24 
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h after transfection, GFP positive cells were sorted with MoFloTM cell sorter 

(Beckman Coulter) into single colonies in a 96-well cell culture treated plate 

(NUNC). Single colonies that grew were expanded and screened for CSE using 

immunoblotting. The sequence of the sgRNA used is Mouse CSE: 5’- 

GCAATGGAATTCTCGTGCCG -3’. 

 

2.5 Preliminary screening of novel H2S releasing drug compounds 

RAW264.7 cells were seeded in 96 well cell culture treated plates (NUNC) at a 

density of 3.5 X 104 cells per well in DMEM supplemented with 10% FBS the 

day before experiments were carried out. Cells were treated with varying 

concentrations of test compounds 30 min prior to a 24 h stimulation with 

lipopolysaccharide (1μg/ml) from E. coli (0111:B4) (Sigma-Aldrich Ltd.). Test 

compounds were dissolved in dimethyl sulfoxide (DMSO) (Sigma-Aldrich Ltd.) 

at a final concentration of 0.5% v/v. Subsequent experiments utilised a vehicle 

control at an identical concentration (v/v). Supernatant was collected for 

analysis by ELISA thereafter.  

 

2.6 In vitro microplate assay of H2S in RAW264.7 cells using a fluorescent 

probe 

Lyophilized H2S fluorescent probe (A near infared (NIR)-fluorescent probe 

based on a Cu2+-cyclen complex linked to a NIR light-emitting BODIPY 

fluorophore) (Wu et al., 2014a) was prepared by reconstitution in 

dichloromethane (100μl) by mixing with DoTaP (Avanti polar lipids, Inc.) 

liposome. Argon gas was used to evaporate the mixture followed by removal of 

organic solvent with a vacuum pump. The probe was then dissolved in 
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deionized water and diluted in cell culture media for use. RAW264.7 cells (5 X 

105) were plated in a 96 well culture plate overnight. The fluorescent probe 

(20μM) was added and cells were incubated (3 h, 37°C), washed with 

phosphate buffered saline (PBS) and exogenous H2S donors added at the 

indicated concentrations indicated in results section. Fluorescence was read at 

ex620/em680 using a Synergy H1 microplate reader (Biotek). 

 

2.7 Measurement of cell death 

Cell death was quantitated by the MTT assay kit (Sigma-Aldrich Ltd.). Briefly, 5 

X 104 RAW264.7 or BMDM cells were plated in a 96 well tissue culture treated 

plate overnight. The next day, the cells were treated with varying concentrations 

of H2S donors (as indicated in the results section) with or without LPS (1μg/ml). 

Thereafter, supernatant was removed and cells were washed once with sterile 

PBS before the MTT assay was performed on the cells in accordance with the 

manufacturer's protocol. Briefly, MTT was added to fresh cell culture media at 

a final concentration of 10% v/v. 100μl of this mixture was added to each 96-

well and incubated for 3 h at 37°C. Following which, 100μl of MTT solubilization 

solution was added to each 96-well and mixed well by pipetting up and down. 

Data was obtained by spectrophotometrically measuring the absorbance at 

570nm. Background absorbance was measured at 690nm and subtracted from 

the 570nm measurement.   

 



48 

 

2.8 mRNA extraction, reverse transcription-polymerase chain reaction 

(RT-PCR) and quantitative real-time PCR (qPCR) 

RAW264.7 cells treated with FW1256 (200μM, 30 min) followed by LPS (1μg/ml, 

24 h) were washed with ice cold PBS and incubated with TRIzol reagent 

(Invitrogen). Total RNA was extracted using Aurum Total RNA Mini Kits (Bio-

Rad). Briefly, cells were lysed with 1ml TRIzol for 5 min at room temperature 

and mixed with chloroform (200μM, 5 min) at room temperature, before being 

centrifuged (12,000 g, 15 min, 4°C). Following centrifugation, the aqueous 

phase was recovered without disturbing the interface. An equal amount of 70% 

ethanol v/v was added to the aqueous phase and passed through the RNA 

binding column via centrifugation (14,000 g, 1 min). Contaminating genomic 

DNA was removed by incubating the column with DNase I (15 min, room 

temperature). The column was then washed with high and low stringency wash 

buffers, before RNA was eluted from the column. 1μg of total RNA was reverse -

transcribed into cDNA using an iScript cDNA Synthesis kit (Bio-Rad), according 

to the manufacturer’s protocol. Relative quantitative real-time PCR was 

performed by administering 3μl of cDNA, 2μl of primers and 5μl of the reaction 

mix buffer from the Power SYBR Green PCR master mix kit (Life Technologies). 

The amplification reaction was performed using a ViiA7 qPCR thermal cycler 

(Applied Biosystem). The thermocycling parameters were 50°C (2 min), 95°C 

(10 min) followed by 40 cycles of 95°C (15 sec), 60°C (1 min) and 95°C (15 sec). 

Expression values were determined by 2-ΔΔCT equation and normalized with 

GAPDH housekeeping gene. Samples prepared without RNA served as 

negative controls. The primers used were:  

Mouse iNOS FP 5’-GGCAGCCTGTGAGACCTTTG-3’,  
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mouse iNOS RP 5’-GCATTGGAAGTGAAGCGTTTC-3’,  

mouse COX-2 FP 5’-TTGAAGACCAGGAGTACAGC-3’,  

mouse COX-2 RP 5’-GGTACAGTTCCATGACATCG-3’,  

mouse IL-1β FP 5’-GCCCATCCTCTGTGACTCAT-3’,  

mouse IL-1β RP: 5’-TTGAAGAGAACCTGGGAGTA-3’,  

mouse GAPDH FP 5’-TGCACCACCAACTGCTTAGC-3’,  

mouse GAPDH RP 5’-GCATGGACTGTGGTCATGAG-3’ 

 

2.9 Cell cytoplasmic and nuclear extraction 

Cytoplasmic and nuclear extracts from PBS-washed RAW264.7 cells were 

separated using the MinuteTM cytoplasmic and nuclear extraction kit (Invent 

Biotechnologies) according to the manufacturer’s protocol, before being used 

for immunoblot analysis as described in section 2.18. Briefly, cells were washed 

with PBS before being lysed on ice for 5 min with cytoplasmic extraction buffer. 

The cell extract was vortexed for 15 sec before being centrifuged (14,000 g, 5 

min, 4°C). The supernatant (cytosolic fraction) was transferred to a new tube 

while the pellet which contains the nucleus was resuspended with nuclear 

extraction buffer. The resuspended pellet was vortexed for 15 sec followed by 

incubation on ice for 1 min. This was repeated 4 times. Following which, the 

resuspended pellet was transferred to a pre-chilled filter cartridge with collection 

tube (provided in the kit) and centrifuged (14,000 g, 30 sec, 4°C). The filter 

cartridge was discarded while the eluent containing the nuclear fraction was 

stored in -80°C for further analysis.  
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2.10 Differentiation of bone marrow-derived macrophages (BMDMs) 

Bone marrow cells were flushed from the tibia and femur bones of male 

C57BL/6 mice of age 6-10 weeks old in a sterile environment. Bone marrow 

cells were differentiated into macrophages in non-cell culture treated petri 

dishes (Biomedia) using DMEM containing 10% FBS supplemented with 10% 

v/v conditioned media from L929 mouse fibroblast for 6 days, with a change of 

media on day 3 (Mishra et al., 2013). 

 

2.11 Flow cytometry 

Cells were gently scrapped from cell culture plates after treatment as indicated 

in the results section and centrifuged (1500 rpm, 5 min, 4°C) before being 

resuspended in 300 μl of PBS supplemented with FCS (1% v/v) and PI 

(0.075mg/ml) (Sigma-Aldrich Ltd.). The data was acquired with LSR-Fortessa 

(BD Biosciences) and analyzed using FlowJo analytical software (TreeStar).  

 

2.12 Inflammasome activation 

J774A.1 cells or BMDMs were seeded in 96-well or 6-well cell culture treated 

plates at a density of 5 X 104 cells or 2 X 106 cells per well respectively in DMEM 

supplemented with 10% v/v FBS the day before experiments were carried out. 

BMDMs were stimulated with LPS (1μg/ml) for 4 h. Freshly prepared NaHS 

(Sigma-Aldrich Ltd.) or time-expired NaHS (tx-NaHS) was added at the 

indicated dose (200, 400 or 600μM, 30 min) before ATP (5mM) (Sigma-Aldrich 

Ltd.) or  nigericin (10μM) (Sigma-Aldrich Ltd.) was added for 30 min or 1 h 

respectively. After inflammasome activation, supernatant was collected for 
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analysis by ELISA, and cells were lysed on ice for immunoblotting as indicated 

in section 2.18 of the materials & methods.  

 

2.13 ASC pyroptosome detection 

BMDMs were seeded in 6-well plates at 2 x 106 cells per well overnight and 

treated with LPS (1μg/ml) for 4 h the next day. Next, freshly prepared NaHS 

(Sigma-Aldrich Ltd.) or time expired NaHS (tx-NaHS) (600μM) was added for 

30 min before ATP (5mM) (Sigma-Aldrich Ltd.) was added for another 30 min. 

The cells were gently scraped on ice and pelleted by centrifugation (1500 rpm, 

5 min, 4°C) before being resuspended in 500μl cold lysis phosphate-buffered 

saline (PBS) containing HEPES-KOH (20mM, pH 7.5), KCl (150mM), 1% v/v 

Triton-X, PMSF (0.1mM) with protease and phosphatase inhibitors. Cells were 

lysed by shearing 10 times through a 21-guage needle and the lysates were 

centrifuged (5000 g, 10min, 4°C). The resultant pellets were washed twice with 

500μl PBS and finally resuspended in 500μl PBS. Resuspended pellets were 

cross-linked with freshly prepared disuccinimidyl suberate (2mM, 30 min, room 

temperature) (Sigma-Aldrich Ltd.) and then centrifuged (5000 g, 10min, 4°C). 

The cross-linked pellets and lysates were resuspended in 30μl of laemmli 

sample buffer with 10% v/v β-mercaptoethanol, boiled for 5 min at 95°C, before 

being resolved by 10% SDS-PAGE and immunoblotted using anti-mouse ASC 

antibodies.  
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2.14 Overexpression plasmid synthesis 

Mouse BMDMs treated with LPS (1μg/ml, 24 h) were washed with ice cold PBS 

and incubated with TRIzol reagent (Invitrogen). Total RNA was extracted using 

Aurum Total RNA Mini Kits (Bio-Rad). Total RNA was reversed-transcribed into 

cDNA using the GoScript Reverse Transcription System (Promega) according 

to the manufacturer’s instructions. cDNA of mouse IL-1β, NLRP3, ASC, 

Caspase-1 and CSE were cloned from mouse BMDM mRNA with the following 

forward (FP) and reverse (RP) primer sequences, using the Q5 Hot Start High-

Fidelity DNA Polymerase (New England BioLabs), according to the 

manufacturer’s instructions. Briefly, a PCR mixture containing 25ng template 

DNA and 1X Q5 Hot Start High-Fidelity master mix was carried out using a final 

concentration of 0.5μM forward and reverse primers. Mouse IL-1β FP 5’-

ATACGAGCTAGCATGGCAACTGTTCCTGAA-3’, mouse IL-1β RP 5’-

AGCATAGCGGCCGCTTAGGAAGACACGGATTC-3’, mouse NLRP3 FP 5’-

ATACGAGCTAGCATGACGAGTGTCCGTTGC-3’, mouse NLRP3 RP 5’-

AGCATAGCGGCCGCCTACCAGGAAATCTCGAA-3’, mouse ASC FP 5’-

ATACGAGCTAGCATGGGGCGGGCACGAGAT-3’, mouse ASC RP 5’-

AGCATAGCGGCCGCTCAGCTCTGCTCCAGGTC-3’, mouse Caspase-1 FP 

5’-ATACGAGCTAGCATGGCTGACAAGATCCTG-3’, mouse Caspase-1 RP 

5’-AGCATAGCGGCCGCTTAATGTCCCGGGAAGA-3’ ,mouse CSE FP 5’- 

ATACGAGCTAGCATGCAGAAGGACGCCTCT-3’, mouse CSE RP 5’- 

AGCATAGCGGCCGCTTAAGGGTGCGCTGCCTT-3’. 

The overexpression plasmid pcDNA3.1(+) and cloned inserts were digested 

with NheI-HF and NotI-HF (New England BioLabs) (16 h, 37°C) before being 

ligated using T4 DNA ligase (Thermo Scientific) (2 h, 22°C).  
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To synthesize the HA-tagged NLRP3 overexpression plasmid, the HA epitope 

(YPYDVPDYA) was inserted into the N-terminus region of NLRP3 in the 

pcDNA3.1(+)-NLRP3 overexpression plasmid using the Q5 Site-Directed 

Mutagenesis Kit (New England BioLabs). Briefly, a PCR containing 25ng 

template DNA and 1X Q5 Hot Start High-Fidelity master mix was carried out 

using a final concentration of 0.5μM forward and reverse primers. HA-NLRP3 

FP 5’-GCCGGATTATGCGACGAGTGTCCGTTGCAAG-3’, HA-NLRP3 RP 5’- 

ACATCATACGGATACATGCTAGCCAGCTTGGG-3’. Thereafter, the PCR 

product was incubated (5 min, room temperature) in a mixture of 1X Kinase, 

Ligase & Dpnl (KLD) reaction buffer and enzyme mix (New England BioLabs) 

according to the manufacturer’s protocol. Sequences of all constructs were 

verified by DNA sequencing (AITbiotech). 

 

2.15 Transfection 

HEK293T cells were seeded in 12-well cell culture treated plates at a density 

of 2.5 x 105 cells per well, or in 6-well cell culture treated plates at a density of 

1.0 x 106 cells per well 1 day before transfection. For the in vitro inflammasome-

reconstitution assay, HEK293T cells were seeded in 12-well cell culture treated 

plates coated with poly-D-lysine (Sigma-Aldrich Ltd.). Transfection was carried 

out with a total DNA concentration of 1μg per well, using Lipofectamine 3000 

(Invitrogen) according to the manufacturer’s instructions. Briefly, 50μl of Opti-

MEM medium (Gibco) containing 1μg DNA and 2μl P3000 reagent was mixed 

with 50μl of Opti-MEM medium containing 2μl Lipofectamine 3000 reagent, and 

incubated (5 min, room temperature) before being added to the cell culture.   
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2.16 Immunofluorescence 

BMDMs were plated on sterile coverslips in 6-well plates at 2 x 106 cells per 

well overnight and treated with LPS (1μg/ml) for 4 h the next day. Freshly 

prepared NaHS (600μM) (Sigma-Aldrich Ltd.) was added for another 30 min 

before nigericin (10μM) (Sigma-Aldrich Ltd.) was added for another 1 h. Cells 

were then rinsed twice with PBS before being fixed with 4% w/v 

paraformaldehyde dissolved in PBS (20 min, room temperature). After 3 rinses 

with PBS, cells were permeabilized with 0.1% w/v saponin (Sigma-Aldrich Ltd.) 

and dissolved in PBS (30 min, room temperature). Cells were then blocked with 

10% v/v FBS (30 min, room temperature) before being incubated with anti -

mouse ASC (1:200) in blocking solution (1 h, room temperature), and then 

rinsed 3 times with 0.1% w/v saponin dissolved in PBS. Thereafter, cells were 

incubated with a FITC-conjugated anti-mouse secondary antibody (3:100) in 

blocking solution (1 h, room temperature). Cells were rinsed a further 3 times 

before being mounted on microscope slides with FluoroshieldTM mounting 

medium with DAPI (Sigma-Aldrich Ltd.) and visualized under the Olympus 

FluoView FV1000 (Olympus, Japan) laser scanning confocal microscope or the 

BX51 Olympus immunofluorescent microscope. Images were captured with the 

Olympus FluoView FV1000 confocal microscope using a 60x/1.00 water 

objective, with 488nm Argon ion and 543nm HeNe Green laser as the excitation 

source. 
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2.17 ELISA 

Cytokines in culture supernatant, blood plasma and peritoneal lavage fluid was 

measured by ELISA using commercially available kits. Mouse TNFα (88-7324 

from eBioscience), mouse IL-6 (88-7064 from eBioscience), mouse IL-1β (88-

7013 from eBioscience), mouse IL-18 (BMS618 from eBioscience), 

nitrate/nitrite assay (DN-006 from Kamiya Biomedical Company) and 

prostaglandin E2 Express EIA kit (500141 from Cayman Chemical) were used 

in accordance with the manufacturer’s protocol. Absorbance was read with an 

EON Biotek microplate reader at absorbance values as indicated in the 

manufacturer’s protocol. 

 

2.18 Immunoblot analysis 

Cells were lysed in lysis buffer comprising of EDTA (5mM), containing inhibitors 

against serine, cysteine and aspartic acid proteases, amino-peptidases and 

metalloproteases (HaltTM Protease Inhibitor Cocktail), phosphatase inhibitors 

(HaltTM Phosphatase Inhibitor Cocktail) and 1% v/v Triton-X 100 in Tris buffered 

saline (TBS) on ice. The suspension was next centrifuged (14,000g, 5 min, 4°C) 

and homogenates collected. Protein concentration was quantified using the 

Bradford assay (Bio-Rad Ltd.). Whole cell lysates were resuspended in loading 

sample buffer (Laemmli buffer) with 10% v/v β-mercaptoethanol, boiled for 5 

min at 95°C before being separated by 10% or 15% v/v SDS-PAGE. Separated 

proteins were transferred onto PVDF membranes (Bio-Rad Ltd.) prior to 

incubation (1 h, room temperature) with blocking buffer (TBS containing 5% v/v 

skim milk and 0.1% v/v Tween-20). Membranes were incubated (overnight, 4°C) 

with anti-mouse NLRP3 (Cryo-2 from Adipogen), ASC (AL177 from Adipogen), 
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Caspase-1 (p20 Casper-1 from Adipogen), IL-1β (AF-401-NA from R&D 

Systems), iNOS (AB3523 from Abcam Ltd.), COX-2 (AB15191 from Abcam 

Ltd.), phospho-IκBα (#9246 from Cell Signaling), IκBα (#9242 from Cell 

Signaling), CSE (AB136604 from Abcam Ltd.), HA-Tag (6E2 from Cell 

signalling) or β-actin (Sigma-Aldrich) with gentle agitation. The next day, 

immunoblots were washed with TBS containing 0.1% v/v Tween-20 and 

incubated (1 h, room temperature) with secondary antibodies donkey anti-goat 

goat HRP (Santa Cruz Ltd.), anti-mouse IgG HRP or goat anti-rabbit IgG HRP 

(Thermo Scientific Pierce Ltd.) with gentle agitation. The immunoreactive bands 

were visualized using chemiluminescent reagent (Merck Millipore Ltd.) and 

exposed to X-ray film. Blots were scanned and quantified using ImageJ 

software. 

 

2.19 Co-immunoprecipitation 

HEK293T cells were seeded in 6-well cell culture treated plates (NUNC) at a 

density of 1.5 x 106 per well in DMEM supplemented with 10% v/v FBS the day 

before experiments were carried out. Cells were transfected with 1μg of HA-

NLRP3 expression vector using Lipofectamine 3000 (Invitrogen) according to 

the manufacturer’s instructions. 24 h later, cells were treated with NaHS 

(600μM, 30 min) followed by a change of media. Thereafter, cells were 

transfected with 1μg of ASC expression vector. After a subsequent 24 h 

incubation, transfected cells were lysed by passing through a 25G needle ten 

times in a hypotonic lysis buffer (20mM HEPES pH 7.4, 10mM KCl, 1mM EDTA) 

containing inhibitors against serine, cysteine and aspartic acid proteases, 

amino-peptidases and metalloproteases (HaltTM Protease Inhibitor Cocktail). 
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Cell lysates were centrifuged (10,000 g, 15min, 4°C). Supernatant was diluted 

1:1 with a 2X immunoprecipitation buffer (100mM Tris pH 7.8, 300mM NaCl, 

0.2% v/v Triton-X, 10mM EDTA). Equal protein concentrations of lysates (1mg 

protein) were immunoprecipitated using anti-HA magnetic beads (Pierce) 

(overnight, 4°C) on a mechanical rotator. The magnetic beads were then 

washed three times with 1X immunoprecipitation buffer (50mM Tris pH 7.8, 

150mM NaCl, 0.1% v/v Triton-X, 5mM EDTA), and eluted with 0.1M glycine, pH 

2.0 (5 min, room temperature). Magnetic beads were separated and 

supernatant was collected and neutralized with 1M Tris, pH 8.5.  Samples were 

resuspended in loading sample buffer (Laemmli buffer) with 10% v/v β-

mercaptoethanol, boiled for 5 min at 95°C before being separated by 15% v/v 

SDS-PAGE and immunoblotted with the indicated antibodies. 

