
EFFICIENT TIME-ENERGY EXECUTION OF

DATA-PARALLEL APPLICATIONS ON

HETEROGENEOUS SYSTEMS WITH GPU

Dumitrel Loghin
(M. Eng., University “Politehnica” of Bucharest, 2012)

A THESIS SUBMITTED FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2017

Supervisor:

Associate Professor Teo Yong Meng

Examiners:

Professor Tan Kian Lee

Associate Professor Wong Weng Fai

Professor Michael O’Boyle, The University of Edinburgh

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/132448799?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DECLARATION

I hereby declare that this thesis is my original work and it has been written
by me in its entirety.

I have duly acknowledged all the sources of information which have been used
in the thesis.

This thesis has also not been submitted for any degree in any university pre-
viously.

Dumitrel Loghin
17th September 2017

Abstract

The last decade has seen the exponential growth of data and the advent of data-

parallel processing frameworks such as Googles Cloud Dataflow and MapReduce.

On the other hand, hardware systems have entered the heterogeneity era where

multiple processing units with different performance-to-power ratio are combined

into a single system. At the same time, low-power (wimpy) systems traditionally

used in mobile devices have made significant improvements in performance and are

targeting server system market dominated by high-performance (brawny) x86-64

systems. In this context, it is important to study the efficiency of running data-

parallel applications on heterogeneous systems.

In this thesis, we propose techniques for efficient execution of data-parallel

processing on heterogeneous systems with GPUs. Our lazy processing technique

enables the parallel processing of multiple input records on the GPU in contrast

with chunking of a single record among GPU threads. At runtime, our one-

time dynamic mapping technique selects the best execution unit for data-parallel

processing between the CPU and GPU. This approach is implemented in MoSS, a

Hadoop-CUDA framework that we have developed. Compared to Hadoop, MoSS

reduces the execution time by a factor of up to 2.3 on brawny systems, and 3.1 on

wimpy systems together with a maximum energy reduction of 80% for compute-

intensive workloads. On average, MoSS is over 50% faster compared with the

chunking approach.

Secondly, we perform a measurement-driven analysis of MapReduce on intra-

node heterogeneous systems with (i) ARM big.LITTLE CPU and (ii) discrete and

integrated GPU. Our analysis of ARM big.LITTLE systems shows that there is no

one size fits all rule for efficient data-parallel processing on these systems. However,

small memory size, low memory and I/O bandwidth, and software immaturity

concur in canceling the lower-power advantage of ARM systems. Our analysis

of heterogeneous systems with both discrete and integrated GPUs reveals that

wimpy systems with integrated GPU use the lowest energy due to more energy-

efficient hardware and better-balanced system resources. Based on this finding,

we establish an equivalence ratio between a single brawny heterogeneous node

and multiple wimpy heterogeneous nodes. We show that multiple wimpy nodes

achieve the same time performance as a single brawny node, while saving up to

two-thirds of the energy.

Thirdly, we design measurement-driven time-energy analytic models to de-

termine the execution time and energy usage of data-parallel execution on both

homogeneous systems running Hadoop and heterogeneous systems running MoSS.

To the best of our knowledge, we are the first to design an energy usage model for

MapReduce execution. Since our modeling approach uses baseline measurements

to increase model accuracy, the validation on up to 264 system configurations

shows an average model error of less than 15%. Using our models, we analyze

the performance of hypothetical scale-out clusters with more than 100 nodes.

This analysis shows that heterogeneity always achieves better time-energy per-

formance when the workload consists of a compute-intensive part. In line with

our measurement-driven analysis, we show using our models that multiple wimpy

nodes not only achieve similar execution times compared to brawny nodes, but

also exhibit energy savings of up to 90% for compute-intensive workloads. This,

together with MoSS performance results, advocate the potential usage of wimpy

systems with integrated GPU for data-parallel processing.

vi

“nil posse creari de nihilo”

– Lucretius

viii

Acknowledgements

Firstly, I am deeply grateful to my supervisor, Professor Yong Meng Teo, for his

continuous support, insightful feedback and valuable lessons during these five years

that we have worked together. Professor Teo has taught me how to do research by

asking the important questions and filtering out the “noise”. He had the patience

to help me improve my writing skills and my presentation skills. I would also like

to thank Professor Teo for nominating me and to acknowledge National Univer-

sity of Singapore for granting me the President’s Graduate Fellowship during my

candidature.

I would like to thank Professor Kian-Lee Tan and Professor Weng-Fai Wong,

members of my thesis committee, for their comments and advice during different

stages of my Ph.D. candidature. I would also like to thank Professor Beng Chin

Ooi for his insightful comments that helped me improve both the content and

the presentation of my articles. Moreover, Professor Ooi has granted me access

to state-of-the-art computer systems that were crucial to my research. I want to

extend my gratitude to Professor Tulika Mitra and Professor Chin Wei Ngan for

granting access to computer systems in key moments for my research.

During my years at National University of Singapore, I was lucky to have been

able to work with Professor Hugh Anderson and Professor John L. Gustafson as

Teaching Assistant. I have learned much in terms of technical and teaching skills

from them both.

I would not have embarked on this PhD journey without the guidance and

support of two of the most talented people I have ever met. Thus, I express a

special and sincere gratitude to Dr Cristina Carbunaru and Dr Bogdan Marius

Tudor. They have helped me during the most difficult times and for that I am

most grateful to count them as my closest friends.

A very special acknowledgment for my colleague, Dr Lavanya Ramapantulu,

with whom I share an impressive list of co-publications that stands witness to

ix

our fruitful collaboration. I trust that we will continue to collaborate even as we

move to different parts of the world. I would also like to thank Dr Bogdan Marius

Tudor, Dr Hao Zhang and (soon to be doctor) Sunimal Rathnayake with whom I

have collaborated on research projects.

Life in Singapore wouldn’t have been so fun without my friends: Bogdan,

Cristina, Mihai, Delia, Cristi, Narcisa, Andreea, Yamilet, Khanh, Dan, Kay, Ga-

bor, Tudor, Oana, Sunimal, Thy, Suman, Irvan, Teodora, Mihai.

I would like to express my deepest gratitude to both my families in Singapore

and Romania. My dear wife Yamuna, whom I met in Singapore, has always filled

me with joy and helped me see the future with optimism. Her family welcomed me

and made me feel like home. There are not enough words to express my gratitude

for this.

A day away, back in Romania, my parents, uncles, aunties and grandparents

have always stood by me and encouraged me to pursue my dreams even if that

meant I had to be so far away for long periods of time.

I dedicate this thesis to my grandparents, who have given me a wonderful

childhood, and whom I know miss me dearly.

x

Table of Contents

Abstract v

Acknowledgements x

Table of Contents xi

List of Publications xv

List of Figures xvii

List of Tables xix

List of Algorithms and Code Listings xxi

1 Introduction 1

1.1 Data-Parallel Applications . 4

1.2 Heterogeneous Systems . 8

1.3 Objective, Approach and Contributions 13

1.4 Thesis Organization . 16

2 Related Work 19

2.1 Techniques for Data-parallel Processing 21

2.1.1 On Homogeneous Systems 21

2.1.2 On Heterogeneous Systems 24

2.2 Performance Models for Data-parallel Processing 30

2.3 Energy Efficiency of Data-parallel Processing 32

2.4 Summary and Limitations . 33

3 Techniques for Efficient Data-parallel Execution 35

3.1 Approach Overview . 35

xi

3.2 Lazy Processing . 41

3.3 Dynamic Mapping . 47

3.4 Implementation of MoSS . 49

3.5 Summary . 52

4 Measurement-driven Performance Analysis 53

4.1 Applications . 54

4.2 Systems . 57

4.3 MoSS Setup and Evaluation . 61

4.3.1 Determining GPU Thread Count 61

4.3.2 Effect of Unified Memory . 63

4.3.3 Comparison of Dynamic Mapping Techniques 64

4.3.4 Comparison with Chunking 66

4.4 Homogeneous versus Heterogeneous Systems 68

4.4.1 Analysis on Nvidia Jetson TK1 68

4.4.2 Analysis on Amazon EC2 77

4.5 Brawny versus Wimpy Systems . 78

4.5.1 Time-Energy Performance Analysis at Single-Node Level . . 78

4.5.2 Bottleneck Analysis . 83

4.5.3 Time-Energy Performance Equivalence 85

4.6 Summary . 87

5 Model-driven Performance Analysis 90

5.1 Execution Time Model . 91

5.2 Energy Model . 98

5.3 Validation . 99

5.4 Formal Model-driven Analysis . 104

5.4.1 Formal Analysis of Lazy Processing 104

5.4.2 Formal Analysis of Dynamic Techniques 106

5.5 System Profile Analysis . 109

5.6 Model-driven Analysis of Scale-out Workloads and Systems 111

5.6.1 Homogeneous versus Heterogeneous 112

5.6.2 Brawny versus Wimpy . 114

5.7 Summary . 117

6 Conclusions 119

6.1 Summary . 119

xii

6.2 Future Work . 123

References 125

A Heterogeneous Systems Characterization 135

A.1 Specifications . 136

A.1.1 Brawny Systems . 136

A.1.2 Wimpy Systems . 138

A.2 Characterization . 143

B Data-parallel Execution on Many-core Heterogeneous Systems 153

B.1 Setup . 154

B.2 Time-Energy Analysis . 155

B.3 Time-Energy Performance Equivalence 162

B.4 Cost Analysis . 162

B.4.1 Marginal Cost . 164

B.4.2 Total Cost . 166

B.5 Summary . 168

C MoSS Programming Example 171

xiii

List of Publications

1. Dumitrel Loghin, Lavanya Ramapantulu, Yong Meng Teo, Efficient Time-

Energy Execution of MapReduce on Heterogeneous Systems with

GPU, submitted, 2017. [MoSS’17]

2. Dumitrel Loghin, Lavanya Ramapantulu, Yong Meng Teo, On Under-

standing Time, Energy and Cost Performance of Wimpy Hetero-

geneous Systems for Edge Computing, Proc. of 1st IEEE International

Conference on Edge Computing, pages 1-8, 2017. [EDGE’17]

3. Dumitrel Loghin, Lavanya Ramapantulu, Oana Barbu, Yong Meng Teo, A

Time-Energy Performance Analysis of MapReduce on Heteroge-

neous Systems with GPUs, Performance Evaluation, 91:255-269, 2015.

[PEVA’15]

4. Dumitrel Loghin, Bogdan Marius Tudor, Hao Zhang, Beng Chin Ooi and

Yong Meng Teo, A Performance Study of Big Data on Small Nodes,

VLDB Endowment, 8(7):762-773, 2015. [VLDB’15]

5. Dumitrel Loghin, Bogdan Marius Tudor and Yong Meng Teo, An Ap-

proach for Direct Dataflow Execution on Contemporary Multicore

Systems, Proc. of 3rd International Workshop on Dataflow Execution Mod-

els for Extreme Scale Computing (in conjunction with PACT), pages 1-8,

2013. [DFM’13]

6. Sunimal Rathnayake, Dumitrel Loghin, Yong Meng Teo, CELIA: Cost-

time Performance of Elastic Applications on Cloud, Proc. of 46th In-

ternational Conference on Parallel Processing, pages 342-351, 2017. [ICPP’17]

7. Lavanya Ramapantulu, Thy Dao, Dumitrel Loghin, Nam Thoai, Yong Meng

Teo, Modeling the Energy-Time Performance of MIC Architecture

System, Proc. of 24th International Symposium on Modeling, Analysis

and Simulation of Computer and Telecommunication Systems, pages 85-94,

2016. [MASCOTS’16]

8. Lavanya Ramapantulu, Dumitrel Loghin, Yong Meng Teo, On Energy

Proportionality and Time-Energy Performance of Heterogeneous

Clusters, Proc. of 18th IEEE Cluster Conference, pages 221-230, 2016.

[CLUSTER’16]

xv

9. Lavanya Ramapantulu, Dumitrel Loghin, Yong Meng Teo, An Approach

for Energy Efficient Execution of Hybrid Parallel Programs, Proc.

of 29th International Parallel and Distributed Processing Symposium, pages

1000-1009, 2015. [IPDPS’15]

10. Lavanya Ramapantulu, Bogdan Marius Tudor, Dumitrel Loghin, Trang Vu

and Yong Meng Teo, Modeling the Energy Efficiency of Heteroge-

neous Clusters, Proc. of 43rd International Conference on Parallel Pro-

cessing, Minneapolis, pages 321-330, 2014. [ICPP’14]

xvi

List of Figures

1.1 MapReduce execution phases . 5

1.2 Example of Cloud Dataflow processing 6

1.3 Execution time and energy comparison 12

2.1 Related work and the contributions of this thesis 20

3.1 Approach . 36

3.2 Techniques for data-parallel execution on heterogeneous systems . . 37

3.3 Measurements-driven time-energy performance analysis 39

3.4 Modeling the time-energy performance of data-parallel processing . 40

3.5 Comparison between chunking and lazy processing 42

3.6 Overlapping execution: checking and callback 48

3.7 Application execution flow in MoSS 50

4.1 Experimental setup . 60

4.2 Effect of CUDA threads for KM.S 62

4.3 Effect of unified memory . 63

4.4 Dynamic mapping techniques comparison 65

4.5 Comparison with chunking . 67

4.6 Normalized execution time on Jetson TK1 clusters 70

4.7 KM.L execution on a Jetson TK1 node 71

4.8 Normalized energy usage of Jetson TK1 clusters 74

4.9 Normalized execution time on Amazon EC2 clusters 76

4.10 MapReduce time-energy performance 79

4.11 Execution time breakdown on systems with discrete GPUs 80

4.12 MapReduce performance at CPU, memory and storage levels 82

4.13 BS performance on clusters of Jetson TK1 86

5.1 Hadoop and MoSS execution profile on 12-node Jetson TK1 cluster 93

xvii

5.2 Detailed MapReduce execution of Grep on one cluster node 95

5.3 Map record processing time . 101

5.4 Reduce record processing time . 102

5.5 System power profile . 111

5.6 Time and energy savings on heterogeneous clusters 114

5.7 Model-based brawny-wimpy equivalence 115

A.1 Homogeneous and heterogeneous systems 135

A.2 Brawny system with Intel CPU and discrete Nvidia GPU 137

A.3 Wimpy ARM big.LITTLE system 139

A.4 Wimpy Odroid cluster . 140

A.5 Wimpy system with ARM CPU and discrete Nvidia GPU 140

A.6 Wimpy Kayla with GPU . 141

A.7 Wimpy system with ARM CPU and integrated Nvidia GPU 142

A.8 Wimpy Jetson TK1 cluster . 142

A.9 Systems power-performance profile 146

A.10 Host-device transfer bandwidth . 149

A.11 Host-device transfer latency . 150

A.12 Memory bandwidth comparison . 151

A.13 Memory bandwidth comparison of ARM big.LITTLE 151

B.1 HDFS performance . 157

B.2 MapReduce Pi estimator in Java and C++ 158

B.3 MapReduce scaling . 159

B.4 MapReduce on 6-node cluster . 160

B.5 Xeon-ARM performance equivalence 163

B.6 Effect of idle power on marginal cost 166

B.7 Costs per month . 168

xviii

List of Tables

1.1 Performance-to-power ratio of heterogeneous systems 11

2.1 Related work on heterogeneous systems with GPU 26

2.2 MapReduce performance models . 31

2.3 Related work summary . 34

4.1 Data-parallel applications . 55

4.2 Systems selection . 57

4.3 GPU profiling . 83

4.4 Performance equivalence ratio . 85

5.1 Notations . 94

5.2 Models parameters . 100

5.3 Models error . 103

A.1 Systems characterization . 144

B.1 Big Data workloads . 155

B.2 MapReduce Performance-to-power Ratio 161

B.3 TCO notations and values . 164

B.4 Effect of server utilization on marginal cost 165

B.5 Effect of server utilization on TCO 167

C.1 MoSS API . 172

xix

List of Algorithms and Code

Listings

3.1 Kmeans using chunking . 43

3.2 Lazy processing . 45

3.3 Kmeans using lazy processing . 46

3.4 Non-overlapping task execution: one-time approach 47

3.5 Example of MoSS API . 50

C.1 Grep application in MoSS . 173

xxi

Chapter 1

Introduction

In the last few years, we have witnessed the explosion of Big Data analytics trig-

gered by the increasing volume, velocity and variety of collected data. This ex-

plosion is driven by the adoption of data-parallel processing frameworks such as

MapReduce [33], Hadoop [14], Spark [101], Cloud Dataflow [45] by both the indus-

try and academia. These frameworks are primarily designed for clusters of homo-

geneous systems where scalability is achieved by increasing the number of cluster

nodes. But the high power consumption of traditional server nodes equipped with

x86-64 processors [56] and the execution inefficiencies of data-parallel processing

frameworks [66] lead to high energy usage.

At the same time, the end of Dennard scaling [37] pushes hardware sys-

tems towards heterogeneity by integrating multiple processing units with different

performance-to-power ratio (PPR). This heterogeneity permeates the system at

intra-chip, intra-node and inter-node levels and exposes a large configuration space

that could significantly improve the match between software’s dynamic resource

demands and heterogeneous system’s capacity [81].

Graphics Processing Unit (GPU) is a major driver for heterogeneous computing

as it can significantly improve energy efficiency by exploiting massive thread level

1

Chapter 1. Introduction

parallelism (TLP). Additionally, the improvement in GPU programmability over

the last decade has accelerated their adoption in supercomputers and datacenters.

For example, the number of Top500 systems with Nvidia GPUs has increased

from 9 in 2010 to 71 in 2017 [90]. Traditionally, GPUs are exploited in high-

performance computing (HPC), but they are being increasingly employed in data

analytics or machine learning. For example, Nvidia built a 12-node system with

GPUs that can outperform the Google Brain system consisting of 16000 CPU

cores [77]. These 12 Nvidia GPUs are 100 times more energy-efficient compared

to the Google Brain, making it possible to scale-out machine learning systems that

can ultimately model the human brain. This is becoming feasible since modern

GPUs are more energy-efficient. For example, Nvidia Maxwell GPUs are at least

two times more energy-efficient than previous Kepler generation [51].

Concomitantly, the past few years have seen a spectacular evolution in the

performance of ARM-based systems that were traditionally used in smartphones

and tablets. Most of these systems have processors with four or eight cores and

clock frequencies exceeding 2 GHz, memory sizes of up to 4 GB, and fast flash-

based storage. The latest generations of mobile ARM-based systems can run

full-fledged operating systems such as Linux or Windows, and the entire stack of

user-space applications available for these operating systems. Moreover, supercom-

puters and datacenters are being increasingly interested in adopting ARM-based

hardware [78, 85, 92]. For example, Microsoft has adapted Windows Server for

running on ARM-based servers to prepare their integration in Azure cloud [92].

Due to smaller size, smaller power requirements, and lower performance, these

systems are often called small nodes or wimpy nodes as opposed to traditional

high-performance brawny nodes [49]. However, it remains to be explored if these

wimpy systems suitable for Big Data analytics.

With the varying resource demands of mobile apps, these wimpy systems are

2

Chapter 1. Introduction

becoming heterogeneous by integrating CPU cores with different PPRs, such as

ARM big.LITTLE [19], and accelerators, such as Nvidia GPUs [75]. The perfor-

mance improvements of wimpy nodes promote them as an alternative candidate

for datacenter computing with the potential to reduce the energy and, thus, dat-

acenter operational costs. Big hardware vendors, such as Dell, AMD, Applied-

Micro and Nvidia have already launched server prototypes based on ARM cores

and low-power accelerators [30, 75]. In this context, it is fundamental to analyze

if heterogeneous systems are more suitable for Big Data analytics compared to

traditional homogeneous systems.

Efficiently exploiting heterogeneous systems is a daunting task. On the one

hand, explicitly programming in C/C++ with OpenMP, OpenCL, CUDA and

MPI, and handling fault tolerance is burdensome. Moreover, adding energy ef-

ficiency as a design goal and choosing the most energy-efficient configuration

while meeting an execution time deadline is a non-trivial task [79,80,81]. On the

other hand, frameworks that implicitly handle parallelism, such as Hadoop [14],

Spark [101] and Beam [11], are designed for homogeneous systems and may exhibit

inefficient execution on heterogeneous systems [66].

In this thesis, we address the challenge of efficiently executing data-parallel ap-

plications on heterogeneous systems by (i) proposing techniques to enable efficient

time-energy execution of data parallel applications on intra-node and intra-chip

heterogeneous systems with GPU [70], (ii) performing in-depth measurement-

driven analysis to show that wimpy heterogeneous systems are more energy-

efficient compared to brawny systems [71,72], and (iii) modeling time-energy per-

formance to determine optimal configurations for scale-out workloads and clus-

ters [70]. In the remainder of this section, we present the opportunities and chal-

lenges exposed by data-parallel processing and heterogeneous computing, followed

by the objective of this thesis.

3

Chapter 1. Introduction

1.1 Data-Parallel Applications

In the last two decades, the computing landscape has been shifting towards paral-

lel programming since multicore systems became mainstream. More recently, the

explosion of Big Data strengthened the need for scalable and fault-tolerant frame-

works such as MapReduce [33]. However, with the increasing complexity and

velocity of data processing, more flexible programming models, such as dataflow

programming, are needed [45, 66]. As a response, academia and industry players

developed low-latency data-parallel processing frameworks, such as Spark [100],

Spark Streaming [102], Google Cloud Dataflow [4,11,24,45], among others. These

frameworks enable fault-tolerant data-parallel execution at large scale.

Parallel applications expose two types of parallelism, namely, task and data

parallelism. The former refers to distributing tasks with different functionality

among multiple processing units and it corresponds to Multiple Instruction, Single

Data (MISD) and Multiple Instruction, Multiple Data (MIMD) types of computer

architectures in Flynn’s taxonomy [40]. On the other hand, data parallelism refers

to applying the same operation on a large set of data. This corresponds to Single

Instruction, Multiple Data (SIMD) architecture in Flynn’s taxonomy. Moreover,

data-parallel processing can be classified into batch and stream processing. Batch

data-parallel processing handles large volumes of data, entirely available before

execution, and produces consolidated results. The key objective of batch data-

parallel systems is to achieve high throughput, rather than low latency. On the

other hand, stream data-parallel processing consumes input records that arrive

as time passes by, and produces output in a continuous form, aiming for low

latency. Independent of the type of parallelism, applications exhibit different

system resource demands. We classify an application that stresses computational

units such as the CPU or GPU as compute-intensive, while an application that

4

Chapter 1. Introduction

input

chunk 1

chunk 2

chunk m

map()

map()

reduce()

output

Split

map()

key1,

values list

keyr,

values list

key2,

values list
reduce()

reduce()

Map Shuffle & Sort Reduce

Figure 1.1: MapReduce execution phases

requires many data transfers at memory, storage or network level is data-intensive.

Nonetheless, some applications have mixed compute- and data-intensive profile. In

this thesis, we are focusing on batch data-parallel application with diverse system

resource demands and executed on frameworks such as MapReduce (Hadoop) and

Google Cloud Dataflow (Beam).

MapReduce was introduced by Google in 2004 as a programming model and an

associated framework for processing big amounts of data in a scalable and fault-

tolerant way [33]. In 2007, Hadoop was released to become the most popular and

widely-used MapReduce implementation [66]. MapReduce processing consists of

four steps or phases as depicted in Figure 1.1:

• Split - the input is split into several chunks of records or <key, value> pairs.

• Map - each <key, value> pair is processed by user-defined map() function

and, as a result, none, one or more new <key, value> pairs are emitted to

the next phase.

• Shuffle and Sort - Map output pairs are organized in <key, values list>

based on their key. Usually, this is done using a sorting mechanism.

• Reduce - each <key, values list> is processed by user-defined reduce() func-

tion which emits new <key, value> pairs as the final output.

5

Chapter 1. Introduction

ParDo

Fltn

ParDo

input 1

input 2 Join ParDo output 1

input 3 Count output 2

Figure 1.2: Example of Cloud Dataflow processing (adapted from [24])

Among these four steps, only Map and Reduce are exposed to application devel-

opers. Split, Shuffle and Sort phases, and Map and Reduce task management

are handled by the framework. MapReduce is an expressive programming model

which, in conjunction with its associated framework, achieves high scalability and

fault tolerance. However, MapReduce may exhibit low runtime efficiency and high

energy usage on homogeneous brawny nodes [66].

In 2014, Google announced a new Big Data processing framework, called

Google Cloud Dataflow [45]. As an enhancement over MapReduce, this frame-

work:

• allows users to create multi-step pipelines of data processing, as depicted in

Figure 1.2.

• allows more types of operators, not only map and reduce. For example, it

exposes ParDo which is similar to Map, Flatten, Join, Group, Count and

other operators.

• supports low-latency stream processing. For this, data is represented as (key,

value, timestamp), compared to just <key, value> pairs in MapReduce. The

timestamps are similar to tags in the traditional dataflow model.

Compared to MapReduce, Cloud Dataflow exposes more operators and enables

6

Chapter 1. Introduction

pipelining. However, Map and Reduce operators are the building blocks of all

other Cloud Dataflow operators [24].