 

2.20 MitoTracker and MitoSOX Assay 

Mitochondrial mass was measured by staining LPS primed BMDMs with 

MitoTracker Red CMXRos and MitoTracker Green (25nM, 15 min, 37°C) 

(Invitrogen) followed by ATP (5mM, 30 min) treatment. For detection of 

mitochondrial ROS, BMDMs stimulated with LPS and ATP were stained with 

MitoSOX Red mitochondrial superoxide indicator (5μM, 20 min, 37°C). Cells 

were washed twice with cell culture media and resuspended in a FACs buffer 

(1% v/v FBS in PBS) for FACs analysis. Data was acquired with LSR-Fortessa 

(BD Biosciences) and analyzed using FlowJo analytical software (TreeStar). 
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2.21 Detection of mitochondrial DNA 

BMDMs were seeded in 6-well cell culture treated plates (NUNC) at a density 

of 2.0 x 106 per well in DMEM supplemented with 10% FBS the day before 

experiments were carried out. Cells were lysed by passing through a 25G 

needle ten times in a buffer (250mM sucrose, 20mM HEPES pH 7.4, 10mM 

KCl, 2mM MgCl2, 1mM EDTA) containing protease inhibitors (HaltTM Protease 

Inhibitor Cocktail). Cell lysates were centrifuged (10,000 g, 15min, 4°C) for the 

production of a supernatant corresponding to the cytosolic fraction, of which, 

DNA was isolated with the Isolate II Genomic DNA kit (Bioline) according to the 

manufacturer’s instructions. For detection of mtDNA, qPCR was carried out 

using the specific primers for the representative genes listed below. The 

thermocycling parameters were 50°C (2 min), 95°C (10 min) followed by 40 

cycles of 95°C (15 sec), 60°C (1 min) and 95°C (15 sec). Expression values 

were determined by 2-ΔΔCT equation and normalized with 18S housekeeping 

gene. Samples prepared without RNA served as negative controls. The primers 

used were mouse cytochrome c oxidase I FP 5'-

GCCCCAGATATAGCATTCCC-3', mouse cytochrome c oxidase I RP 5'- 

GTTCATCCTGTTCCTGCTCC-3', 18S FP 5'-TAGAGGGACAAGTGGCGTTC-

3', 18S RP 5'-CGCTGAGCCAGTCAGTGT-3'. 

 

2.22 Statistical analysis 

All results were analyzed using GraphPad Prism 5 software package. Data are 

presented as the mean ± SEM or mean ± SD of at least three separate 

experiments, unless otherwise noted. Statistical comparisons between the 

different treatments were performed using one-way analysis of variance 
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(ANOVA) for multiple groups, followed by Dunnett’s post-hoc evaluation applied 

to grouped data to test the probability of significant differences among 

treatments, or the Mann-Whitney U test for comparison between two groups. A 

P value of less than 0.05 was considered significant. 

  



60 

 

CHAPTER 3:  EFFECTS OF EXOGENOUS H2S ON THE 

PRODUCTION OF PRO-INFLAMMATORY MEDIATORS IN   

CSE-/- RAW264.7 MACROPHAGES 
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3.1 Exogenous H2S (i.e. NaHS) reduces LPS-induced TNFα and IL-6 

secretion from RAW264.7 macrophages 

In preliminary experiments, the ability of exogenous H2S to affect the 

release of inflammatory mediators from activated macrophages was assessed. 

RAW264.7 cells were pre-treated with NaHS (500μM) for 30 min prior to LPS 

(1μg/ml) stimulation for a further 24 h. NaHS significantly decreased TNFα (P 

< 0.05) but not IL-6 concentrations after 24 h (Fig 3.1A). Since H2S, released 

from NaHS, has been shown in multiple reports to be short lived (Lee et al., 

2011; Li et al., 2008; Whiteman et al., 2010) we hypothesized that a greater 

inhibition of pro-inflammatory cytokine release could be achieved by increasing 

the exposure time of RAW264.7 cells to NaHS. As such, the duration of LPS 

stimulation was shortened to 6 h while the frequency of exposure of cells to 

NaHS was increased to 3 times. To this end, two concentrations of NaHS 

(200μM or 500μM) were added to LPS-stimulated RAW264.7 macrophages 

using two separate treatment regimens. Pre-treating macrophages with either 

NaHS (200μM or 500μM) for 30 min prior to LPS (1μg/ml) stimulation for a 

further 6 h caused a concentration-dependent  decrease in TNFα and IL-6 

secretion as compared to cells treated with LPS alone only (P < 0.001) (Fig. 

3.1B). Increasing the frequency of NaHS administration from 1 to 3 exposures 

further diminished the release of both TNFα (P < 0.01) and IL-6 (P < 0.05) (Fig 

3.1B).  An identical concentration of time-expired NaHS (tx-NaHS) was used as 

a negative control. Tx-NaHS did not reduce TNFα or IL-6 secretion from LPS-

stimulated RAW264.7 cells (Fig. 3.1C). To ensure that the reduced cytokine 

release was not due to cell death, an MTT assay was performed on LPS-

stimulated RAW264.7 cells treated with varying doses/frequencies of 
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administration of NaHS. No significant change in cell viability was noted 

regardless of dose or exposure time of cells to NaHS (Fig. 3.1D). Together, 

these data suggest that H2S released from NaHS downregulate the secretion 

of TNFα and IL-6 from LPS-stimulated RAW264.7 cells in a dose-dependent 

manner.  
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Figure 3.1 The fast-releasing H2S donor NaHS exerts an anti-inflammatory 
effect in LPS stimulated RAW264.7 macrophages.  

(A) Reduction of inflammatory cytokine (TNFα & IL-6) generation in LPS 

(1μg/ml, 24 h) RAW264.7 macrophages following 30 min pre-treatment with 

NaHS (500μM).  
(B) Dose dependent reduction of secreted inflammatory cytokine (TNFα & IL-6) 

in LPS-stimulated (1μg/ml, 6 h) RAW264.7 macrophages with 30 min pre-

treatment of NaHS (200μM or 500μM) (1x); or with 30 min pre-treatment of 
NaHS (200μM or 500μM) followed by 2 additional exposures to NaHS (200μM 

or 500μM) at subsequent 2 h intervals (3x).  
(C) Production of inflammatory cytokines in LPS-stimulated (1μg/ml, 6 h) 

RAW264.7 macrophages following 30 min pre-treatment with time expired 

NaHS (500μM) (tx-NaHS 500μM) followed by 2 additional doses of tx-NaHS 
(500μM) at subsequent 2 hour intervals (3x).  
(D) Toxicity of different doses of NaHS on LPS-stimulated (1μg/ml, 6 h) 

RAW264.7 macrophages, determined by the MTT assay. 1% Triton-X (T-X) 
was used as a positive control.  
* P < 0.05, ** P < 0.01, *** P < 0.001. Data in A is representative of 2 repeated 
experiments (mean ± SD, n=4, Mann-Whitney U test, 2-tailed), and B-D is from 

3 repeated experiments (mean ± SEM, n=3, one-way ANOVA with Dunnett’s 
post-test against controls). 
 

Fig 3.1B-D are reproduced from (Huang et al., 2016a) 
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3.2 Generation of CSE-/- RAW264.7 macrophages using the CRISPR/Cas9 

system 

 Since exogenous H2S inhibited LPS-evoked TNFα and IL6 generation 

by LPS-challenged macrophages, it was of interest to determine whether 

naturally occurring i.e. endogenous H2S may have the same effect. To this end, 

CSE was permanently deleted in RAW264.7 cells using the clustered regularly 

interspaced short palindromic repeats Caspase 9 (CRISPR-Cas9) system. By 

way of explanation, the single-guide RNA (sgRNA) targeting mouse CSE was 

ligated into the CRISPR-Cas9 plasmid (Fig. 3.2A). Guided to the CSE gene by 

the sgRNA, Cas9 cuts the DNA on both strands and causes double stranded 

breaks (DSB). Depending on the accuracy of the DNA-repair mechanism of 

non-homologous end joining (NHEJ), random insertion or deletion (indel) 

mutations may occur, resulting in the formation of a premature stop codon, 

hence permanently silencing the gene. In the presence of a repair template, 

precise editing alternatively can occur via the high-fidelity homologous-directed 

repair (HDR) (Ran et al., 2013) (Fig. 3.2B).  

 The CSE sgRNA used in this study was designed to target exon 1 of the 

CSE gene with the purpose of creating a premature stop codon upstream of the 

gene. Using the recommended online CRISPR design tool 

(http://tools.genome-engineering.org) (Ran et al., 2013), a recommended 20 

base pair sgRNA sequence was generated along with 3 predicted offsite targets 

that reside in other genes, and summarized in Table 3.1. As none of these 3 

genes are known to regulate the expression of pro-inflammatory mediators 

directly, this sgRNA against CSE was selected and cloned into the 

CRISPR/Cas9 plasmid.    
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 Wild type (WT) RAW264.7 cells were transfected with either the empty 

vector (Cas9) or CSE sgRNA before single cells were sorted for GFP 

expression 24 h after transfection. The single cells were then expanded and 

screened for CSE expression. As CSE expression is upregulated in 

macrophages upon LPS-stimulation, screening for CSE knockdown clones 

were determined by immunoblotting for the CSE antigen 24 h after stimulation 

with LPS (1μg/ml) (Fig 3.2C). CSE expression of 3 representative knockout 

clones, with or without LPS stimulation are shown in Fig 3.2D. The absence of 

any upregulation of CSE, which was otherwise seen in wild-type and Cas9 

RAW264.7 control cells after 24 h LPS-stimulation, confirmed the knock-down 

of CSE in the CSE-/- cells (Fig 3.2D). 

 In the present study, only CSE was knocked out in RAW264.7 cells. It 

was previously reported that RAW264.7 cells do not contain CBS mRNA and 

protein (Zhu et al., 2010). As such, the protein expression of CBS was 

compared against liver lysates of wild-type C57BL/6 mice. As seen in Fig 3.2E, 

immunoblot staining of RAW264.7 lysates with CBS antibody revealed a band 

lower in molecular weight as compared to the band seen in the liver lysates. 

The predicted molecular weight of CBS is 61kDa, which is greater than the band 

detected in the RAW264.7 cell lysates. Hence, it was decided not to attempt to 

knock out CBS in RAW264.7 cells in the present study. In addition to CSE, 

attempts were also made to knock down 3-MST in RAW264.7 cells. However 

due to an oversight in the design of the sgRNA against 3-MST, an intron in the 

3-MST gene was edited. Although a 3-MST partially knocked-down (3-MST+/-) 

RAW264.7 clone was obtained, the data for this cell line was disregarded in this 

thesis.  
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Table 3.1 Predicted off target effects of CSE targeted sgRNA 

No. 
Predicted Off 
Target Gene 

Known function(s) of Gene Ref 

1 FAM65a 
Golgi reorientation during cell 
migration 

(Mardakheh et 
al., 2016) 

2 
Heat Shock 

Protein 4 

Cell migration, spermatogenesis, 
cardiac hypertrophy and fibrosis, 

association with poor outcomes of 
HBV-related early-stage  

hepatocellular carcinoma, and 
gastric and colorectal cancers  

(Wu et al., 
2011), (Held et 
al., 2011) , 

(Mohamed et 
al., 2012), 

(Yang et al., 
2015), (Jo et al., 
2016) 

3 
Zinc Finger 

Protein 219 

Central nervous system 

development in zebrafish 

(Lien et al., 

2013) 
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Figure 3.2 Generation of CSE-/- RAW264.7 cells using the CRISPR/Cas9 
system. 

(A) Plasmid map of the CRISPR/Cas9 plasmid PX-458 (Addgene). sgRNA 

against mouse CSE was ligated into the plasmid following digestion with the 

BbSI enzyme.   
(B) Mechanism of action by which the CRISPR/Cas9 system elicits gene editing 

and knockout of a gene.  
(C) CSE expression in different clones of RAW264.7 cells transfected with the 

CRISPR/Cas9 plasmid encoding the sgRNA against CSE, after stimulation with 

LPS (1μg/ml, 24 h). Numbers denote clone numbers and WT indicate wild-type 
RAW264.7 cells.  
(D) CSE expression levels of expanded single clones of wild-type (WT) 

RAW264.7 cells, two representative clones of empty vector transfected 
RAW264.7 cells (Cas9) and three representative clones of CSE specific sgRNA 

transfected RAW264.7 cells (CSE-/-), stimulated with or without LPS (1μg/ml, 
24h). 
(E) Immunoblot analysis of CBS expression in C57BL/6 mouse liver lysates and 

RAW264.7 cell lysates stimulated with or without LPS (1μg/ml, 24h). 
Data is from 1 experiment. 
Immunoblots in C-E are from 1 experiment. 

D 

C 
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3.3 Effects of exogenous H2S on LPS-stimulated CSE-/- RAW264.7 

macrophages 

 Secreted TNFα and IL-6 from 3 clones of CRISPR-mediated knockout 

cells were assessed 6 h post LPS-stimulation and compared against control 

cells (Cas 9) (Fig 3.3A). The data indicated that the knockout of CSE did not 

significantly affect the secretion of TNFα and IL-6 in these RAW264.7 cells (Fig 

3.3B). As 3 doses of NaHS (500μM) at 2 hourly intervals over a span of 6 h 

previously reduced TNFα and IL-6 secretion from LPS-stimulated RAW 264.7 

cells most drastically (Fig 3.1B), the same dosing regimen of NaHS was applied 

to the knockout cell lines (Fig 3.3A). To ascertain if the loss of CSE would affect 

the response of LPS-stimulated RAW264.7 cells to exogenous H2S, CSE-/- cells 

were treated with NaHS. It was hypothesized that the lack of endogenous H2S 

may sensitize the cell towards exogenous H2S thereby resulting in a greater 

downregulation of LPS-induced TNFα and IL-6 secretion as compared to wild-

type cells. At this dose and frequency of treatment, NaHS reduced IL-6 

secretion in both LPS-stimulated control and CSE-/- cells to a similar extent (Fig 

3.3B), suggesting that the loss of CSE did not sensitize the cell towards 

exogenous H2S. However, NaHS significantly reduced TNFα secretion from 

only 1 out of the 3 clones (clone 2) of CSE-/- cells stimulated with LPS, which 

effect was not observed in control cells (Fig 3.3B). 

 In addition to secreted pro-inflammatory mediators, the expression of 

enzymes that control the production of pro-inflammatory mediators was also 

assayed in CSE-/- RAW264.7 cells derived from a single sampled clone, with or 

without NaHS treatment. Inducible nitric oxide synthase (iNOS) and 

cyclooxygenase-2 (COX-2) are known to be strongly upregulated by pro-
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inflammatory stimuli such as LPS, and control the production of nitric oxide (NO) 

and prostaglandin-E2 (PGE2) respectively. Apart from these 2 enzymes, 

expression of pro IL-1β was also measured (Fig 3.3C). Immunoblotting of iNOS 

revealed non-specific bands. Of the 3 bands, the upper 2 bands are likely the 

result of non-specific staining due to the presence in both lysates of cells that 

were stimulated with or without LPS. Conversely, in the lowest of the 3 bands, 

iNOS was only detected in the lysates of LPS-stimulated cells. Assaying 

secreted IL-1β in the supernatant by means of ELISA was not performed as IL -

1β maturation and secretion requires the activation of the inflammasome, which 

RAW264.7 cells lack (Pelegrin et al., 2008). The loss of CSE resulted in a 

significant decrease in iNOS (P < 0.05) and COX-2 (P < 0.01) expression, but 

not pro IL-1β, in response to 6 h LPS-stimulation. NaHS reduced only pro-IL-

1β levels in control (Cas9) and CSE-/- cells, but did not affect iNOS and COX-2 

expression levels (Fig 3.3D). Collectively, the data suggest that loss of CSE 

selectively downregulate iNOS and COX-2 expression in LPS-stimulated 

RAW264.7 cells and did not affect the cell's sensitivity towards exogenous H2S 

with respect to inhibiting the production of pro-inflammatory mediators.  
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Figure 3.3 Effects of exogenous H2S on LPS-stimulated wild-type and 
CSE-/- RAW264.7 macrophages. 

(A) Dosing regimen of RAW264.7 cells with LPS and NaHS.  
(B) Production of inflammatory cytokines (TNFα and IL-6) in LPS-stimulated 

(1μg/ml, 6 h) empty vector transfected (Cas9) and 3 clones of CSE knockout 
(CSE-/-) RAW264.7 macrophages with NaHS (500μM, 30 min), followed by 2 
additional doses of NaHS (500μM) at subsequent 2 h intervals (3X). (Mean ± 

SEM, n=3). 
(C) Representative immunoblot of CSE, pro-IL-1β, iNOS and COX-2 in 

RAW264.7 cells as treated in A.  
(D) Quantification of IL-1β, COX-2, iNOS and CSE from immunoblots as treated 
in C.  

* P < 0.05, *** P < 0.001. Data in B is from 3 repeated experiments (mean ± 
SEM, n=3, Mann-Whitney U test). Immunoblot in C is representative of 4 

repeated experiments (CSE immunoblot), 8 repeated experiments (pro IL-1β 
immunoblot), and 9 repeated experiments (iNOS & COX-2 immunoblot). Data 
in D is from 4-9 repeated experiments as indicated for C (mean ± SD, n=4-9, 

Mann-Whitney U test, 2-tailed). 
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3.4 Effect of the loss of CSE on phosphorylation of IκBα in RAW264.7 cells 

during LPS stimulation 

 Since the loss of CSE affected the expression of iNOS and COX-2, we 

next assessed whether corresponding changes in NFκB, a critical transcription 

factor that has been shown to be a regulator of both iNOS (Aktan, 2004) and 

COX-2 (Kim et al., 2007; Rafi et al., 2007) gene expression, were apparent in 

LPS-challenged CSE-/- cells. The phosphorylation of IκBα is a key event 

preceding the translocation of NFκB from the cytoplasm into the nucleus, 

thereby initiating NFκB activation. Accordingly, changes in phospho-IκBα (p-

IκBα) and IκBα expression over a span of 60 min after LPS-stimulation in control 

cells (Cas9) and CSE-/- cells were monitored (Fig 3.4A). Measurement of p-IκBα 

levels was carried out within 60 min after LPS-stimulation as NFκB functions as 

a fast messenger, evidenced by reports showing that the peak of LPS-induced 

nuclear p65 accumulation in macrophages occurs within the first 60 min 

(Neacsu et al., 2015; Sharif et al., 2007). In both control (Cas9) and CSE-/- cells, 

p-IκBα expression peaked at 15 min post LPS-stimulation, before decreasing 

at the 30 min time-point, and re-emerging at 60 min after LPS-stimulation. IκBα 

levels conversely decreased to its lowest expression level 30 min after LPS-

stimulation, before re-emerging at 60 min post LPS-stimulation. No significant 

difference for both p-IκBα and IκBα levels were apparent between control and 

CSE-/- cells (Fig 3.4). The re-emergence of IκBα and p-IκBα at the 60 min post 

LPS-stimulation time-point is likely to be part of the negative feedback 

mechanism of NFκB activation (Vallabhapurapu and Karin, 2009). In this 

pathway, NFκB activation leads to the synthesis of IκBα, which sequesters 

p50/65 dimers, preventing further binding to the DNA. 
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Figure 3.4 Effects of the loss of endogenous H2S producing enzymes on 
phosphorylation of IκBα in RAW264.7 cells during LPS stimulation.  

(A) Immunoblot analysis of phosphorylated-IκBα (p-IκBα) and IκBα in empty 

vector transfected (Cas9) and CSE-/- RAW264.7 cells that were stimulated with 
LPS (1μg/ml) for 0, 5, 15, 30 and 60 min.  
(B) Expression of p-IκBα (c.f. actin); and  
(C) IκBα (c.f. actin), in LPS stimulated RAW264.7 cells at 0, 5, 15, 30 and 60 

min, as treated in A.  
(D & E) Change of p-IκBα and IκBα expression levels for Cas9 and CSE -/- 
RAW264.7 cells, as shown in B and C. Expression levels are normalized to the 

maximum expression level for each cell line, over the period of up to 60 min 
(mean and SD).  
Immunoblot in A is representative of 3 repeated experiments. Data in B to D is 

from 3 repeated experiments.  
  

D 

E 
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3.5 Discussion 

 The study of macrophages deficient in H2S producing enzymes can be 

achieved either through the generation of CSE-/- mice (Yang et al., 2008), or by 

using siRNA to transiently knockdown these enzymes (Badiei et al., 2013). For 

the purpose of the present experiments, the first approach is likely to be optimal 

since macrophages can be obtained from the bone marrow or peritoneum of 

these mice. The latter approach is more challenging as macrophages being 

professional phagocytes, contain degradative enzymes that disrupt nucleic acid 

integrity making transfection inefficient (Zhang et al., 2009). In addition, as 

innate immune cells with the function of sensing foreign entities such as RNA 

viruses, the introduction of siRNA may unintentionally activate cytoplasmic 

RNA sensors such as RIG-I, MDA5, TLR3 and TLR8 in these cells (Wu and 

Chen, 2014). This may then trigger unwanted downstream immune responses. 

While CSE-/-, CBS-/- or 3-MST-/- knockout mice are an ideal resource to study 

macrophages devoid of these enzymes, generating double or triple knockout 

mice poses a significant challenge. Hence to study macrophages lacking any 

of the known H2S producing enzymes, we opted to generate such cells using 

CRISPR gene editing technology wherein the generation of stable cell lines with 

single and double gene knockouts are possible.  

 In the present study, CBS was not attempted to be knocked-out as 

RAW264.7 cells were reported not to express CBS. Although not done in this 

study, the measurement of CBS activity can be performed by means of liquid 

chromatography mass spectrometry (LC-MS/MS) (Smith et al., 2012). As CBS 

catalyzes the reaction between homocysteine and serine to form cystathionine, 

briefly, this method requires the mixing of cell extracts with the CBS cofactors 
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pyridoxal-phosphate (PLP) and S-adenosylmethionine (SAM), serine and L-

homocysteine. [D4]-cystathionine would also be added in the mixture as an 

internal standard. After incubation at 37°C at 4 h, the sample would be analysed 

by LC-MS/MS, and CBS activity would then be calculated by dividing the 

measured cystathionine concentration by the incubation time (4 h) and the 

protein concentration used. Another possible method is to transfect 

macrophages with a CBS targeted siRNA, and observe for the presence of CBS. 

As the transfection efficiency of macrophages is poor, this method will require 

a co-transfection of the siRNA with a GFP plasmid as a positive control. 

 The role of endogenous H2S producing enzymes in the production of 

endogenous H2S has been extensively studied (Huang and Moore, 2015). 

However, whether endogenous H2S is pro- or anti-inflammatory remains 

uncertain (Wallace and Wang, 2015; Whiteman and Winyard, 2011). Having 

established that exogenous H2S downregulated pro-inflammatory cytokine 

release from LPS-stimulated wild-type RAW264.7 cells, we made use of the 

stable CSE-/- RAW264.7 cell line to study whether these cells would respond 

differently (c.f. wild-type cells) to exogenous H2S. Three independent clones of 

CRISPR generated CSE-/- cells were first isolated by random sampling. 

Assaying multiple clones was performed in order to exclude the possibility that 

any observed effects were clone specific thereby producing false results. The 

loss of CSE did not affect LPS induced TNFα and IL-6 secretion, and pro IL-1β 

levels (Fig 3.3B - D), but significantly decreased iNOS and COX-2 at the protein 

level (Fig 3.3C & D). This data is at odds with an earlier study in which CSE 

was knocked down in RAW264.7 cells by siRNA silencing. In that study, the 

authors observed that RAW264.7 cells treated with CSE siRNA secreted less 
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TNFα (approximately 1.4 times lower), IL-6 (approximately 5.5 times lower), IL-

1β (approximately 3 times lower) and MCP-1 in response to 24 h LPS-

stimulation. The authors also reported an increase in iNOS mRNA expression 

(approximately 2 times higher) in CSE siRNA treated cells (c.f. control cells) 

(Badiei et al., 2013). While there is no definitive evidence in the present study 

to explain this discrepancy, we reason that a CRISPR mediated permanent 

knockout of the CSE gene may be considered a more efficient approach as 

compared to an siRNA knockdown approach, which mechanistically causes a 

transient knockdown of CSE at the mRNA transcript level. Hence, we are 

inclined to consider the data from the present study to be more indicative of the 

role of CSE in controlling the release of these inflammatory mediators under 

the present experimental conditions. A recent study examined the effects of 

LPS on the production of inflammatory mediators in mice with CSE deficiency. 

As compared to wild-type mice, IL-6 and IL-1β levels in the blood plasma of 

CSE-/- mice after LPS injection (6 h) did not differ significantly from control mice, 

which is consistent with that observed in CSE-/- macrophages in the present 

study. TNFα levels in the blood plasma of LPS challenged CSE -/- mice were 

however slightly reduced (approximately 1.5 times lower) as compared to LPS 

challenged wild-type mice, thereby differing from what was observed in the 

present study (Ahmad et al., 2016a). One important aspect to note is that whilst 

macrophages are key producers of inflammatory mediators, other immune cell 

types such as dendritic cells (Blanco et al., 2008) and lymphoid cells (Klose and 

Artis, 2016) amongst others produce these mediators as well. Hence, whilst the 

absence of CSE in macrophages in vitro did not change its response to LPS in 

the aspect of inflammatory mediator production, the same may not be true for 
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the other immune cell types. Therefore, what has been observed with respect 

to macrophages may not be completely representative of what occurs in vivo in 

the mouse model of LPS induced septic shock. 

 Since exogenous H2S from NaHS downregulated the release of TNFα 

and IL-6 from LPS-stimulated wild-type RAW264.7 cells (Fig 3.1B), it was 

reasoned that the absence of CSE might alter the extent of pro-inflammatory 

mediator inhibition exerted by exogenous H2S. Evidence of such a 

phenomenon could shed light on the possible difference in function between 

endogenous and exogenous H2S in regulating inflammatory mediator 

production, and how the absence of an endogenous H2S producing enzyme 

(CSE) might affect the response of macrophages to exogenous H2S. In a 

mouse model of renal ischemia/reperfusion injury, exogenous H2S from NaHS 

rescued CSE-/- mice from the injury and mortality associated with renal ischemia, 

as evidenced by a decrease in DNA damage in cells and an increase in the 

proliferation of cells (c.f. untreated CSE-/- mice) (Bos et al., 2013). This 

suggested that exogenous H2S could compensate for the loss of endogenous 

H2S. A similar relationship between exogenous H2S and endogenous H2S was 

also reported in a mouse model of atherosclerosis, whereby treatment of     

CSE-/- mice with NaHS reversed the accelerated atherosclerosis development 

during a 12 week atherogenic paigen-type diet in CSE-/- mice (Mani et al., 2013). 

However to the best of our knowledge, no study has reported the effects of 

exogenous H2S on LPS-stimulated CSE-/- macrophages to date. The present 

work revealed that loss of CSE in RAW264.7 cells did not significantly affect 

the sensitivity of cells to exogenous H2S with respect to inhibition of release of 

pro-inflammatory mediators (Fig 3.3). Although NaHS significantly decreased 
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TNFα secretion from LPS-stimulated CSE-/- clone 2 but not in control cells (Fig 

3.3B), this downregulation was absent in the other 2 clones of CSE-/- RAW264.7 

(ie. Clone 1 and 3). When performing the experiments, greater variation 

between replicates and experiments for TNFα was observed as compared to 

IL-6, hence resulting in larger error bars. As such, more replicates need to be 

carried out to ascertain whether the observed anomaly in CSE-/- clone 2 can be 

repeated. Taking into consideration the effect of NaHS on release of other pro-

inflammatory mediators and enzymes (ie. IL-6, IL-1β, COX-2 and iNOS), the 

absence of a difference between the inhibitory effects of NaHS in reducing 

these mediators both in control and CSE-/- cells stimulated with LPS strongly 

suggests that the loss of CSE did not affect the sensitivity of these cells to 

exogenous H2S, with respect to pro-inflammatory mediator production.      

In the present study, CRISPR-mediated knock-out of CSE in RAW264.7 

cells did not significantly change TNFα and IL-6 secretion (cf. control cells). It 

is perhaps possible that a compensatory mechanism exists within these cells, 

such that the loss of CSE resulted in the upregulation of H2S produced by other 

H2S producing enzymes (ie. 3-MST, or CBS if it is present in RAW264.7 cells). 

Further experiments may be useful to determine the expression and activity 

levels of these enzymes in CSE-/- RAW264.7 cells. 

 Since loss of CSE did not significantly change TNFα and IL-6 secretion 

as compared to control RAW264.7 cells, it was not surprising that no significant 

difference in NFκB activation was apparent between these cells. As NFκB 

activation occurs within the first 60 min after toll-like receptor activation in 

macrophages (Neacsu et al., 2015; Sharif et al., 2007), the biomarker for NFκB 

activation, cytoplasmic p-IκBα and IκBα, was measured and quantified at 4 
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time-points up to 60 min after LPS-stimulation (Fig 3.4). Having ruled out NFκB 

activation under the present experimental conditions, the decrease in iNOS and 

COX-2 expression suggests that CSE deficiency in RAW264.7 cells affected 

the activation of other molecular pathways regulating iNOS and COX-2 

expression levels. Besides NFκB, the regulation of iNOS gene induction in 

RAW264.7 macrophages is also under the control of interferon regulatory 

factor-1 (IRF-1) and signal transducer and activator of transcription-1α (STAT-

1α) (De Stefano et al., 2006). Likewise, COX-2 gene transcription in 

macrophages is also controlled by activator protein 1 (AP-1) (Harper and 

Tyson-Capper, 2008), cAMP-response element binding protein (CREB) 

(Eliopoulos et al., 2002), and the p38-MAP kinase pathway (Rafi et al., 2007), 

in addition to NFκB. As such, CSE deficiency may alter the expression and/or 

binding of these transcription factors to the promoters of iNOS and COX-2 gene. 

Further studies are hence required to investigate the role of H2S in regulating 

these transcription factors.     

 In conclusion, we show here, for the first time, that CSE was permanently 

knocked out in RAW264.7 mouse macrophages using the CRISPR gene-

editing tool, thereby generating a stable CSE-/- cell line. The loss of CSE did not 

affect TNFα and IL-6 secretion or pro IL-1β upregulation in these cells (c.f. 

control cells) in response to LPS stimulation. Absence of CSE decreased iNOS 

and COX-2 expression after LPS stimulation via a mechanism of action not 

involving NFκB activation. In addition, the absence of CSE did not affect the 

downregulation of inflammatory mediators from these cells in response to 

exogenous H2S. Altogether, these findings suggest that CSE may be redundant 

in the regulation of several pro-inflammatory mediators in mouse macrophages, 
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and that its absence does not critically affect anti-inflammatory effects exerted 

by exogenous H2S.  
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CHAPTER 4:  A NOVEL SLOW-RELEASING HYDROGEN 

SULFIDE DONOR, FW1256, EXERTS ANTI-INFLAMMATORY 

EFFECTS IN MOUSE MACROPHAGES AND IN VIVO 
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4.1 Identification of a novel slow-releasing H2S donor that exerts non-

toxic, anti-inflammatory effects in LPS-stimulated RAW264.7 

macrophages  

 In an attempt to identify novel, slow-releasing H2S donors with anti-

inflammatory effects, 11 H2S releasing compounds were screened for their 

ability to reduce TNFα and IL-6 secretion from LPS-stimulated RAW264.7 

macrophages. These compounds were synthesized by Dr Feng Wei from the 

department of Pharmacy, NUS, in the laboratory of Professor Brian Dymock. 

The chemical structures of these compounds were derived from GYY4137 as 

either direct analogues, by substitution of side chains with diamino groups, or 

by cyclisation (Huang et al., 2016a). Compounds were selected on the basis of 

their structural diversity, low molecular weights and a wide range of cLogPs 

(calculated logP value of a compound). For reference, a low logP value 

indicates high hydrophilicity and enhanced permeability across cell membranes 

suggesting better absorption. Based on the Lipinski rule of 5 (Lipinski et al., 

2001), compounds with cLogP values lesser than 5 have a higher probability of 

being well absorbed by cells and hence predictive of drug-like properties. 

All 11 compounds are known to be slow-releasing H2S donors as their 

H2S release rates were previously quantified in cell free media (Feng et al., 

2015). The chemical structures and properties of the H2S releasing compounds 

1-11 are as shown in Table 4.1.  

None of these compounds are water soluble and hence they were 

dissolved in DMSO. Preliminary control experiments were therefore undertaken 

to determine a suitable concentration of DMSO which would not affect the 

release of pro-inflammatory cytokines from LPS-stimulated RAW264.7 
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macrophages. By pre-treating RAW264.7 macrophages with various 

concentrations of DMSO followed by 24 h of LPS stimulation (1μg/ml), it was 

determined that 0.5% v/v was the maximal concentration of DMSO in the 

reaction mixture that would not affect TNFα secretion from these cells (Fig 4.1A). 

All compounds used in this study were therefore dissolved in DMSO at this 

concentration. 

All 11 H2S donors were screened for their ability to reduce formation of 

pro-inflammatory cytokines in RAW264.7 cells stimulated with LPS (1μg/ml) for 

24 h (Whiteman et al., 2010). Whilst a single exposure to NaHS (500μM) 

reduced the release of TNFα and IL-6 by about 1.5 fold, compounds 4 and 10, 

at the same concentration, diminished TNFα secretion by approximately 2500 

and 4 times respectively and additionally reduced IL-6 secretion by 

approximately 40,000 and 120 times (Fig 4.1B). Compound 4 and 10 are 

hereinafter referred to as FW1131 and FW1256. Since both compounds 

appeared to have significant effects on cytokine generation, their effect on cell 

toxicity was determined. Perhaps not surprisingly, FW1131 was clearly toxic 

towards macrophages (Fig 4.1C) whilst FW1256 was not toxic as determined 

by both PI staining (Fig 4.1C), and the MTT assay (Fig 4.1D). In addition to 

being non-toxic, FW1256 possessed a logP value of 3.4 which is less than 5, 

and a molecular weight 247.02 which is less than 500, thereby fulfilling criteria 

from the Lipinski rule of 5. FW1256 was therefore characterized further in this 

study. 
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Table 4.1 Chemical structures and properties of H2S releasing 

compounds 1-11. 

# Structure MW (parent) cLogP  

1 P

S

SH

O

O HN

O 
321.4 3.1 

2 P

S

SH

OPh

O HN

O 
383.47 4.5 

3 

P

S

SH

N

O

HN

O

PhO

 

438.54 6.1 

4 (FW1131) P

S

SH

NHBn

PhO NH2Bn

 
478.61 7.3 

5 
HN

PHN

S

SHH2N

 

433.70 7.1 

6 N

PN

S

SH HNO

O

O  

355.46 1.8 

7 
O P

S

SH

O
N
H  

291.05 2.8 

8 O
P

O S

O  

278.26 4.5 

9 

N P

S

SH

N

S

S

HN

S

 

403.05 3.9 

10 (FW1256) 

 

247.02 3.4 

11 

N
P

O S

S O

O

 

401.40 5.6 

Reproduced from (Huang et al., 2016a) 
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Figure 4.1 Identification of novel H2S releasing compounds: anti-
inflammatory activity in vitro and toxicity.  

(A) Effects of DMSO on the secretion of TNFα in LPS-stimulated RAW264.7 

cells (1μg/ml, 24 h).  
(B) Screen of 11 novel slow-releasing H2S donors (500μM) against RAW264.7 

macrophages stimulated with LPS (1μg/ml, 24 h) for ability to inhibit release of 
pro-inflammatory cytokines.  
(C) Drug-induced cytotoxicity of FW1131 and FW1256. Cells were pretreated 

for 30 min (various concentrations) with test compounds before stimulation with 

LPS (1μg/ml, 24 h). Toxicity was determined by propidium iodide (PI) staining.  
(D) Drug-induced cytotoxicity of FW1256 on RAW264.7 cells pretreated for 30 

min (various concentrations) with FW1256 before stimulation with LPS (1μg/ml, 

24 h). Toxicity was determined by the MTT assay. Mean ± SEM. 1% Triton-X 
(T-X) was used as a positive control.  

NS denotes not significant, * P < 0.05, ** P < 0.01, *** P < 0.001.  
Data in A is from 1 experiment (mean ± SD, n=3, one-way ANOVA with 
Dunnett’s post-test against controls). Data from B is representative of 2 

separate experiments (mean ± SD, n=4). Data from C is from 1 experiment 

(FW1131), and 2 repeated experiments (FW1256) (mean ± SD, n=3-4, one-
way ANOVA with Dunnett’s post-test against controls). Data from D is from 3 

repeated experiments (mean ± SEM, n=3, one-way ANOVA with Dunnett’s 
post-test against controls). 

 
Reproduced from (Huang et al., 2016a) 
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4.2 FW1256 is a slow-releasing H2S donor 

To establish the kinetics of H2S release from FW1256, a recently 

reported H2S fluorescent probe (a near infrared (NIR)-fluorescent probe based 

on a Cu2+-cyclen complex linked to a NIR light- emitting BODIPY fluorophore) 

(Wu et al., 2014a) was used to measure intracellular H2S in LPS-stimulated and 

non-stimulated RAW264.7 cells after treatment with FW1256. The probe was 

first encapsulated in liposomes before being taken up by RAW264.7 cells. The 

cells were then washed with cell culture media, treated with FW1256 with or 

without LPS and fluorescent readings taken over a period of 24 h.  

As expected the entire ‘payload’ of H2S was released from NaHS within 

the first hour. Fluorescence of these cells continued to remain high for the next 

24 h, with or without LPS-stimulation (Fig 4.2A & B). Conversely, macrophages 

challenged with LPS or control, unchallenged cells, treated with FW1256 

showed increasing intensity of fluorescence over the next 24 h (Fig 4.2C & D) 

indicating that FW1256 is indeed a slow (c.f. NaHS) H2S releaser. Whilst a strict 

comparison of the rate of release of H2S from these two compounds was not 

possible due to the explosive nature of H2S release from NaHS, NaHS released 

its entire ‘payload’ of H2S within 30 min, while FW1256 released its entire 

‘payload’ only after 22 hr. The presence of LPS did not affect the release of H2S 

from either NaHS or FW1256. 
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Figure 4.2 FW1256 releases H2S in a sustained manner in RAW264.7 cells.  

RAW264.7 cells were incubated with a fluorescent H2S probe (20μM) for 3 h at 
37°C before being treated with varying concentrations of H2S donors.  
(A) NaHS without LPS; (B) NaHS with LPS; (C) FW1256 without LPS, and (D) 

FW1256 with LPS.  
Data is from 2 repeated experiments (mean ± SD, n=6). 