In 2016, Apache released a proposal for an open source implementation of

Google Cloud Dataflow under Apache Beam [11]. Some researchers see Cloud

Dataflow as the end of MapReduce era. Nevertheless, it is important to note that

FlumeJava, the key component of Dataflow, internally represents its computations

as pipelines of Map and Reduce operators [24]. Moreover, major industry players,

including Amazon [6], IBM [58], Microsoft [74] and even Google [46] are providing

cloud-based MapReduce platform-as-a-service.

With the explosion of Big Data, the focus for software developers is on exploit-

ing large scale parallel and distributed systems while ensuring low-latency process-

ing and fault tolerance. However, achieving this depends on addressing overhead

management and efficient resource usage. Traditional parallel programming mod-

els and languages, such as pthreads, OpenMP and MPI, put the burden of de-

signing parallel programs on application developers, by having to explicitly define

the partitioning, synchronization and mapping of the parallel tasks [87]. Hence,

scaling applications using such methods is a challenge. On the other hand, mod-

els that automatically handle partitioning, synchronization and mapping usually

suffer from inefficient execution. For example, Hadoop MapReduce is a scalable,

portable and fault-tolerant framework, but suffers from an inefficient execution in

terms of time and energy [28, 61, 65, 66]. In this context, we investigate how to

combine the performance of traditional programming models with the flexibility

of dataflow and data-parallel models to achieve time-energy-efficient execution on

heterogeneous systems.

7

Chapter 1. Introduction

1.2 Heterogeneous Systems

Processors with multiple cores have become the norm in the last decade. With

each technological generation, multicore processors have an increasing number of

cores integrated per die. However, this trend will soon reach its limit because of

transistor power requirements [37]. Due to these power constraints, only part of

the chip will be powered at one moment, a phenomenon called dark silicon. As

a response to this concern, system architects are proposing the usage of hetero-

geneous systems integrating multiple specialized processing units which can be

powered based on applications demands. For example, ARM big.LITTLE archi-

tecture was a major milestone in core heterogeneous architectures [19]. The first

big.LITTLE chip with 32-bit Cortex-A7 and Cortex-A15 cores was announced in

2011. By the end of 2012, ARM announced the next generation 64-bit big.LITTLE

based on Cortex-A53 and Cortex-A57 cores. In 2014, Nvidia introduced Jetson

TK1, a heterogeneous wimpy system integrating ARM CPU cores and Nvidia

GPU cores on the same die [75].

Another milestone was the launching of Heterogeneous System Architecture

(HSA) in 2012 by a consortium of companies led by AMD [7]. This consortium

proposes standards and tools for better integration of different processing units,

such as CPUs and GPUs, at both hardware and software levels. As part of this ef-

fort, they propose HSA Intermediate Language (HSAIL) which can be efficiently

mapped by each hardware vendor to its own low-level language, but is flexible

enough to be generated once from the source code and to run on different process-

ing units.

With heterogeneity becoming the new norm, we define and classify heteroge-

neous systems, and present their potential in terms of both time performance and

energy efficiency. Heterogeneous systems are defined as having more than one type

8

Chapter 1. Introduction

of processing unit integrated on the same system [9]. Moreover, based on system

type, heterogeneity can be classified into:

• intra-chip heterogeneity when the system is a single chip integrating different

types of processing units such as CPU cores, GPU cores or DSPs. These

systems are often called System on a Chip (SoC). An example of intra-

chip heterogeneity with integrated GPU is the Nvidia Tegra K1 that powers

Jetson TK1 system which integrates four ARM Cortex-A15 CPU cores, 192

Nvidia Kepler GPU cores and a shared 2 GB low-power memory [75]. A par-

ticular case of intra-chip heterogeneity is when the CPU has multiple cores

with different capabilities, such as big and little cores in ARM big.LITTLE

architecture [19].

• intra-node heterogeneity is a commonly encountered heterogeneous setup in-

volving a multicore CPU and a discrete GPU accelerator connected through

the PCI-Express interface.

• inter-node heterogeneity refers to heterogeneous clusters. In a typical setup,

these clusters consist of both low-power systems such as those based on Intel

Atom or ARM processors and high-performance systems such as those based

on Intel Xeon or AMD Opteron processors. An example of such a system is

KnightShift [98] which uses Intel Atom and Intel Xeon by switching between

them based on workload demand.

Heterogeneity implies the existence of different processing capabilities, each

type of core being specialized for a particular application. For example, CPU

cores are specialized in executing sequential code with lots of branches and loops.

On the other hand, GPUs are specialized in executing SIMD code where a single

operation is applied to multiple values. When executing different applications,

these processing resources have different PPR representing the average unit of

9

Chapter 1. Introduction

useful work performed per unit of energy. By efficiently exploiting heterogeneous

resources, software applications can achieve energy efficiency. To illustrate this,

we present in Table 1.1 the PPRs of two different applications on two different

systems, a server-class computer based on Intel Xeon E5-2603 processor and an

embedded-class Odroid XU board based on Samsung Exynos 5410 SoC which

implements ARM big.LITTLE architecture. Since this architecture is versatile,

we present the results for three different configurations, namely, when activating

only Cortex-A7 (little) cores, when activating only Cortex-A15 (big) cores, and

when activating both types of cores. The first application is a multi-threaded

version of Black-Scholes financial model from PARSEC benchmarks [22]. For this

application, we define the PPR as the ratio between the number of processed

financial options and the energy used. Even though the execution time on ARM

system is three (five on little) times bigger compared to Xeon system, the PPR

has the reverse trend. When using only little cores, the PPR of ARM Cortex-A7

is almost five times better than that of Xeon and two times better than that of big

Cortex-A15 cores. The second application is Wordcount, a well-known Big Data

analytics application implemented using MapReduce programming model [33].

This application computes the number of appearances of words in a series of

documents. Since it scans all the input documents, we compute the PPR as their

total size in MB divided by the total energy. The workload was run on Hadoop

1.2.1 on a single node cluster. For this workload, the difference in execution time

on ARM and Xeon systems is significant, ranging from seven to nine times. Even

if the PPR of ARM system is better, the difference between the two types of

systems is lower compared to first benchmark.

The advance of heterogeneous hardware platforms introduces a series of chal-

lenges for software developers. While many developers advocate the principle of

“write once, run everywhere” [31], this approach may expose runtime inefficiencies

10

Chapter 1. Introduction

Table 1.1: Performance-to-power ratio of heterogeneous systems

Platform Processing Unit
Blackscholes Wordcount

Time PPR Time PPR
[s] [Mopt/J] [s] [MB/J]

Xeon server Intel Xeon E5-2603 43 0.12 1507 0.10

Odroid XU
ARM Cortex-A7 (LITTLE) 205 0.50 13799 0.18
ARM Cortex-A15 (big) 132 0.25 11209 0.12
ARM big.LITTLE 133 0.25 10897 0.12

without proper compilers and runtime engines. For example, programs written in

Java are supposed to run on a wide range of hardware platforms through Java

Virtual Machine. Nevertheless, this may incur loss of performance on heteroge-

neous systems since different processing units need different optimizations. Thus,

careful design of runtime engines is needed. However, inefficient usage of process-

ing units is not the only source of performance loss. Memory and I/O subsystems

can become the bottleneck for a variety of workloads. For example, in ARM-

based systems, memory and network I/O are the bottleneck for a series of server

workloads, and their energy efficiency is nullified [91].

Heterogeneity introduces a multitude of configurations with different balances

of cores, memory, disk and network I/O system resources to meet diverse applica-

tion needs. As a result, the large configuration space provides new opportunities to

achieve time-energy performance trade-offs. These performance trade-offs can sat-

isfy the demands of both users and resource providers. Considering this, our aim is

to design model-based techniques to identify optimal configurations of intra-node

and intra-chip heterogeneous systems for executing applications with minimum

energy while meeting a given time deadline.

Lastly, we present a motivational example of data-parallel processing on het-

erogeneous systems with GPUs. MapReduce was originally designed for CPU-only

server systems and it is non-trivial to run MapReduce applications on heteroge-

neous CPU+GPU systems. To overcome this, we design a lazy processing tech-

11

Chapter 1. Introduction

 1

 2

 1

 2

PI SS GR

N
o
rm

a
liz

e
d
 T

im
e
 (

H
o
m

o
g
e
n
e
o
u
s
)

N
o
rm

a
liz

e
d
 E

n
e
rg

y
 (

H
o
m

o
g
e
n
e
o
u
s
)Execution time

Energy

Figure 1.3: Execution time and energy comparison between homogeneous CPU-
only systems and heterogeneous systems with GPU

nique that enables the GPU to process multiple <key, value> pairs in parallel.

We measured the execution time and energy consumed by Hadoop on clusters

of 12 Jetson TK1 nodes [75], for both CPU-only (CPU) execution and heteroge-

neous CPU+GPU (GPU) execution. Figure 1.3 shows execution time and energy

for three applications, Pi estimation (PI), Similarity Score computation (SS) and

Grep (GR), normalized to the values for CPU-only execution. The results expose

a varied landscape, where some applications greatly benefit from GPU processing,

while others exhibit similar or worse performance on GPU compared to CPU-only

execution.

This example motivates the need for dynamic mapping techniques for selecting

the most suitable heterogeneous execution unit at runtime. This selection could be

accomplished by static methods in the absence of runtime variations. However, in

practice there are situations where system parameters change and static methods

may not achieve optimal performance. For example, if the GPU is used by more

applications at the same time, static methods alone do not suffice [47]. In our

case, if the code is statically optimized for small-size input records suitable for

GPU execution, but in production the input contains unusually large records,

12

Chapter 1. Introduction

GPU processing will be inefficient. In such a case, dynamic techniques are more

flexible, even if they incur overhead due to profiling and scheduling.

In summary, heterogeneity introduces opportunities for efficient time-energy

execution of data-parallel applications. However, the behavior of current data-

parallel processing frameworks on heterogeneous systems needs to be analyzed

using measurement and model-based approaches. Moreover, software techniques

are required for efficient data-parallel execution on heterogeneous systems.

1.3 Objective, Approach and Contributions

The objective of our work is to efficiently execute batch data-parallel applica-

tions on intra-node and intra-chip heterogeneous systems using measurements to

analyze software and hardware bottlenecks and analytic models to determine opti-

mal system configurations. The main efficiency criteria we consider are execution

time and energy, and their derivatives such as performance-to-power ratio (PPR).

As opposed to the majority of related work which focuses on time performance

only [2, 61, 83, 84, 103], we also address the energy performance. The energy effi-

ciency of applications running on heterogeneous systems becomes more important

as we enter the era of edge computing [3].

To achieve our objective, we propose an approach divided into three parts:

1. techniques to enable efficient batch data-parallel processing on intra-node and

intra-chip heterogeneous systems with GPU

2. identify bottlenecks and expose the limitations of current hardware and soft-

ware systems through an in-depth measurement-driven analysis of batch data-

parallel applications on intra-node and intra-chip heterogeneous systems

3. determine scale-out system configuration that efficiently execute batch data-

13

Chapter 1. Introduction

parallel applications by developing time-energy analytic models.

A detailed description of our approach is given in Chapter 3. Next, we highlight

the contributions of this thesis:

1. To efficiently execute data-parallel applications on intra-node and intra-chip

heterogeneous systems with GPUs, we develop:

• a lazy processing technique that enables the processing of multiple input

records on a GPU [70, 71], in contrast with chunking which divides a sin-

gle record among GPU threads [84]. Lazy processing is 54% faster than

chunking, on average, and saves 66% of the energy on wimpy heterogeneous

systems

• three dynamic mapping techniques to further improve data-parallel process-

ing at runtime [70]. The one-time workload profiling approach selects the

most suitable processing unit between the CPU and GPU, while checking and

callback are overlapping CPU and GPU processing. Counter to intuition, we

show that one-time profiling achieves better performance than overlapping

the execution on the CPU and the GPU

• MoSS (M apReduce on HeterogeneoS Systems), an implementation of our

techniques using Hadoop and CUDA [70].

2. To analyze time-energy performance, we perform measurements of data-parallel

execution on brawny and wimpy intra-node heterogeneous systems and show

that there is no “one size fits all” rule for efficient execution on these systems.

For intra-node heterogeneous systems with GPU we show that:

• MoSS improves the execution time up to 2.3 times on brawny systems with

GPU, and up to 3.1 times on wimpy systems with GPU along with a max-

14

Chapter 1. Introduction

imum of 80% reduction in energy usage for compute-intensive workloads,

when compared with Hadoop [70]

• while compute-intensive applications benefit from heterogeneity, applications

where data transfers dominate the execution time, such as Grep and Word-

count, exhibit worse time-energy performance on heterogeneous systems com-

pared to homogeneous systems [71]

• based on the execution time equivalence ratio, multiple wimpy nodes achieve

the same performance as one brawny node while saving two thirds of the

energy [71].

For intra-node heterogeneous systems with different CPU cores, such as ARM

big.LITTLE we show that:

• compute-intensive workloads run five times faster on wimpy ARM nodes with

minor software modifications [72]

• it is four times cheaper in terms of total cost to run compute-intensive Map-

Reduce on wimpy nodes compared to traditional brawny server nodes [72]

• software immaturity and limited memory size and bandwidth are the main

issues that affect data-parallel execution performance of wimpy nodes [72].

The detailed time-energy performance analysis of data-parallel execution on

ARM big.LITTLE is presented in Appendix B.

3. To analyze the time-energy performance of hypothetical or scale-out systems:

• we develop measurement-driven time-energy analytic models to determine

the execution time and energy usage of MapReduce data-parallel execution

on both homogeneous systems running Hadoop and heterogeneous systems

with GPU running MoSS. Validated against real measurements on up to 264

configurations, our models exhibit an average error of less than 15%.

15

Chapter 1. Introduction

• we use our models to study the time-energy performance of scale-out clusters

of more than 100 nodes and we show that (i) heterogeneous systems almost

always achieve better time performance and save energy for workloads with

at least 10% compute-intensive fraction, and that (ii) an execution time

equivalence ratio between brawny and wimpy systems exists for scale-out

clusters, where wimpy systems can save up to 90% of the energy for compute-

intensive workloads.

To the best of our knowledge, we are the first to design an energy usage model

for data-parallel MapReduce execution and the first to present a time-energy anal-

ysis of data-parallel processing on wimpy heterogeneous systems. In addition, we

perform a detailed system characterization at CPU, GPU, memory, storage and

networking level for all systems used in our research, as detailed in Appendix A.

1.4 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2, we present the

related work on data-parallel processing on heterogeneous systems, with focus on

the time-energy performance. We first present the work done on improving the

time performance of data-parallel processing on different types of heterogeneous

systems, followed by studies on improving the energy efficiency. Next, we present

existing performance models and show that there is no energy usage model for

data-parallel processing. Lastly, we expose related work limitations in contrast

with the contributions of this thesis.

In Chapter 3, we first present our overall approach and then focus on the tech-

niques for efficient data-parallel execution on heterogeneous systems with GPUs,

in contrast with related work. Next, we present the implementation of these tech-

niques in MoSS using Hadoop and CUDA.

16

Chapter 1. Introduction

In Chapter 4, we evaluate MoSS and analyze the time-energy performance

of heterogeneous systems with GPUs using a measurement-driven approach. We

start with the time-energy performance at cluster level, and continue with an in-

depth analysis at single node level. For this analysis, we use both brawny and

wimpy systems. Brawny systems are represented by cloud-based Amazon EC2 [1]

instances and self-hosted server systems with i7 or Xeon CPU and Nvidia GPU.

Wimpy systems include both discrete GPUs, such as Kayla [30], and integrated

GPUs, such as Jetson TK1 [75]. Using this measurement-driven analysis, we

establish an equivalence ratio between one brawny node and multiple wimpy nodes,

such that they achieve the same time performance while saving energy.

In Chapter 5, we introduce our hybrid time-energy analytic models that are

using measured parameters to improve accuracy. To the best of our knowledge,

we are the first to develop an energy usage model for data-parallel MapReduce

execution. Using these models, we present a time-energy performance analysis of

scale-out clusters and workloads. This analysis confirms the measurements results

in Chapter 4 and shows that wimpy heterogeneous systems are an energy-efficient

alternative for Big Data analytics.

We conclude by briefly discussing future directions in Chapter 6.

17

Chapter 2

Related Work

With the explosion of Big Data analytics, there is demand for scalable and fault-

tolerant data-parallel processing. Traditional parallel programming models and

languages, such as C/C++ with pthreads, OpenMP, MPI and CUDA are bur-

densome for application developers since they have to explicitly define the parti-

tioning, synchronization and mapping of parallel tasks [42,87]. Adding scalability

and fault tolerance to data-parallel applications makes it even more difficult to

use these traditional programming models [33]. On the other hand, models and

frameworks that automatically handle partitioning, synchronization and mapping

usually suffer from inefficient time-energy execution [66]. Moreover, most of these

frameworks, such as MapReduce [33], Spark [101] and Cloud Dataflow [45], are

designed for traditional brawny server systems that incur high energy usage.

Based on the degree of heterogeneity of the target system, we present related

works and highlight our work in Figure 2.1. We classify the target systems into

homogeneous and heterogeneous. We further classify heterogeneous systems into

intra-node systems with discrete processing units, intra-chip systems with pro-

cessing units integrated into the same die, and inter-node systems with different

types of cluster nodes. The bulk of work targets homogeneous brawny x86-64

19

Chapter 2. Related Work

Data-parallel Applications

Homogeneous Systems Heterogeneous Systems

Intra-node Inter-node

Brawny
�D��Z��µ����K^�/[ìð�

�,��}}���[ìó�

���Ç�����µ�}^Ç�[ìó�

�FlumeJava �W>�/[íì�

�^���l��,}��o}µ�[íì�

�MillWheel �s>��[íï�

��o}µ������(o}Á��s>��[íñ�

Brawny
�D�����W��d[ìô�

�Shirahata et al.

[�>Kh��KD[10]

�'WDZ��/W�W^[íí�

���v��o]}v��^K^W[íï�

Wimpy and Brawny

(with discrete GPU)
� >}PZ]v�����oX��W�s�[íñ�

� Loghin ����oX��D}^^[íó�

� >}PZ]v�����oX����'�[íó�

Brawny
� >�d���K^�/[ìô�

Wimpy and Brawny
�Tarazu ��^W>K^[íî�

Intra-chip

Brawny
��Z�v�����oX��^�[íî�

Wimpy

(with many-core CPU)
� Loghin ����oX��s>��[íñ�

Wimpy

(with integrated GPU)
� Loghin ����oX��W�s�[íñ�

� Loghin ����oX��D}^^[íó�

� >}PZ]v�����oX����'�[íó�

Figure 2.1: Related work and the contributions of this thesis

server systems since traditional clusters and datacenters consist of such systems.

With the emergence of heterogeneous systems, some research projects propose

enhancements of data-parallel frameworks for these platforms.

In our work, we propose techniques for efficient data-parallel processing on

intra-node and intra-chip heterogeneous systems, focusing on systems with dis-

crete and integrated GPUs. We analyze and model the time and energy perfor-

mance of these heterogeneous systems in comparison with homogeneous systems.

To the best of our knowledge, we are the first to analyze the energy efficiency

of wimpy heterogeneous systems with discrete and integrated GPU [71] or with

ARM big.LITTLE CPU [72], and the first to propose an energy usage model for

MapReduce on both homogeneous and heterogeneous systems [70].

In the remainder of this chapter, we first present techniques and frameworks

for data-parallel processing based on the type of systems they are designed for. We

continue with performance models and then discuss techniques for improving the

energy efficiency of data-parallel processing. Since none of the related works on

heterogeneous systems consider the energy efficiency of data-parallel frameworks,

20

Chapter 2. Related Work

we present works on energy optimizations for homogeneous systems only. We end

by presenting the limitations of related work in contrast with the contributions of

this thesis.

2.1 Techniques for Data-parallel Processing

In this section, we begin by presenting works targeting homogeneous systems.

Afterwards, we present projects on inter- and intra-node heterogeneous systems.

2.1.1 On Homogeneous Systems

In the last decade, MapReduce [33] and Hadoop [14], its open-source implementa-

tion, were the most widely used data-parallel frameworks. As explained in Chap-

ter 1 and depicted in Figure 1.1, MapReduce execution consists of four stages,

namely, Split, Map, Shuffle and Reduce. Among these four stages, only Map and

Reduce are exposed to application developers. MapReduce is an expressive pro-

gramming model which, in conjunction with its associated framework, achieves

high scalability and fault tolerance. But this programming model is a one-stage,

fixed dataflow, batch processing model [66]. Hence, it is not suitable for iterative

or interactive jobs [100]. Recently, academia and industry are investigating more

flexible and efficient data-parallel programming models [4, 24, 83, 100].

Google has announced Cloud Dataflow [45], a replacement for MapReduce,

based on two previous projects, namely, FlumeJava [24] and MillWheel [4]. Flume-

Java alleviates the one-stage processing model of MapReduce. Users can define

more complex computation pipelines without manually linking MapReduce stages.

FlumeJava exposes a series of operators (e.g. parallelDo, groupByKey, join) which

can be applied on immutable collections of objects (PCollections). At runtime,

it employs a lazy evaluation technique by first computing an optimized dataflow

21

Chapter 2. Related Work

execution plan and then starting the actual execution. The employed optimiza-

tions are based on node fusion. For example, MSCR fusion produces a single stage

MapReduce from a series of paralellDo and groupByKey nodes. With these opti-

mizations, FlumeJava achieves the execution time performance of hand-optimized

MapReduce pipelines, but with less programming effort.

The other component of Cloud Dataflow, MillWheel [4], is a framework pro-

viding scalable low-latency stream processing. Internally, the processing is rep-

resented as a dataflow graph where users provide the code for each node. The

data flowing through this graph is represented as a (key, value, timestamp) tuple.

The timestamp is needed in stream processing to distinguish values arriving at

different moments, which can be out-of-order. These timestamps are similar to

tagged-tokens or colors in traditional dataflow architectures [20]. Another simi-

larity with traditional dataflow is that application developers can define their one

code inside each node of the dataflow graph. MillWheel processing is distributed

by assigning a key interval to each cluster node.

More recently, Google has unified batch processing represented by MapRe-

duce [33] and FlumeJava [24], and stream processing represented by MillWheel [4]

under a single API named Cloud Dataflow [5]. This API that allows applica-

tion developers to easily express their data-parallel pipelines has become open

source under Apache Beam project [12], where the execution engine is provided

by Spark [15,100,101] or Flink [13]. With the adoption of Cloud Dataflow, many

researchers foresee the end of MapReduce. However, we note that FlumeJava,

a key component of Dataflow, internally represents its computations as pipelines

of Map and Reduce operators [24]. Moreover, major industry players, including

Amazon [6], IBM [58], Microsoft [74] and even Google [46] are providing cloud-

based MapReduce platform-as-a-service.

Resilient Distributed Datasets (RDD) [100] and Spark [101] offer a fault-

22

Chapter 2. Related Work

tolerant, in-memory data-parallel processing framework that is able to speedup

analytics jobs by one order of magnitude. This framework primarily addresses

iterative and interactive programs and achieves an impressive speedup because

of keeping the datasets in RAM. The concepts used in this work are similar to

those in FlumeJava [24] and Dryad [59]. RDDs are similar to PCollections, but

they (i) are mainly in-memory data structures and (ii) can be shared across dif-

ferent queries. The runtime uses a lazy evaluation strategy by first constructing

a directed acyclic graph (DAG) of tasks and then distributing these tasks across

cluster nodes. However, as opposed to FlumeJava, Spark does not perform op-

timizations on the DAG. Spark with RDDs can achieve a speedup of up to 40

compared to Hadoop, because of its in-memory processing and its multi-query

support. As Spark targets traditional x86-64 cluster systems, it remains to be

evaluated how it performs on emerging low-power systems with limited amount of

RAM.

Discretized Streams (D-Streams) [102] is a scalable framework that unifies

batch and stream processing. It uses the scalability and fault tolerance of data-

parallel batch processing frameworks and alleviates their high latency by em-

ploying in-memory storage. D-Streams key idea is to execute stream processing

as batch jobs in very short time intervals, thus, discretizing the execution. For

achieving this, D-Streams uses the RDDs [100] and the Spark runtime [101]. As a

result, batch, interactive and stream processing are unified under the same frame-

work. D-Streams achieves a processing latency of less than one second. However,

as opposed to MillWheel, users are limited to the operators allowed on RDDs,

such as map, groupBy, join. In contrast, MillWheel allows user to define their own

code for each node in the dataflow graph.

23

Chapter 2. Related Work

2.1.2 On Heterogeneous Systems

2.1.2.1 On Inter-node Heterogeneous Systems

Zaharia et al. [103] are the first to investigate Hadoop performance on heteroge-

neous clusters. They propose Longest Approximate Time to End (LATE) schedul-

ing algorithm which halves Hadoop execution time in heterogeneous clusters of

virtual machines. This work is motivated by the fact that Hadoop assumes all

nodes in a cluster to be homogeneous. However, heterogeneity may be present

in clusters of systems with different loads or belonging to different generations.

Many real world clusters deploy multiple virtual machines on top of a single phys-

ical system, thus, introducing more degrees of heterogeneity. In this environment,

some nodes, called stragglers, execute their task very slowly and delay the en-

tire MapReduce execution. LATE manages these stragglers in a more robust way

than Hadoop’s default scheduler. However, the definition of heterogeneity used by

LATE is slightly different from ours. We consider nodes with different processing

units and different PPRs as being heterogeneous, but in LATE evaluation hetero-

geneity and straggler effect are artificially obtained by executing additional CPU

or I/O intensive workloads to slow down the systems.