Reproduced from (Huang et al., 2016a) 
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4.3 FW1256 downregulated pro-inflammatory mediator release from LPS-

stimulated RAW264.7 macrophages 

A characteristic hallmark of inflammation is the presence of pro-

inflammatory mediators released from macrophages when these sentinel cells 

detect sterile tissue damage and foreign pathogens. To examine the anti -

inflammatory effect of FW1256 on LPS-stimulated macrophages, secreted 

TNFα, IL-6, PGE2 and NO from LPS-stimulated RAW264.7 macrophages were 

measured with or without FW1256 treatment. FW1256 concentration 

dependently inhibited the secretion of all of these mediators from LPS-

stimulated RAW264.7 cells (Fig 4.3A). The half maximal inhibitory 

concentrations (IC50) of TNFα, IL-6, PGE2 and NO are 61.2μM, 11.7μM, 

2.55μM and 34.6μM respectively, with the corresponding 95% confidence 

interval (CI) indicated in Fig 4.3B.  

 As the synthesis of NO and PGE2 is mediated by the enzymes iNOS and 

COX-2, the effect of FW1256 on mRNA transcription of iNOS and COX-2 was 

first measured using quantitative PCR (qPCR). IL-1β mRNA levels were also 

measured in the present study as a study has shown that RAW264.7 cells do 

not secrete IL-1β due to the absence of a functional inflammasome, which is 

required for IL-1β maturation and subsequent secretion (Pelegrin et al., 2008). 

Treatment of RAW264.7 cells with FW1256 (200μM) followed by LPS 

stimulation for 24 h significantly downregulated mRNA transcription of COX-2 

(P < 0.01), iNOS (P < 0.05) and IL-1β (P < 0.001) (Fig 4.3C). Consistent with 

the observation at the mRNA level, downregulation of these mediators at the 

protein level was further confirmed by immunoblotting for pro IL-1β, COX-2 and 

iNOS (Fig 4.3D).  
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 To determine whether the H2S released from FW1256 was responsible 

for downregulating formation of pro-inflammatory mediators, the H2S scavenger 

vitamin B12a (hydroxocobalamin) was used together with FW1256 in equimolar 

concentrations. Vitamin B12a has been shown previously to decrease H2S 

concentration (c.f. H2S in PBS only or H2S in CoCl2 containing buffer) in a cell 

free buffered solution of H2S (Van de Louw and Haouzi, 2013). In addition, 

vitamin B12a has been suggested as an antidote against H2S poisoning as it 

prevented NaHS-induced mouse lethality and cytotoxicity (Truong et al., 2007). 

It was proposed that vitamin B12a formed a complex with H2S thereby reducing 

Co3+ in the vitamin B12a core to Co+. In the process, H2S is oxidized to sulfate 

(Truong et al., 2007). Together, these data suggest that vitamin B12a is an H2S 

scavenger. Under the current experimental conditions, vitamin B12a reversed 

the anti-inflammatory effect of FW1256 without directly affecting the secretion 

of TNFα or IL-6 from LPS-stimulated RAW264.7 macrophages (Fig 4.3E) 

thereby supporting the hypothesis that the inhibitory effect of FW1256 on pro-

inflammatory release under these conditions was indeed due to the H2S moiety.  

 To determine whether FW1256 had efficacy in downregulating pro-

inflammatory mediators when administered after LPS stimulation, secreted 

TNFα and IL-6 levels were compared between RAW264.7 macrophages that 

were treated with FW1256 30 min either before or after LPS stimulation. 

Treating cells with FW1256 after LPS stimulation was as effective as treating 

cells with FW1256 before LPS stimulation (Fig 4.3F), suggesting potential 

translational potential.  

 Finally, FW1256 was compared against NaHS and another slow H2S 

releasing compound, GYY4137. FW1256, but not GYY4137, inhibited TNFα 
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and IL-6 release from RAW264.7 cells stimulated with LPS for 24 h when these 

2 compounds were given at concentrations of 75μM and 15 μM (similar to the 

IC50s of FW1256 to inhibit TNFα and IL-6 release respectively in these cells). A 

much higher concentration of NaHS (500μM) was unable to downregulate 

TNFα and IL-6 levels from RAW264.7 cells stimulated with LPS for 24 h (Fig 

4.3G). Although RAW264.7 cells treated with NaHS (500μM, 30 min) prior to 

LPS-stimulation (1μg/ml, 6 h) downregulated TNFα and IL-6 secretion (Fig 

3.1B), identical NaHS treatment on RAW264.7 cells prior to LPS-stimulation 

(1μg/ml, 24 h) did not affect TNFα and IL-6 secretion (Fig 4.3G). A plausible 

reason is that NaHS being a fast H2S donor would have dissipated to a greater 

extent after 24 h (cf. 6 h). This may well result in less reduction of cytokines in 

Fig 4.3G (24 h LPS) c.f. Fig 3.1B (6 h LPS). Likewise, treatment of RAW264.7 

cells with GYY4137 (75μM or 15μM, 30min) prior to LPS-stimulation (1μg/ml, 

24 h) did not downregulate TNFα and IL-6 secretion, unlike in cells treated with 

identical concentrations of FW1256 (Fig 4.3G). This may be attributed to the 

lower rate of release of H2S from GYY4137 as compared to FW1256. 

Together, this data strongly suggests that FW1256 has a higher efficacy 

and potency (c.f. GYY4137 and NaHS) in reducing pro-inflammatory mediator 

generation from RAW264.7 cells stimulated with LPS over a duration of 24 h. 
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Figure 4.3. FW1256 reduces the production of inflammatory mediators 
from LPS-stimulated RAW264.7 macrophages.  

(A) Dose dependent inhibition of inflammatory cytokines and mediators from 

RAW264.7 macrophages pretreated 30 min with various doses of FW1256 

before stimulation with LPS (1μg/ml, 24 h). Nonlinear regression analysis was 
performed for dose response curves, and the curve of Log [M] FW1256 versus 
the normalized response is presented. 
(B) IC50 of FW1256 in reducing inflammatory cytokines and mediators in LPS-
stimulated RAW264.7 cells as treated in A.  

(C) mRNA expression of IL-1β, iNOS and COX-2 in RAW264.7 cells pretreated 

with FW1256 (200μM) for 30 min before stimulation with LPS (1μg/ml, 24 h).  
(D) Immunoblot analysis of pro-IL-1β, iNOS and COX-2 in RAW264.7 cells as 

treated in C.  
(E) TNFα and IL-6 secretion from LPS stimulated RAW264.7 macrophages 

treated with FW1256, with or without co-treatment with the H2S scavenger 
vitamin B12a (hydroxocobalamin).  
(F) TNFα and IL-6 secretion from RAW264.7 macrophages treated with vehicle 

(Veh), or FW1256 30 min before (pre) or 30 min after (post) stimulation with 
LPS (1μg/ml, 24 h).  
(G) TNFα and IL-6 secretion from RAW264.7 macrophages pretreated 30 min 

with H2S releasing compounds or vehicle (Veh), before stimulation with LPS 
(1μg/ml, 24 h).  
*P < 0.05, **P < 0.01, ***P < 0.001. Data in A is from 4 repeated experiments 
(mean ± SEM, n=4), C, E-G is from 3 repeated experiments (mean ± SEM, n=3, 

one-way ANOVA with Dunnett’s post-test against controls). Immunoblot in D is 

representative of 3 repeated experiments. 
 

Reproduced from (Huang et al., 2016a) 
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4.4 NFκB activation is reduced in LPS-stimulated RAW264.7 

macrophages treated with FW1256 

A key activator that regulates the transcription of pro-inflammatory 

mediators TNFα, IL-6, IL-1β, COX-2 and iNOS is the transcription factor NFκB. 

H2S has previously been shown to inhibit NFκB activation in RAW264.7 

macrophages challenged with LPS (Oh et al., 2006). Hence, the effect of 

FW1256 on NFκB activation was assessed. NFκB activation is marked by the 

degradation of IκBα, which is a protein that sequesters NFκB in the cytoplasm. 

The degradation of IκBα is preceded by its phosphorylation, mediated by 

upstream activation of TLRs. Without IκBα binding, NFκB would subsequent 

translocate into the nucleus and activate the transcription of pro-inflammatory 

mediators.  

Phosphorylation of IκBα is an event which happens within minutes of 

TLR activation and is also an indicator of NFκB activation. To determine if 

FW1256 inhibited NFκB activation, phosphorylation of IκBα was assessed in 

whole cell lysates of these cells stimulated with LPS at intervals between 5 to 

60 min (Fig. 4.4A). As compared to untreated cells, FW1256 (200μM), reduced 

phosphorylation of IκBα at 30 min and 60 min post LPS-stimulation (P < 0.05) 

(Fig 4.4B). To confirm that NFκB activation was indeed reduced in FW1256 

treated cells, nuclear fractionation was carried out on these cells 60 min after 

LPS-stimulation. The NFκB p65 subunit present in the nuclear fraction of these 

cells were quantitated and was significantly reduced when compared to control 

cells (P < 0.01) (Fig 4.4C & D). These findings indicate that FW1256 inhibited 

NFκB activation, as evidenced by a reduction in the phosphorylation of IκBα in 
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the cytoplasm, as well as reduced p65 translocation into the nucleus of LPS-

stimulated RAW264.7 cells. 
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Figure 4.4 Effects of FW1256 on the phosphorylation of IκBα in LPS- 
stimulated RAW264.7 macrophages.  

(A) Representative immunoblot of phosphorylated IκBα (p-IκBα) in RAW264.7 

cells pretreated with FW1256 (200μM, 30min) before stimulation for 5, 15, 30 

and 60 min with LPS (1μg/ml). + denotes no LPS added. 
(B) Expression of p-IκBα (c.f. actin, normalized to vehicle + LPS 60 min group) 
in LPS stimulated RAW264.7 cells as treated in A. (mean ± SD, Mann-Whitney 

U test). 
(C) Representative immunoblot of nuclear p65, cytoplasmic p65, p-IκBα and 

IκBα in RAW264.7 cells that were pretreated with FW1256 (200μM, 30 min) 
before stimulation with LPS (1μg/ml, 60 min).  
(D) Expression of nuclear p65 (c.f. nuclear + cytoplasmic p65) in LPS stimulated 

RAW264.7 cells as treated in C.  
* P < 0.05, ** P < 0.01. Immunoblots in A and C are representative of 3 repeated 

experiments. Data in B and D is from 3 repeated experiments as indicated for 
A and C (mean ± SD, n=3, Mann-Whitney U test). 

 
 

Reproduced from (Huang et al., 2016a) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



102 

 

4.5 FW1256 also downregulated pro-inflammatory mediator release from 

LPS-stimulated primary bone marrow derived macrophages (BMDMs) 

 Primary cells taken directly from an in vivo source have very few 

population doublings as compared to immortalised cell lines. As such, primary 

cells are exposed to lesser selection pressure and are genetically more 

heterogeneous, and thus may be more representative of the in vivo state as 

compared to immortalised cell lines. We therefore examined whether the 

downregulation of pro-inflammatory mediators by FW1256 in RAW264.7 cells 

was also apparent in primary macrophages. BMDMs were pre-treated with 

varying concentrations of FW1256 prior to stimulation with LPS. Similar to 

results obtained using RAW264.7 cells, FW1256 also concentration 

dependently reduced pro-inflammatory cytokine and mediator release from 

BMDMs (Fig 4.5A), albeit with lesser potency. The IC50s for inhibiting formation 

of TNFα, IL-6, PGE2 and NO were 414.9μM, 300.2μM, 4μM and 9.5μM 

respectively, with the corresponding 95% confidence intervals indicated in Fig 

4.5B. As a comparison with RAW264.7 cells, the IC50 for inhibiting the release 

of TNFα and IL-6 in BMDMs is approximately 6.8 and 25.7 times higher 

respectively. Similar to RAW264.7 cells, FW1256 was not cytotoxic to BMDMs 

in the presence or absence of LPS (Fig 4.5C), as evidenced by the MTT assay.  
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Figure 4.5 FW1256 reduced the production of inflammatory mediators 
from LPS-stimulated bone marrow derived macrophages (BMDMs).  

(A) Dose dependent inhibition of inflammatory cytokines and mediators from 

BMDMs pretreated 30 min with various doses of FW1256 before stimulation 

with LPS (1μg/ml, 24 h) by FW1256. Nonlinear regression analysis was 
performed for dose response curves, and the curve of Log [M] FW1256 versus 
the normalized response is presented. All data points are represented as mean 

± SEM, n=3, except for the NO dose response curve, mean ± SD, n=6-8. 
(B) IC50 of FW1256 in reducing inflammatory cytokines and mediators in LPS 

stimulated BMDMs as treated in A. 
(C) Toxicity of different doses of FW1256 on LPS (1μg/ml) stimulated BMDMs, 

determined by the MTT assay. 1% Triton-X (T-X) was used as a positive control. 
Data in A (TNFα, IL-6 & PGE2) is from 3 repeated experiments (mean ± SEM, 
n=3), and NO from 2 repeated experiments (mean ± SD, n=6-8). Data in C is 

from 3 repeated experiments (mean ± SEM, n=3). 

Reproduced from (Huang et al., 2016a) 
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4.6 FW1256 downregulated pro-inflammatory mediator release in the 

LPS sepsis mouse model 

Having established that FW1256 is able to downregulate pro-

inflammatory mediator release both in the RAW264.7 macrophage cell line and 

in primary mouse BMDMs, the effect of FW1256 (50mg/kg & 100 mg/kg, i.p.) 

was next assessed in vivo, in an LPS model of sepsis in the mouse. To this end, 

mice were injected with FW1256 (100mg/kg) 30 min before injection of LPS 

(10mg/kg, i.p.) and killed 6 h thereafter. This timing is the maximal approved 

duration stipulated in the IACUC protocol under which authority these 

experiments were conducted. Significantly lower levels of IL-1β were detected 

both in blood plasma (P < 0.01 and 0.001) and peritoneal lavage (P < 0.001) of 

FW1256-treated mice compared to control animals (Fig 4.6A & B). As 

compared to control mice, TNFα in the blood plasma, PGE2 in the peritoneum, 

and nitrate/nitrite levels in the peritoneum were also significantly reduced when 

mice were treated with a higher dose of FW1256 (ie. 100mg/kg but not 50mg/kg)  

(Fig 4.6C, 4.6H & I). FW1256 however did not reduce IL-6 levels in these LPS 

sepsis mice. Together, these data suggest that FW1256 is effective in limiting 

pro-inflammatory mediator release in vivo during systemic infection in mice. 
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Figure 4.6 FW1256 reduced pro-inflammatory mediators in the mouse 
model of LPS induced septic shock.  
(A) IL-1β levels at 6 h in the blood plasma;  

(B) IL-1β levels at 6 hours in the peritoneal lavage;  
(C) TNFα levels at 6 h in the blood plasma;  
(D) TNFα levels at 6 h in the peritoneal lavage;  

(E) IL-6 levels at 6 h in the blood plasma;  
(F) IL-6 levels at 6 h in the peritoneal lavage;  

(G) nitrate/nitrite levels at 6 h in the blood plasma;  
(H) nitrate/nitrite levels at 6 hours in the peritoneal lavage;  
(I) PGE2 levels at 6 h in the peritoneal lavage, after intraperitoneal (i.p.) injection 

with LPS (10mg/kg of body weight), with or without 1 hour i.p. injection of 
FW1256 (100mg/kg of body weight) prior to LPS injection.  

* P < 0.05, ** P < 0.01, *** P < 0.001 (Box and whiskers plot showing median 
with the 25th and 75th percentiles, whiskers represent smallest and largest 
values, one-way ANOVA with Dunnett’s post-test against controls, n=4-7 mice 

per group). 
 

Partially reproduced from (Huang et al., 2016a) 
 
 

 

 

 

 

 

 

 

 

 

 

 

I 



108 

 

4.7 Discussion 

The positive effects of exogenous H2S (i.e. H2S donor compounds) in 

diseases with an inflammatory component has been demonstrated in numerous 

in vivo studies in the past decade. Such conditions include but are not limited 

to hypertension (Cacanyiova et al., 2016), osteoarthritis (Burguera et al., 2016), 

gastrointestinal disorders (Farrugia and Szurszewski, 2014), cancer (Elsheikh 

et al., 2014; Lee et al., 2011), renal damage (Lin et al., 2016), myocardial 

infarction (Karwi et al., 2016) and  myocardial fibrosis (Meng et al., 2015). Some 

of the manifestations of inflammation in these diseases include potential 

activation of immune cells, fever, swelling, loss of function and pain which 

conditions are regulated at least in part by the release of pro-inflammatory 

mediators and cytokines from macrophages (Zhang and An, 2007). Seeking to 

target macrophages and reduce the release of pro-inflammatory mediators 

from these cells may therefore be a strategy to limit the extent of inflammation 

and the associated undesirable symptoms.  

Whilst there is a general consensus about the benefits of exogenous 

H2S in alleviating symptoms of inflammation as seen in animal models (Wallace 

et al., 2015), the toxicity of H2S at high concentrations and its short lifespan due 

to volatility create significant challenges in the translation of H2S releasing 

donors from experimental tools to therapeutic agents. One strategy which may 

help to overcome these shortcomings is the development of slow-releasing H2S 

donors, which release H2S in small amounts over a prolonged period of time 

instead of a single large bolus very rapidly. This might be crucial as many 

inflammatory diseases are chronic and occur over extended time periods. 

Assuming that H2S is indeed anti-inflammatory in humans then H2S releasing 
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donors which deliver their payload slowly may be advantageous in the clinic. 

The slow-releasing H2S donor, GYY4137, has previously been shown to be 

more potent and more efficient in inhibiting the release of pro-inflammatory 

mediators from LPS-stimulated RAW264.7 cells, as compared to the fast-

releasing H2S donor, NaHS (Whiteman et al., 2010). Such findings offer support 

to the principle that slow-releasing H2S donors have greater potential for 

therapeutic purposes c.f. fast-releasing H2S donors. In the present study, we 

demonstrated that, in the absence of toxicity, the downregulation of pro-

inflammatory mediator release from LPS-stimulated RAW264.7 cells by the 

fast-releasing H2S donor, NaHS, was greater when administered at a higher 

concentration and frequency (Fig 3.1). This finding supports the possibility that 

exposure of macrophages to a smaller concentration of H2S but over a longer 

duration is more efficient in limiting pro-inflammatory cytokine release 

compared to a single large bolus of H2S. Consistent with these observations, a 

recent study by Rios et al. (Rios et al., 2015) showed that NaHS reduced TNFα 

and IL-6 secretion from the LPS-challenged human macrophage cell line, THP-

1.  

 Screening of a panel of novel slow-releasing H2S donors was carried out 

at an initial concentration of 500μM. This concentration was chosen as a 

starting point based on a previous study in which the potency of GYY4137 in 

downregulating the release of pro-inflammatory mediators from LPS-stimulated 

RAW264.7 macrophages was assessed and compared against NaHS 

(Whiteman et al., 2010). In this study, GYY4137 at the dose of 500μM inhibited 

the release of TNFα, IL-6, PGE2, nitrite and IL-1β from LPS-stimulated 

RAW264.7 macrophages to the largest extent. The panel of H2S donors 
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screened in the current work belonged to the same class of H2S donors (ie. 

slow-releasing H2S donors). In addition, since the chemical structures of the 

novel slow-releasing H2S donors used in the present study were derived from 

GYY4137 as either direct analogues, by substitution of side chains with diamino 

groups, or by cyclisation, we conjectured that any observable anti-inflammatory 

properties (if any) would be prevalent at a similar concentration. 

 Using a 2,6-dansyl azide H2S sensitive fluorescent probe, FW1256 was 

previously shown to release 77.6% of its available sulfur over a period of 72 h 

at 37°C in a cell free buffer system (77.6μM ± 1.1 H2S detected from a solution 

of FW1256 (100μM) after 72 h, 37°C) (Feng et al., 2015). In a comparison with 

GYY4137 (1mM) over 72 h at 22°C, FW1256 (1mM) released more H2S c.f. 

GYY4137 (approximately 150μM H2S released from FW1256 as compared to 

approximately 5μM H2S released from GYY4137) (Feng et al., 2015). In the 

present study, the kinetics of H2S release from FW1256 after delivery into 

RAW264.7 macrophages by DOTAP liposomes over a period of 24 h was 

determined using a different H2S sensitive fluorescent probe as reported in (Wu 

et al., 2014a). Unlike the 2,6-dansyl azide probe, this probe has been shown to 

capture H2S and fluoresce intracellularly. FW1256 released its H2S ‘payload’ 

gradually over the course of 24 h (Fig 4.2C & D). NaHS conversely released its 

entire payload of H2S within the first hour (Fig 4.2A & B).  

Besides downregulating the inflammatory mediators TNFα and IL-6, 

FW1256 also reduced both NO release and iNOS expression at the mRNA and 

protein level (Fig 4.3A - D). This is consistent with other studies showing similar 

activity of H2S gas (Oh et al., 2006), GYY4137 (Whiteman et al., 2010), and 
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diallyl trisulfide (DATS) (Liu et al., 2006), which provides a source of H2S when 

metabolized by glutathione in red blood cells (Benavides et al., 2007).  

 Mechanistically, the anti-inflammatory effect of H2S has previously been 

linked to the inhibitory effect it exerts over NFκB (Oh et al., 2006). Other studies 

also showed that GYY4137 reduced LPS-induced NFκB activation in vitro 

(Whiteman et al., 2010) and in vivo (Li et al., 2009). Similarly, diallyl trisulfide 

(DATS) also suppressed activation of NFκB in LPS-stimulated RAW264.7 cells 

(Lee et al., 2015). Hence, we hypothesized that FW1256 exerted an inhibitory 

effect on NFκB, thereby contributing to the downregulation of pro-inflammatory 

mediators. By assessing cytoplasmic phosphorylated-IκB levels and further 

substantiating this data with translocated nuclear p65 levels, it was confirmed 

that FW1256 inhibited NFκB activation in LPS-stimulated RAW264.7 cells (Fig 

4.4). Nonetheless, it must also be noted that as there are numerous adaptor 

proteins and kinases upstream of p65 and IκBα in the TLR4/NFκB activation 

signaling pathway such as  MyD88, TIRAP, TRIF, TRAM, TBK1, TRAF6 and 

the IκB kinase complex (IKKα, IKKβ and NEMO) (Vallabhapurapu and Karin, 

2009), the possibility of H2S interacting with one of these proteins and thereby 

inhibiting subsequent downstream NFκB activation is likely. In the present study, 

the molecular mode of action by H2S on these other proteins were not examined 

and remains as potential protein targets to be studied. 

When comparing IC50 values of FW1256 that inhibit release of pro-

inflammatory mediators from primary BMDMs and the RAW264.7 macrophage 

cell line, it was clear that, except for NO and PGE2, the potency of FW1256 

against BMDMs differed from that of the RAW264.7 cells. FW1256 was 

comparatively very poor in inhibiting the release of TNFα and IL-6 in LPS-
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stimulated BMDMs as compared to RAW264.7 macrophages (Fig 4.3B and 

4.5B). Hence when tested in the LPS sepsis mouse model, it was perhaps not 

surprising that there was no significant reduction of IL-6 in the blood plasma 

and peritoneum of these mice as compared to the control group. However, 

FW1256 did significantly reduce secretion of other pro-inflammatory mediators 

including IL-1β, TNFα, nitrate/nitrite and PGE2 in the LPS sepsis mice 6 h after 

LPS challenge. Whilst the dose of 50mg/kg of FW1256 was sufficient to reduce 

IL-1β levels in the blood plasma and peritoneum, doubling the dose to 

100mg/kg further reduced TNFα, NO and PGE2 levels (Fig 4.6). Although the 

exact reasons behind the disparity of efficacy between primary macrophages 

and a cell line was not determined in this study, it is conceivable that the degree 

of H2S penetration through the cell membrane differs between BMDMs and 

RAW267.4 cells. In addition, whether the donors are taken up into the cell prior 

to the release of H2S intracellularly or whether the release of H2S occurs 

extracellularly prior to its diffusion across the cell membrane also remains an 

unanswered question. 

 In conclusion, FW1256, a novel slow-releasing H2S donor, was found to 

exert anti-inflammatory effects against mouse macrophages by diminishing the 

secretion of inflammatory mediators via NFκB inhibition. Such effects were also 

apparent when FW1256 was tested in an LPS sepsis mouse model. FW1256 

might be used as a slow H2S-releasing tool to study how H2S affects biological 

systems. In addition, the chemical structure of FW1256 could also be further 

modified to enhance its solubility, permeability and metabolic stability for further 

improvement of its drug-like properties.  
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CHAPTER 5: H2S INHIBITS NLRP3 INFLAMMASOME 

ACTIVATION IN MOUSE MACROPHAGES 
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5.1 The H2S donor NaHS inhibits NLRP3 inflammasome-mediated IL-1β 

maturation in J774A.1 macrophages 

 The release of IL-1β from macrophages requires a ‘priming’ step by TLR 

activation followed by activation of the NLRP3 inflammasome. Previous studies 

have shown that NLRP3 inflammasome activation in macrophages causes 

maturation of pro IL-1β (31 kDa) producing cleaved IL-1β (17 kDa) which is 

subsequently secreted out of the cell. This response can be achieved by 

treating macrophages with LPS (4 h) followed by ATP (5mM, 30 min) 

(Perregaux and Gabel, 1994). To study the effect of NaHS on NLRP3 

inflammasome activation aside from its effect on the ‘priming’ step by LPS, 

J774A.1 macrophages were first primed with LPS (1μg/ml, 4 h) and then treated 

with NaHS (30 min) followed by addition of ATP to induce NLRP3 

inflammasome activation. In the presence of increasing concentrations of 

NaHS, the maturation of pro IL-1β was inhibited in a concentration dependent 

manner (Fig 5.1). To determine that this inhibitory effect was due to H2S 

released from NaHS, time-expired NaHS (tx-NaHS) at the highest 

concentration studied (600μM) was used as a negative control. Unlike NaHS, 

tx-NaHS, at the same concentration, did not inhibit maturation of pro IL-1β (Fig 

5.1). This strongly suggested that H2S, released from NaHS, inhibits NLRP3 

inflammasome activation in mouse macrophages.  
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Figure 5.1 The H2S donor NaHS suppresses NLRP3 inflammasome 
mediated IL-1β maturation in J774A.1 macrophages.  

Immunoblot analysis of pro- and cleaved IL-1β in J774A.1 primed with LPS 

(1μg/ml, 4 h) followed by treatment with varying concentrations of NaHS (0, 200, 
400 or 600μM, 30 min) or time-expired NaHS (tx-NaHS) (600μM, 30min), 

before stimulation with ATP (5mM, 30 min). Immunoblot is representative of 2 
repeated experiments. 
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5.2 Culture of primary BMDMs with L929 conditioned media 

 One aim of this study was to evaluate the effect of NaHS on NLRP3 

inflammasome activation in primary mouse macrophages instead of a cell line. 

For this work, the conditions required for the differentiation of BMDMs from 

bone marrow cells in culture were different from those employed for the cell line. 

Thus, DMEM supplemented with conditioned media from L929 mouse 

fibroblasts, was used to differentiate and culture BMDMs from mouse bone 

marrow cells. This procedure is well established in the literature. Media from 

the L929 cell line contains macrophage colony-stimulating factor (M-CSF), 

which is essential for BMDM derivatization. However, the use of both 10% v/v 

L929 (Weischenfeldt and Porse, 2008) and 20% v/v L929 (Mishra et al., 2013) 

conditioned media has been reported. To determine which percentage would 

be sufficient for the differentiation process, mouse bone marrow cells from the 

femurs and tibias of mice were cultured in 10% v/v or 20% v/v L929 conditioned 

media for 7 days, with a change of media on day 4. Using flow cytometry, 

BMDMs were stained with antibody against the F4/80 antigen, which is 

expressed by the majority of mature macrophages (Austyn and Gordon, 1981), 

and compared with expression in the J774A.1 cells. Culture of bone marrow 

cells with either 10% v/v or 20% v/v L929 conditioned media led to complete 

differentiation as indicated by the expression of F4/80 on BMDMs, which was 

comparable to that of the J774A.1 cell line (Fig 5.2). Hence, the lower 

concentration of 10% v/v L929 conditioned media (10%) was used for all 

subsequent experiments.   
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Figure 5.2 L929 conditioned media differentiates mouse bone marrow 
cells into BMDMs.  

Flow cytometry histograms of J774A.1 cells and bone marrow cells cultured in 
either 10% or 20% L929 conditioned media, stained with the antibody against 

the F4/80 antigen. Stained cells (light grey histograms) were compared to 
unstained cells (dark grey histograms).  
Data is from 1 experiment.     
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5.3 Exogenous H2S inhibits NLRP3 inflammasome mediated IL-1β and 

IL-18 secretion in BMDMs 

To further investigate whether H2S inhibits NLRP3 inflammasome 

activation in primary mouse macrophages, BMDMs were primed with LPS (4 h) 

and treated with varying concentrations of NaHS (30 min), before activation of 

the NLRP3 inflammasome by ATP (30 min). Treatment of cells with NaHS was 

conducted only after LPS priming, as pre-treating cells with NaHS prior to LPS 

stimulation downregulates pro IL-1β levels in these cells (Fig 5.3A). In the 

presence of NaHS administered after LPS priming, IL-1β and IL-18 secretion 

were inhibited (P < 0.01) (Fig. 5.3B). Conversely, secretion of TNFα and IL-6, 

which relies on toll-like receptor signalling but not NLRP3 inflammasome 

activation, was unaffected. This was the case with the exception of IL-6 

secretion at the maximal concentration of NaHS (600μM). At this concentration, 

NaHS caused a significant decrease in IL-6 secretion (P < 0.05) (Fig. 5.3B). To 

substantiate these findings, another widely reported NLRP3 inflammasome 

activator, nigericin, was used. Similar to data obtained with ATP stimulation, 

NaHS inhibited nigercin induced IL-1β (P < 0.001) and IL-18 (P < 0.05) 

secretion without affecting either TNFα or IL-6 secretion (Fig 5.3C).  

A second hallmark of NLRP3 inflammasome activation is activation of 

caspase-1. Activation of caspase-1 occurs when pro caspase-1 (45 kDa) is 

degraded to form a cleaved, mature form of caspase-1 (20 kDa). Treatment of 

LPS-primed BMDMs with the pan caspase inhibitor Z-VAD-FMK (10μM) prior 

to ATP or nigericin stimulation inhibited the secretion of IL-1β, thereby strongly 

suggesting that activation of caspase-1 is required for the secretion of IL-1β 

(Fig 5.3D).   
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Figure 5.3 H2S exerts an inhibitory effect on NLRP3 inflammasome 
mediated IL-1β and IL-18 secretion in BMDMs.  
(A) Immunoblot analysis of lysates from BMDMs treated with NaHS (600μM, 

30 min) prior to stimulation with LPS (1μg/ml, 4 h). Data is from 3 repeated 
experiments. 
(B) Inflammatory cytokines secreted (IL-1β, IL-18, TNFα and IL-6) from BMDMs 

primed with LPS (1μg/ml, 4 h) followed by treatment with varying concentrations 
of NaHS (0, 200, 400 or 600μM, 30 min), before stimulation with ATP (5mM, 30 

min).  
(C) Inflammatory cytokines secreted (IL-1β, IL-18, TNFα and IL-6) from BMDMs 

primed with LPS (1μg/ml, 4 h) followed by treatment with NaHS (600μM, 30 
min), before stimulation with nigericin (10μM, 1 h).  
(D) Secreted IL-1β from BMDMs primed with LPS (1μg/ml, 4 h), followed by 

treatment with the pan caspase inhibitor Z-VAD-FMK (10μg/ml, 30 min), before 
stimulation with either ATP (5mM, 30min) or nigericin (10μM, 1 h).   
* P < 0.05, ** P < 0.01, *** P < 0.001. Immunoblot in A is representative of 3 

repeated experiments. Data in B-D is from 3 - 5 repeated experiments (mean ± 

SEM, n=3-5, one-way ANOVA with Dunnett’s post-test against controls). 
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5.4 Exogenous H2S inhibits NLRP3 inflammasome mediated IL-1β and 

caspase-1 maturation in BMDMs 

 Secreted IL-1β exists as the cleaved, mature form of IL-1β (17 kDa) 

(Perregaux and Gabel, 1994). Having observed that H2S reduced IL-1β 

secretion from BMDMs as detected by ELISA (Fig 5.3B & C), it was not 

surprising that H2S also reduced cleaved IL-1β in the lysates of BMDMs primed 

with LPS and stimulated with either ATP or nigericin, as detected by 

immunoblotting (Fig 5.4A & C). Tx-NaHS did not reduce cleaved IL-1β 

expression (Fig 5.4A & C) thereby suggesting H2S mediates the inhibitory effect 

of NaHS. In addition, NaHS also significantly reduced cleaved caspase-1 (20 

kDa) levels in the lysates of these cells (P < 0.001) (Fig 5.4A – D). As expected, 

tx-NaHS did not inhibit the activation of caspase-1 to form cleaved caspase-1 

(Fig 5.4A - D). 

 To rule out the possibility that inhibition of IL-1β and IL-18 secretion, as 

well as the maturation of IL-1β and IL-18 by NaHS, was due to cell death, an 

MTT assay was performed on cells treated with the highest concentration of 

NaHS (600μM). At this concentration, NaHS did not cause cell death (Fig 5.4E). 

Altogether, these data suggest that exogenous H2S, released from NaHS, 

inhibits the activation of the NLRP3 inflammasome in BMDMs in the absence 

of cell toxicity. 
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Figure 5.4 The H2S donor NaHS exerts an inhibitory effect on NLRP3 
inflammasome mediated IL-1β and IL-18 secretion, and caspase-1 

activation in BMDMs.  
(A) Immunoblot analysis of lysates from BMDMs primed with LPS (1μg/ml, 4 h) 

followed by treatment with varying concentrations of NaHS (0, 200, 400 or 
600μM, 30 min) or time-expired NaHS (tx-NaHS) (600μM, 30 min), before 
stimulation with ATP (5mM, 30 min).  
(B) Quantification of p20 caspase-1 subunit : β-actin as treated in A. Results 

are from 3 repeated experiments.  
(C) Immunoblot analysis of lysates from BMDMs primed with LPS (1μg/ml, 4 h) 

followed by treatment with NaHS (600μM, 30 min) or tx-NaHS (600μM, 30 min), 
before stimulation with nigericin (10μM, 1 h). 
(D) Quantification of p20 caspase-1 subunit : β-actin as treated in C. Results 

are from 3 repeated experiments. 
(E) Toxicity of NaHS and txNaHS (600μM) on BMDMs primed with LPS (1μg/ml, 

4 h), as determined by the MTT assay. 1% Triton-X (T-X) was used as a positive 
control.  
*** P < 0.001. Immunoblots in A and C are representative of 3 repeated 
experiments. Data in B and D is from 3 repeated experiments as indicated for 

A and C (mean ± SD, n=3, one-way ANOVA with Dunnett’s post-test against 
controls), and data in E is from 3 repeated experiments (mean ± SEM, n=3). 
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5.5 NaHS and slow-releasing H2S donors FW1256 and GYY4137 inhibits 

NLRP3 inflammasome activation in BMDMs 

 To determine whether slow-releasing H2S donors can also inhibit NLRP3 

inflammasome activation in BMDMs, BMDMs were treated with various doses 

of NaHS (30 min), FW1256 (1 h) or GYY4137 (1 h) after LPS priming and prior 

to NLRP3 inflammasome activation by ATP. NaHS and FW1256 dose-

dependently inhibited IL-1β and IL-18 release in BMDMs with the half-maximal 

inhibitory concentration (IC50) of NaHS for IL-1β and IL-18 being 73.6μM and 

65.2μM respectively (Fig 5.5A & B), and IC50 of FW1256 for IL-1β and IL-18 

being 215.9μM and 118.5μM respectively (Fig 5.5C & D). GYY4137 however 

only caused a statistically significant (P < 0.05) decrease of IL-1β but not IL-18 

at a concentration of 600μM (Fig 5.5E & F). These findings imply that amongst 

these three H2S donors, NaHS displayed the highest potency in inhibiting 

NLRP3 inflammasome activation followed by FW1256 and GYY4137 

respectively. This is expected given that the rate of release of H2S has 

previously been shown to be the highest for NaHS, followed by FW1256 and 

then GYY4137 (Feng et al., 2015). 
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Figure 5.5 NaHS, FW1256 and GYY4137 induced Inhibition of IL-1β and IL-
18 from NLRP3 inflammasome activated BMDMs. 
(A-B) Production of IL-1β and IL-18 from BMDMs primed with LPS (1μg/ml, 4 
h) followed by treatment with either NaHS (18 - 600μM, 30 min); (C-D) FW1256 

(18 - 600μM, 1 h); or (E-F) GYY4137 (150 - 600μM, 1 h) before stimulation with 

ATP (5mM, 30 min).  

Data is from 3 repeated experiments. * P < 0.05. Data is from 3 repeated 
experiments (mean ± SD, n=4-8, one-way ANOVA with Dunnett’s post-test 
against controls). Nonlinear regression analysis was performed for dose 

response curves, and the curve of Log [M] NaHS or Log [M] FW1256 versus 
the normalized response is presented.  
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5.6 Exogenous H2S inhibits NLRP3 inflammasome-mediated 

pyroptosome formation in BMDMs 

 Pyroptosis is a form of cell death that occurs as a result of inflammasome 

activation. In conjunction with pyroptosis, a pyroptosome, which is a 

supramolecular assembly of ASC dimers must first be formed (Fernandes-

Alnemri et al., 2007). Chemically cross-linking ASC in the cell pellet with 

disuccinimidyl suberate (DSS) allows for the detection of ASC aggregation by 

immunoblotting and is thus an indication of pyroptosome formation. To 

determine whether NaHS inhibits NLRP3 inflammasome-mediated 

pyroptosome formation, LPS primed BMDMs were treated with NaHS (600μM) 

prior to NLRP3 inflammasome activation with either ATP or nigericin. Under 

these conditions, NaHS inhibited the presence of ASC aggregation as 

evidenced by decreased ASC laddering visualized by immunoblotting (Fig 5.6A 

& B).  

 Using detection via immunofluorescent staining, BMDMs primed with 

LPS and stimulated with nigericin resulted in the formation of ASC specks. 

Consistent with published findings (Proell et al., 2013) only one ASC speck was 

apparent per cell (Fig 5.6C). Treatment of macrophages with NaHS prior to 

nigericin stimulation significantly reduced ASC speck formation (P < 0.001), 

consistent with that observed from the ASC cross-linking assay (Fig 5.6B - D). 

Hence, the present data shows that NaHS inhibits NLRP3 inflammasome-

mediated pyroptosome formation in BMDMs.   
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Figure 5.6 The H2S donor NaHS inhibits NLRP3 inflammasome mediated 
pyroptosome formation in BMDMs.  