Ahmad et al. [2] investigate Hadoop MapReduce execution on heterogeneous

clusters with high-performance Intel Xeon and low-power Intel Atom CPUs. This

work is motivated by the slower Hadoop execution on a heterogeneous cluster

compared to that on either of the homogeneous clusters. The authors identify

two reasons for this behavior: (i) high network utilization during Map phase due

to Hadoop load balancer which steals work from slower low-power nodes and

(ii) the imbalance in the Reduce phase due to equally distributed work among

heterogeneous nodes with different compute capabilities. In order to alleviate

these issues, the authors propose three optimizations: a communication-aware

24

Chapter 2. Related Work

load balancer (CLAB) for Map phase, a communication-aware scheduler for Map

phase (CAS) and a predictive load balancer for Reduce phase (PLB). Firstly,

CALB decides if Map or Shuffle is on the critical path. Secondly, CAS decides

how many remote Map tasks should be created and how should they be executed.

Lastly, PLB splits the key space into smaller chunks and assigns them to nodes

based on their processing capabilities. These optimizations are implemented in

Hadoop and evaluated on a cluster with 10 Xeon nodes and 80 Atom nodes. The

average speedup is 1.7 when compared to Hadoop and 1.4 when compared to

LATE.

2.1.2.2 On Intra-node Heterogeneous Systems

We show in Table 2.1 related works that propose MapReduce frameworks for

intra-node and intra-chip heterogeneous systems. Among the first MapReduce

frameworks targeting intra-node heterogeneous systems with GPUs, Mars [52] con-

tributes with the design and implementation of MapReduce for Nvidia GPUs. In

addition, the authors developed a string processing library for GPUs that achieves

a speedup of up to nine compared to standard C/C++ string processing on CPUs.

Compared to Phoenix [82], which is a state-of-the-art, CPU-only, C++ implemen-

tation of MapReduce, Mars achieves a maximum speedup of 16. However, Mars

has some limitations. Even though Mars supports both map and reduce phases

on GPU, only one of the six analyzed benchmarks has a reduce phase. Secondly,

Mars has a shared-memory implementation that does not support cluster execu-

tion. Nevertheless, Mars represents a breakthrough and was followed by a series of

works proposing improvements for MapReduce execution on single-node systems

with GPUs [26, 36, 57].

MapCG [57] adopts the idea of writing a single version of a program using

MapReduce model and running it efficiently on both the CPU and GPU. This

25

Chapter 2. Related Work

Table 2.1: Related work on heterogeneous systems with GPU

Work Year
Multi- Hadoop- GPU
node based programming

Mars [52] 2008 no no CUDA
Merge [68] 2008 no no EXOCHI
MITHRA [38] 2009 yes yes CUDA
Shirahata at al. [84] 2010 yes yes CUDA
MapCG [57] 2010 no no CUDA
StreamMR [36] 2011 no no OpenCL
Ji et al. [60] 2011 no no CUDA
GPMR [86] 2011 yes no CUDA
Chen et al. [26] 2012 no no CUDA
Chen et al. [27] 2012 no no OpenCL
HadoopCL [48] 2013 yes yes Java/OpenCL
Glasswing [35] 2014 yes no OpenCL
Hadoop+ [53] 2015 yes yes CUDA/OpenCL

single-node framework improves on Mars by avoiding redundant counting phases

with the help of a light-weight memory allocator and by replacing sorting of in-

termediate keys with a custom hash table approach on GPUs.

Targeting systems with AMD GPUs, StreamMR [36] is a single-node MapRe-

duce implementation that uses lock-free and atomic-free data structures to improve

GPU execution. Similar to MapCG [57], StreamMR implements a hash table for

intermediate <key, value> storage, and, thus, achieves better performance than

Mars [52] which uses a sorting mechanism.

Merge [68] proposes a MapReduce-based programming model and applies the

idea of distributing work in the form of specialized code for different heteroge-

neous resources. While this idea is similar to ours, implementing new workloads

into Merge is time-consuming. Moreover, Merge implementation is based on In-

tel compiler and Threading Building Blocks (TBB) which reduce its portability.

Similar to us, the authors discovered that overlapping CPU and GPU does not

speedup the execution.

Ji et al. [60] show that MapReduce execution on GPUs can be improved by

exploiting the small but fast shared memory. They use this shared memory as a

26

Chapter 2. Related Work

buffer for map and reduce input and output data to increase data transfer effi-

ciency. Chen et al. [26] use the same shared memory to implement the immediate

reduction of a <key, value> pair emitted by Map phase. In contrast, we use

shared memory to keep additional data needed by map function, such as the string

to be searched for Grep or the initial cluster centroids for Kmeans.

Motivated by the emergence of integrated CPU and GPU chips, Chen et al. [27]

have designed a MapReduce framework targeting AMD Fusion architecture. In

order to utilize both the CPU and GPU, the authors use two different approaches:

(i) a map-dividing approach in which both devices run map and reduce tasks and

(ii) a pipelining approach in which one device executes map tasks and the other

runs the reduce tasks. Using scheduling and tuning techniques, their CPU-GPU

framework achieves a maximum speedup of 2 compared to the best of CPU- and

GPU-only approach. In contrast, we show that overlapping CPU and GPU does

not improve the execution.

Motivated by the lack of stand-alone MapReduce frameworks targeting clusters

of heterogeneous systems with GPUs, Stuart et al. introduced GPMR [86]. In ad-

dition to the framework design and implementation, the authors highlight a series

of optimization techniques for implementing MapReduce on GPUs, such as partial

reductions and accumulation of <key, value> pairs on GPU. GPMR is evaluated

on a cluster with 64 Nvidia Tesla GPUs and shows poor scalability when running

on more than eight GPUs. The other stand-alone MapReduce framework for clus-

ters, Glasswing [35] relies on a pipeline with five stages to overlap communication

and computation in map and reduce phases. In order to provide vertical scaling

using heterogeneous core inside each node, Glasswing exposes a MapReduce-style

OpenCL API. While these frameworks achieve significant performance, they are

impractical to use in real-world deployment due to lack of fault tolerance. More-

over, cluster-level input and output data management is fuzzy.

27

Chapter 2. Related Work

With Hadoop being the most employed MapReduce framework, few works

extend it for clusters of heterogeneous systems with GPUs. MITHRA [38] is

among the first works that combine Hadoop and CUDA to improve the execution of

embarrassingly parallel applications on clusters with GPUs. Their implementation

of BlackScholes pricing model on four nodes with GPU achieves better execution

time compared to a cluster of 62 CPU-only nodes.

Shirahata et al. [84] propose first hybrid CPU-GPU Map task implementation

in Hadoop. They implement the Map phase of Kmeans clustering algorithm in

C++ and CUDA and integrate it on Hadoop through Pipes mechanism. In order

to efficiently schedule Map tasks on both CPU and GPU, they propose to solve a

minimization problem for task execution. The input parameters for this problem,

such as map execution time and GPU acceleration, are obtained after profiling map

execution. Using this proposed scheduling technique, the maximum speedup over

Hadoop is 1.93 obtained on 64 nodes with GPUs. However, these works analyze

only one application and do not present an evaluation of the energy usage.

Aiming to leverage the programmability of heterogeneous systems in gen-

eral, HadoopCL [48] integrates Hadoop and OpenCL by automatically generating

OpenCL code from Java using APARAPI tool. But this translation tool supports

only a subset of Java types and library methods and hence limits the usability of

HadoopCL. Even if energy efficiency is one of the main motivations for this work,

the authors mention that no energy usage results are presented due to the lack of

infrastructure to measure power and energy.

Hadoop+ [53] is another Hadoop-based framework that enables concurrent

CPU and GPU MapReduce execution. Additionally, a simple model is proposed to

help users select the most cost-effective system configuration. However, Hadoop+

and its presentation have some limitations. Firstly, Reduce phase execution on the

GPU is not clear. Based on our experience, Reduce phase on the GPU requires

28

Chapter 2. Related Work

additional mechanisms to collect intermediate results and to process them using

reductions. These mechanisms require changing CPU program structure to adapt

it for GPU execution. Secondly, the model assumes that only one GPU task runs

on the GPU at one time. It is not clear how many GPU threads are used for this

task. GPU configuration space consisting of number of thread blocks and number

of threads per block is not explored. In contrast, we perform both an empirical

and a formal analysis of GPU configuration space.

In the end, we present non-MapReduce data-parallel frameworks on intra-node

heterogeneous systems. Dandelion [83] is a data-parallel processing framework

targeting small and medium clusters of heterogeneous CPU-GPU systems. Users

write sequential C# code and Dandelion compiler and runtime represent it as a

multi-level dataflow graph. This representation comprises three dataflow graphs:

cluster level, multicore system level and GPU level graph. These three graphs

are executed on three runtime dataflow engines residing at each system level.

Firstly, cluster dataflow engine implements the same principles (e.g. in-memory

caching, checkpointing) as other data-parallel frameworks [24, 59, 100]. Secondly,

the multicore system dataflow engine handles the parallelization among CPU cores

and the off-loading of some processing to the GPU. Thirdly, GPU dataflow engine

uses the tag-tokens model to handle iterative and stream processing. As side

contributions, this work develops a compiler from C# to CUDA code and a GPU

dataflow engine as a library. Dandelion achieves a mean speedup of 6 on a single

system when compared to sequential C# code. On a 10-node cluster with GPUs,

it exhibits a speedup of 2 compared with Dryad framework [59]. However, even if

energy efficiency is cited as a motivation, it is not discussed in the evaluation.

With the exponential increase in data to be analyzed, energy usage becomes an

issue. Even if some of the presented works are motivated by the potential energy

efficiency of nodes with GPUs [48, 84], none of them include an energy analysis.

29

Chapter 2. Related Work

Hence, it is not clear if GPU improves the energy usage of a system running

MapReduce workloads. In contrast, we present an analysis of low-power systems

with GPUs which shows that GPU improves the energy efficiency of compute-

intensive workloads.

2.2 Performance Models for Data-parallel Pro-

cessing

With the adoption of MapReduce and Hadoop on both cloud and self-hosted

clusters, there is a higher demand to optimize software parameters and system re-

sources. It is well-known that manually tuning Hadoop is a daunting task because

the framework has many software tuning parameters [55]. It is equally challenging

to select the most suitable system resources in terms of node type, node settings,

and number of nodes [54]. In this context, there are many research works that

propose MapReduce performance models to predict the execution time of scale-

out workloads and to select suitable software and hardware configurations. We

summarize these related works in Table 2.2 and present them bellow.

Elastisizer [54] provides an automated approach to configure cloud cluster sizes

and Hadoop framework parameters. To predict Hadoop execution, it employs an-

alytic, Machine Learning and simulation techniques. However, its average vali-

dation error is relatively high, at 20%. Elastisizer is based on Starfish [55], an

approach to model Hadoop execution in detail using an instrumentation-based

fine-grain profiling of MapReduce phases. This profiling target MapReduce sub-

phases, such as reading the input, map, collect, spill, merge, shuffle, reduce and

writing to the output. Both Elastisizer and Starfish overestimate job execution

time due to high profiling overhead. In contrast, our profiling targets only main

phases such as Map, Shuffle and Reduce to achieve higher accuracy at lower pro-

30

Chapter 2. Related Work

Table 2.2: MapReduce performance models

Work Year
Model Model Validation
type error [%] configurations

Elastisizer [54] 2011 Analytic/ML 20 24
ARIA [93] 2011 Analytic 10 108
Verma et al. [94] 2011 Analytic 10 113
Tian et al. [88] 2011 Analytic 9-19 100-240
Grey-box [62] 2012 ML 12 12
HP [104] 2013 Analytic 10 24
Zhang et al. [105] 2013 Analytic 10 26
ARIEL [95] 2014 Analytic 10 12
CRESP [25] 2014 Analytic/ML 5-16 360-640
HP+ [64] 2016 Analytic 5 40

filing overhead.

ARIA [93] and subsequent works [94, 95, 104, 105], propose a modeling ap-

proach to determine lower and upper bounds for Hadoop’s execution time using a

“makespan theorem”. The approach consists of three steps, (i) job profiling, (ii)

job modeling and (iii) job scheduling or capacity planning. Job profiling is done

in-depth, at sub-phase level, similar to Starfish approach, and in contrast with

our profiling of main execution phases. Improving over these works, HP+ [64] em-

ploys a Locally Weighted Linear Regression (LWLR) technique resulting in very

high modeling accuracy. However, the model is validated only on two workloads,

Wordcount and Sort, on a total of 40 system configurations.

Tian et al. [88] propose a simple regression-based model which is parametrized

using baseline runs on small inputs and is validated using four applications and up

to 60 configurations for each application. Improving over this work, CRESP [25]

employs a hybrid analytic and Machine Learning (ML) approach to increase accu-

racy. One limitation of these works is that Shuffle phase is not modeled. Similar

to us, they validate the model on both in-house and cloud-based clusters.

Kadirvel et al. [62] propose a grey-box approach based on Machine Learning

for modeling MapReduce execution. This grey-box approach uses low-level system

information similar to white-box analytic modeling to improve the accuracy of

31

Chapter 2. Related Work

black-box Machine Learning techniques that are system-agnostic. In this work,

the authors evaluate 20 learning techniques and select four that achieve an average

accuracy of 12%, comparable to the accuracy of our measurement-driven analytic

models.

While all previous works model execution time and determine suitable cluster

sizes and framework parameters, none of them is modeling or analyzing energy

usage. To the best of our knowledge, we are the first to (i) provide an energy usage

model for Hadoop MapReduce execution and (ii) use the time-energy models to

analyze wimpy in contrast with brawny nodes and heterogeneous in contrast with

homogeneous clusters [70].

2.3 Energy Efficiency of Data-parallel Process-

ing

Since previous works of MapReduce and Hadoop on heterogeneous systems do not

address the issue of energy usage, we present projects on the energy efficiency of

Hadoop on traditional homogeneous systems. These works include two techniques

for shutting-down systems during low-utilization periods. These techniques are

called Covering Set (CS) [67] and All-In Strategy (AIS) [65]. CS shuts-down all

the nodes in the cluster during low utilization intervals, except a small set (the

Covering Set) of nodes which store at least one replica of each HDFS block. On

the other hand, AIS claims that is more energy-efficient to use all the nodes and,

thus, finish MapReduce jobs faster and shut-down all nodes afterwards.

Berkeley Energy Efficient MapReduce (BEEMR) [28], proposes to split a Map-

Reduce cluster into interactive and batch zones. The nodes in batch zone are kept

in a low-power state when inactive. This technique is based on the insights from

MapReduce with Interactive Analysis (MIA) workloads. For this kind of work-

32

Chapter 2. Related Work

loads, interactive MapReduce jobs tend to access only a small part of data. Hence,

an interactive cluster zone can be obtained by identifying these interactive jobs

and their required input data. The rest of the jobs are executed on the batch zone

at defined time intervals. Using both simulation and validation on Amazon EC2,

BEEMR reports energy savings of up to 50%.

Feller et al. [39] studied the performance and power consumption of Hadoop on

clusters with collocated and separated data and compute nodes. They highlight

two unsurprising findings: (i) the PPR of collocated data and compute nodes

is better compared to a separated deployment and (ii) power is dependent on

MapReduce phases.

With an environmental-friendly approach, GreenHadoop [44] improves Hadoop

scheduling to minimize energy usage in a datacenter power by both solar energy

and conventional grid-based energy. While solar energy availability is estimated

using a model, MapReduce energy requirements are estimated using historical

energy measurements per job. However, this approach assumes that jobs with

similar characteristics are run over time in the datacenter. Our measurement-

and model-driven approaches are orthogonal to this work and could be used to

improve the performance of GreenHadoop’s scheduling algorithm.

2.4 Summary and Limitations

As data increases to petabytes and clusters scale to thousands of nodes, there is

a need for scalable and fault-tolerant frameworks such as Google Cloud Dataflow

and MapReduce. These frameworks are designed for homogeneous brawny server

systems that incur high energy usage [66]. At the same time, heterogeneous sys-

tems with GPU are increasingly being used in datacenters [89] and low-power

wimpy heterogeneous systems are to enter server market [8]. But there is a lack of

33

Chapter 2. Related Work

Table 2.3: Related work summary

Related Work This Thesis

1. intra-node and intra-chip
Intra-node heterogeneous systems heterogeneous systems with GPU
[26, 27, 35, 38, 52, 53, 57, 60, 83, 84, 86]

2. wimpy heterogeneous systems
with GPU and with many-core CPU

Energy efficiency 3. time-energy efficiency
[28, 39, 65, 67]

4. time-energy modeling

studies on the time-energy performance of batch data-processing on wimpy hetero-

geneous systems, as shown in Figure 2.1 and Table 2.3. Thus, our aim is to analyze

the time-energy performance of data-parallel applications on these heterogeneous

platforms, and to propose techniques to improve the time-energy performance. In

this thesis, we focus on wimpy heterogeneous systems with both discrete and inte-

grated GPUs, such as Kayla [30] and Jetson TK1 [75] from Nvidia, and on wimpy

heterogeneous systems with many-core CPUs represented by ARM big.LITTLE

architecture [19].

In the contemporary context of green computing, related work suffers from the

lack of energy efficiency evaluation. Even among recently proposed data-parallel

processing frameworks, there are few works that consider energy efficiency, as dis-

cussed in Section 2.3. We believe that energy-efficient execution can be achieved

using adequate techniques for mapping data-parallel tasks on heterogeneous exe-

cution units. We address this by developing such techniques and by conducting

studies on the energy performance of data-parallel applications on heterogeneous

systems.

34

Chapter 3

Techniques for

Efficient Data-parallel Execution

This chapter presents our general approach, followed by the proposed techniques

for efficient data-parallel execution on heterogeneous systems with GPU.

3.1 Approach Overview

Given data-parallel applications, such as Google Cloud Dataflow or MapReduce

applications, our approach targeting intra-node and intra-chip heterogeneous sys-

tems consists of three parts, as depicted in Figure 3.1.

1. To enable data-parallel application processing on heterogeneous systems

with accelerators, we design techniques for efficient data-parallel execution

on heterogeneous systems with GPUs and implement them in MoSS, our

Hadoop-CUDA framework. Firstly, our lazy processing technique enables

the processing of multiple input records on a GPU, in contrast with chunk-

ing which divides a single record among GPU threads. Secondly, we propose

three dynamic mapping techniques to overlap or select the most suitable

35

Chapter 3. Techniques for Efficient Data-parallel Execution

MapReduce Cloud Dataflow/Beam

Data-parallel Applications

Time-Energy

Measurements

Performance

Analysis

Time-Energy

Models

Optimal

Configurations

Lazy processing Dynamic Mapping

Techniques for Efficient Data-parallel Execution

(MoSS)

Efficient Time-Energy Execution

Y

Figure 3.1: Approach

processing unit between the CPU and GPU at runtime.

2. To evaluate the time-energy performance of brawny and wimpy intra-node

and intra-chip heterogeneous systems, we perform a novel measurement-

driven time-energy performance analysis to expose issues and bottlenecks.

Our performance analysis is performed on both intra-chip heterogeneous

systems with many-core CPUs, such as ARM big.LITTLE, and intra-node

heterogeneous systems with GPUs, such as servers with discrete GPUs or

systems with integrated GPUs. We show that heterogeneity is more time-

energy-efficient for compute-intensive applications. Moreover, we compare

brawny and wimpy heterogeneous systems and derive performance equiva-

lence ratios that lead to energy savings on wimpy heterogeneous clusters.

3. To determine efficient configurations for large scale deployments, we de-

sign time-energy performance models for data-parallel execution on hetero-

geneous systems using insights from our measurement-driven analysis. Using

36

Chapter 3. Techniques for Efficient Data-parallel Execution

workload and system parameters, and baseline runs to capture the runtime

behavior, we apply the models to derive optimal system configurations. In

addition, the models reveal bottlenecks in both the application and the plat-

form, hence, offering useful insights to both application developers and hard-

ware designers.

Next, we discuss each of these three parts, while the details are presented in

Chapter 3, Chapter 4 and Chapter 5, respectively.

Techniques for Efficient Data-parallel Execution. With heterogeneous sys-

tems becoming the norm, our aim is to efficiently execute batch data-parallel

applications, such as MapReduce applications, on heterogeneous systems with ac-

celerators, while maintaining their program logic structure. Since heterogeneous

systems incorporate processing units of different architecture, the same software

approach may not achieve good performance on all these units. For example, a

modern CPU has MIMD architecture, while a GPU has SIMD architecture being

able to run the same program on multiple data at a time. At intra-node mem-

ory level, these processing units may share the same memory, as in systems with

Heterogeneous System

Node

2çìãØáÜ

ÆÂÆ½
2çìãØáÜ

ÌÂÆ½code

generation

runtime

mapping
Lazy Processing

Dynamic Mapping

Ttype,1 Ttype,i Ttype,n

Data-parallel Application

.

Shared/Separate Memory

SIMDMIMD

Figure 3.2: Techniques for data-parallel execution on heterogeneous systems

37

Chapter 3. Techniques for Efficient Data-parallel Execution

integrated GPU, or have separate memories such as systems with discrete GPU.

Given an application which is statically split into tasks of different types (Ttype,i),

our high-level approach consists of (i) a static step when binary code is generated

for different processing units having different Instruction Set Architecture (ISA)

and (ii) a dynamic step consisting of runtime mapping techniques, as depicted in

Figure 3.2. In the dynamic step, multiple task-instances are spawned during pro-

gram execution, and one or multiple instances are distributed to processing units

based on their architecture. Inside each task-instance, input records are processed

differently based on the processing unit. On a CPU core, only one record is pro-

cessed at a moment, while on a GPU, multiple records can be processed at the

same time. To enable this execution of multiple records on the GPU, we design a

lazy processing technique that is presented in detail in Section 3.2. However, the

GPU may not be the most suitable processing unit for all types of applications, as

motivated in the Introduction. Thus, we present in Section 3.3 the design of dy-

namic mapping techniques to select the most suitable processing unit or to overlap

the processing on multiple processing units. We implement these techniques for

heterogeneous systems with Nvidia GPUs in MoSS using Hadoop [14] and Nvidia’a

CUDA programming model [76]. MoSS implementation is discussed in Section 3.4,

while the API and a programming example are presented in Appendix C.

Measurement-driven Performance Analysis. With the proliferation of both

heterogeneous systems and wimpy, low-power systems, we aim to answer two

fundamental research questions. Firstly, are heterogeneous systems more time-

energy-efficient than homogeneous, CPU-only systems, for data-parallel process-

ing? Secondly, are wimpy systems more energy-efficient than brawny systems

when performing data-parallel processing? To answer these questions, we perform

an in-depth measurement-driven analysis of the execution time and power usage of

38

Chapter 3. Techniques for Efficient Data-parallel Execution

Data-parallel Application

Data-parallel Framework (Hadoop/MoSS)

Homogeneous

vs.

Heterogeneous

Brawny vs. Wimpy

Homogeneous

vs.

Heterogeneous

Performance

Analysis

Figure 3.3: Measurements-driven time-energy performance analysis

heterogeneous systems with GPU at single-node and cluster level using MoSS and

Hadoop, as depicted in Figure 3.3. This measurement-driven analysis is presented

in detail in Chapter 4. For this analysis, we have selected four representative

systems covering self-hosted and cloud-based brawny nodes with discrete Nvidia

GPUs and x86-64 Intel/AMD CPUs, and self-hosted wimpy nodes with discrete

and integrated Nvidia GPUs and ARM CPUs. A detailed characterization of the

systems used in our measurement-driven analysis is presented in Appendix A.

In addition to heterogeneous systems with GPUs, we study the time, energy and

cost performance of many-core heterogeneous wimpy systems represented by ARM

big.LITTLE [19], in comparison with traditional Xeon-based server systems for

data-parallel processing. This performance study [72] is presented in detail in

Appendix B.

Model-driven Performance Analysis. While measurement-driven analysis

is tractable for relatively small workloads and small clusters, to analyze scale-

out workloads and clusters we develop execution time and energy usage analytic

39

Chapter 3. Techniques for Efficient Data-parallel Execution

Heterogeneous Cluster

Data-parallel Application

Data-parallel Framework (Hadoop/MoSS)

Time and Energy Models

Baseline

runs

Runtime

parameters

Application

parameters

Hardware

parameters

Framework

parameters

Optimal

Configurations

Figure 3.4: Modeling the time-energy performance of data-parallel processing

models based on measured parameters. Moreover, we use these models to analyze

hypothetical systems, a task that is impossible using only measurements. Our

execution time and energy models take input parameters from application level,

such as input size, framework level, such as input split size, and systems level, such

as number of cluster nodes, as depicted in Figure 3.4. To increase accuracy, our

models are parametrized using measurements from baseline runs of small versions

of the workload on a single cluster node. These baseline runs determine application

characteristics such as Map phase output profile, Map and Reduce processing time

of one record and utilization and power consumption during each MapReduce

phase. We present the models and the model-based analysis in Chapter 5.

In the remainder of this section, we present our proposed techniques for efficient

data-parallel execution on heterogeneous systems and their implementation in

MoSS using Hadoop and CUDA.