(A) ASC oligomerization in BMDMs primed with LPS (1μg/ml, 4 h), followed by 

treatment with NaHS or time-expired NaHS (tx600) (600μM, 30 min), before 

being stimulated with ATP (5mM, 30 min).  
(B) ASC oligomerization in BMDMs primed with LPS (1μg/ml, 4 h), followed by 

treatment with NaHS or time-expired NaHS (tx600) (600μM, 30 min), before 

being stimulated with nigericin (10μM, 1 h).  
(C) Immunofluorescence microscopy of BMDMs treated as in B. Cells were 

stained for ASC (green) and nuclei (blue; DNA-binding dye DAPI). Arrowheads 
indicate ASC specks. Scale bars, 30μm.  
(D) Percentage of BMDMs containing ASC specks. Data is from 2 repeated 

experiments, with 7 frames taken in each experiment and at least 800 cells 
counted in total. 
 *** P < 0.001. Immunoblots in A and B are representative of 3 repeated 
experiments, and quantification in D is from 2 repeated experiments, with 7 

frames taken in each experiment and at least 800 cells counted in total. (Mean 

± SD, one-way ANOVA with Dunnett’s post-test against controls) 
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5.7 The CSE inhibitor, DL-PAG, exacerbates NLRP3 inflammasome 

activation 

 Since exogenous H2S inhibited NLRP3 inflammasome activation and 

pyroptosome formation, it was clearly of interest to determine whether 

endogenous H2S had similar activity.  Macrophage H2S production is at least 

partially dependent on CSE enzyme activity (Dufton et al., 2012). To study the 

role of endogenous CSE, BMDMs were exposed to the irreversible CSE 

inhibitor, DL-PAG, for 24 h prior to LPS priming and subsequent ATP or 

nigericin stimulation. DL-PAG concentration dependently exacerbated NLRP3 

inflammasome activation as evidenced by increased amounts of IL-1β and IL-

18 secreted from LPS-primed BMDMs, stimulated with either ATP or nigericin 

(Fig 5.7A & B). Immunoblot analysis further confirmed that PAG increased 

cleaved IL-1β (p17) and caspase-1 (p20) from LPS-primed BMDMs stimulated 

with ATP (Fig 5.7C). Since DL-PAG treatment was started 24 h prior to LPS 

priming, it was important to determine whether DL-PAG increased pro IL-1β 

expression during the LPS priming step leading to increased cleaved and 

secreted IL-1β. Immunoblotting confirmed that DL-PAG treatment (24 h) prior 

to LPS priming (4 h) did not affect pro IL-1β, NLRP3, ASC and pro Caspase-1 

expression levels (Fig 5.7D).  

 However, it should be noted that further experiments are needed to 

validate the data. Such experiments should perhaps utilise alternative 

approaches to target macrophage CSE activity such as siRNA-mediated 

silencing of CSE in BMDMs, as well as the use of BMDMs derived from CSE -/- 

mice. However, such mice were not available in the laboratory at the time of 

these experiments.  
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Figure 5.7 DL-PAG exacerbates NLRP3 inflammasome mediated IL-1β and 
IL-18 secretion, and caspase-1 activation in BMDMs.  

(A) Secreted IL-1β and IL-18 from BMDMs treated with 2 doses of DL-PAG (24 

h), before being primed with LPS (1μg/ml, 4 h), followed by stimulation with ATP 
(5mM, 30 min) (mean ± SD, n=3). 
(B) Secreted IL-1β and IL-18 from BMDMs treated with 2 doses of DL-PAG (24 

h), before being primed with LPS (1μg/ml, 4 h), followed by stimulation with 

nigericin (10μM, 1 h) (mean ± SEM, n=6). 
(C) Immunoblot analysis of lysates from BMDMs treated as in A. 
(D) Immunoblot analysis of lysates from BMDMs treated with DL-PAG (24 h), 

before being primed with LPS (1μg/ml, 4 h). 
* P < 0.05, *** P < 0.001. Data in A is from 3 repeated experiments (mean ± 

SD, n=3, one-way ANOVA with Dunnett’s post-test against controls). Data in B 

is from 6 repeated experiments (mean ± SEM, n=6, one-way ANOVA with 
Dunnett’s post-test against controls). Immunoblot in C and D is representative 

of 3 repeated experiments.   
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5.8 Development and optimization of an in vitro NLRP3 inflammasome 

reconstitution system in HEK293T cells 

 Having established that exogenous H2S inhibits NLRP3 inflammasome 

activation, the mechanism of action by which this occurs was examined. Since 

the activation of the NLRP3 inflammasome involves interaction of NLRP3, ASC 

and pro Caspase-1, we hypothesized that H2S might inhibit the interplay 

between these proteins. To study the interaction of these 3 NLRP3 

inflammasome components, overexpression plasmids encoding for mouse 

NLRP3, mouse ASC, mouse pro Caspase-1 and mouse pro IL-1β were 

constructed. Co-expressing these 4 plasmids together in HEK293T cells 

resulted in the secretion of IL-1β from these cells (Fig 5.8A), which was not 

apparent in untransfected HEK293T cells (Fig 5.8B).  

 The in vitro NLRP3 inflammasome reconstitution assay has been 

reported in the literature prior to this present study (Bryan et al., 2009; Wu et 

al., 2014b; Yu et al., 2014). Of these studies, only two reported the 

concentrations of overexpressing plasmids used (summarised in Table 5.1). 

These studies both utilised concentrations of pro IL-1β, NLRP3, ASC and pro 

Caspase-1 overexpressing plasmids in the approximate ratio 1 : 0.1 : 0.1 : 0.05. 

Thus, optimisation of the in vitro NLRP3 reconstitution system in the present 

study was carried out using an identical ratio of overexpressing plasmids. Co-

expression of the 4 plasmids was carried out in 106 HEK293T cells plated in 6 

well cell culture plates in the presence of pro IL-1β (1000ng). For all conditions, 

a negative control with the NLRP3 component excluded was used. IL-1β 

secreted from this system was then measured by ELISA.  
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When pro IL-1β (500ng to 1000ng) was over-expressed, the presence 

of NLRP3 was inconsequential as evidenced by similar amounts of secreted IL -

1β by the negative controls (c.f. with NLRP3) (Fig 5.8A). This suggested that 

pro Caspase-1 was able to trigger IL-1β secretion in the absence of a fully 

reconstituted NLRP3 inflammasome. In order to verify whether pro Caspase-1 

was necessary for the secretion of IL-1β in this system, the 4 plasmids were 

co-expressed at the highest concentration of IL-1β (1000ng), with or without pro 

Caspase-1 (50ng). The absence of pro Caspase-1 abrogated IL-1β secretion, 

thereby confirming that pro Caspase-1 was required for IL-1β secretion (Fig 

5.8B). 

Lowering the concentrations of the 4 plasmids showed that pro IL-1β 

(250ng) in the absence of NLRP3 secreted less IL-1β (c.f. with NLRP3). Thus, 

it would appear that pro IL-1β was in excess at concentrations above 250ng. 

When titres of pro IL-1β were further reduced (between 31 to 125ng), secreted 

IL-1β was not detected (Fig 5.8A). Hence, all further optimisation experiments 

for plasmid concentrations were carried out using pro IL-1β (250ng), NLRP3 

(25ng), ASC (25ng) and pro Caspase-1 (12.5ng). 

It is conceivable that high concentrations of pro Caspase-1 might trigger 

a non inflammasome-mediated IL-1β secretion. To assess this possibility the 

concentration of pro Caspase-1 was reduced and IL-1 secretion determined 

with or without NLRP3 in the presence of the other 3 plasmids. Under these 

conditions, in the absence of NLRP3, pro Caspase-1 concentration 

dependently reduced IL-1β secretion (Fig 5.8C), suggesting that pro Caspase-

1 at high concentrations was able to cleave pro IL-1β indiscriminately even in 

the absence of a fully reconstituted NLRP3 inflammasome in this system.  



135 

 

To determine a suitable concentration of pro Caspase-1, pro Caspase-

1 was titrated (1.5ng to 25ng) while maintaining the titres of the other 3 plasmids 

constant at IL-1β (250ng), NLRP3 (25ng) and ASC (25ng). Pro Caspase-1 (3ng) 

was the lowest possible titre for this system to function since at pro Caspase-1 

(1.5ng), no secreted IL-1β was detected (Fig 5.8C). As further experiments 

using this system were scaled down to the 12 well cell culture plate format, the 

titres of the plasmids were halved to a final titre of pro IL-1β (125ng), NLRP3 

(12.5ng), ASC (12.5ng) and pro Caspase-1 (1.5ng) for all subsequent 

experiments. Finally, the absence of any component (NLRP3, ASC or pro 

Caspase-1) prevented the maturation and secretion of IL-1β (Fig 5.8D), 

showing that each component of the NLRP3 inflammasome was required for 

this system to function. 

In summary, characterisation of the in vitro NLRP3 inflammasome 

reconstitution system in HEK293T revealed the optimal titres of each 

overexpressing plasmids required for the system to function. In addition, this 

system required all components of the NLRP3 inflammasome without which no 

mature and secreted IL-1β was formed. 
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Table 5.1 Previously reported In vitro NLRP3 inflammasome 

reconstitution assay conditions 

No. 
Pro IL-1β 

(ng) 
NLRP3 

(ng) 
ASC 
(ng) 

Pro Casp-1 
(ng) 

Reference 

1 200 25 20 10 (Lo et al., 2013) 

2 1000 150 150 50 
(Mishra et al., 

2013) 
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Figure 5.8 In vitro NLRP3 inflammasome reconstitution assay in HEK293T 
cells.  
(A-C) Secreted IL-1β from HEK293T cells plated at a density of 1 x 106 cells in 

6 well plates, overexpressed with plasmids encoding for mouse pro IL-1β, 

NLRP3, ASC and pro Caspase-1 as per the indicated doses for 24 h.  
(D) Secreted IL-1β and protein expression from HEK293T cells plated at a 

density of 2.5 x 105 cells in 12 well plates, overexpressed with plasmids 
encoding for mouse pro IL-1β, NLRP3, ASC and pro Caspase-1 as per the 
indicated doses and combinations, for 24 h.  
Data in A to C is from 1 experiment. Immunoblot in D is representative of 3 
experiments, and ELISA data in D is from 3 repeated experiments (mean ± SD, 

n=3). 
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5.9 Exogenous H2S interferes with plasmid expression when administered 

concurrently during plasmid transfection 

 To determine whether exogenous H2S downregulates secreted IL-1β in 

the in vitro NLRP3 inflammasome reconstitution system, HEK293T cells were 

treated with either NaHS or GYY4137 concurrently with the transfection of over-

expressing plasmids. 24 h later, secreted IL-1β was assayed by ELISA. Initial 

observations showed that NaHS (125μM) and GYY4137 (500μM) significantly 

downregulated secreted IL-1β from this system (Fig 5.9A & B). However, when 

individual plasmids were expressed together with treatment of NaHS (125μM, 

24 h), the presence of NaHS downregulated pro IL-1β, NLRP3, ASC and pro 

Caspase-1 protein levels (Fig 5.9C). These findings suggest that exogenous 

H2S may affect the transfection efficiency, transcription and/or translation of the 

overexpressing plasmids when administered concurrently during plasmid 

transfection. To eliminate this confounding factor, H2S would have to be 

administered only after the expression of the NLRP3 components. 
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Figure 5.9 Exogenous H2S interferes with the in vitro NLRP3 
inflammasome reconstitution assay in HEK293T cells.  
(A) Secreted IL-1β from HEK293T cells co-transfected with pro IL-1β (125ng), 

NLRP3 (12.5ng), ASC (12.5ng), and pro Caspase-1 (1.5ng) overexpression 

plasmids, together with the co-treatment of varying concentrations of NaHS (24 
h). 
(B) Secreted IL-1β from HEK293T cells co-transfected as in A, and co-treated 

with varying concentrations of GYY4137 (24 h). 
(C) Immunoblot analysis of lysates of HEK293T cells transfected with either pro 

IL-1β (125ng), NLRP3 (12.5ng), ASC (12.5ng), or pro Caspase-1 (1.5ng) 
overexpression plasmids simultaneously with treatment of NaHS (125μM, 24 

h). 
* P < 0.05, ** P < 0.01. Data in A and B is from 3 repeated experiments (mean 

± SEM, n=3, one-way ANOVA with Dunnett’s post-test against controls). 
Immunoblot in C comprises of 3 repeated experiments. 
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5.10 CSE overexpression inhibits IL-1β secretion in the in vitro NLRP3 

inflammasome reconstitution assay  

 Given that exogenous H2S affects plasmid expression in the in vitro 

NLRP3 inflammasome reconstitution assay, the concurrent treatment with H2S 

donors during plasmid transfection would not be suitable. As such, we reasoned 

that, if a CSE overexpressing plasmid was co-transfected together with pro IL-

1β and the NLRP3 inflammasome components, H2S would be generated from 

CSE after all NLRP3 inflammasome components are expressed in HEK293T 

cells. Hence, the H2S generated would not interfere with plasmid expression. 

This was under the assumption that the overexpression of all co-transfected 

plasmids would occur at identical rates since all the plasmids were constructed 

from identical pcDNA3.1(+) vector constructs with identical promoters. 

 When co-transfected together with pro IL-1β and the NLRP3 

inflammasome components, CSE significantly reduced (P < 0.05) secreted IL-

1β from this system (Fig 5.10A). Immunoblotting confirmed that in the presence 

of CSE, cleaved IL-1β in the lysates of these cells was also reduced (Fig 5.10B). 

This suggested that CSE overexpression inhibits the maturation and secretion 

of IL-1β in the in vitro NLRP3 inflammasome reconstitution assay.  
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Figure 5.10 CSE overexpression inhibits IL-1β secretion in the in vitro 
NLRP3 inflammasome reconstitution assay. 
(A) Secreted IL-1β from HEK293T cells co-transfected with pro IL-1β (125ng), 

NLRP3 (12.5ng), ASC (12.5ng), pro Caspase-1 (1.5ng), and mouse CSE 

(500ng) overexpression plasmid for 48 h. 
(B) Immunoblot analysis of lysates of HEK293T cells transfected as in A. 

* P < 0.05. Data in A is from 6 transfections, and is representative of 3 repeated 

experiments (mean ± SD, n=6 Mann-Whitney U test, two-tailed). Immunoblot in 
B is representative of 3 repeated experiments.  
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5.11 Treatment of NLRP3 but not ASC with exogenous H2S downregulates 

IL-1β secretion in the in vitro NLRP3 inflammasome reconstitution assay  

 The pathways which lead to activation of the NLRP3 inflammasome in 

BMDMs are complex with many proteins and receptors playing a part. These 

include, but are not restricted to, the P2X7 receptor (Ferrari et al., 2006) and 

pannexin (Pelegrin and Surprenant, 2006) by which mediate ATP and nigericin 

signalling; proteins regulating K+ efflux out of the cell (Muñoz-Planillo et al., 

2013); proteins involved in mitochondria ROS (mtROS) (Heid et al., 2013) and 

mitochondria DNA (mtDNA) (Shimada et al., 2012) mediated NLRP3 

inflammasome activation signalling; as well as the calcium sensing pathway 

(Lee et al., 2012). These individual pathways all contribute to the final step of 

NLRP3 inflammasome activation which is the formation of the NLRP3 

inflammasome protein complex. To isolate and study the effect of H2S on the 

formation of this protein complex in the absence of any upstream pathways, the 

reconstituted in vitro NLRP3 inflammasome system in HEK293T cells was used 

as HEK293T cells do not inherently possess the NLRP3 inflammasome 

complex (Fig 5.8D). 

 H2S modifies protein receptors and enzymes post-translationally 

(reviewed in Table 1) and in so doing, modify their activities. Hence, we 

hypothesized that H2S may be inhibiting the NLRP3 inflammasome by 

modifying one or more components of the NLRP3 inflammasome protein 

complex. To test this hypothesis, NLRP3 or ASC was overexpressed in 

HEK293T cells (24 h) before treatment with NaHS (600μM, 30 min). Thereafter 

the cell culture media was changed to remove any remaining NaHS and cells 

were transfected with the remaining components of the NLRP3 inflammasome 
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(ie. NLRP3 or ASC, and pro Caspase-1) together with pro IL-1β for 24 h. On 

the third day, the cell culture media was changed, and subsequently assayed 

for secreted IL-1β by ELISA the next day (Day 4).  A cartoon schematic of the 

transfection regimen is shown in Fig 5.11A. It was observed that treatment of 

NLRP3 but not ASC with NaHS resulted in the downregulation of secreted IL-

1β from the in vitro NLRP3 inflammasome reconstitution system (Fig 5.11B & 

C).  

Since NaHS treatment may conceivably cause a false positive result by 

interfering with plasmid overexpression using this treatment regimen, control 

experiments were undertaken in which HEK293T cells were either subjected to 

overexpression with NLRP3 (24 h) followed by treatment with NaHS (600μM, 

30 min), or treated with NaHS (600μM, 30 min) prior to overexpression with pro 

IL-1β, ASC or pro Caspase-1 (24 h). Immunoblot analysis revealed that the 

plasmid transfection and H2S treatment regimen used in this study did not 

interfere with plasmid overexpression (Fig 5.11D). 
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Figure 5.11 Exogenous H2S reacts with NLRP3 but not ASC in the in vitro 
NLRP3 inflammasome reconstitution assay. 

(A) Cartoon schematic of overexpression plasmid transfection and NaHS 

treatment regimen in HEK293T cells. Plasmid A denotes the first plasmid 
transfected on Day 1 (ie. NLRP3 or ASC). Plasmid B, C, D denotes the 

remaining three plasmids to be transfected on Day 2 after treatment of cells 
with NaHS (600μM, 30 min). 
(B-C) Secreted IL-1β from HEK293T cells transfected with overexpressing 
plasmids in the sequence as shown in A. Either NLRP3 (N) or ASC (A) 

overexpressing plasmid was transfected on Day 1 (24 h). On Day 2, cells were 

then treated with NaHS (600μM, 30 min) followed by a change of media. 
Following which, cells were co-transfected with plasmids BAC or BNC (24 h).  

On Day 3, cell culture media was changed, and assayed for IL-1β by ELISA on 
Day 4.  
B: IL-1β (125ng); N: NLRP3 (12.5ng); A: ASC (12.5ng); C: Caspase-1 (1.5ng) 
(D) Immunoblot analysis of lysates from HEK293T cells: (a) Transfected with 

NLRP3 (12.5ng) overexpressing plasmid (24 h) before being treated with NaHS 

(600μM, 30 min); or (b) treated with NaHS (600μM, 30 min) followed by a 
change of media, before being transfected with pro IL-1β (125ng), ASC (12.5ng) 
or pro Caspase-1 (1.5ng) overexpressing plasmid (24 h). Data shows 3 repeats. 
* P < 0.05. Data in B and C is from 6-9 transfections, and is representative of 3 

repeated experiments (mean ± SD, n=6-9 Mann-Whitney U test, two-tailed). 
Immunoblot in D comprises of 3 repeated experiments. 
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5.12 Exogenous H2S disrupts NLRP3 – ASC protein protein interaction 

 Since treatment of NLRP3 with NaHS, but not ASC, downregulated the 

secretion of IL-1β in the in vitro NLRP3 inflammasome activation system, we 

next hypothesized that this effect may be due to inhibition of the interaction 

between NLRP3 and ASC. To test the hypothesis, a hemagglutinin (HA) -

tagged NLRP3 overexpressing plasmid was synthesized for a co-

immunoprecipitation (co-IP) assay. To facilitate the co-IP assay, the NLRP3 

overexpressing plasmid was modified to include a HA epitope tag on the N 

terminus of the protein.  

The co-IP assay showed that overexpression of HA-NLRP3 (24 h) 

followed by ASC (24 h) resulted in the interaction of these 2 proteins (Fig 5.12A). 

However, treatment of HA-NLRP3 overexpressed cells with NaHS (600μM, 30 

min) prior to ASC overexpression disrupted the NLRP3 – ASC interaction (P < 

0.01) (Fig 5.12A & B). Taken together with the prior observation that treatment 

of NLRP3, but not ASC, with NaHS downregulating the secretion of IL-1β in the 

in vitro NLRP3 inflammasome activation system, the present findings suggest 

that the disruption of NLRP3 – ASC interaction by H2S is a potential mechanism 

of action by which NaHS inhibits NLRP3 inflammasome activation. 
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Figure 5.12 Exogenous H2S disrupts NLRP3-ASC protein protein binding.  
(A) Co-immunoprecipitation (co-IP) assay of HA-NLRP3 (1μg plasmid) with 

ASC (1μg plasmid), with or without NaHS treatment (600μM, 30 min). HA-

NLRP3 was first transfected in HEK293T cells for 24 h. Transfected cells were 
next treated with NaHS followed by a change of media. Cells were then 
transfected with ASC for another 24 h, before cell lysates were being 

immunoprecipitated using an antibody against the HA-antigen. 
(B) Quantification of ASC : HA-NLRP3 co-IP experiment as treated in A.  

** P < 0.01. Immunoblot in A is representative of 4 repeated experiments. Data 
in B is from 4 repeated experiments (mean ± SD, n=4, one-way ANOVA with 

Dunnett’s post-test against controls). 
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5.13 Exogenous H2S protects mitochondrial integrity and reduces 

mitochondrial ROS production in BMDMs during NLRP3 inflammasome 

activation  

  Treatment of HA-NLRP3 and ASC overexpressed HEK293T cells with 

NaHS (600μM) inhibited NLRP3 – ASC interaction by approximately 36% (Fig 

5.12B). This is consistent with the extent of downregulation of secreted IL-1β 

(approximately 32%) when NLRP3 overexpressed cells were treated with 

NaHS (600μM) before overexpression with pro IL-1β and the other components 

of the NLRP3 inflammasome (Fig 5.11B). However, the extent of the 

downregulation of NLRP3 – ASC interaction and IL-1β secretion from the 

overexpression system in HEK293T cells is not similar quantitatively to the 

downregulation of secreted IL-1β (approximately 95%) observed in BMDMs 

treated with NaHS (600μM) (Fig 5.3B). This may imply that, in BMDMs, NaHS 

inhibits NLRP3 inflammasome activation by additional mechanisms in addition 

to an effect on NLRP3 – ASC interaction.  

 The role of the mitochondria and mtROS in the activation of the NLRP3 

inflammasome has been established in prior studies (Heid et al., 2013; Zhou et 

al., 2011). It was therefore of interest to determine whether NaHS may inhibit 

NLRP3 inflammasome activation by a protective effect on the mitochondria.  As 

such, the integrity of the mitochondria as well as mtROS production were 

assessed in BMDMs treated with LPS and ATP, in the presence or absence of 

NaHS (600μM). Following LPS and NaHS treatment, these cells were co-

stained with Mitotracker red CMXRos and Mitotracker green dyes. The red dye 

is selective towards the mitochondrial inner transmembrane potential while the 

green dye is selective for mitochondria regardless of mitochondrial membrane 
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potential (Nakahira et al., 2011). Together, co-staining revealed showed that 

NLRP3 inflammasome activation by ATP resulted in an increase in non-intact 

mitochondria in these cells which were partially rescued (approximately 25% 

decrease) by treatment with NaHS (600μM) (P < 0.001) (Fig 5.13A & B). 

Consistent with the observed pattern of mitochondria integrity, measurement of 

mtROS production from these cells by the mitochondrial superoxide indicator, 

MitoSOX, showed that NaHS (600μM) significantly (P < 0.001) decreased 

mtROS production in NLRP3 inflammasome activated BMDMs (approximately 

37% decrease) (Fig 5.13C & D). These data suggest that NaHS protects 

mitochondrial integrity concomitant with downregulated mtROS production from 

NLRP3 inflammasome activated BMDMs.  
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Figure 5.13 Exogenous H2S decreased mitochondrial damage and 
mitochondrial ROS production induced during NLRP3 inflammasome 

activation. 
(A) Flow cytometry analysis of BMDMs primed with LPS (1μg/ml, 4 h) followed 

by treatment with NaHS (600μM, 30 min), before stimulation with ATP (5mM, 
30 min). Cells were stained with MitoTracker Red CMXRos and MitoTracker 
Green (15 min, 37°C) prior to ATP treatment.  

(B) Percentage of MitoTracker CMXRoslow  BMDMs as treated in A. (mean ± 

SEM, n=3, one-way ANOVA with Dunnett’s post-test against controls). 
(C) Flow cytometry analysis of BMDMs as treated in A. Cells were stained with 

MitoSOX (20 min, 37°C) after ATP treatment. 

(D) Percentage of MitoSOXhi BMDMs as treated in C. 

** P < 0.01, *** P < 0.001. Data is from 3 repeated experiments (mean ± SD, 
n=6, one-way ANOVA with Dunnett’s post-test against controls). 
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5.14 Exogenous H2S does not affect cytoplasmic mitochondrial DNA 

levels in BMDMs during NLRP3 inflammasome activation 

 A further possible mechanism which may mediate NLRP3 

inflammasome activation is the translocation of mtDNA into the cytoplasm. It 

has been reported that oxidized mtDNA translocates to the cytoplasm and 

colocalizes with NLRP3, activing the inflammasome. In this reported study, 

mtDNA directly induced NLRP3 inflammasome activation as macrophages 

lacking mtDNA had severely attenuated IL-1β production (Shimada et al., 2012).  

In the current study, mtDNA present in the cytoplasm of BMDMs treated 

with LPS and ATP, with or without NaHS (600μM) treatment was therefore 

measured by qPCR. Whilst stimulation of LPS primed BMDMs with ATP 

gradually increased IL-1β secretion over time (up to 30 min) (Fig 5.14A), the 

presence of mtDNA in the cytoplasm did not increase concurrently (Fig 5.14B). 

In addition, treatment of these cells with NaHS (600μM) prior to ATP stimulation 

did not significantly reduce mtDNA levels in the cytoplasm although IL-1β 

secretion was attenuated (Fig 5.14A & B). Hence, the data suggests that 

downregulation of secreted IL-1β by NaHS from NLRP3 inflammasome 

activated BMDMs was not attributed to a reduction in cytoplasmic mtDNA.  
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Figure 5.14 NaHS does not reduce cytoplasmic mtDNA in NLRP3 

inflammasome activated BMDMs. 
(A) Secreted IL-1β from BMDMs primed with LPS (1μg/ml, 4 h) followed by 

stimulation with ATP (5mM, up to 30 min), with or without treatment with NaHS 

(600μM, 30 min) prior to ATP stimulation. Data is from at least 2 repeated 
experiments (mean ± SD). 
(B) Quantitative PCR (qPCR) analysis of cytoplasmic mtDNA in BMDMs treated 
as in A. Data in A is from 2 repeated experiments (mean ± SD, n=4), and data 
in B is from at least 3 repeated experiments (mean ± SD, n=3-8). 
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5.15 The slow-releasing H2S donor GYY4137 reduces IL-1β levels in LPS 

sepsis mice 

 It was previously shown that the slow-releasing H2S donor, FW1256, 

reduces IL-1β in the blood plasma and peritoneal cavity of mice with LPS-

induced sepsis (Huang et al., 2016a). To evaluate whether another slow-

releasing H2S donor might also downregulate IL-1β levels in vivo, GYY4137 

(100mg/kg, i.p.) was administered to wild-type C57BL/6 mice 1 h prior to LPS 

injection (10mg/kg, i.p.). GYY4137-treated mice exhibited significantly (P < 0.05) 

lower levels of IL-1β detected in the peritoneal lavage and the blood plasma 2 

hr and 6 h respectively after LPS injection (Fig 5.15). While such observations 

do not directly show the inhibition of the NLRP3 inflammasome in vivo by 

exogenous H2S, the data does suggest that exogenous H2S also reduces 

secreted IL-1β in an inflammatory condition in vivo, of which the NLRP3 

inflammasome is required for its release out of the cell. 
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Figure 5.15 GYY4137 reduced IL-1β in the mouse model of LPS induced 

septic shock. 
(A) IL-1β levels at 2 h in the blood plasma,  

(B) IL-1β levels at 2 h in the peritoneal lavage,  
(C) IL-1β levels at 6 h in the blood plasma,  
(D) IL-1β levels at 6 h in the peritoneal lavage, after intraperitoneal (i.p.) 

injection with LPS (10 mg/kg of body weight), with or without 1 h i.p. injection of 
GYY4173 (100 mg/kg of body weight) prior to LPS injection.  

* P < 0.05 (Box and whiskers plot showing median with the 25 th and 75th 
percentiles, whiskers represent smallest and largest values, one-way ANOVA 
with Dunnett’s post-test against controls). N=3 mice in GYY4137 only group; 
n=5 in LPS or GYY4137 + LPS groups in A and B, and n=11 mice in LPS or 
GYY4137 + LPS groups in C and D. 
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5.16 Discussion 

 The NLRP3 inflammasome is a critical nexus between the intracellular 

synthesis and release of IL-1β and IL-18 in response to pathogens as well as 

sterile inflammatory stimuli. However, anomalous NLRP3 inflammasome 

activation in inflammatory conditions such as gout (Kingsbury et al., 2011), 

diabetes (Lee et al., 2013) and atherosclerosis (Li et al., 2016b) contribute to 

undesirable symptoms stemming from the effects of increased IL-1β and IL-18, 

which can be detrimental to the host. As such, it is of interest to identify possible 

molecular mechanisms by which NLRP3 inflammasome activation can be 

inhibited, paving the way for the continual development of therapeutics.  

At the time when this present study was undertaken, two out of the three 

known gasotrasmitters had been observed to inhibit NLRP3 inflammasome 

activation. Exogenous NO from the NO donor S-nitroso-N-acetylpenicillamine 

(SNAP), and endogenous NO synthesized by iNOS, reportedly inhibited 

NLRP3 inflammasome activation in macrophages (Hernandez-Cuellar et al., 

2012; Mao et al., 2013). In M. tuberculosis infected mice, IFN-γ and iNOS 

modulated the pathology as well as IL-1β secretion in these mice. Investigation 

of the effect of NO on M. tuberculosis-infected macrophages revealed that IFN-

γ stimulated NO in these macrophages suppressed NLRP3 inflammasome 

mediated IL-1β secretion, thereby implicating endogenous NO in the control of 

the inflammatory response by IL-1β during persistent M. tuberculosis infections 

(Mishra et al., 2013). The other gasotransmitter, CO, negatively regulated 

NLRP3 inflammasome activation in macrophages when delivered in a gaseous 

state (Jung et al., 2015). To the best of our current knowledge, the effects of 

H2S in regulating NLRP3 inflammasome activation in macrophages and the 
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mechanism of action by which this occurs have not been reported in the 

scientific literature. Recent reports have however shown that Na2S also exerted 

cardioprotective effects by inhibiting NLRP3 inflammasome formation in the 

heart after Ischemia-Reperfusion injury in mice. This inhibitory effect was 

mediated through signalling pathways requiring microRNA 21 (miR-21) (Toldo 

et al., 2014). In addition, NaHS prevented ozone-induced emphysema and lung 

inflammation by regulating the NLRP3-caspase-1, p38 mitogen-activated 

protein kinase (MAPK), and Akt pathways (Li et al., 2016a). NaHS also 

attenuated high glucose-induced NLRP3 activation in H9c2 cardiac cells 

(Huang et al., 2016b).   

 Previously, H2S has been shown to inhibit NFκB activation in 

macrophages (Huang et al., 2016a; Oh et al., 2006). As NFκB activation is the 

first (i.e. 'priming') step in NLRP3 inflammasome activation in macrophages, we 

sought to differentiate any possible inhibitory effects of NaHS between the 

'priming' and the 'activation' step. Thus, BMDMs were only treated with NaHS 

after the initial 'priming' step with LPS stimulation. When using such a treatment 

protocol, NaHS did not significantly change TNFα production and NLRP3, ASC 

or pro Caspase-1 expression (Fig 5.3B & C; 5.4A & C), thereby providing 

evidence that NaHS did not interfere with the ‘priming’ step. NaHS however 

decreased IL-6 secretion from ATP stimulated BMDMs only at the maximum 

dose (600μM) used in the present study (Fig 5.3B). This observation is not 

unexpected given that as compared to TNFα, H2S has been previously seen to 

be more potent in inhibiting IL-6 secretion from macrophages (Huang et al., 

2016a; Rios et al., 2015). 
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In the present study, NaHS at concentrations up to 600μM were first 

utilised, with the highest dose (600μM) being used subsequently in the later 

part of the study. Although this concentration of NaHS was not toxic towards 

BMDMs using the present experimental conditions (Fig 5.4E), we acknowledge 

that such a high concentration is not feasible for therapeutic applications in 

humans. Drawing reference from similar studies of the use of exogenous 

gasotransmitters to inhibit NLRP3 inflammasome activation in vitro, it is 

apparent that comparable concentrations of donor compounds were used. For 

example, the NO donor SNAP was used at concentrations of up to 500μM 

(Hernandez-Cuellar et al., 2012; Mishra et al., 2013) and 1mM (Mao et al., 

2013), while CO was used at a concentration of 250 parts per million (ppm) 

(Jung et al., 2015). As a benchmark, the National Institute for Occupational 

Safety and Health (NIOSH) established 200 ppm of CO as an exposure ceiling 

based on the risk of cardiovascular effects [NIOSH 1992]. Whilst recognizing 

that these studies are essential for providing a proof-of-concept that 

gasotransmitters can elicit a biological effect in the absence of cytotoxicity, it is 

not surprising that high concentrations of gasotransmitters are required under 

experimental conditions. This also highlights the point that in order to realize 

the therapeutic potential of gasotransmitters, development of donor compounds 

that exhibit high specificity and potency towards the intended cellular and 

molecular targets is essential. 

Although the present study has focused largely on the ability of 

exogenous H2S in downregulating NLRP3 inflammasome activation, the 

irreversible CSE inhibitor, DL-PAG, was found to conversely exacerbate 

NLRP3 inflammasome activation (Fig 5.7). This suggested that endogenous 
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H2S could also control NLRP3 inflammasome activation. However, 

investigating the extent of NLRP3 inflammasome activation in CSE -/- 

macrophages from CSE-/- mice or siRNA mediated knock-down macrophages 

will be necessary and crucial for further validation. 

 The inhibition of NLRP3 activation and pyroptosome formation by 

exogenous H2S has been established in the present study. Two mechanisms 

of action by which H2S mediates this inhibitory effect was proposed. Firstly, by 

means of an in vitro NLRP3 inflammasome functional assay, it was ascertained 

that H2S interfered with the function of the NLRP3 inflammasome when the 

NLRP3 component was treated with NaHS. The disruption of NLRP3 

inflammasome function was not evident when ASC was treated with NaHS (Fig 

5.11B & C), suggesting that H2S reacts preferentially to NLRP3 post-

translationally. The co-immunoprecipitation assay between NaHS treated 

NLRP3, and ASC further confirms that the binding of NLRP3 to ASC was 

perturbed by H2S (Fig 5.12A & B). As H2S is known to post-translationally 

modify proteins by S-sulfhydration, we further hypothesized that H2S could 

possibly be sulfhydrating a cysteine residue in the pyrin domain of NLRP3, 

which is involved in ASC binding. Examination of the amino acid sequence in 

the pyrin domain of NLRP3 (residues 1 – 91) revealed 2 cysteine residues 

(Cys6 and Cys36), of which Cys6 is involved in disulfide bonding with Cys104 

[UniProt ID: Q8R4B8]. To determine if Cys36 is crucial for NLRP3 – ASC 

binding, future functional assay and co-IP experiments involving a mutated form 

of NLRP3, harbouring an amino acid substitution at residue 36 could be 

performed. In addition, analysis of NLRP3 Cys36 residue by mass spectometry 

after NaHS treatment would also reveal whether S-sulfhydration indeed occurs 
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at Cys36. In the present study, assays for the detection of S-sulfhydration (ie. 

modified biotin-switch assay and the detection of S-sulfhydration by red 

maleimide) was not performed as NLRP3 contains cysteine residues outside of 

the pyrin domain. Except for Cys104, the other cysteine residues are not known 

to be involved in disulfide bonding and hence could also be sulfhydrated by H2S. 

As the sulfhydration of these residues are likely to be inconsequential towards 

disrupting NLRP3 – ASC binding, S-sulfhydration detection assays may detect 

the sulfhydration of cysteine residues outside of the pyrin domain, rendering 

such data inconclusive.  

The presence of mtROS is closely related to NLRP3 inflammasome 

activation. However, whether mtROS is required in NLRP3 inflammasome 

activation and the precise mechanism by which mtROS activates the NLRP3 

inflammasome remains unclear (Yu and Lee, 2016). The current scientific 

opinion appears to be divided with regard to whether mtROS activates the 

NLRP3 inflammasome (Heid et al., 2013; Hu et al., 2010; Kim et al., 2014; 

Nakahira et al., 2011; Zhong et al., 2016; Zhong et al., 2013; Zhou et al., 2011), 

is only involved in the ‘priming’ signal (Bauernfeind et al., 2011; Won et al., 

2015), or is not required for NLRP3 inflammasome activation (Muñoz-Plani llo 

et al., 2013). In the present study, H2S protected mitochondrial integrity and 

reduced mtROS production in NLRP3 inflammasome activated BMDMs (Fig 

5.13). This was suggested to be the second mechanism of action by which H2S 

inhibited NLRP3 inflammasome activation in BMDMs. Although the present 

study revealed a novel role of H2S in reducing mitochondria damage and 

mtROS production which is concomitant with NLRP3 inflammasome activation 
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in BMDMs, the exact mechanism of action by which this occurs remains 

unknown, of which further studies are warranted.  

H2S is generally known to exert its toxicity in cells by inhibiting 

cytochrome c oxidase in the mitochondria. However, H2S can also act as a 

substrate for the mitochondrial respiratory chain (Cooper and Brown, 2008), 

and also confers antioxidant protective effects (Xie et al., 2016). Several studies 

have shed light on the protective roles of H2S on the mitochondria in different 

cell types. In the neuroblastoma cell line SH-SY5Y, NaHS suppressed 

rotenone-induced mitochondrial membrane potential dissipation and cell death, 

which was attenuated by the selective blocker of mitochondrial ATP-sensitive 

potassium (mitoKATP) channel, 5-hydroxydecanoate. This suggested that the 

protective effect of NaHS on the mitochondria in this study was mediated by its 

interaction with the mitoKATP channel (Hu et al., 2009). Such an interaction could 

be plausible given that H2S has been shown to open the KATP channel in 

vascular smooth muscle cells (Zhao et al., 2001). H2S also protected 

mitochondria function in human umbilical vein endothelial cells (HUVECs) 

subject to oxidative stress by H2O2, albeit via a mechanism that was not fully 

understood (Wen et al., 2013). In smooth muscle cells and aorta tissue from 

mice, the absence of CSE reduced mtDNA copy number, inhibited expressions 

of mitochondrial transcription factor A and mitochondrial marker genes mt-CO1, 

CytB and Atp6, which were all reversed upon treatment of the cells with NaHS 

(Li and Yang, 2015). In HepG2 human liver cancer cells and HEK293T cells, 

NaHS induced S-sulfhydration of the α subunit (ATP5A1) of ATP synthase, 

thereby stimulating its enzymatic activity (Modis et al., 2016).  Hence, it is 

plausible that H2S could be acting on specific components in the mitochondria 
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in the present study, thereby conferring its protective effects on mitochondrial 

integrity, reducing mtROS production, and conceivably also maintaining a 

functional level of mitochondria energetics. Further studies investigating the 

interaction of H2S with the aforementioned targets in the mitochondria could be 

carried out in NLRP3 inflammasome activated BMDMs. In addition, given that 

NLRP3-mitochondria co-localization occurs during inflammasome activation 

(Zhou et al., 2011) via the mitochondria-associated adaptor molecule, 

mitochondrial antiviral-signaling protein (MAVS) (Subramanian et al., 2013), 

studying whether H2S affects MAVS-mitochondria co-localization during 

inflammasome activation could provide insight into the formulation of a more 

detailed mechanism of action. 

 Two mechanisms of action by which H2S inhibited NLRP3 

inflammasome activation were proposed in the present study. Given the 

breadth of targets that H2S acts on intracellularly and the extensive plexus of 

molecular networks leading to NLRP3 inflammasome activation, we are 

inclined to speculate that H2S may be exerting an inhibitory effect by several 

other unknown mechanisms. Moreover, the magnitude of effect of H2S on the 

two mechanisms proposed in this study (Fig 5.11 - 5.13) did not correspond 

with the extent of downregulation of IL-1β and Caspase-1 activation (Fig 5.3 & 

5.4) observed in NLRP3 inflammasome activated BMDMs. This incongruence 

suggests that either the two mechanisms of action by which H2S inhibited 

NLRP3 inflammasome activation worked together in an additive or synergistic 

manner in BMDMs, or that there exists other unknown mechanisms of action.   