40

Chapter 3. Techniques for Efficient Data-parallel Execution

3.2 Lazy Processing

As stated in Section 1.1 of the Introduction, we classify data-parallel processing

into (i) batch data-parallel processing and (ii) stream data-parallel processing. In

batch data-parallel processing, the entire input data is known a priori and data

operators can be applied to input records at the same time, in parallel. However,

this approach requires a number of processing units equal to the number of input

records. In practice, the input is split into chunks, and each chunk is handled

by a parallel task-instance. Multiple task-instances are processed in parallel by

the available parallel processing units. Depending on their architecture, process-

ing units may process chunked records sequentially, one-by-one, or in parallel,

multiple-at-a-time.

In typical data-parallel frameworks [11,14,33,101], multiple task-instances are

spawned during runtime and each instance processes its data records sequentially.

This sequential processing is suitable for CPU cores, but the GPU requires a

different approach. One alternative implemented in related work [84] is to fur-

ther chunk each record’s value and process these chunks in parallel on the GPU,

as depicted in Figure 3.5a. The related article [84] does not explicitly describe

this chunking approach, since its focus is on scheduling Map tasks on CPUs and

GPUs. However, we have analyzed the related source code1 implementing Kmeans

application, and we attribute the name “chunking” to this approach.

We further describe chunking technique applied on Kmeans and later contrast

it with our lazy processing approach. Kmeans is a data analytics application that

groups n points with m dimensions into k clusters based on a distance metric.

Each cluster has a virtual center point, called centroid. Starting from k centroids,

the application determines the closest centroid for each point and assigns the point

1Source code is available at https://github.com/koichi626/hadoop-gpu

41

https://github.com/koichi626/hadoop-gpu

Chapter 3. Techniques for Efficient Data-parallel Execution

<keyr, valr>

GPU (h threads)

Y

<key2, val2>

<key1, val1> map

map

map

Y

<key, value list>
Y

Y

Split Map Shuffle & Sort

chunk combine

(a) Chunking

<keyh, valh>

GPU (h threads)

Y

<key2, val2>

<key1, val1> map

map

map

Y

<key, value list>
Y

Y

Split Map Shuffle & Sort

(b) Lazy Processing

Figure 3.5: Comparison between chunking and lazy processing

42

Chapter 3. Techniques for Efficient Data-parallel Execution

Algorithm 3.1 Kmeans using chunking

1: # Data processing (runs on GPU)
2: function ComputeClustersOnGPU(h, k, n, centroids, points)
3: tid← get thread id(1, h)
4: for each point in points assigned to thread tid do
5: cluster id← get closest cluster(k, centroids, point)
6: assign cluster id to point

7: end for
8: end function
9: function ComputeNewCentroids(h, k, n, new centroids, points)
10: tid← get thread id(1, h)
11: new centroids[tid]← compute new centroids(tid, points)
12: end function
13:

14: # Map using “chunking” (runs on CPU)
15: function Chunking

16: < key, value >← get input record()
17: k ← parse k(value)
18: n← parse n(value)
19: centroids← parse centroids(value)
20: points← parse points(value)
21: new centroids← [0, . . . , 0]
22: iter ← 1
23: while (new centroids 6= centroids) ∧ (iter ≤ 100) do
24: transfer centroids and points from CPU to GPU
25: ComputeClustersOnGPU(h, k, n, centroids, points)
26: transfer points with cluster assignment from GPU to CPU
27: sort points based on cluster assignment
28: transfer points from CPU to GPU
29: ComputeNewCentroids(k, k, n, new centroids, points)
30: transfer new centroids from GPU to CPU
31: iter ← iter + 1
32: end while
33: emit < key, new centroids >

34: end function

43

Chapter 3. Techniques for Efficient Data-parallel Execution

to the cluster with the closest centroid. At the end, new centroids are computed

for each cluster, based on the assigned points. These steps are repeated until the

clustering is stable, that is, two consecutive iterations produce the same clusters

and centroids, or until the application exceeds a certain number of iterations.

Typical MapReduce Kmeans programs implement a single iteration of the al-

gorithm described above [2], where an input record represents a point with m

dimensions. However, in [84], an input record represents an instance of Kmeans,

with k centroids and n 2D points. Map function gets an input record, parses

the points, runs the Kmeans steps and emits k centroids, as presented in Algo-

rithm 3.1. During each Kmeans iteration, the GPU is used firstly to compute

the closest centroid for each point to determine cluster allocation and, secondly,

to compute the new centroids for the k clusters. On the first GPU invocation,

the points are split into chunks and each GPU thread processes one chunk. On

the second invocation, there are k GPU threads where one thread computes the

new centroid for one cluster. Using this approach, the user must explicitly split

or chunk the input and combine the results for the final output, as shown in Fig-

ure 3.5a. Moreover, this approach is suitable for large input records [84], but in

practice workloads have small input records [29, 63].

In contrast with chunking, we propose a lazy processing technique, as depicted

in Figure 3.5b. Given a GPU with g cores, we select a thread count value h

larger than g to achieve high occupancy on the GPU. The lazy processing buffers

h records and sends them to the GPU for processing at the same time. Contrary

to chunking where the record is immediately split and processed, our approach

is “lazy” as it waits for h records before beginning the processing. A high-level

form of the lazy processing technique is presented in Algorithm 3.2. The value of

h is empirically determined using small input sizes based on GPU capabilities, as

described in Section 4.3.1. After record processing on the GPU, the results are

44

Chapter 3. Techniques for Efficient Data-parallel Execution

Algorithm 3.2 Lazy processing

1: # Data processing (runs on GPU)
2: function ProcessOnGPU(h)
3: process buffered records using h GPU threads
4: end function
5:

6: # Lazy Processing (runs on CPU)
7: function LazyProcessing(r, h)
8: while r > 0 do
9: cnt← 0
10: while cnt < h do
11: buffer current record
12: cnt← cnt + 1
13: end while
14: transfer buffered records from CPU to GPU
15: ProcessOnGPU(h)
16: transfer the results from GPU to CPU
17: emit the results using the CPU
18: r ← r − h

19: end while
20: end function

sent to the Shuffle phase using the CPU. This result outputting cannot be done

on the GPU because it requires disk and networking access.

We present Kmeans using lazy processing in Algorithm 3.3. The entire pro-

cessing of an input record is done on the GPU, while the CPU handles record

buffering, CPU-GPU data transfers and the output of the results. The user can

focus on program logic by writing the GPU code without thinking of how to split

the data or how to combine the results.

While our approach can be applied in general to batch data-parallel processing,

we describe it in detail for MapReduce, one of the most popular data-parallel

processing frameworks. Given a MapReduce application that is executed on an

intra-node heterogeneous system with CPU and GPU, the first step consists of

writing Map and Reduce code for both the CPU and GPU. Since our aim is to

retain the program logic of MapReduce application, GPU code is similar to CPU

45

Chapter 3. Techniques for Efficient Data-parallel Execution

Algorithm 3.3 Kmeans using lazy processing

1: # Data processing (runs on GPU)
2: function ProcessOnGPU(h)
3: tid← get thread id(1, h)
4: < key, value >← get input record(tid)
5: k ← parse k(value)
6: n← parse n(value)
7: centroids← parse centroids(value)
8: points← parse points(value)
9: new centroids← [0, . . . , 0]
10: iter ← 1
11: while (new centroids 6= centroids) ∧ (iter ≤ 100) do
12: for each point in points do
13: cluster id← get closest cluster(k, centroids, point)
14: assign cluster id to point

15: end for
16: sort points based on cluster assignment
17: for each cluster j from 1 to k do
18: new centroids[j]← compute new centroids(j, points)
19: end for
20: iter ← iter + 1
21: end while
22: emit < key, new centroids >

23: end function
24:

25: # Map using “lazy processing” (runs on CPU)
26: function LazyProcessing(r, h)
27: while r > 0 do
28: cnt← 0
29: while cnt < h do
30: buffer current record
31: cnt← cnt + 1
32: end while
33: transfer buffered records from CPU to GPU
34: ProcessOnGPU(h)
35: transfer the results from GPU to CPU
36: emit the results using the CPU
37: r ← r − h

38: end while
39: end function

46

Chapter 3. Techniques for Efficient Data-parallel Execution

code except for replacing Hadoop API calls with our GPU API. In the following

section, we describe the second step consisting of techniques for efficient data-

parallel execution.

3.3 Dynamic Mapping

After applying the lazy processing, tasks are dynamically mapped on the CPU or

GPU. There are two approaches to perform this mapping. One approach is to over-

lap CPU and GPU execution, while the other approach is to select only the CPU

or the GPU for processing. Moreover, there are multiple ways to overlap CPU and

GPU execution. Shirahata et al. [84] overlap CPU and GPU tasks on one cluster

node based on a linear optimization scheduling technique. MapCG [57] supports

overlapped CPU and GPU execution but argues that it is less efficient compared

to single-unit execution since different applications have different architectural re-

quirements. HadoopCL [48] overlaps data transfers with data processing. Data

transfers are handled by the CPU, while data processing is done on the GPU using

asynchronous methods.

We have design, implemented and evaluated both alternatives for dynamic

mapping of data-parallel processing on heterogeneous systems with GPU. First,

we present a one-time workload profiling approach for selecting the most suitable

processing unit between the CPU and GPU, as listed in Algorithm 3.4. The

workload profiling is performed for the first h records on both processing units.

Algorithm 3.4 Non-overlapping task execution: one-time approach

profile first h records on both CPU and GPU
if TGPU < TCPU then

map remaining records on GPU using lazy processing
else

map remaining records on CPU
end if

47

Chapter 3. Techniques for Efficient Data-parallel Execution

Buffer first h records

Process h records

CPU

Transfer buffered records

Buffer h records

Process x records

Transfer results

Emit results

GPU

callback

checking

overlapping

Figure 3.6: Overlapping execution: checking and callback

Based on this profiling, if the execution time on GPU is smaller compared to CPU,

the remaining tasks are executed on GPU using lazy processing. Otherwise, the

remaining tasks are executed on CPU.

Secondly, the processing of h records on GPU can be overlapped with the

processing of a variable number of records, x, on CPU and with the buffering of

next h records for GPU, as depicted in Figure 3.6. Emitting the results cannot be

overlapped because only the CPU can handle this step that requires system I/O

access. We design and implement two techniques to perform this overlapping:

• checking technique where the CPU checks for GPU processing completion

after one or multiple records are processed by the CPU

• callback technique is based on asynchronous events. The CPU registers a

callback through which the GPU signals the completion of its processing.

Counter to intuition, we observe that the one-time approach achieves better

time-energy performance compared to overlapping approaches. Intuitively, parti-

48

Chapter 3. Techniques for Efficient Data-parallel Execution

tioning the work and overlapping CPU and GPU processing should lead to more

work done per unit time. But the CPU needs to handle storage and networking

access in addition to task processing. Thus, overlapping may not be the best op-

tion when there is high performance imbalance between the CPU and GPU. In

Chapter 4, Section 4.3.3, we present the experimental results showing that one-

time performs better in most of the cases. A formal analysis using our execution

time model is presented in Chapter 5, Section 5.4.2.

3.4 Implementation of MoSS

To evaluate our techniques, we implemented them using the widely-used open

source Hadoop framework and Nvidia CUDA for GPU. We name our framework

MoSS, MapReduce on HeterogeneouS Systems. To run generated native code

on Java-based Hadoop framework, we use the Hadoop Pipes mechanism. The

execution flow of MapReduce applications in MoSS is depicted in Figure 3.7.

Given a MapReduce application written in C/C++, the developer adds Map task

implementation in CUDA by replacing the API calls with MoSS counterparts. The

application is then compiled with the CUDA compiler, nvcc, and linked with our

MoSS library. The resulting binary is executed on Hadoop using Pipes mechanism.

MoSS provides an API to facilitate application porting for GPU execution.

Listing 3.5 introduces a subset of MoSS API. Listed functions are frequently used

in MapReduce CUDA kernels. For example, gpuInit() is mandatory called to

initialize GPU data structures that are further used by other MoSS functions. The

gpuIdleThread() is used to detect if a CUDA thread is outside worker threads

range, in which case the kernel should finish execution using return. In addition

to the listed API, we provide functions for string manipulation and conversion

between numeric types and strings, as detailed in Appendix C.

49

Chapter 3. Techniques for Efficient Data-parallel Execution

MoSS MapReduce Application

(C/C++/CUDA)

MoSS library

(based on Hadoop Pipes)
nvcc

MoSS MapReduce Binary

Hadoop

Hadoop MapReduce Application

(Java)

Figure 3.7: Application execution flow in MoSS

Listing 3.5: Example of MoSS API

/* initializes Map/Reduce context data structures on GPU */

void gpuInit(TaskContextGPU* ctx);

/* returns the key from the input <key,val> pair */

void gpuGetKey(TaskContextGPU* ctx ,
har** key);

/* returns the value from the input <key ,val > pair */

void gpuGetValue(TaskContextGPU* ctx ,
har** val);

/* outputs a <key ,val > pair */

void gpuEmit(TaskContextGPU* ctx ,
har* key ,
har* val);

/* returns true if calling thread is out of worker threads

range */

int gpuIdleThread(TaskContextGPU* ctx);

MoSS supports both systems with discrete GPUs and integrated GPUs by

using both explicit data transfers and unified memory feature of recent CUDA

releases [50]. On systems with discrete GPUs, MoSS keeps two data structures, one

in CPU (host) memory and one in GPU (device) memory. These data structures

contain input and output buffers for the <key, value> pairs and housekeeping

data. The synchronization of these two structures is done explicitly using CUDA

APIs for transferring the data. In contrast, on systems integrating the CPU and

50

Chapter 3. Techniques for Efficient Data-parallel Execution

GPU there is no need for two different data structures and data transfers. Even

on systems with discrete GPUs, recent Nvidia CUDA and GPU drivers perform

these transfers transparently using the unified memory feature. However, we show

in Section 4.3.2 that these transparent transfers are not always efficient.

We implement the two described overlapping techniques using CUDA fea-

tures for asynchronous kernel and memory transfers. Checking technique uses

cudaStreamQuery() function to check for GPU processing completion, while call-

back technique uses CUDA callback feature through which the GPU notifies the

CPU about processing completion. Since checking after each map adds high over-

head, we perform this checking after several map function calls. This number is

determined based on the ratio of CPU and GPU task times obtained after profiling

the execution of first tasks.

Nonetheless, the usability of MoSS can be further improved. Writing the ap-

plication in C/C++ and CUDA does not have the same flexibility as Java. Ap-

proaches enabling Java code to run on systems with GPU exist but have significant

limitations. For example, JCuda [99] embeds CUDA code into Java programs, but

the developer still needs to write the CUDA kernels. IBM’s Liquid Metal project

provides solutions for programming heterogeneous systems, such as automatically

compiling JVM-compatible Lime [21] code into OpenCL for GPU [34]. But using

this approach, MoSS users will still have to firstly rewrite their application using

Lime. On the other hand, writing C/C++/CUDA native code has the advantage

of performing better than Java for some compute-intensive MapReduce applica-

tions [72]. Based on our experience, adapting MapReduce Java applications to

C/C++/CUDA requires minor modifications. We believe it is possible to design

a tool that can automatically translate Hadoop Java applications into MoSS, but

we have not investigated this idea in our thesis.

Since MoSS uses Hadoop Pipes, the input and output of map() and reduce()

51

Chapter 3. Techniques for Efficient Data-parallel Execution

functions are strings. Hence, the developer can use our provided API to convert

these strings to appropriate data structures. Secondly, MoSS requires the devel-

oper to provide the size for input and output buffers because it is not possible to

dynamically allocate GPU memory. However, MoSS provides profiling support to

determine the size of these buffers. The developer just has to run the workload

on CPU-only and get the maximum size of input and emitted keys and values.

3.5 Summary

In this chapter, we presented the approach of this thesis consisting of three parts,

(i) techniques for efficient data-parallel processing on intra-node and intra-chip

heterogeneous systems with GPUs, (ii) measurement-driven performance analysis

and (iii) model-driven performance analysis. Next, we discussed our techniques

for efficient data-parallel processing on intra-node and intra-chip heterogeneous

systems with GPU and their implementation under our Hadoop-CUDA frame-

work called MoSS. Firstly, our lazy processing technique enables the processing

of multiple input records on a GPU, in contrast with chunking which divides a

single record among GPU threads. Secondly, we propose three dynamic mapping

techniques to further optimize data-parallel processing on heterogeneous systems.

Thirdly, our MoSS framework provides an expressive API that allows developers to

easily modify existing MapReduce applications in order to exploit heterogeneous

systems with GPU while preserving application’s logic. In the next chapter, we

are comparing the lazy processing implemented in MoSS with a related work based

on chunking and analyze our proposed dynamic mapping techniques. Moreover,

we are evaluating the time and energy performance of MoSS in comparison with

Hadoop on both self-hosted brawny and wimpy systems, as well as the time per-

formance on available brawny cloud instances with GPU.

52

Chapter 4

Measurement-driven

Performance Analysis

Motivated by the performance improvements of wimpy systems and GPUs, we

investigate the time and energy performance of MapReduce on heterogeneous sys-

tems with GPUs. We first evaluate MoSS, our Hadoop-CUDA framework based

on the lazy processing and dynamic mapping techniques presented in Chapter 3,

and tune framework configuration.

Secondly, we analyze MoSS on clusters of intra-node heterogeneous systems

with GPU. For this evaluation, we use six representative workloads that exhibit

different system resource demands and cover a range of application domains such

as simulations, scientific computing, financial computing, machine learning and

data mining, as shown in Table 4.1. The time and energy performance of MoSS

is evaluated on an in-house wimpy cluster consisting of Nvidia Jetson TK1 nodes

with integrated GPUs. We are also evaluating MoSS time performance1 on cloud-

based brawny clusters consisting of Amazon EC2 instances with discrete GPUs.

Thirdly, we discuss a measurement-driven time-energy comparison across six

1Energy usage cannot be measured on current cloud setups.

53

Chapter 4. Measurement-driven Performance Analysis

in-house single-node configurations representing brawny and wimpy systems with

both discrete (intra-node) and integrated (intra-chip) GPUs:

• brawny system with Intel Core i7 CPU2 (i7)

• brawny system with Intel Core i7 CPU and discrete Nvidia Maxwell GPU

(i7+GPU)

• wimpy system with ARM Cortex-A9 CPU (Kayla)

• wimpy system with ARM Cortex-A9 CPU and discrete Nvidia Maxwell GPU

(Kayla+GPU)

• wimpy system with ARM Cortex-A15 CPU (Jetson)

• wimpy system with ARM Cortex-A15 CPU and integrated Nvidia Kepler

GPU (Jetson+GPU)

For this comparison, we are using three of the six MapReduce workloads to cover

compute-intensive, data-intensive and mixed system resources demands.

4.1 Applications

The workloads used in this evaluation are chosen to represent a range of data-

parallel applications typically used in related work. These applications cover

domains such as simulations, scientific computing, financial computing, machine

learning and data mining. Pi estimation (PI) is a MapReduce application included

in Hadoop examples. The estimation algorithm uses Monte Carlo simulation to

approximate the value of constant π. We adapted Hadoop’s version of PI by re-

placing the random number generation method from using Halton sequence to

2Although typical brawny server systems employ Intel Xeon processors, we use Intel i7 in our
time-energy analysis since it exhibits better performance, as shown in Appendix A.

54

Chapter 4. Measurement-driven Performance Analysis

Table 4.1: Data-parallel applications

Workload Data Size [GB] Description

Pi Estimation (PI)

0.003 (S) 16 billion samples
0.018 (B) 100 billion samples
0.056 (M) 300 billion samples
0.186 (L) 1000 billion samples

BlackScholes (BS)

0.8 (S) 12 million options
4.0 (B) 60 million options
8.0 (M) 120 million options

24.2 (L) 360 million options

Kmeans (KM)

0.3 (S) n=3,474,500; m=34; k=5
3.9 (B) n=41,694,000; m=34; k=5
7.7 (M) n=83,397,420; m=34; k=5

19.3 (L) n=208,493,550; m=34; k=5

Matrix Multiplication (MM)

0.9 (S) n=500
5.4 (B) n=900
7.5 (M) n=1,000

26.0 (L) n=1,500

Similarity Score (SS)

0.9 (S) n=500, m=250,000
5.4 (B) n=900; m=810,000
7.5 (M) n=1,000; m=1,000,000

26.0 (L) n=1,500; m=2,250,000

Grep (GR)

0.6 (S) 7,800,963 lines
6.3 (B) 83,328,469 lines

11.1 (M) 166,656,938 lines
22.3 (L) 368,789,935 lines

using xorshift [73] method which is more efficiently executed on GPU. Map phase

generates random 2-dimensional points (samples) and counts how many are inside

and outside the unit circle. Reduce phase computes the value of π based on the

ratio of inside and outside point counts generated by Map phase.

BlackScholes (BS) implements a financial model that derives the price of

European-type options. It takes options characteristics, such as stock price, in-

terest rate, expiration time, as input and computes the price of each option. In

our work, we adapt the open-source PARSEC 3.0 [22] BlackScholes version. In

the Map phase, BlackScholes equations are applied to each option to get its price

and Reduce phase forwards these prices to the output. BS datasets are generated

with PARSEC input generator.

55

Chapter 4. Measurement-driven Performance Analysis

Kmeans (KM) is a popular cluster analysis method used in data mining to

group a set of n points, each having m features, into k clusters. This grouping

is based on the Euclidian distance between each point and the centroids of each

cluster. We adapt Kmeans implementation from Mars [52] and use its input

generator. In this implementation, the Map phase determines the closest cluster

for each point and emits pairs consisting of the point and its associated cluster

id. Reduce phase computes cluster centroids based on the points associated with

each cluster id, and outputs the updated centroids of the k clusters.

Matrix multiplication (MM) is a widely-used application that is part of many

real world applications such as recommendation systems used by the majority

of web platforms. In our implementation, we multiply two randomly generated

square matrices A and B of size n. Each input line contains two vectors, namely,

row i from A and column j from B. Map phase multiplies these two vectors to get

the i, j element of the result matrix. Reduce phase outputs this result matrix.

Similarity score (SS), which is widely used in data mining and recommendation

systems, uses cosine similarity to establish the correlation between two objects

represented by n-dimensional vectors. Our implementation compares m pairs of

vectors with n elements. Map function takes a pair of vectors and computes their

similarity as the cosine of the angle between the two vectors. Reduce function

outputs similarity values computed by Map phase.

Grep (GR) is a well-known MapReduce workload [33] which determines input

file lines matching a regular expression. We adapt Hadoop’s Java implementation

of Grep by modifying Reduce phase to compute the number of lines matching the

regular expression, which is equivalent to running grep <regex> <input> | wc

-l Unix command. In our evaluation, Grep searches for the string “the” in the

latest dump of Wikipedia articles.

In addition to covering multiple application domains, these workloads exhibit

56

Chapter 4. Measurement-driven Performance Analysis

diverse system resource demands. PI and BS represent compute-intensive applica-

tions, their kernels being used in HPC [22]. KM exhibits mixed resource demands

by having both a relatively complex kernel and large data transfer requirements.

Intuitively, MM and SS should be compute-intensive. However, their MapRe-

duce implementations are more data-intensive since data transfers dominate the

execution time. Moreover, their kernels consisting of a loop doing multiply-add

operations is less compute-intensive compared to PI, BS and KM. Similarly, GR

is more data-intensive since it handles large input text files and its kernel does

only string matching. We present empirical evidence supporting this classification

in Section 4.4.

4.2 Systems

Our experimental setup consists of five in-house system configurations covering

homogeneous and heterogeneous computing landscape, as shown in Table 4.2. For

cloud computing, since there are no wimpy systems available, we select homoge-

neous and heterogeneous brawny systems with GPU.

For single node analysis, we are using three heterogeneous systems each with

two different configurations. Firstly, we use a traditional brawny intra-node het-

erogeneous system for comparison with the wimpy systems. This i7 brawny system

is based on a 4-core Intel Core i7 processor and 16 GB of RAM. A 512 GB solid-

state drive (SSD) is used to store all datasets and workloads, while Ubuntu 13.04

with Linux kernel 3.11.0 is installed on another SSD.

Table 4.2: Systems selection

Homogeneous
Heterogeneous with Heterogeneous with

discrete GPU integarted GPU
Brawny Wimpy Brawny Wimpy Brawny Wimpy

i7 Kayla i7+GPU Kayla+GPU N/A Jetson

57

Chapter 4. Measurement-driven Performance Analysis

Secondly, an intra-node heterogeneous wimpy system is represented by aKayla

node equipped with Nvidia Tegra 3 System-on-a-Chip (SoC) having four ARM

Cortex-A9 cores and 2 GB of low-power DDR2 [30]. This system has a PCI

Express x16 port that can accommodate a full-fledged discrete GPU. Moreover, it

has a SATA interface which enables the connection of a high-capacity disk. We use

the same 512 GB SSD to store the datasets and workloads. By default, Ubuntu

12.04 with Linux kernel 3.1.10 is installed on system’s flash storage. On top of

this OS, we install CUDA toolkit 6.5 and necessary Nvidia drivers.

Thirdly, with the increasing adoption of integrated CPU-GPU systems [75], we

use an intra-chip heterogeneous wimpy system represented by Nvidia Jetson TK1

based on Tegra K1 SoC which integrates four ARM Cortex-A15 CPU cores, 192

Nvidia Kepler GPU cores and a shared 2 GB low-power memory. Beside the four

fully-fledged Cortex-A15 cores, Tegra K1 incorporates a transparent low-power

companion core which runs the OS at low system utilization. We connect the

same 512 GB SSD to this platform, while the Ubuntu 14.04 OS with Linux kernel

3.10.40 is installed on a 16 GB eMMC. By default, Jetson TK1 comes with CUDA

toolkit 6.0 and associated Nvidia drivers. However, we encountered kernel panics

and errors when running Hadoop-CUDA on this default setup. Upgrading the

drivers and CUDA toolkit to version 6.5 solved these issues.

We use Nvidia Maxwell architecture by hosting on both the wimpy A9 and

brawny i7 systems a GTX 750 Ti video card consisting of 640 cores with CUDA

compute capability 5.0, and 2 GB of GDDR5 memory. Compared to previous

Kepler architecture, Maxwell is two times more energy-efficient [51], being the

suitable choice for connecting to a low-power system.

For the cluster-level analysis of MoSS, we use wimpy and brawny systems. The

wimpy systems are represented by the previously described Jetson TK1 kit, while

the brawny systems are represented by g2.2xlarge Amazon EC2 instances with

58

Chapter 4. Measurement-driven Performance Analysis

GPUs. These instances are equipped with Intel Xeon E5-2670 CPU and Nvidia

GRID K520 GPU. This GPU of Kepler architecture has 1536 cores and 4 GB

of memory. Each instance is configured with eight virtual CPU cores, 15 GB of

RAM and 500 GB of SSD-based storage space. From the software perspective,

the instances run Ubuntu OS with Linux kernel 3.13.0. On this OS, MoSS code is

compiled with gcc 4.8.2 and nvcc from CUDA toolkit 6.5, while Hadoop framework

runs on jdk1.8.0 25. More details about the systems and their characterization

are presented in Appendix A.

Hadoop is configured to use four map slots and one reduce slot on i7 and

Jetson. On Amazon EC2 instances, we configure Hadoop with eight slots for Map

tasks such that on n cluster nodes there are 8n Map tasks running in parallel. For

Reduce tasks, we configure a single slot per cluster node. On the wimpy Kayla

system, workloads with large inputs encounter failures due to insufficient memory.

To avoid such failures and to reduce Hadoop’s memory usage, we set io.sort.mb

to 40 and io.sort.spill.percent to 0.50, compared to default values of 100

and 0.80, respectively. The native binaries for CPU-only and CPU+GPU are

compiled using the gcc available on Ubuntu OS and the nvcc from CUDA toolkit,

and executed through Hadoop Pipes mechanism. The C/C++ code is compiled

with gcc using maximum level of optimizations (-O3). On the wimpy systems, we

optimize the code for Cortex-A9 using -mcpu=cortex-a9 -mtune=cortex-a9, and

Cortex-A15 using -mcpu=cortex-a15 -mtune=cortex-a15. Moreover, we enable

fast NEON floating-point instructions (-mfpu=neon) available on ARM processors.

Performance metrics, such as instructions per cycle (IPC), utilization and mem-

ory operations, are collected using perf from Linux tools for CPU and nvprof from

CUDA toolkit for GPU. For each execution, perf stat is attached to Hadoop Task-

Tracker daemon to collect performance counters for spawned Map and Reduce

tasks. In contrast, nvprof is executed through Hadoop Pipes as a wrapper over

59

Chapter 4. Measurement-driven Performance Analysis

Cluster under test

(Jetson TK1)
Controller system

Yokogawa WT210

power meter

240V AC

outlet

1Gbps Ethernet

Serial interface

Figure 4.1: Experimental setup

CPU+GPU binaries. Energy and power are measured using a Yokogawa WT210

power monitor connected to the AC line of each system, as depicted in Figure 4.1.

Hence, power and energy values include the inefficiencies of the power adapter,

but since these values are reflected in the energy bill at the end of the month, we

believe they are more meaningful than DC values. The logs are collected by a

controller system sharing the same LAN as the systems under test.

Each workload is executed three times and average time and energy values

are reported, while error bars on the plots indicate the standard deviation. We

check workloads outputs for correctness across all input sizes and platform con-

figurations. Interestingly, we observed that BS outputs are slightly different on

the wimpy-only systems. This happens because ARM NEON floating point unit

does not fully adhere to the IEEE 754 standard [43]. Thus, when the code is

compiled with -mfpu=vfpv3, the results are identical with the references, but the

execution time increases. Since we want the best performance and the precision

loss is acceptable, we report the results obtained by faster NEON instructions.

60

Chapter 4. Measurement-driven Performance Analysis

4.3 MoSS Setup and Evaluation

4.3.1 Determining GPU Thread Count

GPU thread count represents the parameter h used by the lazy processing tech-

nique to batch input records for GPU processing, as discussed in Section 3.2. In

CUDA, this thread count consisting of number of thread blocks and threads per

block plays an important role in efficient execution on GPUs. To set the value of h,

we investigate the effect of different CUDA thread counts on GPU-only execution.

The thread count directly affects the memory usage because each thread has input

and output data buffers. Hence, we are constrained to select the smallest thread

count that exhibits a good performance. This constraint is particularly stringent

in wimpy systems as they have small memories of typically 1 or 2 GB. We deter-

mine the CUDA thread count by varying the number of blocks starting from one

and the number of threads per block starting from 32 since CUDA threads are

grouped in warps of 32 threads.

On Jetson, the effect of varying CUDA thread count is less visible, as shown

in Figure 4.2a for KM workload. The execution time is within 10% of the average

110 seconds and it slightly degrades for high thread counts. This is explainable

since Jetson’s GPU has only 192 cores which cannot accommodate large numbers

of CUDA threads. Hence, we select a single block with 256 CUDA threads as a

good configuration to run MoSS on Jetson. The only exception is PI which has

a highly compute-intensive kernel that achieves significantly better performance

when executed on two thread blocks of 512 threads per block.

On the other hand, the effect of varying the number of CUDA threads is more

visible on Amazon instances, as depicted in Figure 4.2b for KM workload. The Ke-

pler GPU used by Amazon instances has 1536 cores and it is underutilized on small

61

Chapter 4. Measurement-driven Performance Analysis

 80

 100

 120

 140

 160

 180

32 64 128 256 512 1024

T
im

e
 [
s
]

Threads per Block

1 block
2 blocks
4 blocks
8 blocks

16 blocks
32 blocks
64 blocks

(a) On Jetson TK1

 0

 50

 100

 150

 200

32 64 128 256 512 1024

T
im

e
 [
s
]

Threads per Block

1 block
2 blocks
4 blocks
8 blocks

16 blocks
32 blocks
64 blocks

(b) On Amazon EC2

Figure 4.2: Effect of CUDA threads for KM.S

thread counts, leading to high execution time. But with the increasing number of

threads per block, the execution time across different block counts converges. The

other workloads exhibit similar behavior as KM. Using this convergence effect, we

can select the same thread count value across different workloads to achieve effi-

cient MoSS execution. Thus, we select 8 blocks with 1024 threads per block since

it exhibits good performance for all workloads at relatively low memory footprint

on Amazon g2.2xlarge instances.

62

Chapter 4. Measurement-driven Performance Analysis

 0

 0.5

 1

 1.5

 2

PI.M BS.M KM.M MM.M SS.M GR.M

N
o

rm
a

liz
e

d
 T

im
e

 (
N

o
n

-u
n

if
ie

d
 m

e
m

o
ry

)

Non-unified memory
Unified memory

Figure 4.3: Effect of unified memory

4.3.2 Effect of Unified Memory

To improve the programmability of Nvidia GPUs, recent versions of CUDA sup-

port unified memory [50]. For platforms with integrated GPUs, such as Jetson,

unified memory is the natural choice because the physical memory is shared be-

tween the CPU and GPU. In contrast, for systems with discrete GPUs, such as

g2.2xlarge instances, it is unclear if unified memory performs better than explicit

transfers. Since MoSS supports both unified memory and explicit transfers, we

compare them on g2.2xlarge cloud instances across all workloads and present the

results in Figure 4.3.

For workloads requiring less amount of data transfers, such as PI and BS,

unified memory achieves the same performance as explicit transfers. In contrast,

for data-intensive workloads such GR, unified memory exhibits a slowdown of

34%. Although unified memory is supposed to maximize data access speed, we

observe that this is not true for large datasets. While we do not have access to

CUDA internals to further investigate the cause, we reckon this slowdown is due

to memory management and transfer serialization in CUDA driver. In conclusion,

we set explicit data transfers in MoSS for systems with discrete GPUs.

63

Chapter 4. Measurement-driven Performance Analysis

4.3.3 Comparison of Dynamic Mapping Techniques

Intuitively, overlapping task execution on both the CPU and GPU has the poten-

tial to improve the overall performance. However, we show that overlapping the

CPU and GPU has no benefit for MapReduce workloads. By profiling workload

execution, we find that GR exhibits at least 10 times faster record processing on

the CPU, while PI, BS and KM input records are 2 to 7 times faster processed

by the GPU and the ratio of computation to communication for the GPU is at

least 2. The only workload which exhibits faster record processing on the GPU

but high data transfer times is SS. But in practice, the overall execution of SS is

not significantly improved by overlapping, as shown in Figure 4.4.

By experimentally comparing the three dynamic mapping techniques described

in Section 3.3, namely, one-time, checking and callback, we observe that the one-

time approach achieves better results. Our observation is in correlation with other

work [57], which indicates that overlapping the CPU and GPU has the potential to

improve MapReduce execution with less than 10%. Figure 4.4 shows the results of

dynamic mapping techniques comparison by normalizing the execution times with

those of the one-time approach. Surprisingly, the callback technique is much slower

than the one-time approach for compute-intensive workloads such as BS and KM.

By analyzing the execution logs, we found that CUDA inexplicably delays kernel

execution when using the callback mechanism. Because of this delay, the majority

of records are processed by the CPU, hence, the lower performance. While for

compute-intensive workloads this delay results in much lower performance, for

data-intensive workloads there is no degradation because the entire processing is

done on CPU. To further test our hypothesis that CUDA callback is inefficient,

we have implemented a simple matrix multiplication kernel which is first executed

on the GPU and then on the CPU. We added a callback to signal the end of GPU

64

Chapter 4. Measurement-driven Performance Analysis

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

PI.M BS.M KM.M MM.M SS.M GR.M

N
o
rm

a
liz

e
d
 T

im
e
 (

o
n
e
-t

im
e
)

one-time
checking
callback

(a) On Jetson TK1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

PI.M BS.M KM.M MM.M SS.M GR.M

N
o
rm

a
liz

e
d
 T

im
e
 (

o
n
e
-t

im
e
)

one-time
checking
callback

(b) On Amazon EC2

Figure 4.4: Dynamic mapping techniques comparison

processing and found that it is triggered during or after CPU processing ends.

Ideally, the callback should be triggered exactly at the end of GPU execution.

The checking technique is around 10% slower than the one-time for compute-

intensive workloads. This slowdown is attributed to the overhead of checking

the GPU to determine when it finishes the processing. Decreasing the checking

frequency does not achieve better results because more records are processed by the

CPU which exhibits slower processing compared to the GPU for these compute-

intensive workloads. For workloads that exhibit better performance on CPU,

65

Chapter 4. Measurement-driven Performance Analysis

such as GR, the overlapping has little effect since one-time decides to execute

almost always on the CPU. In conclusion, MoSS is by default configured to use

the one-time approach, and we present the results using this technique in the next

subsections.

4.3.4 Comparison with Chunking

In this section, the performance of MoSS is compared with the work of Shirahata

et al. [84]. We compare MoSS only with Hadoop-based projects to account for

framework overheads. In contrast, other related works exhibit higher execution

time performance but trade-off scalability and fault tolerance. Among Hadoop-

based frameworks presented in Chapter 2, we could compare with Shirahata et

al. [84] for which the source code is available. Since this work is based on Hadoop

0.20.1, we have ported MoSS to this version of Hadoop in order to perform a fair

comparison.

We have implemented the same Kmeans clustering algorithm [84]. In this

Kmeans version, all the work is performed in the Map phase, as opposed to the

algorithm presented in Section 4.1. Each input record consists of n 2-dimensional

points that are to be grouped into k clusters. Each map function performs this

grouping and outputs k centroids. The Reduce phase only outputs the centroids.

For the comparison, we generate two datasets of n = 32 points which are grouped

into k = 5 clusters, with the input generator used in [84]. First dataset contains

10 million records occupying 6.9 GB of disk space, while the second dataset has 30

million records with a total size of 20.6 GB. We perform the comparison on clusters

of one, six and twelve nodes of both Jetson TK1 boards and Amazon g2.2xlarge

instances and present the results in Figure 4.5. We use the same hardware and

software setup presented in Section A, except for Hadoop version 0.20.1 instead

of version 1.2.1.

66

Chapter 4. Measurement-driven Performance Analysis

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 6 12 1 6 12

Amazon Jetson

N
o
rm

a
liz

e
d
 T

im
e
 (

S
h
ir
a
h
a
ta

 e
t
a
l.
)

Cluster nodes

Shirahata et al.
MoSS

(a) Using M datasets

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 6 12 1 6 12

Amazon Jetson

N
o
rm

a
liz

e
d
 T

im
e
 (

S
h
ir
a
h
a
ta

 e
t
a
l.
)

Cluster nodes

Shirahata et al.
MoSS

(b) Using L datasets

Figure 4.5: Comparison with chunking

On average, MoSS performs 54% better than Shirahata et al. [84]. On clusters

of 12 Jetson TK1 nodes, MoSS achieves a maximum speedup of 3.8 and energy

savings of almost two-thirds. On Amazon instances, MoSS achieves a maximum

speedup of 1.4 on six nodes. As expected, [84] performs worse on the wimpy

systems compared to the brawny systems for which it was designed. On the

wimpy systems, we observe a delay in execution. By investigating the log files, we

found that the acceleration factor used in splitting the tasks between CPU and

67

Chapter 4. Measurement-driven Performance Analysis

GPU [84] is frequently computed as zero in the initial phase. This zero factor

results in assigning all the tasks to the GPU, thus, overwhelming the low-power

GPU of Jetson TK1. In contrast, MoSS ensures a balanced execution by profiling

the execution on CPU and GPU at the beginning of each task.

4.4 Homogeneous versus Heterogeneous Systems

In this section, we evaluate the time-energy performance of MoSS in comparison

with Hadoop on clusters of both wimpy Jetson TK1 and brawny Amazon EC2

g2.2xlarge nodes.

4.4.1 Analysis on Nvidia Jetson TK1

We present the execution time of MoSS normalized to Hadoop across Jetson clus-

ters using both M and L datasets in Figure 4.6. For compute-intensive workloads,

such as PI, BS and KM, MoSS improves the execution time on 12 nodes by fac-

tors of 3.1, 1.1 and 1.1, respectively. For workloads with larger input records, such

as SS and GR, MoSS achieves the same execution time as Hadoop by deciding

to process the workloads only on CPU. Log files for single node execution show

that MoSS does not use the GPU for SS and GR, while for PI and BS the GPU

processes 99% of the input records. Surprisingly, the GPU processes only 3% of

the input records for KM.

We further analyze the unexpected behavior of KM and SS. The profiling

results of KM execution on both Hadoop and MoSS show that KM utilizes more

than 95% of the memory, reads and writes around 8 GB of storage data, and

sends and receives 2 GB of data on the network, on average per cluster node.

Compared to the other workloads, KM is the most resource-intensive and pushes

wimpy nodes to their limits. Map phase alone exhibits a speedup of up to 40%

68

Chapter 4. Measurement-driven Performance Analysis

 0.2

 0.4

 0.6

 0.8

 1

PI BS KM MM SS GR

N
o

rm
a

liz
e

d
 T

im
e

 (
H

a
d

o
o

p
)

Hadoop
MoSS

(a) 1 node, M dataset

 0.2

 0.4

 0.6

 0.8

 1

PI BS KM MM SS GR

N
o

rm
a

liz
e

d
 T

im
e

 (
H

a
d

o
o

p
)

Hadoop
MoSS

(b) 6 nodes, M dataset

 0.2

 0.4

 0.6

 0.8

 1

PI BS KM MM SS GR

N
o

rm
a

liz
e

d
 T

im
e

 (
H

a
d

o
o

p
)

Hadoop
MoSS

(c) 12 nodes, M dataset

Figure 4.6: Normalized execution time on Jetson TK1 clusters

69

Chapter 4. Measurement-driven Performance Analysis

 0.2

 0.4

 0.6

 0.8

 1

PI BS KM MM SS GR

N
o

rm
a

liz
e

d
 T

im
e

 (
H

a
d

o
o

p
)

Hadoop
MoSS

(d) 1 node, L dataset

 0.2

 0.4

 0.6

 0.8

 1

PI BS KM MM SS GR

N
o

rm
a

liz
e

d
 T

im
e

 (
H

a
d

o
o

p
)

Hadoop
MoSS

(e) 6 nodes, L dataset

 0.2

 0.4

 0.6

 0.8

 1

PI BS KM MM SS GR

N
o

rm
a

liz
e

d
 T

im
e

 (
H

a
d

o
o

p
)

Hadoop
MoSS

(f) 12 nodes, L dataset

Figure 4.6: Normalized execution time on Jetson TK1 clusters

70

Chapter 4. Measurement-driven Performance Analysis

 20

 40

 60

 80

 100

 20

 40

 60

 80

U
ti
liz

a
ti
o

n
 [
%

]

T
ra

ff
ic

 S
iz

e
 [
M

B
]

Hadoop Memory Utilization
Hadoop Storage Traffic
Hadoop Network Traffic

MoSS Memory Utilization
MoSS Storage Traffic
MoSS Network Traffic

 0 500 1000 1500 2000 2500 3000 3500

Time [s]

Hadoop Map
Hadoop Shuffle

Hadoop Reduce

MoSS Map
MoSS Shuffle

MoSS Reduce

Figure 4.7: KM.L execution on a Jetson TK1 node

on six nodes when employing the GPU. But KM has heavy Shuffle and Reduce

phases, as shown in Figure 4.7, and thus, the overall speedup is less than 10%.

For SS, the profiling of GPU-only execution shows that it achieves a high warp

execution efficiency of 67% which is close to the 74% achieved by PI. However,

global memory usage is two times less efficient compared to that of PI, as indicated

by the gld efficiency metric. These values show that similarity score computation

can be accelerated by the GPU, but memory operations such as loading input

records nullify this acceleration. Lastly, we present the reasons for low runtime

performance of GR on GPU. The processing time of GR records across GPU

threads is uneven because CUDA threads take longer time to finish the processing

of records that do not contain the regular expression. In contrast, for records

containing the expression at the beginning, the threads finish the processing very

fast but have to wait for the slowest thread in the warp. Our explanation is

reinforced by warp execution efficiency value of 50% for GR, the lowest among

the six workloads.

71

Chapter 4. Measurement-driven Performance Analysis

Before showing the energy usage of MoSS on Jetson clusters, we present the

power profile of a single Jetson TK1 system. This power profile is determined

by executing micro-benchmarks that exercise each sub-system, such as the CPU,

GPU and hard-disk, to its maximum capacity. The idle power consumed by Jetson

TK1 running only the Ubuntu OS but excluding the hard-disk is 3.2 W. This

power includes the 0.5 W consumed by the fan that is installed on the board

by default. When executing compute-intensive applications on both the CPU

and GPU, Jetson consumes up to 13.5 W. Apart from the idle power, the CPU

contributes to this total power with more than 6.5 W, while the GPU uses around

3 W. Adding the 3 TB hard-disk almost doubles the idle power and increases

the power consumption of the fully-utilized system to around 17 W. All these

values represent AC power and include the inefficiencies of the power adapter.

Nevertheless, this power is reflected in the energy bill at the end of the month

and, thus, we believe it is more meaningful than DC power.

The energy usage of MoSS workloads, plotted in Figure 4.8, follows the execu-

tion time trend. However, across cluster sizes, the energy usage increases because

more nodes are added and the speedup of Hadoop is sub-linear. For example,

the speedup of BS on 12 nodes compared to a single node is 2.5. The energy

usage of BS on a single node is almost 100kJ. Considering that the average power

remains constant, the energy on 12 nodes should be the sum of energies for each

node divided by the speedup, which results in 480kJ. But the average power of

each node on the 12-node cluster is smaller than single-node average power be-

cause each node has lesser work to perform. Hence, the actual energy of BS on

the 12-node cluster is 320kJ. Figure 4.8 shows that MoSS incurs lesser energy for

compute-intensive workloads and that it saves around 80%, 16% and 5% of the

energy consumed by Hadoop for PI, BS and KM, respectively. For the other two

workloads, the energy consumption of MoSS is at most 1% higher.

72

Chapter 4. Measurement-driven Performance Analysis

 0.2

 0.4

 0.6

 0.8

 1

PI BS KM MM SS GR

N
o

rm
a

liz
e

d
 E

n
e

rg
y
 (

H
a

d
o

o
p

)

Hadoop
MoSS

(a) 1 node, M dataset

 0.2

 0.4

 0.6

 0.8

 1

PI BS KM MM SS GR

N
o

rm
a

liz
e

d
 E

n
e

rg
y
 (

H
a

d
o

o
p

)

Hadoop
MoSS

(b) 6 nodes, M dataset

 0.2

 0.4

 0.6

 0.8

 1

PI BS KM MM SS GR

N
o

rm
a

liz
e

d
 E

n
e

rg
y
 (

H
a

d
o

o
p

)

Hadoop
MoSS

(c) 12 nodes, M dataset

Figure 4.8: Normalized energy usage of Jetson TK1 clusters

73

Chapter 4. Measurement-driven Performance Analysis

 0.2

 0.4

 0.6

 0.8

 1

PI BS KM MM SS GR

N
o

rm
a

liz
e

d
 E

n
e

rg
y
 (

H
a

d
o

o
p

)

Hadoop
MoSS

(d) 1 node, L dataset

 0.2

 0.4

 0.6

 0.8

 1

PI BS KM MM SS GR

N
o

rm
a

liz
e

d
 E

n
e

rg
y
 (

H
a

d
o

o
p

)

Hadoop
MoSS

(e) 6 nodes, L dataset

 0.2

 0.4

 0.6

 0.8

 1

PI BS KM MM SS GR

N
o

rm
a

liz
e

d
 E

n
e

rg
y
 (

H
a

d
o

o
p

)

Hadoop
MoSS

(f) 12 nodes, L dataset

Figure 4.8: Normalized energy usage of Jetson TK1 clusters

74

Chapter 4. Measurement-driven Performance Analysis

 0.2

 0.4

 0.6

 0.8

 1

PI BS KM MM SS GR

N
o

rm
a

liz
e

d
 T

im
e

 (
H

a
d

o
o

p
)

Hadoop
MoSS

(a) 1 node, M dataset

 0.2

 0.4

 0.6

 0.8

 1

PI BS KM MM SS GR

N
o

rm
a

liz
e

d
 T

im
e

 (
H

a
d

o
o

p
)

Hadoop
MoSS

(b) 6 nodes, M dataset

 0.2

 0.4

 0.6

 0.8

 1

PI BS KM MM SS GR

N
o

rm
a

liz
e

d
 T

im
e

 (
H

a
d

o
o

p
)

Hadoop
MoSS

(c) 12 nodes, M dataset

Figure 4.9: Normalized execution time on Amazon EC2 clusters

75

Chapter 4. Measurement-driven Performance Analysis

 0.2

 0.4

 0.6

 0.8

 1

PI BS KM MM SS GR

N
o

rm
a

liz
e

d
 T

im
e

 (
H

a
d

o
o

p
)

Hadoop
MoSS

(d) 1 node, L dataset

 0.2

 0.4

 0.6

 0.8

 1

PI BS KM MM SS GR

N
o

rm
a

liz
e

d
 T

im
e

 (
H

a
d

o
o

p
)

Hadoop
MoSS

(e) 6 nodes, L dataset

 0.2

 0.4

 0.6

 0.8

 1

PI BS KM MM SS GR

N
o

rm
a

liz
e

d
 T

im
e

 (
H

a
d

o
o

p
)

Hadoop
MoSS

(f) 12 nodes, L dataset

Figure 4.9: Normalized execution time on Amazon EC2 clusters

76

Chapter 4. Measurement-driven Performance Analysis

4.4.2 Analysis on Amazon EC2

With cloud computing becoming ubiquitous, we evaluate MoSS on cloud-based

Amazon EC2 instances with GPUs. Since power consumption of cloud instances

cannot be measured, we present only the execution time performance. Execu-

tion time results across all six MoSS workloads with M and L datasets executing

on one, six and twelve nodes are plotted in Figure 4.9. Similar to Jetson TK1,

the execution time improvement delivered by MoSS depends on workload type.

Compute-intensive workloads such as PI and BS are suitable for GPU processing.

While PI exhibits speedups of around 2, BS exhibits maximum speedups of 2.3

and 1.2 on one and twelve nodes, respectively. For KM, heavy Shuffle and Reduce

phases affect its performance. Moreover, on six and twelve nodes the execution

times of KM vary significantly. We attribute this to the unpredictable I/O opera-

tions in the cloud and to the large data transfers incurred by KM. The profiling of

storage and network activity for KM execution on Amazon instances shows 254 GB

and 39 GB of traffic, respectively, at cluster level. Being the highest among all

six workloads, these values are large considering the 19 GB input of KM.L and

illustrate the impact of I/O operations on MapReduce execution. As a side note,

the Map phase of KM is 25% faster on MoSS compared to Hadoop because MoSS

uses the GPU to speedup the processing of around 98% of KM’s input records.