 One molecular pathway downstream of ATP or nigericin stimulation that 

leads to NLRP3 inflammasome activation is K+ efflux from the cell. K+ efflux has 
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been reported to be a unifying trigger of NLRP3 activation (Muñoz-Planillo et 

al., 2013). Hence, the K+ protein channel could conceivably be also a target of 

H2S under the current experimental conditions. The tripartite-motif protein 30 

(TRIM30), being another player in the NLRP3 inflammasome activation 

molecular network, could potentially be an H2S target given that TRIM30 

negatively regulates NLRP3 inflammasome activation by regulating ROS 

production (Hu et al., 2010).  

Another step that is crucial in regulating NLRP3 activation involves 

ubiquitination. ATP signaling was first shown to induce the deubiquitination of 

NLRP3, thereby activating the NLRP3 inflammasome (Juliana et al., 2012; 

Lopez-Castejon et al., 2013). The mechanism for the deubiquitination of NLRP3 

was later found to be mediated by the deubiquitinating enzyme BRCC3 (Py et 

al., 2013). Moreover, it was later elucidated that the assembly of the NLRP3 

inflammasome also required the ubiquitination of ASC by the linear 

ubiquitination assembly complex (LUBAC) which consists of HOIL-1L, HOIP 

and Sharpin (Gurung et al., 2015; Rodgers et al., 2014). Whether H2S interferes 

with ubiquitination or deubiquitination of the NLRP3 inflammasome complex is 

unknown, and may be of value for further investigation. 

 Dissecting the inhibitory effects of H2S on NFκB activation and NLRP3 

inflammasome activation in vivo poses a great challenge. Whilst the 'priming' 

step involving NFκB activation and the NLRP3 inflammasome activation step 

can be precisely dissociated in vitro in BMDMs by sequential stimulation of LPS 

followed by ATP or nigericin, these two steps occur dynamically in vivo during 

inflammation. Specifically quantifying NLRP3 inflammasome activated cells ex 

vivo was initially thought possible using a flow cytometric method to assess 
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inflammsome formation (Sester et al., 2015) in peritoneal macrophages 

obtained from LPS sepsis mice. As the published method allows for the 

detection of ASC specks in inflammasome activated cells, this theoretically 

could allow for the identification and quantification of NLRP3 inflammasome 

activated macrophages in LPS sepsis mice, with or without H2S intervention. 

We were however unable to replicate the flow cytometry gating strategies 

detailed in the publication despite several optimization attempts. At present we 

have no explanation for our inability to reproduce this work. As such, this 

particular strategy was not further pursued. Nevertheless, the data presented 

in the current mouse model of LPS induced septic shock showed that the slow-

releasing H2S donor GYY4137 downregulated IL-1β levels in these mice (Fig 

5.15). Similarly, another slow-releasing H2S donor FW1256 was previously 

shown to also reduce IL-1β in the blood plasma and peritoneum of LPS sepsis 

mice (Huang et al., 2016a). When taking into consideration the in vitro studies 

showing that H2S inhibits NLRP3 inflammasome activation in BMDMs in the 

present study, it is highly suggestive that H2S also inhibits NLRP3 activation in 

addition to NFκB activation in vivo. It must however be noted that in vivo, 

dendritic cells also possess the NLRP3 inflammasome and contributes to IL-1β 

secretion (Ghiringhelli et al., 2009). Hence, the likelihood that the reported in 

vivo IL-1β levels could be attributed from both macrophages and dendritic cells 

should not be ruled out.  

 In conclusion, the present study has shown for the first time that 

exogenous H2S inhibits NLRP3 inflammasome activation in primary mouse 

macrophages. The study has also presented two possible mechanistic 

explanations of how this occurs. Though the use of NaHS is unlikely to be 
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therapeutically feasible, this study offers a proof-of-concept showing that H2S 

from both fast and slow-releasing H2S donors are able to inhibit NLRP3 

inflammasome activation. With the continual discovery of newer H2S releasing 

donors, such compounds as compared to NaHS, could potentially be used to 

reduce IL-1β and IL-18 levels in inflammatory conditions at a much smaller dose.  
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CHAPTER 6:  OVERVIEW AND FUTURE PERSPECTIVES 
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6.1 Summary of findings 

 The aim of this project was to investigate the role of endogenous H2S 

producing enzymes and exogenous H2S in regulating the release of pro-

inflammatory cytokines from mouse macrophages.  

In the first part of the study, CSE, an endogenous H2S producing enzyme 

present in macrophages, was permanently knocked-out in a RAW264.7 mouse 

macrophage cell line using a CRISPR gene editing tool. Among a panel of pro-

inflammatory mediators assayed (TNFα, IL-6, pro IL-1β, iNOS and COX-2), loss 

of CSE downregulated iNOS and COX-2 expression at the protein level in these 

cells (c.f. CSE+/+ cells) by a molecular mechanism which was independent of 

NFκB. Since exogenous H2S, via a fast releasing H2S donor (NaHS), inhibited 

the production of pro-inflammatory mediators (TNFα and IL-6) in LPS-

stimulated wild-type RAW264.7 cells, further examination of this response was 

conducted in CSE-/- RAW264.7 cells.  Interestingly, absence of CSE did not 

significantly affect the downregulation of pro-inflammatory mediators caused by 

NaHS in RAW264.7 cells stimulated with LPS. Since CRISPR gene editing 

allows for the generation of stable knock-out cell lines, a future extension of this 

project might involve knocking out additional endogenous H2S producing 

enzyme, 3-MST, hence generating a 3-MST knockout, and a CSE and 3-MST 

double-knockout cell line. Having determined that CBS may not be present in 

mouse macrophages in the present study (Fig 3.2E), the knocking down of CBS 

would not be necessary. 

 A previous study showed that the slow-releasing H2S donor, GYY4137, 

was more effective than NaHS in decreasing the release of pro-inflammatory 

mediators from macrophages (Whiteman et al., 2010). We therefore sought, in 
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the second part of the study, to identify and characterize a novel slow-releasing 

H2S donor which was more effective (c.f. NaHS and GYY4137) as an inhibitor 

of the release of pro-inflammatory mediators from LPS-stimulated 

macrophages. In this work, we identified FW1256 as a novel H2S releasing 

compound which inhibited the production of pro-inflammatory mediators (TNFα, 

IL-6, NO, PGE2, pro IL-1β, iNOS and COX-2) in RAW264.7 cells and primary 

BMDMs by inhibition of NFκB activation. FW1256 also downregulated TNFα, 

IL-1β, NO and PGE2 in a mouse model of LPS induced septic shock in vivo.  

 Having determined that exogenous H2S inhibited the synthesis of pro IL-

1β in RAW264.7 cells, we thereafter explored the possibility that H2S also 

inhibited NLRP3 inflammasome activation. NLRP3 inflammasome activation is 

responsible for maturation of pro IL-1β into its secretable form. In this work, for 

the first time, we showed that NaHS inhibited NLRP3 inflammasome activation 

in primary BMDMs, as evidenced by a decrease in IL-1β and IL-18 secretion, 

caspase-1 activation and pyroptosis in these cells. Treatment of BMDMs with 

DL-PAG prior to NLRP3 inflammasome activation conversely exacerbated IL-

1β and IL-18 secretion as well as caspase-1 activation, suggesting that 

endogenous H2S may also have a role to play in controlling NLRP3 

inflammasome activation. In vivo, it was observed that GYY4137 reduced IL-1β 

levels in the mouse model of LPS induced sepsis, an effect similar to that 

observed in LPS-evoked sepsis in mice treated with FW1256. An examination 

of the molecular mechanisms by which NaHS inhibited NLRP3 inflammasome 

activation revealed that this agent reduced NLRP3 – ASC binding in HEK293T 

cells overexpressed with NLRP3 and ASC, protected mitochondrial integrity 

and reduced mitochondrial ROS production in BMDMs during NLRP3 



170 

 

inflammasome activation, but did not downregulate the accumulation of 

cytoplasmic mtDNA in these cells. Together, these findings suggest that NaHS 

likely inhibits NLRP3 inflammasome activation by multiple molecular 

mechanisms.  
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6.2 Future perspectives on the therapeutic applications of H2S donors 

 The ‘evolution’ of H2S from a noxious toxic gas found in sewers and 

swamps to a gasotransmitter with physiological and potential clinical relevance 

has occurred rapidly over the last two decades. The presence and perhaps 

more importantly, the perception, of its toxicity may well prove to be a 

formidable challenge for the development of H2S donor compounds suitable for 

clinical applications. Major concerns related to H2S toxicity is the concentration 

of donor used and the rate of release of H2S gas therefrom which factors 

together play a major part in determining the final concentration of this gas 

inside cells. A paradigm shift in the way pharmacologists consider H2S delivery 

is the identification of slow-releasing H2S donors. The prototype of this class is 

GYY4137 which releases H2S gas in low concentrations over a longer period 

of time c.f. the fast releasing H2S donors such as NaHS or Na2S. Reasonably, 

such donors may reduce H2S mediated toxicity and thus increase the effective 

therapeutic window for this compound. GYY4137 has demonstrated 

therapeutic potential both in vitro and in vivo in a myriad of animal disease 

models in the absence of any overt toxicity (Rose et al., 2015). This has shaped 

the idea that slow-releasing H2S donors may be the mainstay of so called ‘H2S 

therapeutics’. The trend of exploring slow-releasing sustained H2S donors for 

biomedical applications in recent years has also led to the development of H2S 

releasing nanofibrous coating for dermal wound regeneration (Wu et al., 2016). 

The present work introduces an additional slow-releasing H2S donor, 

FW1256, as an ‘improved version’ of GYY4137 in inhibiting the production of 

pro-inflammatory mediators in macrophages. Although non-toxic under the 

experimental conditions in this study, FW1256 is anti-proliferative and apoptotic 
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towards MCF7 and SKOV3 cancer cell lines (Feng et al., 2015). Hence, caution 

should be exercised and its toxicity ascertained when evaluating the effect of 

FW1256 in normal i.e. non-cancer cell types. However, GYY4137 is shown to 

be toxic towards cancer cell types but not normal cells (Lee et al., 2011). As 

such, there is a possibility that FW1256, or perhaps a derivative thereof, might 

possess such characteristic. If so, such a compound may perhaps have the 

ability to reduce pro-inflammatory mediator release and at the same time, 

eradicate cancerous cells during cancer therapy. Such an application however 

warrants further in-depth studies given that tumour-associated macrophages 

(TAMs) that reside inside tumours exhibit phenotypic heterogeneity and diverse 

functional capabilities under the influence of the tumour microenvironment 

(Petty and Yang, 2017). Given that the presence of TAMs is associated with 

poor prognosis in patients with several cancer types (Heusinkveld and van der 

Burg, 2011), and that TAMs suppress CD8+ T cell activation and killing of 

tumour cells by producing anti-inflammatory cytokines, understanding how H2S 

would affect TAMs as well as the generation of pro-inflammatory cytokines for 

the recruitment of CD8+ T cell into the tumour site would be crucial (Petty and 

Yang, 2017). The anti-inflammatory effect of H2S donors like FW1256 may 

perhaps also be counter-productive in cancer therapy when used in conjunction 

with treatments involving immunotherapy.  

Moving forward, future strategies could also be undertaken to improve 

the delivery of FW1256 and its potential derivatives to target macrophages 

specifically, hence increasing its potency in vivo and possibly reducing its 

toxicity towards other cells. Drug delivery systems for intracellular delivery to 

macrophages have been developed in recent years, particularly for the 
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treatment of bacterial infections (Pei and Yeo, 2016). Such delivery systems 

include the use of liposomes (Wagner and Vorauer-Uhl, 2011), polymeric 

nanoparticles (Makadia and Siegel, 2011), chitosan (Bernkop-Schnürch and 

Dünnhaupt, 2012), and nanogels (Schmitt et al., 2010). To specifically target 

drug delivery towards macrophages, the coupling of cell-interactive ligands that 

target receptors prevalent on the surface of macrophages could be done to 

FW1256. On the surface of macrophages are an array of receptors such as 

mannose receptors (CD206) (Martinez-Pomares, 2012), folic acid receptors 

(Low et al., 2008) and Fc-receptors (Guilliams et al., 2014). Due to the 

prevalence of CD206 receptors on macrophages, mannose has been a ligand 

of choice for the delivery of drugs to macrophages (Azad et al., 2014). In 

addition, folate receptors are upregulated on the surface of activated 

macrophages (Low et al., 2008). Hence, both mannose and folate could be 

chemically linked to FW1256 in future studies, thereby enhancing its delivery to 

macrophages in vivo. In tandem, steps could be undertaken to study the 

bioavailability of FW1256 in vivo by characterizing its rate of absorption and 

metabolic clearance in vivo. Understanding the bioavailability of the drug would 

enable determining the optimum dose required, as well as further optimization 

for the best delivery route of the drug.  

 For H2S donors to be perceived as a safe and viable therapeutic option 

by the scientific community and the pharmaceutical industry, several 

fundamental questions and uncertainties about H2S signalling need to be 

addressed in greater detail. Firstly, upon administration of a slow-releasing H2S 

donor, it still remains unclear whether the compound is being taken up by the 

cell prior to its release of H2S intracellularly, or whether the release of H2S 
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occurs extracellularly prior to diffusion into the cell. To date, no H2S specific 

receptor is known. However, what is clear is that the anionic sulfide (HS -) anion 

channel exists in Clostridium difficile (Czyzewski and Wang, 2012). The 

relevance of a HS- anion channel in H2S signalling may be significant given that 

H2S is a weak acid in equilibrium and dissociates to the HS - anion and H+ ion 

at a pH close to physiological pH (approximately pH 6.9) (Kabil et al., 2014; 

Olson, 2012), with approximately 80% of H2S dissociated to the HS- anion (Iciek 

et al., 2015). A plausible hypothesis is that the effects elicited by H2S may in 

fact also be mostly contributed by the HS- anion. In mammals, the existence of 

such an anion channel thus far has only been reported in human erythrocytes, 

in the form of an anion exchange protein (AE1) mediating Cl-/HS- exchange 

(Jennings, 2013). 

 A second, major challenge is the ability to quantitate both the 

concentration and subcellular localization of H2S within cells. The development 

of H2S intracellular fluorescent probes in recent years has led to significant 

progress in addressing this question (Feng and Dymock, 2015). In addition, the 

development of H2S donors has led to the generation of a novel H2S releasing 

compound (AP39) which specifically targets mitochondria (Szczesny et al., 

2014). This approach may pave the way for the development of more organelle -

specific H2S releasing donors in the future. Latest research on H2S fluorescent 

probes have taken a step further to harness the potential of these probes 

towards detecting H2S generated from H2S releasing donors in subcellular 

organelles such as the mitochondria and nucleus (Chen et al., 2016), as well 

as the mitochondria and lysosome (Montoya and Pluth, 2016). As such, it could 

be said that we are only just starting to achieve a depth of understanding about 
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the intracellular distribution of H2S which will be needed if H2S is to be used 

therapeutically. 

 Utilising a gas known for its toxicity in the clinic is undoubtedly a risky 

strategy. One approach which some pharmacologists have taken is to develop 

H2S-releasing anti-inflammatory chimeras drugs. Such chimeras reported in 

recent studies include ATB-346 (H2S-releasing derivative of naproxen) (De 

Cicco et al., 2016), NBS-1120 (H2S and NO-releasing derivative of aspirin) 

(Kodela et al., 2015), AVT-18A (H2S and NO-releasing derivative of sulindac) 

(Kashfi et al., 2015) amongst others. These H2S releasing chimeras 

demonstrated equal or superior effectiveness in reducing inflammation as 

compared to the parent NSAID, with the additional benefit of significantly lesser 

gastrointestinal bleeding – a side effect associated with long term NSAID use. 

One example of an H2S-releasing anti-inflammatory chimera that has thus far 

been successful in clinical trials is ATB-346. As the lead drug of Antibe 

Therapeutics for the treatment of osteoarthritis, ATB-346 had a successful 

completion of a Phase 2 clinical trial in August 2016 (Antibe, 2016). 
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6.3 Future perspectives on the intracellular signalling mediated by H2S. 

 One of the modes by which H2S elicits intracellular signalling is through 

protein post-translational modification via S-sulfhydration, which forms 

persulfides (-SSH) at cysteine residues, or polysulfides (H2Sn). Such 

modifications cause a conformational change in the protein structure thereby 

changing its enzymatic activity and/or ability to bind with other interacting 

proteins. As demonstrated in the present study, we proposed that the inhibition 

of NLRP3 inflammasome activation by H2S was mediated by an effect of H2S 

to reduce NLRP3 – ASC protein-protein binding.  

 A misconception regarding persulfide formation is that H2S interacts 

directly with free thiols (-SH) to form a persulfide (-SSH). This is not possible 

due to thermodynamic constraints (Filipovic, 2015). Instead, H2S non-

enzymatically interacts with sulfenic acids (–SOH), or -SR groups to yield 

persulfides. Given that protein S-sulfenylation (the reversible conversion of 

protein thiols to sulfenic acids via oxidation) occurs in more than 1000 proteins 

in the cell (Yang et al., 2014), it is conceivable that persulfide formation by H2S 

occurs via a 2 step process, involving initially S-sulfenylation. Another 

mechanism by which H2S may cause persulfide formation at cysteine residues 

in proteins in a non-enzymatic manner is via the formation of sulfane sulfur (S0), 

which is also known as “zero valent sulfur”, “sulfur-bonded sulfur”, or more 

technically defined as “thiosulfoxide sulfur or any sulfur atom which can 

tautomerize to the thiosulfoxide form” (Toohey and Cooper, 2014). Compounds 

that contain sulfane sulfur have a reactive sulfur atom in a 0 or -1 oxidation 

state, that is bounded to another sulfur atom (Iciek et al., 2015).  
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Besides modifying protein structure, persulfides and polysulfides may 

also function as H2S reservoirs, from which H2S can be released in the 

presence of reductants like glutathione (GSH) (Ishigami et al., 2009). It is 

believed that free H2S in plasma exists in concentrations of less than 1μM 

(Zhang et al., 2014b). Coupled with the finding that sulfur chains present in 

Na2S3 and Na2S4 preparations was more than 300 times more potent in 

activating the transient receptor potential ankyrin 1 (TRPA1) channel as 

compared to H2S (Kimura et al., 2013), sulfane sulfur present in polysulfides 

instead of free H2S may be the sulfide species that contributes significantly to 

sulfide-mediated intracellular signalling (Greiner et al., 2013). Polysulfides can 

be generated from H2S in the presence of oxygen (Nielsen et al., 2011). The 

HS- anion (which is generated from NaHS) can react with sulfane sulfur, thereby 

producing polysulfides with varying numbers of sulfurs up to 8 sulfurs, at which 

cyclization of sulfur occurs and separates from the polysulfide chain (Toohey, 

2011). As such, if indeed the active signalling molecule is sulfane sulfur instead 

of H2S, then perhaps the required concentration of the active moiety to elicit a 

biological effect may be only a fraction of the concentration of NaHS required 

to cause the same biological effect.  

 In conclusion, it is perhaps simplistic to suggest that the mechanisms 

governing H2S-mediated signalling are simply via H2S gas generated from H2S-

releasing donors. H2S in the gaseous form could be the starting molecule 

and/or an intermediate in a complex chain of sulfur-containing molecular 

reactions. Fundamental to this intricate web of chemical reactions is elemental 

sulfur (S) which might exist as several different species intracellularly. To 

elucidate the exact mechanism involved would require new detection tools and 
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methods to locate and quantitate sulfane sulfur producing species such as 

persulfides, disulfides, thio analogues and sulfur chains intracellularly. 
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