But the overall performance is influenced by the Shuffle and Reduce slowdown and

the high variance across runs due to I/O operations in the cloud. Similar to Jetson

TK1, for SS and GR the GPU-only execution does not improve the execution and,

thus, MoSS uses only the CPU. Nevertheless, SS computational part is suitable

for GPU processing, as indicated by the 99% sm efficiency which is higher even

than the values for PI and KM, 81% and 85%, respectively. But data transfer

time between the main memory and the GPU’s global memory dominates total

77

Chapter 4. Measurement-driven Performance Analysis

GPU processing time and leads to better overall performance of SS on the CPU.

However, we anticipate improved MoSS execution of data-intensive applications

on future GPU architectures such as Nvidia Pascal. These GPUs will have at least

five times higher transfer rates enabled by NVLink [41].

4.5 Brawny versus Wimpy Systems

In this section, we present a time-energy performance analysis of MapReduce on

intra-node and intra-chip heterogeneous systems with GPU, including bottleneck

analysis and time-energy equivalence between brawny and wimpy systems.

4.5.1 Time-Energy Performance Analysis at Single-Node

Level

Firstly, we present the time-energy performance of MapReduce workloads on the

six platform configurations in Figure 4.10 using log scale. The standard deviation

among multiple runs is very small, as shown by the error bars. For compute-

intensive BS, the GPU significantly improves the execution time only on the

brawny system. The speedup of 2.3 leads to 45% energy savings, although the

average power of the i7+GPU is slightly higher compared to the i7 CPU-only. On

the wimpy Kayla system, the speedup is less than 1.1, while on Jetson the GPU

degrades the execution time by almost 10%. This is a surprising result since BS is

a compute-intensive workload, suitable for GPU processing. By further analyzing

the behavior of BS on Jetson, we discover that the compiler optimizations lead to

a speedup of 3.3 compared to the non-optimized binary. As BS consists of a loop

in which the option price is computed, it is suitable for loop optimizations, such

as loop unrolling, that can significantly improve the execution time. However, for

the other two workloads, these compiler optimizations lead to no execution time

78

Chapter 4. Measurement-driven Performance Analysis

 10

 100

 1000

 10000

T
im

e
 [
s
]

i7 i7+GPU Kayla Kayla+GPU Jetson Jetson+GPU

 1

 10

 100

P
o
w

e
r

[W
]

 0.1

 1

 10

 100

 1000

BS.S BS.M BS.L KM.S KM.M KM.L GR.S GR.M GR.L

E
n
e
rg

y
 [
k
J
]

Figure 4.10: MapReduce time-energy performance

improvements. For KM, both wimpy systems with GPU exhibit speedups close to

1.2. While the speedup on Jetson+GPU leads to energy savings of around 20%, on

Kayla+GPU the energy is 80% higher due to the much higher power consumption

of the discrete GPU. On the brawny system with GPU, the time improvements

are cancelled by the higher power consumption of the system with GPU. Thus, the

i7+GPU exhibits energy savings of only 8% for KM. For GR, the usage of GPU

always results in worse execution time compared to the CPU-only execution. This,

corroborated with the higher power consumption of GPU, leads to energy usages

that can be even 14 times higher in case of the Kayla+GPU system, compared

to the Kayla-only. This is because GR is less compute-intensive and host-device

transfers cannot be overlapped by the fast <key, value> processing. Conversely,

for BS and KM there is more processing to be done for each <key, value> pair

and the transfer time is amortized. Based on our analysis of Hadoop-CUDA logs,

79

Chapter 4. Measurement-driven Performance Analysis

 0

 500

 1000

 1500

 2000

BS.S
BS.M

BS.L
KM

.S

KM
.M

KM
.L

G
R
.S

G
R
.M

G
R
.L

E
x
e

c
u

ti
o

n
 T

im
e

 [
s
]

Hadoop
Transfer

Kernel

(a) i7+GPU

 0

 5000

 10000

 15000

 20000

BS.S
BS.M

BS.L
KM

.S

KM
.M

KM
.L

G
R
.S

G
R
.M

G
R
.L

E
x
e
c
u
ti
o
n
 T

im
e
 [
s
]

Hadoop
Transfer

Kernel

(b) Kayla+GPU

Figure 4.11: Execution time breakdown on systems with discrete GPUs

we compute the proportion of time spent in Hadoop, data transfers to and from

GPU and CUDA kernel, as shown in Figure 4.11. For GR, the total time spent

in host-device transfers is up to 30% and 85% of total execution time on i7+GPU

and Kayla+GPU respectively. In contrast, for BS and KM, this time is around

1% and 4%, respectively. The prohibitively large host-device transfer times make

workloads such as GR unsuitable for execution on heterogeneous systems with

GPUs.

For an in-depth analysis, we profile the entire execution of MapReduce work-

loads at the CPU, GPU, memory and storage levels. For CPU, we collect hardware

counter values such as instructions, cycles, stall cycles, page faults using perf Linux

tool attached to the TaskTracker daemon of Hadoop. We use nvprof to collect

GPU execution metrics such as warp execution efficiency, and dstat tool available

in Linux to get memory and storage usage.

Figure 4.12 shows that the memory utilization of MapReduce is not only pro-

portional to the input size, but is also influenced by the amount of intermediate

data generated by Map phase. For example, KM Map generates a large amount

of intermediate <key, value> pairs and, hence, it uses around 90% of the mem-

ory on all systems when run with M and L datasets. Moreover, this is reflected

80

Chapter 4. Measurement-driven Performance Analysis

in the amount of data transferred to and from the storage since Hadoop spills

some intermediate data on the disk. In case of KM.L, the input size is around

19 GB but the total amount of data moved to and from the storage is more than

100 GB. In contrast, the Map phase of GR generates small <key, value> pairs

only for matching input records, hence, GR has lower memory and storage utiliza-

tion. This high memory utilization exposes the limitations of the wimpy systems

where Hadoop is constrained by the small memory size. For the same workload,

Hadoop uses more than 90% of the 16 GB available on our brawny system, while

on the wimpy systems it can use a maximum of 2 GB. Thus, during MapReduce

execution on the wimpy systems, the storage is used by the OS virtual memory

and by Hadoop spill mechanism. Consequently, there are more page faults and

storage transferred bytes for these systems compared to the brawny one, as de-

picted in Figure 4.12. This fact is more visible on the Jetson+GPU system where

the same small memory is shared between CPU and GPU. For example, KM.L on

Jetson+GPU exhibits 1.75 times more page faults and transfers 33 GB more data

to the storage compared to i7+GPU.

Next, we analyze the IPC as a metric for CPU efficiency. Consistent with our

workload description, BS and GR have the highest and the lowest IPC, respec-

tively. Moreover, CPU+GPU has lower IPC compared to CPU-only execution

because the most compute-intensive part of the workload is offloaded to GPU

while the CPU executes Hadoop housekeeping. But the brawny system is the ex-

ception since (i) GR has higher IPC compared to KM and (ii) KM has higher IPC

on CPU+GPU than on CPU-only. Firstly, both KM and GR have high memory

utilization on a system with high clock frequency, such as i7. At higher clock fre-

quencies, the speed gap between CPU and memory is larger and more CPU cycles

are wasted waiting for memory requests to be serviced [81]. These wasted cycles

are reported by perf as stall cycles. For example, BS.L, KM.L and GR.L exhibit

81

Chapter 4. Measurement-driven Performance Analysis

 0.5

 1

C
P

U
 I
P

C

i7 i7+GPU Kayla Kayla+GPU Jetson Jetson+GPU

 0.2

 0.4

 0.6

 0.8

 1

M
e
m

o
ry

 U
ti
liz

a
ti
o
n

 1

 10

 100

BS.S BS.M BS.L KM.S KM.M KM.L GR.S GR.M GR.L

S
to

ra
g
e
 T

ra
n
s
fe

r
[G

B
]

Figure 4.12: MapReduce performance at CPU, memory and storage levels

27%, 43% and 39% stall cycles, respectively, as reported to total cycles. These

values show a strong correlation with the IPC. Secondly, KM has higher IPC on

CPU+GPU than on CPU-only because the workload exhibiting stall cycles is of-

floaded to the GPU. Among systems, i7 exhibits the highest IPC since it has a

deeper pipeline and bigger issue width. Surprisingly, Cortex-A9 CPU has higher

IPC than Cortex-A15 CPU while performing poorer in terms of execution time.

We analyze this result based on the fact that the execution time is determined

by the total number of executed instructions divided by IPC, clock frequency and

utilization,

T =
Instructions

IPC · f · U
(4.1)

Kayla and Jetson perf logs show that the number of instructions and the uti-

lization are similar. But the clock frequency of Cortex-A15 is almost two times

82

Chapter 4. Measurement-driven Performance Analysis

Table 4.3: GPU profiling

Workload
Warp execution efficiency [%]

i7+GPU Kayla+GPU Jetson+GPU

BS 97 97 77
KM 99 98 61
GR 26 26 17

higher, as indicated in Table A.1, hence, there are more stall cycles due to memory

requests. Our measurements indeed show that Cortex-A15 executes more cycles

than Cortex-A9 and, thus, has a lower IPC. However, this lower IPC is overcome

by the increased frequency, thus, leading to a better execution time.

Lastly, we analyze the execution of the three workloads on GPU using the

warp execution efficiency metric exposed by nvprof. This metric represents the

average active threads per warp divided by the maximum number of threads per

warp, which is 32 for both GPUs used in our evaluation. CUDA threads in a

warp are inactive if they wait for other threads to execute a divergent path or

they finished the execution. As expected, GR has the highest proportion of such

inactive threads which decrease the efficiency to 17-26%, as shown in Table 4.3.

In contrast, BS and KM achieve 61-99% warp execution efficiency.

We conclude that the small memory of wimpy systems hinders MapReduce

execution since Hadoop has to use the storage to store and load intermediate

data.

4.5.2 Bottleneck Analysis

We use the results from our time-energy analysis, system profiling and system

characterization to discuss software and hardware improvements for more efficient

MapReduce execution. Firstly, we analyze the scenarios in which the wimpy

systems with powerful discrete GPUs, such as Kayla+GPU, become more energy-

efficient. This is achievable by either (i) improving execution time or (ii) reducing

83

Chapter 4. Measurement-driven Performance Analysis

GPU power, because energy is the product of execution time and average power,

E = T · P (4.2)

Our measurements show an average power usage ratio of two between Kayla+GPU

and Kayla-only, hence, the execution time of Hadoop-CUDA should exhibit a

speedup of at least two. This could be obtained by highly compute-intensive

workloads and by an improved Hadoop framework. On the other hand, given

the maximum speedup of 1.2 shown by KM, Kayla+GPU becomes more energy-

efficient by reducing GPU power by 80%. This power reduction could be achieved

by a wimpy platform with integrated GPU, such as Jetson TK1. Indeed, our

measurements show that the GK20A GPU on Jetson TK1 consumes around 3 W

when active, compared to around 25 W drawn by Maxwell GPU on the Kayla

system. Since the speedup on Jetson+GPU is also around 1.2, this configuration

exhibits energy savings, as opposed to Kayla+GPU.

Secondly, we discuss the scenarios in which less compute-intensive workloads,

such as GR, can benefit from GPU processing. On one hand, GR exhibits a large

number of divergent control flow paths which results in high number of inactive

CUDA threads. For an input record that does not contain the searched string, a

CUDA thread takes longer time to finish the processing. In contrast, for a record

containing the string at the beginning, the CUDA thread finishes the processing

very fast but must wait for the slowest thread in the warp. Since this is a workload

characteristic, one solution is to improve control flow handling on GPUs. On the

other hand, GR exhibits little computational work since it consists of scanning

the input record, but requires large host-device data transfers. For example, on

the brawny system, GR.L spends 30% of the time in data transfers. However,

improving transfer bandwidth by three times results in 2% faster execution on

84

Chapter 4. Measurement-driven Performance Analysis

Table 4.4: Performance equivalence ratio

Workload Systems
Equivalence Savings [%]

ratio Time Energy

BS.M i7+GPU : Jetson+GPU 1 : 6 5 46
BS.L i7+GPU : Jetson+GPU 1 : 6 -4 46
KM.M i7+GPU : Jetson+GPU 1 : 3 -12 67
KM.L i7+GPU : Jetson+GPU 1 : 3 0 68

CPU+GPU compared to CPU-only. This improvement is feasible as Nvidia al-

ready announced NVLink, a faster and more energy-efficient CPU-GPU path that

can achieve a bandwidth of up to 200 GB/s [41].

4.5.3 Time-Energy Performance Equivalence

Analyzing the time-energy results across different systems, we observe that Kayla

configurations exhibit the highest execution times leading to energies that are

similar or higher than those of brawny configurations. On the other hand, even

if these brawny configurations exhibit the best execution time for all workloads,

intra-chip heterogeneous wimpy system always consumes less energy. This result

opens the alternative of using multiple Jetson+GPU nodes to perform the work

of a single i7+GPU system with potentially less energy. We further analyze this

opportunity for compute-intensive workloads with medium and large inputs on

heterogeneous configurations. Small inputs are not representative for this analysis

due to their small execution time dominated by Hadoop overheads. We measure

the execution time and energy for clusters of up to four Jetson+GPU nodes and

observe that for KM, three wimpy nodes achieve similar execution times as one

i7+GPU, while saving almost 70% energy, as shown in Table 4.4. However, for

BS more than four nodes are needed and, using the measured values, we estimate

the time and energy using regression analysis.

85

Chapter 4. Measurement-driven Performance Analysis

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 1 2 3 4 5 6

E
x
e

c
u

ti
o

n
 T

im
e

 [
s
]

Nodes

BS.M
BS.L

(a) Time

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6

P
o
w

e
r

[W
]

Nodes

BS.M
BS.L

(b) Power

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6

E
n

e
rg

y
 [

k
J
]

Nodes

BS.M
BS.L

(c) Energy

Figure 4.13: BS performance on clusters of Jetson TK1

86

Chapter 4. Measurement-driven Performance Analysis

The execution time on n nodes,

T (n) =
T (1)

S(n)
(4.3)

is determined by the speedup which should ideally be linear, S(n) = n. But in

reality, the sequential fraction and the overheads of parallel and distributed exe-

cution lead to a sub-linear speedup. For BS, this sub-linear speedup determines

an execution time that fits a power function, as shown in Figure 4.13a. Using the

estimated execution time, we observe that six wimpy boards achieve the perfor-

mance of one brawny system. Because energy is the product of execution time

and average power, as in Equation 4.2, on n nodes it becomes

E(n) = T (n) · P (n) =
T (1)

S(n)
· n · P (1) = E(1) ·

n

S(n)
(4.4)

assuming that the average power grows linearly with the number of nodes. This

assumption is true for our workload as shown in Figure 4.13b. Since the speedup is

sub-linear, the energy usage slowly increases with the number of nodes, as shown

in Figure 4.13c. Even with this small increase, six wimpy nodes save 46% of the

energy used by a single brawny system. These results advocate the usage of wimpy

systems with integrated GPUs for compute-intensive data analytics.

4.6 Summary

In this section, we have analyzed the time-energy performance of MapReduce

on heterogeneous systems with GPUs. With the performance improvements of

wimpy systems used in mobile devices, we investigate their performance on pro-

cessing data analytics compared to brawny server systems. For the cluster-level

analysis, we evaluate MoSS, our Hadoop-CUDA framework based on lazy process-

87

Chapter 4. Measurement-driven Performance Analysis

ing and dynamic mapping techniques. We used six representative workloads and

two cluster systems with diverse performance capabilities. First, we evaluate the

time-energy performance of MoSS on our in-house low-power wimpy cluster based

on Nvidia Jetson TK1 nodes integrating quad-core ARM Cortex-A15 CPUs and

192-core Nvidia Kepler GPUs on the same chip. Second, we evaluate the execution

time performance of MoSS on a high-performance brawny cluster based on Ama-

zon EC2 instances equipped with discrete 1536-core GPUs. Compared to Hadoop,

MoSS improves the execution time of compute-intensive workloads by factors of

up to 3.1 and 2.3 on wimpy and brawny nodes clusters, respectively. Along with

the improvement in execution time, MoSS saves up to 80% of the energy used by

the wimpy cluster. Moreover, the execution time of MoSS is almost always within

5% of the best Hadoop CPU-only execution time for data-intensive workloads.

For the single-node analysis, we have selected three systems representing both

intra-node and intra-chip heterogeneity, (i) an Intel i7 system hosting a discrete

640-core Nvidia GPU of Maxwell generation, representing intra-node heteroge-

neous brawny systems, (ii) a quad-core ARM Cortex-A9 with the same Maxwell

GPU representing intra-node heterogeneous wimpy systems, and (iii) a quad-core

ARMCortex-A15 integrated with 192 Nvidia Kepler GPU cores representing intra-

chip heterogeneous wimpy systems. We evaluate the time and energy performance

of these systems using three MapReduce applications with diverse resource de-

mands.

The single-node analysis shows that, for compute-intensive workloads such as

BlackScholes, the brawny heterogeneous system achieves speedups of up to 2.3 and

reduces the energy usage by almost half compared to the brawny homogeneous

system. As expected, for applications such as Grep where data transfers dominate

the execution time, heterogeneous systems exhibit worse time-energy performance

compared to homogeneous systems. For example, the heterogeneous wimpy Kayla

88

Chapter 4. Measurement-driven Performance Analysis

with discrete GPU consumes 14 times the energy of the homogeneous Kayla sys-

tem due to very low host-device transfer bandwidth and high power overhead of

the discrete GPU. Moreover, the lower performance of wimpy systems on data

analytics is in part due to the small main memory size. While brawny systems

have large memories to accommodate Hadoop’s intermediate data, our profiling

shows that on both wimpy systems data is spilled to disk leading to 80% more

storage transfers compared to the brawny system.

Among heterogeneous systems, the wimpy with discrete GPU exhibits the

worst time-energy performance. But the wimpy with integrated GPU uses the

lowest energy across all workloads due to more energy-efficient CPU and GPU, and

better balanced system resources. To account for the execution time difference,

we establish an equivalence ratio between a single brawny heterogeneous node and

multiple wimpy heterogeneous nodes. Based on this equivalence, the wimpy nodes

not only achieve similar execution times compared to a single brawny node, but

also exhibit energy savings of up to two-thirds. This result advocates the potential

usage of wimpy systems with integrated GPUs for Big Data analytics.

89

Chapter 5

Model-driven

Performance Analysis

In this chapter, we present our model-driven time-energy performance analysis

for scale-out workloads and clusters. While a measurement-based performance

analysis approach, such as the one we have presented in Chapter 4, provides

highly accurate results and in-depth insights, it also has limited scalability and

applicability. For example, measuring the performance of scale-out workloads

is time consuming, measuring the performance of scale-out clusters is tedious,

and measuring the performance of newly designed systems may be impossible as

long as there is no physical implementation. Moreover, data-parallel application

developers and users may want to know what is the optimal configuration for

running their application before buying a dedicated cluster or compute time in the

cloud. We address these issues by designing measurement-driven analytic models

for execution time and energy usage of data-parallel MapReduce execution on

both homogeneous systems running Hadoop and heterogeneous systems running

MoSS. We design a hybrid approach based on both baseline measurements and

analytic equations to increase accuracy and ease of use, respectively. Using these

90

Chapter 5. Model-driven Performance Analysis

models, we analyze (i) our techniques for efficient execution presented in Chapter 3

in a formal manner, (ii) hypothetical system configurations to help designers and

developers improve the performance of hardware and software and (iii) scale-out

workloads and clusters to compare homogeneous with heterogeneous and brawny

with wimpy systems.

5.1 Execution Time Model

With the notations in Table 5.1, we first present the execution time model for

MapReduce execution on both homogeneous systems using Hadoop and hetero-

geneous systems using MoSS. More details about these systems are presented in

Section 4.2 and in Appendix A. As shown in Figure 5.1 for the six applications

described in Section 4.1, MapReduce execution consists of three phases, namely

Map, Shuffle and Reduce. Shuffle phase starts after the first wave of Map tasks

and it is partially overlapped with Map phase. Reduce phase starts after the end

of Shuffle phase, as shown in Figure 5.1 and Figure 5.2. Hence, total execution

time is the sum of Map time, TM , non-overlapped Shuffle time, TS, and Reduce

time, TR,

T = TM + TS + TR (5.1)

Given a MapReduce application and an input of size S containing R records,

this input is divided into chunks of size SK such that each Map task instance

processes one chunk. The number of Map task instances is proportional to the

input size,

NMT =

⌈

S

SK

⌉

(5.2)

For example, the number of Map tasks for Grep execution depicted in detail in

Figure 5.2 is 179, the result of dividing 11.18 GB of input size to 64 MB, the default

91

Chapter 5. Model-driven Performance Analysis

 0

 20

 40

 60

 80

 100

 0

 50

 100

 150

 200

 250

 300

 350

U
ti
liz

a
ti
o
n
 [
%

]

P
o
w

e
r

[W
]

Hadoop CPU Utilization
Hadoop I/O Utilization

Hadoop Power

MoSS CPU+GPU Utilization
MoSS I/O Utilization

MoSS Power

 0 200 400 600 800 1000 1200 1400 1600 1800

Time [s]

Hadoop Map
Hadoop Shuffle

Hadoop Reduce

MoSS Map
MoSS Shuffle

MoSS Reduce

(a) PI

 0

 20

 40

 60

 80

 100

 0

 50

 100

 150

 200

 250

 300

 350

U
ti
liz

a
ti
o
n
 [
%

]

P
o
w

e
r

[W
]

Hadoop CPU Utilization
Hadoop I/O Utilization

Hadoop Power

MoSS CPU+GPU Utilization
MoSS I/O Utilization

MoSS Power

 0 500 1000 1500 2000 2500

Time [s]

Hadoop Map
Hadoop Shuffle

Hadoop Reduce

MoSS Map
MoSS Shuffle

MoSS Reduce

(b) BS

 0

 20

 40

 60

 80

 100

 0

 50

 100

 150

 200

 250

 300

 350

U
ti
liz

a
ti
o
n
 [
%

]

P
o
w

e
r

[W
]

Hadoop CPU Utilization
Hadoop I/O Utilization

Hadoop Power

MoSS CPU+GPU Utilization
MoSS I/O Utilization

MoSS Power

 0 500 1000 1500 2000 2500 3000 3500

Time [s]

Hadoop Map
Hadoop Shuffle

Hadoop Reduce

MoSS Map
MoSS Shuffle

MoSS Reduce

(c) KM

Figure 5.1: Hadoop and MoSS execution on 12-node Jetson TK1 cluster

92

Chapter 5. Model-driven Performance Analysis

 0

 20

 40

 60

 80

 100

 0

 50

 100

 150

 200

 250

 300

 350

U
ti
liz

a
ti
o
n
 [
%

]

P
o
w

e
r

[W
]

Hadoop CPU Utilization
Hadoop I/O Utilization

Hadoop Power

MoSS CPU+GPU Utilization
MoSS I/O Utilization

MoSS Power

 0 20 40 60 80 100 120 140

Time [s]

Hadoop Map
Hadoop Shuffle

Hadoop Reduce

MoSS Map
MoSS Shuffle

MoSS Reduce

(d) MM

 0

 20

 40

 60

 80

 100

 0

 50

 100

 150

 200

 250

 300

 350

U
ti
liz

a
ti
o
n
 [
%

]

P
o
w

e
r

[W
]

Hadoop CPU Utilization
Hadoop I/O Utilization

Hadoop Power

MoSS CPU+GPU Utilization
MoSS I/O Utilization

MoSS Power

 0 20 40 60 80 100 120 140

Time [s]

Hadoop Map
Hadoop Shuffle

Hadoop Reduce

MoSS Map
MoSS Shuffle

MoSS Reduce

(e) SS

 0

 20

 40

 60

 80

 100

 0

 50

 100

 150

 200

 250

 300

 350

U
ti
liz

a
ti
o
n
 [
%

]

P
o
w

e
r

[W
]

Hadoop CPU Utilization
Hadoop I/O Utilization

Hadoop Power

MoSS CPU+GPU Utilization
MoSS I/O Utilization

MoSS Power

 0 20 40 60 80 100 120 140 160 180 200

Time [s]

Hadoop Map
Hadoop Shuffle

Hadoop Reduce

MoSS Map
MoSS Shuffle

MoSS Reduce

(f) GR

Figure 5.1: Hadoop and MoSS execution profile on 12-node Jetson TK1 cluster

93

Chapter 5. Model-driven Performance Analysis

Table 5.1: Notations

Symbol Description

Application
S input size
R number of input records1

SM Map output size
RM Map output records

Framework
SK input split size
ςM Map slots per node
ςR Reduce slots per node
NPT number of tasks for phase P2

r number of input records per task
System

n number of cluster nodes
c CPU cores per cluster node
g GPU cores per cluster node
d generic notation for CPU/GPU threads
h GPU threads per cluster node

Baseline run
SB input size of baseline run
SM,B size of Map output for baseline run
RM,B Map phase output records for baseline run
T U

Mr execution time of one Map record on execution unit U3

T U

Rr execution time of one Reduce record on execution unit U
PP average power usage during phase P
BHDFS HDFS I/O bandwidth
σ(n) scaling as function of node count

Model
T execution time
TP execution time of phase P
T U

P
(R, t) execution time of phase P on execution unit U using t threads

T U

PT (r, t) execution time of a task on execution unit U using t threads
T U

Pr processing time of one record during phase P on U
T U

I/O time to read/write records for processing on U

KP proportionality factors for phase P
E energy
1 We use the terms <key,value> and record interchangeably.
2 Phase P can be Map(M), Shuffle(S), or Reduce(R).
3 Execution unit U can be CPU or GPU.

94

Chapter 5. Model-driven Performance Analysis

 0 100 200 300 400 500 600 700

Time [s]

Map Task Shuffle Task Reduce Task

Figure 5.2: Detailed MapReduce execution of Grep on one cluster node

split size in Hadoop. These Map tasks are executed in waves on a number of slots,

ςM , specified in Hadoop’s mapred-site.xml configuration file. A best practice is to

set this number of slots equal to the number of CPU cores on a cluster node [72].

In our example depicted in Figure 5.2, Jetson TK1 has four cores, thus, Map

tasks are executed in waves of four tasks. Each Map task processes r records

sequentially by applying user-defined map() function, and produces none, one or

multiple <key, value> pairs. These pairs are sorted based on their keys to form

lists of pairs with the same key. Each Reduce task processes one of these lists of

pairs by applying user-defined reduce() function, and produces the final output

<key, value> pairs.

Assumption 1. Typical MapReduce workloads have input records of small size

and this record size is roughly constant across different input sizes.

Further description of MapReduce execution is based on Assumption 1 which is

in correlation with works analyzing real MapReduce traces from Facebook and Ya-

hoo, among others [29,63]. For these workloads, each Map task processes roughly

the same amount of records,

r ≃
R

NMT
≃

R · SK

S
(5.3)

and takes roughly the same amount of time to finish, as shown in Figure 5.2 for

Grep. Hence, Map phase time distributed on a cluster with n nodes, where each

95

Chapter 5. Model-driven Performance Analysis

node allocates ςM Map task slots and uses execution unit U with d threads is

T U

M (R, d) =

⌈

NMT

n · ςM

⌉

· T U

MT (r, d) (5.4)

In Hadoop running only on the CPU, Map task time is

TCPU
MT (r, d) = r · TCPU

Mr (5.5)

since all records are processed sequentially by the task using a single CPU thread.

When running MoSS on a GPU with d threads, Map task time is

TGPU
MT (r, d) =

⌈r

d

⌉

· TGPU
Mr (5.6)

since d records are processed at a time using the lazy processing technique. While

TGPU
Mr may vary with the number of threads used, d, once this thread count is set,

we assume the processing time per record remains constant and is not affected by

the GPU’s internal architecture. Moreover, this processing time per record remains

constant for a given application across different inputs with the same record size.

Hence, we make the following assumption for which we present empirical evidence

in Section 5.3.

Assumption 2. Processing time for one record during Map phase, TMr, is con-

stant across different input sizes.

In summary, Map phase time is proportional to the number of input records

and the time to process one record and scales with the number of threads per task,

d, and with a scaling factor σ(n) specific to a cluster with n nodes,

TM = KM ·
1

σ(n)
·
1

d
· R · TMr (5.7)

96

Chapter 5. Model-driven Performance Analysis

where d = 1 CPU thread for homogeneous Hadoop execution, and d = h GPU

threads for heterogeneous MoSS execution.

Map phase produces RM intermediate <key,value> pairs, with a total size of

SM bytes. These pairs are shuffled and sorted based on their keys to form lists

of pairs having the same key. Each Reduce task processes one of these lists by

applying user-defined reduce() function to produce the final <key,value> pairs.

RM and SM are application-dependent and proportional with input size S. For

the applications evaluated in this thesis, RM and SM grow linearly with S, as

shown in Section 5.3.

Assumption 3. Map phase output size, SM , and number of output records, RM ,

grow linearly with input size, S.

To determine the values of SM and RM for a given input size, we perform

baseline runs on a smaller input, SB, and use linear regression,

RM (S) =
S

SB
· RM,B (5.8)

SM(S) =
S

SB
· SM,B (5.9)

Shuffle phase partially overlaps with Map phase, as shown in Figure 5.1. The

non-overlapped part of Shuffle phase is due to the transfer of the<key,value> pairs

produced by the last wave of Map tasks. We estimate the output size of this last

wave of Map phase as being proportional with the input split size, SK , reported

to input size, S. Since there are ςM Map tasks producing this <key,value> pairs,

and considering HDFS bandwidth per node, BHDFS, the non-overlapped Shuffle

time is

TS = KS · ςM ·
SK

S
· SM(S) ·

1

BHDFS
(5.10)

97

Chapter 5. Model-driven Performance Analysis

Using Equation 5.9, we obtain

TS = KS · ςM ·
SK

S
·
S

SB

· SM,B ·
1

BHDFS

(5.11)

Reduce phase time is determined, among others, by application and input char-

acteristics, and it is proportional with the output of Map phase that we suppose

to grow linearly with the input size. Similar to Map phase, we assume the time

to process one record during Reduce phase to be constant across problem size.

Assumption 4. Processing time for one record during Reduce phase, TRr, is

constant across different input sizes.

This assumption holds for the applications evaluated in this paper, as shown

in Section 5.3. In practice, the user must adapt the model to the characteristics

of a specific MapReduce application. Reduce phase time is

TR = KR ·
1

σ(n)
·RM (S) · TRr (5.12)

Using Equation 5.8, we obtain

TR = KR ·
1

σ(n)
·
S

SB

·RM,B · TRr (5.13)

5.2 Energy Model

The energy model is derived based on the observation that the power utilization

is proportional to system utilization and that during Map phase, this utilization is

usually more than 90%, while during Shuffle and Reduce phase it is low, typically

less than 10%, as shown in Figure 5.1. This observation is based on analyzing

a large volume of MapReduce executions on different cluster systems. Thus, we

model the total energy as being the sum of energies during each phase, multiplied

98

Chapter 5. Model-driven Performance Analysis

by the number of cluster nodes,

E = n · (TM · PM + TS · PS + TR · PR) (5.14)

To increase the accuracy, we measure during baseline runs the average power

values for MapReduce execution phases, PM , PS and PR. In case the user does

not have access to power measurements but she knows systems specifications for

idle and peak power, she can approximate the power as function of utilization for

Map, Shuffle and Reduce phases.

5.3 Validation

In this section, we validate the predicted time and energy values against measured

values. We start by discussing model parameterization using baseline runs, and

show empirical evidence for some of the assumptions made in the previous sections.

Our hybrid time-energy analytic models use measured parameters to increase

accuracy. These parameters, listed in Table 5.1 under Baseline run, are measured

during applications execution using the small input size B described in Section 4.1.

We summarize parameter values for both Hadoop and MoSS on three system

configurations in Table 5.2. These configurations consist of Jetson TK1 using four

Map slots, i7 using eight Map slots and Amazon using eight Map slots. All these

systems allocate one slot for Reduce tasks. Power values are not available for cloud

instances because Amazon does not provide power and energy measurements.

All baseline parameters can be measured on single-node setups, except for

HDFS bandwidth, BHDFS, and for the scaling function σ(n), which need to be

measured on clusters of multiple nodes. We show in the Appendix B, Section B.2,

that HDFS performance at single-node and cluster level are different due to the

99

Chapter 5. Model-driven Performance Analysis

Table 5.2: Models parameters

App. System
SM,B RM,B

T
Hadoop
Mr TMoSS

Mr T
Hadoop
Rr TMoSS

Rr P
Hadoop
M PMoSS

M P
Hadoop
S/R PMoSS

S/R σ(n)
[MB] [µs] [µs] [µs] [µs] [W] [W] [W] [W]

Jetson
16.2 1,000,000

1852.0 527.0 7.0 6.0 20.1 14.1 12.6 12.7 0.86n+0.25
PI i7 336.0 343.0 6.0 6.0 105.9 122.2 55.9 61.8 0.69n+0.49

Amazon 393.0 196.5 6.0 7.0 - - - - 0.69n+0.49
Jetson

923.3 60,000,000
27.4 13.0 5.4 5.3 18.2 17.5 17.6 16.3 0.33n+0.72

BS i7 5.2 1.9 0.8 0.8 103.7 135.7 102.2 121.7 0.24n+1.06
Amazon 6.3 2.1 1.4 1.4 - - - - 0.24n+1.06
Jetson

4,119.4 41,694,000
24.1 26.4 2.6 2.7 16.2 16.5 16.0 15.5 0.35n+1.20

KM i7 4.3 2.3 0.9 1.5 99.6 103.3 80.0 112.2 0.04n+0.80
Amazon 5.2 3.2 1.0 1.0 - - - - 0.04n+0.80
Jetson

13.1 810,000
234.6 235.8 7.4 8.6 15.8 16.0 16.8 17.0 0.58n+0.73

MM i7 101.2 116.0 7.4 8.6 73.4 85.1 88.6 110.6 0.49n+0.84
Amazon 108.6 129.6 8.6 7.4 - - - - 0.49n+0.84
Jetson

10.6 810,000
234.6 244.4 7.4 8.6 16.0 16.0 16.8 16.7 0.58n+0.73

SS i7 102.5 109.9 7.4 8.6 75.0 97.9 89.4 110.6 0.49n+0.84
Amazon 111.1 129.6 7.4 8.6 - - - - 0.49n+0.84
Jetson

76.4 10,019,282
4.2 4.2 1.6 1.1 16.2 16.5 17.1 17.1 0.58n+0.30

GR i7 1.2 1.3 0.6 0.7 92.0 95.1 95.5 115.6 0.49n+0.84
Amazon 1.4 1.4 0.6 0.6 - - - - 0.49n+0.84

effects of networking and replication. Similarly, we show in Chapter 4 and Ap-

pendix B that Hadoop does not scale with the identity function, and, thus, we

approximate scaling factors using linear equations

σ(n) = a · n + b (5.15)

and list them in Table 5.2. We assign Amazon’s scaling factor to i7 since we

have a single node of this type for baseline runs and since these two systems have

similar specifications and exhibit similar performance, as shown by the baseline

runs values.

Next, we validate three assumptions made during model description using em-

pirical evidence.

Assumption 2. Processing time for one record during Map phase, TMr, is con-

stant across different input sizes.

To validate this assumption, we measure TMr for all applications across all

four input sizes and plot the results in Figure 5.3. We observe a higher variation

among results for MM and SS which can be explained by the fact that record size

is slightly different across input size for these two workloads, as shown in Table 4.1.

100

Chapter 5. Model-driven Performance Analysis

 0

 0.2

 0.4

 0.6

 0.8

S B M L

T
im

e
 [
m

s
]

Input Size

PI
BS

KM
MM

SS
GR

(a) Hadoop, Jetson TK1

 0

 0.2

 0.4

 0.6

 0.8

S B M L

T
im

e
 [
m

s
]

Input Size

PI
BS

KM
MM

SS
GR

(b) MoSS, Jetson TK1

 0

 0.2

 0.4

S B M L

T
im

e
 [
m

s
]

Input Size

PI
BS

KM
MM

SS
GR

(c) Hadoop, Amazon EC2

 0

 0.2

 0.4

S B M L

T
im

e
 [
m

s
]

Input Size

PI
BS

KM
MM

SS
GR

(d) MoSS, Amazon EC2

Figure 5.3: Map record processing time

In addition, the results plotted in Figure 5.3 support our decision to use size B for

baseline runs since model parameters have values similar to those of input sizes

M and L.

Assumption 3. Map phase output size, SM , and number of output records, RM ,

grow linearly with input size, S.

To validate this assumption used by Equations 5.8 and 5.9, we have com-

puted Pearson correlation coefficients (PCC) between S and SM , and S and RM

respectively, for all workloads. All computed coefficients are greater than 0.99,

suggesting a very strong correlation between the linearity of the input size and

the Map output size and number of records.

Assumption 4. Processing time for one record during Reduce phase, TRr, is con-

101

Chapter 5. Model-driven Performance Analysis

 0

 0.01

 0.02

 0.03

 0.04

S B M L

T
im

e
 [
m

s
]

Input Size

PI
BS

KM
MM

SS
GR

(a) Hadoop, Jetson TK1

 0

 0.01

 0.02

 0.03

 0.04

S B M L

T
im

e
 [
m

s
]

Input Size

PI
BS

KM
MM

SS
GR

(b) MoSS, Jetson TK1

 0

 0.02

 0.04

 0.06

 0.08

S B M L

T
im

e
 [
m

s
]

Input Size

PI
BS

KM
MM

SS
GR

(c) Hadoop, Amazon EC2

 0

 0.02

 0.04

 0.06

 0.08

S B M L

T
im

e
 [
m

s
]

Input Size

PI
BS

KM
MM

SS
GR

(d) MoSS, Amazon EC2

Figure 5.4: Reduce record processing time

stant across different input sizes.

To validate this assumption, we measure TRr for all applications across all four

input sizes and plot the results in Figure 5.4. Counter to intuition, we observe

higher values for TRr on input size S, while for the other sizes the values are similar.

This could be explained by the Sort phase which is included in the Reduce phase of

Hadoop. For small sizes, sort cannot be properly overlapped with reduce function

calls, hence, the overall efficiency of Reduce phase is lower. Similar to the profiling

of TMr, the results for TRr show that size B is more suitable for baseline runs to

get input parameters with values similar to input sizes M and L.

Lastly, we present average time model error on a total of 264 configurations

and average energy model error on a total of 192 configurations. This number

of configurations is determined when using six applications, two input sizes for

102

Chapter 5. Model-driven Performance Analysis

Table 5.3: Models error

Jetson Jetson i7 i7 Amazon
(2/1 slots) (4/1 slots) (4/1 slots) (8/1 slots) (8/1 slots)

Time [%] Energy [%] Time [%] Energy [%] Time [%] Energy [%] Time [%] Energy [%] Time [%]
PI 14.0 11.8 7.7 9.8 2.5 8.7 1.2 1.1 14.9
BS 6.6 6.6 16.0 20.5 4.0 4.9 3.6 1.7 19.7
KM 19.7 21.5 18.9 17.8 5.1 12.3 7.1 9.4 19.9
MM 10.3 13.0 19.2 16.9 13.4 19.1 9.4 22.4 13.6
SS 10.8 13.9 15.4 11.0 13.8 15.4 8.8 23.3 12.9
GR 8.4 10.2 19.7 15.6 19.5 15.8 7.3 21.9 18.3

each application, three cluster size for Jetson and Amazon, consisting of one, six

and twelve nodes, one cluster size for single-node i7, and two framework, namely

Hadoop and MoSS. Moreover, we configure two and four slots for Map tasks on

Jetson, while on i7 we configure four and eight Map tasks slots. All systems

allocate one slot for Reduce tasks. Since we cannot measure the energy in the

cloud, there are 192 configurations for energy validation, in contrast with 264 for

time validation.

We compute model error percentage as the difference between measured and

predicted value, reported to the measured value. Table 5.3 shows the percentage

error for each application on three cluster configurations. Amazon EC2 is not

reporting the energy usage, thus, we show only execution time validation. The

highest average time error per workload is 19.9% for KM on Amazon, while the

highest error for predicted energy is 23.3% for SS on i7. We observe that higher

errors are encountered by applications with significant I/O requirements, such as

KM, SS and GR. These applications also exhibit higher variation among differ-

ent runs, as shown in Section 4.4. In summary, the overall average errors across

all configurations for execution time and energy usage are 13.3% and 14.1%, re-

spectively. These values are comparable with those reported by related works, as

presented in Chapter 2, Section 2.2. However, the accuracy of our models could be

improved by (i) modeling Map and Reduce processing time per record in detail by

including CPU, GPU, memory and I/O parameters, (ii) measuring these system

103

Chapter 5. Model-driven Performance Analysis

parameters using hardware counters, (iii) using advanced mathematical modeling

techniques, such as the LWLR technique used by HP+ [64]. In contrast to other

works [54,55,93,94], we avoid the high overhead due to in-depth profiling. More-

over, our models are easy to apply since they do not require additional Hadoop or

MoSS code for profiling.

5.4 Formal Model-driven Analysis

5.4.1 Formal Analysis of Lazy Processing

In this section, we use our models to formally show that (i) lazy processing is

better than chunking for inputs with low record size skew, and that (ii) selecting

a thread count value that achieves minimum execution time on small inputs, also

achieves minimum execution time on larger inputs with similar record size.

Statement 1. Given a MapReduce application and an input with low record size

skew, lazy processing is faster than chunking.

Proof. Let each Map task process r records of relatively the same size, as stated

in Assumption 1, on h GPU threads. Without losing generality, we suppose r is

a multiple of h. Lazy processing takes h records at a time, transfers them to the

GPU, processes them on the GPU, collects and outputs the results on the CPU.

By developing Equation 5.6, task time for lazy processing1 is

TLP
MT (r, h) =

r

h
· (h · TI/Or + TMr) (5.16)

where data transfer and result outputting for each record is depicted by TI/Or. In

contrast, chunking partitions each record, sends it for processing on h treads, col-

1We use LP and CK superscripts to denote lazy processing and chunking, respectively.

104

Chapter 5. Model-driven Performance Analysis

lects and computes the final result before outputting. Thus, the time for chunking

technique is

TCK
MT (r, h) = r · (Tsetup + TI/Or +

TMr

h
) (5.17)

where partitioning and final result computing are denoted by Tsetup. We can

safely assume that transfer and output times, TI/O, are the same for both tech-

niques because they are working with the same amount of data. Moreover, we can

assume that the time for processing one record on h threads is TMr

h
for chunking.

However, we cannot neglect the effect of partitioning and result collection. For

example, when Grep application processes one input line on multiple threads, the

developer needs to pay attention to word boundary when splitting the input and

must perform result reduction before outputting the final result. Thus, task time

for chunking is generally higher than task time for lazy processing due to setup

time for input chunking and output collection.

Statement 2. Given a MapReduce application and two inputs of the same type,

selecting a thread count value that achieves minimum execution time on a small

input also achieves minimum execution time on larger inputs.

Proof. Let S1 be the small input size and S2 the larger input size, with corre-

sponding number of records R1 and R2, respectively. Since the inputs are of the

same type, record processing time is the same across input sizes, as stated in

Assumption 2 and validated in Section 5.3.

Our hypothesis states that there is no h′ to achieve better execution with the

small input,

∄h′, h′ 6= h : TGPU
M (R1, h

′) < TGPU
M (R1, h) (5.18)

However, suppose there is a h′′ that achieves better execution with the large input,

∃h′′, h′′ 6= h : TGPU
M (R2, h

′′) < TGPU
M (R2, h) (5.19)

105

Chapter 5. Model-driven Performance Analysis

Using Equation 5.4 and Equation 5.6, we obtain that

TGPU
M (R2, h

′′) < TGPU
M (R2, h)⇒

⌈ r2

h′′

⌉

· TGPU
Mr <

⌈r2

h

⌉

· TGPU
Mr ⇒

⌈ r1

h′′

⌉

· TGPU
Mr <

⌈r1

h

⌉

· TGPU
Mr ⇒

TGPU
M (R1, h

′′) < TGPU
M (R1, h)

(5.20)

which contradicts our hypothesis in Equation 5.18.

In practice, we observe that not only the same value of h achieves minimum

execution time across workload sizes, but also across different workloads, as shown

in Section 4.3.1.

5.4.2 Formal Analysis of Dynamic Techniques

We formally analyze the cases where overlapping does not achieve better perfor-

mance compared to selecting the best execution unit between the CPU and GPU.

When overlapping CPU and GPU processing the execution time is

T
Overlapping
MT (r, h) = p · TCPU

I/O + (r − p) · TCPU+GPU
I/O

+max(p · TCPU
Mr ,

⌈

r − p

h

⌉

· TGPU
Mr)

(5.21)

where p is the total number of records processed on the CPU. We analyze the

cases where overlapping time is equal or higher than the best time of CPU- and

GPU-only execution,

T
Overlapping
MT (r, h) ≥ min(TCPU

MT (r, 1), TGPU
MT (r, h)) (5.22)

106

Chapter 5. Model-driven Performance Analysis

For simplicity and without affecting the analysis, we suppose that r is a multiple

of h. There are two cases to analyze:

1. Record processing achieves better performance on the CPU compared to the

GPU

TCPU
Mr ≤ TGPU

Mr and TCPU
MT ≤ TGPU

MT (5.23)

There are two sub-cases for evaluating the maximum in Equation 5.21:

(a) The processing of p records on the CPU takes longer that the processing

of r − p records on the GPU, hence Equation 5.21 becomes

T
Overlapping
MT (r, h) = p · (TCPU

I/O + TCPU
Mr)

+(r − p) · TCPU+GPU
I/O

(5.24)

Applying the inequality in Equation 5.22 results in

TCPU+GPU
I/O − TCPU

I/O ≥ TCPU
Mr (5.25)

a highly-encountered case in real world where transfer times between

main memory and GPU memory are higher than processing times [71].

(b) The processing of r − p records on the GPU takes longer that the

processing of p records on the CPU,

p · TCPU
Mr ≤

⌈

r − p

h

⌉

· TGPU
Mr (5.26)

and Equation 5.21 becomes

T
Overlapping
MT (r, h) ≤ p · TCPU

I/O

+(r − p) · (TCPU+GPU
I/O +

1

h
· TGPU

Mr)
(5.27)

107

Chapter 5. Model-driven Performance Analysis

Applying the inequality in Equation 5.22 results in

⌈

r − p

h

⌉

· TGPU
Mr +

(r − p)(TCPU+GPU
I/O − TCPU

I/O) ≥ r · TCPU
Mr

(5.28)

which means that the processing of all r records on the CPU should be

much faster than processing r − p records on the GPU.

2. Record processing achieves better performance on the GPU compared to the

CPU

TCPU
Mr ≥ TGPU

Mr and TCPU
MT ≥ TGPU

MT (5.29)

There are two sub-cases for evaluating the maximum in Equation 5.21:

(a) The processing of p records on the CPU takes longer that the processing

of r − p records on the GPU,

p · TCPU
Mr ≥

⌈

r − p

h

⌉

· TGPU
Mr (5.30)

Applying the inequality in Equation 5.22 results in

p · TCPU
Mr −

⌈ r

h

⌉

· TGPU
Mr ≥

p · (TCPU+GPU
I/O − TCPU

I/O) ≥ 0

(5.31)

which implies that the processing time of one record is much larger on

the CPU than the GPU.

(b) The processing of r − p records on the GPU takes longer that the

processing of p records on the CPU. Applying the inequality in Equa-

108

Chapter 5. Model-driven Performance Analysis

tion 5.22 results in

TGPU
Mr ≥ TCPU+GPU

I/O − TCPU
I/O (5.32)

an ideal case for GPU execution where the computation takes longer

than the communication represented by data transfers.

In summary, the overlapping exhibits worse performance compared to selecting

the best execution unit between the CPU and GPU when there is a large imbalance

between system resources. This happens either when CPU processing is much

faster than GPU processing, or when GPU processing is much faster than CPU

processing but the computation time on GPU is higher than data transfer and

loading times.

5.5 System Profile Analysis

In this section, we are analyzing the effect of system profile on the time-energy

performance of Hadoop and MoSS on Jetson TK1 system. Firstly, to analyze the

influence of storage system, we are comparing the hard-disk (HDD) used in our

evaluation of MoSS with a solid-state drive (SSD). A stand-alone characterization

using dd Linux tool shows that the SSD has 83% and 56% higher read and write

throughput compared to the HDD, respectively. But from HDFS perspective, SSD

read throughput is four times higher than HDD throughput while write throughput

is similar. On the other hand, HDFS throughput is at least four times lower

compared to raw throughput, showing the poor performance of HDFS layer which

is not able to fully utilize storage capabilities. From power and energy perspective,

the SSD is more efficient since it decreases the idle power of Jetson TK1 from 6.5 W

to 3.8 W.

109

Chapter 5. Model-driven Performance Analysis

Analyzing the effect of replacing the storage on MapReduce workloads, we ob-

serve that the execution time remains almost the same, except for KM which shows

an improvement of 10% when using the SSD. As we explained in Section 4.4.1,

KM has mixed system resource demands, thus, using a faster storage improves

its overall performance. For the other workloads, I/O operations are mostly over-

lapped with CPU/GPU processing. On the other hand, these results show that

Hadoop is not able to exploit the advantage of faster storage devices.

From energy perspective, the system with SSD saves between 18% and 33%

of the energy used by the system with HDD. This is almost exclusively due to

the lower power profile of the SSD, rather that improvements in execution time.

Because the system with SSD is more energy-efficient, we are using it for the

remaining of this section.

Secondly, we are analyzing the hypothetical case of increasing system’s per-

formance such that Map and Reduce record processing time are improved by a

factor β. However, increasing system’s performance leads to higher power usage.

Hence, we determine the maximum increase in processing power such that the

overall energy usage of the new system is at most the same as the energy us-

age of the initial system. We assume that idle power, PI = 3.8 W , remains the

same and that processing power is always higher than idle power. The processing

power of the initial Jetson system is computed as the average across all workloads,

PP = 10.4 W . Given a fixed time, T , the system does useful work for a time TP

and stays idle for a time TI such that TP +TI = T . The improved system does the

processing faster, T
′

P = TP

β
, and remains idle for the rest of the time, T

′

I = 1− TP

β
.

We want the energy usage of the improved system to be at most equal to the

energy usage of the initial system, E
′

≤ E, during the time period T . Solving this

inequality, we obtain

P
′

P (β) ≤ β · PP + (1− β) · PI (5.33)

110

Chapter 5. Model-driven Performance Analysis

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6 7 8

P
o

w
e

r
[W

]

Performance improvement factor (β)

Processing Power Range
Initial Processing Power

Idle power

Figure 5.5: System power profile

We plot this inequality in Figure 5.5 where the highlighted area represents the

possible values for the processing power of the improved system. For example, if

the new system is eight times faster, it can use up to 57 W, almost six times more

than the initial system, and still consume the same energy. Through this type of

analysis, our models can help the designing of future energy-efficient systems able

to process data much faster.

5.6 Model-driven Analysis of

Scale-out Workloads and Systems

In this section, we compare heterogeneous with homogeneous and wimpy with

brawny systems to determine time-energy-efficient configurations for executing

scale-out data-parallel workloads on scale-out clusters. For this comparison, we

apply our time-energy models on input sizes in the order of terabytes and clusters

with more than 100 nodes.

111

Chapter 5. Model-driven Performance Analysis

5.6.1 Homogeneous versus Heterogeneous

First, we provide an answer to the research question: is a heterogeneous cluster

consisting of nodes equipped with GPUs more energy-efficient than a homogeneous

cluster with CPU-only nodes? Let the homogeneous cluster run Hadoop, while the

heterogeneous cluster runs MoSS to exploit GPU acceleration. Given a workload

mix of compute- and data-intensive applications that run alternatively and not

at the same time, let α denote the ratio of compute-intensive workload, ranging

from zero to one. Specifically, this workload mix runs for times of T and T ′ on

the homogeneous and heterogeneous clusters, respectively. On the homogeneous

cluster, compute- and data-intensive workloads run for total times Tc and Td,

respectively, such that

T = Tc + Td = α · T + (1− α) · T (5.34)

where

α =
Tc

T
(5.35)

Based on our measurement analysis presented in Chapter 4, data-intensive ap-

plications achieve the same time performance on homogeneous and heterogeneous

clusters with GPU, such that Td = T ′

d. In contrast, compute-intensive applications

achieve a speedup S due to GPU acceleration. Thus, workload mix execution time

on the heterogeneous cluster becomes

T ′ = α ·
T

S
+ (1− α) · T (5.36)

112

Chapter 5. Model-driven Performance Analysis

We define the time saving achieved by the heterogeneous cluster as

T − T ′

T
= α−

α

S
(5.37)

For energy, we have to consider different average power usage, Pc and P ′

c for

homogeneous nodes, Pd and P ′

d for heterogeneous nodes running compute- and

data-intensive applications, respectively. Since energy is the product of execution

time and average power usage, for the homogeneous cluster we have

E = α · T · Pc + (1− α) · T · Pd (5.38)

while for the heterogeneous cluster the energy usage is

E ′ = α ·
T

S
· P ′

c + (1− α) · T · P ′

d (5.39)

Hence, energy saving is defined as

E − E ′

E
= 1−

E ′

E
= 1−

α
S
· P ′

c + (1− α) · P ′

d

α · Pc + (1− α) · Pd
(5.40)

For this analysis, we select BS and GR as representative for compute- and data-

intensive applications, respectively, and clusters of 100 nodes for both brawny and

wimpy systems. Using model equations, we derive the execution time and energy

savings as function of compute-intensive workload ratio, α. These savings are

derived as the difference between the time or energy values on homogeneous and

heterogeneous systems, reported to the values on homogeneous systems. Thus,

positive values represent time and energy savings, while negative values show that

heterogeneous systems are less efficient than homogeneous systems.

Time and energy savings for both brawny and wimpy systems are plotted in

113

Chapter 5. Model-driven Performance Analysis

-20

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

S
a

v
in

g
s
 [

%
]

Compute-intensive workload ratio (α) [%]

Time Savings Brawny
Energy Savings Brawny

Time Savings Wimpy
Energy Savings Wimpy

Figure 5.6: Time and energy savings on heterogeneous clusters

Figure 5.6. Energy savings are up to 43% and 35% on brawny and wimpy hetero-

geneous clusters, respectively, when running only compute-intensive workloads.

These results are similar to the measurements presented in Section 4.4 where

MoSS running BS on Jetson TK1 clusters achieves energy savings between 20%

and 40%. For a balanced mix of 50% compute-intensive and 50% data-intensive

workload, the energy savings for both brawny and wimpy clusters have the same

value, 20%. The only area with energy loss is for the brawny cluster when the

compute-intensive workload represents less than 9.3% of the total load. This

energy loss is due to the higher idle power of the brawny system with GPU while

this accelerator is not used. In contrast, the GPU of wimpy Jetson TK1 is much

more energy-efficient and, thus, it does not affect the idle energy. In summary, we

advocate for heterogeneous clusters consisting of nodes with CPU and GPU for

faster and energy-efficient data-parallel processing.

5.6.2 Brawny versus Wimpy

In this last section, we provide an answer to the research question: are wimpy

nodes more energy-efficient for data-parallel processing compared to traditional

114

Chapter 5. Model-driven Performance Analysis

 0.1

 0.5

 1

 5

 10

PI BS KM MM SS GR

 0.1

 0.5

 1

 5

 10
#

 o
f

n
o

d
e

s
 [

*1
0

0
]

N
o

rm
a

liz
e

d
 E

n
e

rg
y
 (

B
ra

w
n

y
)

Brawny Nodes
Wimpy Nodes

Brawny Energy
Wimpy Energy

(a) Nodes with HDD

 0.1

 0.5

 1

 5

 10

PI BS KM MM SS GR

 0.1

 0.5

 1

 5

 10

#
 o

f
n

o
d

e
s
 [

*1
0

0
]

N
o

rm
a

liz
e

d
 E

n
e

rg
y
 (

B
ra

w
n

y
)

Brawny Nodes
Wimpy Nodes

Brawny Energy
Wimpy Energy

(b) Nodes with SSD

Figure 5.7: Model-based brawny-wimpy equivalence

115

Chapter 5. Model-driven Performance Analysis

brawny nodes? To answer this question, we are using the time-energy models

and the observation that an equivalence ratio can be established between a single

brawny node and multiple wimpy nodes such that they achieve the same exe-

cution time, as shown by our measurement-driven analysis in Section 4.5.3. We

are using the i7 and Jetson TK1 with HDD and SSD as representatives for the

brawny and wimpy systems, respectively, and a cluster with 100 brawny nodes as

baseline. Using the models, we determine how many wimpy nodes are needed in

the wimpy cluster to achieve the same execution time as the brawny cluster for

each application. We then compare the energy usage of the two types of clusters.

The results for Jetson nodes with both HDD and SSD are plotted in Figure 5.7

using log scale to highlight energy savings. The plot shows that the equivalence

ratio between brawny and wimpy nodes ranges between 1:1 for PI and 1:5 for BS,

while wimpy nodes save up to 93% of the energy for PI on Jetson TK1 with SSD.

These model-based results for clusters with hundreds of nodes are similar but

more optimistic compared to the single-node measurements presented in Sec-

tion 4.5.3. For BS, measured values lead to an equivalence ratio of 1:6 while

model-based values lead to equivalence ratio of 100:445, or 1:5 using ceiling, and

100:488, or 1:5, for nodes with HDD and SSD, respectively. For KM, measured

values lead to an equivalence ratio of 1:3, while model-based results expose equiv-

alence ratios of 1:3 and 1:2 for nodes with HDD and SSD, respectively. Even if

we consider installation space and cost of acquisition, it is still possible to replace

one brawny node with up to five or six wimpy nodes to achieve energy-efficient

data-parallel processing. Hence, our analysis advocates for heterogeneous wimpy

nodes to achieve efficient data-parallel processing.

116

Chapter 5. Model-driven Performance Analysis

5.7 Summary

In this thesis chapter, we have introduced our measurement-driven analytic models

to determine the execution time and energy usage of data-parallel MapReduce

execution using Hadoop on homogeneous systems with CPUs and using MoSS

on heterogeneous systems with CPUs and GPUs. To the best of our knowledge,

we are the first to design an energy usage model for MapReduce. Our models

use baseline runs to measure key parameters in order to increase the accuracy.

For example, the energy model uses measured values of average power during

Map, Shuffle and Reduce phases of MapReduce execution. We have validated our

models on up to 264 configurations consisting of six applications, two frameworks

represented by Hadoop and MoSS, two input sizes, three cluster sizes and three

types of systems covering both brawny and wimpy nodes. This validation shows

an average model error below 15% for both time and energy.

Using our models, we have first proved in a formal way that lazy process-

ing is faster than chunking and we have analyzed the cases where overlapping is

less suitable compared to selecting the fastest execution unit between the CPU

and GPU. This formal analysis strengthens the description of our techniques for

efficient data-parallel processing on heterogeneous systems.

Secondly, we have analyzed real and hypothetical system configurations to

improve the time-energy performance of data-parallel processing. We show that

replacing the traditional HDD with the faster SSD does not significantly affect the

execution time but can save up to 33% of the energy.

Thirdly, we have compared heterogeneous with homogeneous systems and

wimpy with brawny systems when processing large inputs on clusters with hun-

dreds of nodes. In line with our measurement-driven analysis, we show that het-

erogeneous systems always save time and energy when the workload mix contains

117

Chapter 5. Model-driven Performance Analysis

at least 10% of compute-intensive data-parallel workload. Next, we show that mul-

tiple wimpy nodes achieve the same time performance as one brawny node while

saving up to 93% of the energy. Hence, we advocate for heterogeneous wimpy

nodes to achieve efficient data-parallel processing.

118

Chapter 6

Conclusions

We conclude by summarizing our current work and briefly discussing future re-

search directions.

6.1 Summary

In the last few years, we have witnessed the explosion of Big Data, the advent of

data-parallel processing, and the proliferation of heterogeneous systems that com-

bine multiple processing units with different performance-to-power ratio (PPR). In

this context, our objective is to efficiently execute batch data-parallel applications

on heterogeneous systems, with a focus on intra-node and intra-chip heterogeneous

systems with GPU. To achieve this objective, we propose an approach consisting

of three parts, (i) techniques for efficient execution of data-parallel applications

on intra-node and intra-chip heterogeneous systems with accelerators, such as

GPUs [70,71], (ii) measurement-driven [71,72] and (iii) model-driven time-energy

performance analysis of data-parallel applications on heterogeneous systems. We

briefly summarize the contributions of this thesis, as previously depicted in the

context of related work in Figure 2.1.

119

Chapter 6. Conclusions

Techniques for Efficient Data-parallel Processing on Heterogeneous Sys-

tems with GPU

We have firstly presented our techniques for efficient data-parallel processing on

intra-node and intra-chip heterogeneous systems with GPU and their implemen-

tation under MoSS, a Hadoop-CUDA framework that we have developed. MoSS

allows developers to easily modify existing MapReduce applications by providing

an expresive GPU API and by preserving application’s logic structure. Among

the presented techniques, lazy processing enables the processing of multiple input

records at a time on a GPU, in contrast with chunking which divides a single

record among GPU threads. Compared to chunking [84], our lazy processing

is on average 54% faster. To increase the efficiency of data-parallel processing,

we propose dynamic mapping techniques. Counter to intuition, we show that a

one-time profiling approach that selects the best processing unit achieves better

performance compared to overlapping the execution on both the CPU and GPU.

Measurement-driven Time-Energy Performance Analysis

We have evaluated our techniques using six representative workloads and two

cluster systems with diverse performance capabilities. First, we evaluate the time-

energy performance on our in-house low-power wimpy cluster based on Nvidia

Jetson TK1 nodes integrating quad-core ARM Cortex-A15 CPUs and 192-core

Nvidia Kepler GPUs on the same chip. Second, we evaluate the execution time

performance on a high-performance brawny cluster based on Amazon EC2 in-

stances equipped with discrete GPUs with 1536 cores. Compared to Hadoop [14],

MoSS improves the execution time of compute-intensive workloads by factors of

up to 3.1 and 2.3 on wimpy and brawny nodes clusters, respectively. Along with

the improvement in execution time, MoSS saves up to 80% of the energy used by

the wimpy cluster. Moreover, the execution time of MoSS is almost always within

120

Chapter 6. Conclusions

5% of the best Hadoop CPU-only execution time for data-intensive workloads.

For our in-depth performance analysis of heterogeneous systems with GPU,

we have selected three configurations representing both intra-node and intra-chip

heterogeneity, (i) an Intel i7 system hosting a discrete 640-core Nvidia GPU of

Maxwell generation, representing intra-node heterogeneous brawny systems, (ii) a

quad-core ARM Cortex-A9 with the same Maxwell GPU representing intra-node

heterogeneous wimpy systems, and (iii) a quad-core ARM Cortex-A15 integrated

with 192 Nvidia Kepler GPU cores representing intra-chip heterogeneous wimpy

systems. We evaluate the time and energy performance of these systems using

three MapReduce applications with diverse resource demands.

We have shown that for compute-intensive workloads such as BlackScholes,

the brawny heterogeneous system achieves speedups of up to 2.3 and reduces the

energy usage by almost half compared to the brawny homogeneous system. As ex-

pected, for applications such as Grep where data transfers dominate the execution

time, heterogeneous systems exhibit worse time-energy performance compared to

homogeneous systems. For example, the heterogeneous wimpy Kayla with discrete

GPU consumes 14 times the energy of the homogeneous Kayla system due to very

low host-device transfer bandwidth and high power overhead of the discrete GPU.

Moreover, the lower performance of wimpy systems on data analytics is in part

due to the small main memory size. While brawny systems have large memories to

accommodate Hadoop’s intermediate data, our profiling shows that on the wimpy

systems data is spilled to disk leading to 80% more storage transfers compared to

the brawny system. Among heterogeneous systems, the wimpy with discrete GPU

exhibits the worst time-energy performance. But the wimpy with integrated GPU

uses the lowest energy across all workloads due to more energy-efficient CPU and

GPU, and better balanced system resources. To account for the execution time

difference, we establish an equivalence ratio between a single brawny heteroge-

121

Chapter 6. Conclusions

neous node and multiple wimpy heterogeneous nodes. Based on this equivalence,

the wimpy nodes not only achieve similar execution times compared to a single

brawny node, but also exhibit energy savings of up to two-thirds. This result ad-

vocates the potential usage of wimpy systems with integrated GPUs for Big Data

analytics.

Model-driven Time-Energy Performance Analysis

Based on our extensive performance measurements, we have developed ana-

lytic models to determine the execution time and energy usage of data-parallel

MapReduce execution using Hadoop on homogeneous systems with CPUs and us-

ing MoSS on heterogeneous systems with CPUs and GPUs. To the best of our

knowledge, we are the first to design an energy usage model for MapReduce. Our

models use baseline runs to measure key parameters in order to increase the accu-

racy. For example, the energy model uses measured values of average power during

Map, Shuffle and Reduce phases of MapReduce execution. We have validated our

models on up to 264 configurations consisting of six applications, two frameworks

represented by Hadoop and MoSS, two input sizes, three cluster sizes and three

types of systems covering both brawny and wimpy nodes. This validation shows

an average model error less than 15% for both time and energy.

We have compared heterogeneous with homogeneous systems and wimpy with

brawny systems when processing large inputs on clusters with hundreds of nodes.

In line with our measurement-driven analysis, we show that heterogeneous systems

always save time and energy when the workload mix contains at least 10% of

compute-intensive data-parallel workload. Next, we show that multiple wimpy

nodes achieve the same time performance as one brawny node while saving up to

90% of the energy. Hence, we advocate for the use of heterogeneous wimpy nodes

to achieve efficient data-parallel processing.

122

Chapter 6. Conclusions

6.2 Future Work

In this section, we acknowledge the limitations of this thesis and discuss future

research directions. From programming perspective, our approach is limited by

the usage of MapReduce which exposes only two types of operators, namely Map

and Reduce. In this work, we have focused only on Map operator since (i) we

target massive data-parallel execution suitable for GPUs and (ii) we want to keep

existing application structure when writing GPU code in MoSS. Nonetheless, it

would be useful to design and analyze an approach for efficient Reduce execution

on heterogeneous systems with GPU. From systems perspective, we have focused

on Nvidia CUDA GPUs, but it is worthy to apply and analyze our techniques on

wimpy systems with wimpy GPUs such as PowerVR or Mali GPUs supporting

OpenCL programming model. Lastly, the accuracy of our time-energy models

should be improved by using in-depth measurements exposing hardware perfor-

mance metrics and advanced mathematical modeling tools.

With the announcement of Google Cloud Dataflow [5, 45] and its open source

implementation under Apache Beam [11,12], data-parallel processing enters a new

era of unified batch, micro-batch and stream processing. But Cloud Dataflow and

its runtime engines are still designed for homogeneous brawny clusters. Hence,

there is need for techniques and performance analysis of Cloud Dataflow execution

on heterogeneous wimpy clusters. We anticipate that our current approach will

further improve the time-energy performance of Cloud Dataflow applications on

heterogeneous systems. For example, ParDo operator in Cloud Dataflow which

performs fine-grain record transformation similar to Map operator in MapReduce

could use lazy processing to exploit the GPU in order to save energy. On the other

hand, Cloud Dataflow exposes more data operators compared to MapReduce.

These data operators with different runtime resource demands could use suitable

123

Chapter 6. Conclusions

heterogeneous processing units to achieve better time-energy performance. For

example, on the latest heterogeneous systems with many-core CPUs and GPUs,

such as Nvidia’s Jetson TX2 [10], the GPU could handle the ParDo operators,

the big CPU cores could handle Join and Flatten operators, while the little cores

could handle I/O operations.

While cloud has dominated computing landscape of the last decade, new ap-

plications requiring very low latency, high bandwidth and robust networking are

pushing computing to the edge of the network. Hence, edge and fog computing [3]

represent the next revolution for distributed, global-scale data processing. Using

state-of-the-art heterogeneous systems, techniques for data-parallel processing on

heterogeneous processing units and measurement-driven performance models, we

plan to advance the research on edge and fog computing and achieve the next level

of time-energy efficiency for massive-scale data-parallel processing.

124

References

[1] Amazon Elastic Compute Cloud, http://aws.amazon.com/ec2/.

[2] F. Ahmad, S. T. Chakradhar, A. Raghunathan, T. N. Vijaykumar, Tarazu:

Optimizing MapReduce on Heterogeneous Clusters, Proc. of 17th Interna-

tional Conference on Architectural Support for Programming Languages and

Operating Systems, pages 61–74, 2012.

[3] Y. Ai, M. Peng, K. Zhang, Edge Cloud Computing Technologies for Internet

of Things: A Primer, Digital Communications and Networks, Accepted

Manuscript, 2017.

[4] T. Akidau, A. Balikov, K. Bekiroğlu, S. Chernyak, J. Haberman, R. Lax,

S. McVeety, D. Mills, P. Nordstrom, S. Whittle, MillWheel: Fault-

tolerant Stream Processing at Internet Scale, Proc. of VLDB Endowment,

6(11):1033–1044, Aug. 2013.

[5] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J. Fernández-

Moctezuma, R. Lax, S. McVeety, D. Mills, F. Perry, E. Schmidt, S. Whittle,

The Dataflow Model: A Practical Approach to Balancing Correctness, La-

tency, and Cost in Massive-scale, Unbounded, Out-of-order Data Processing,

Proc. of VLDB Endowment, 8(12):1792–1803, 2015.

[6] Amazon, Amazon EMR, http://www.webcitation.org/6jvOzd7Vh, 2016.

[7] AMD, What is Heterogeneous System Architecture (HSA)?,

http://www.webcitation.org/6PgDYqFrY, 2012.

[8] AMD, AMD to Accelerate the ARM Server Ecosystem with the First ARM-

based CPU and Development Platform from a Server Processor Vendor,

http://www.webcitation.org/6PgFAdEFp, 2014.

125

[9] AMD, What is Heterogeneous Computing?,

http://www.webcitation.org/6Pg0hzrCj, 2014.

[10] AnandTech, Nvidia Announces Jetson TX2: Parker Comes To Nvidias Em-

bedded System Kit, http://www.webcitation.org/6qhLYHVCd, 2017.

[11] Apache, Beam Proposal, http://tinyurl.com/jkbpg6k, 2016.

[12] Apache, Apache Beam: An Advanced Unified Programming Model,

https://tinyurl.com/yb75o5jo, 2017.

[13] Apache, Flink, https://tinyurl.com/zocntyw, 2017.

[14] Apache, Hadoop, http://tinyurl.com/5f4ojf, 2017.

[15] Apache, Spark, https://tinyurl.com/nm9wjs9, 2017.

[16] ARM, ARM Announces Support For EEMBC CoreMark Benchmark,

http://www.webcitation.org/6RPwNECop, 2009.

[17] ARM, Dhrystone and MIPs performance of ARM processors,

http://www.webcitation.org/6RPwC2TUb, 2010.

[18] ARM, ARM Architecture Reference Manual. ARMv7-A and ARMv7-R edi-

tion, ARM, 2012.

[19] ARM, big.LITTLE Processing, http://www.webcitation.org/6Phid5IWk,

2014.

[20] K. Arvind, R. S. Nikhil, Executing a Program on the MIT Tagged-token

Dataflow Architecture, IEEE Transactions on Computers, 39(3):300–318,

1990.

[21] J. Auerbach, D. F. Bacon, P. Cheng, R. Rabbah, Lime: A Java-compatible

and Synthesizable Language for Heterogeneous Architectures, Proc. of 2010

ACM International Conference on Object Oriented Programming Systems

Languages and Applications, pages 89–108, 2010.

[22] C. Bienia, S. Kumar, J. P. Singh, K. Li, The PARSEC Benchmark Suite:

Characterization and Architectural Implications, Proc. of 17th International

Conference on Parallel Architectures and Compilation Techniques, pages 72–

81, 2008.

126

[23] T. Bingmann, Parallel Memory Bandwidth Benchmark / Measurement,

2013.

[24] C. Chambers, A. Raniwala, F. Perry, S. Adams, R. R. Henry, R. Bradshaw,

N. Weizenbaum, FlumeJava: Easy, Efficient Data-parallel Pipelines, Proc.

of 31st ACM SIGPLAN Conference on Programming Language Design and

Implementation, pages 363–375, 2010.

[25] K. Chen, J. Powers, S. Guo, F. Tian, CRESP: Towards Optimal Resource

Provisioning for MapReduce Computing in Public Clouds, IEEE Transac-

tions on Parallel and Distributed Systems, 25(6):1403–1412, 2014.

[26] L. Chen, G. Agrawal, Optimizing MapReduce for GPUs with Effective

Shared Memory Usage, Proc. of 21st International Symposium on High-

Performance Parallel and Distributed Computing, pages 199–210, 2012.

[27] L. Chen, X. Huo, G. Agrawal, Accelerating MapReduce on a Coupled CPU-

GPU Architecture, Proc. of 2012 International Conference on High Per-

formance Computing, Networking, Storage and Analysis, pages 25:1–25:11,

2012.

[28] Y. Chen, S. Alspaugh, D. Borthakur, R. Katz, Energy Efficiency for Large-

scale MapReduce Workloads with Significant Interactive Analysis, Proc. of

7th ACM European Conference on Computer Systems, pages 43–56, 2012.

[29] Y. Chen, S. Alspaugh, R. Katz, Interactive Analytical Processing in Big

Data Systems: A Cross-industry Study of MapReduce Workloads, VLDB

Endowment, 5(12):1802–1813, Aug. 2012.

[30] A. Cunningham, From Smartphone to Server Room: Nvidia’s ”Kayla”

Shows the Future of Tegra, http://www.webcitation.org/6VcpwYsD5, 2013.

[31] M. Curtin, Write Once, Run Anywhere: Why It Matters,

http://www.interhack.net/people/cmcurtin/rants/write-once-run-

anywhere, 1998.

[32] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth, K. Spaf-

ford, V. Tipparaju, J. S. Vetter, The Scalable Heterogeneous Computing

(SHOC) Benchmark Suite, Proc. of the 3rd Workshop on General-Purpose

127

Computation on Graphics Processing Units, pages 63–74, New York, NY,

USA, 2010.

[33] J. Dean, S. Ghemawat, MapReduce: Simplified Data Processing on Large

Clusters, Proc. of 6th Conference on Symposium on Opearting Systems De-

sign & Implementation, pages 10–10, 2004.

[34] C. Dubach, P. Cheng, R. Rabbah, D. F. Bacon, S. J. Fink, Compiling

a High-level Language for GPUs: (via Language Support for Architectures

and Compilers), Proc. of 33rd ACM SIGPLAN Conference on Programming

Language Design and Implementation, pages 1–12, 2012.

[35] I. El-Helw, R. Hofman, H. E. Bal, Scaling MapReduce Vertically and Hor-

izontally, Proc. of 2014 International Conference for High Performance

Computing, Networking, Storage and Analysis, pages 525–535, 2014.

[36] M. Elteir, H. Lin, W. c. Feng, T. Scogland, StreamMR: An Optimized

MapReduce Framework for AMD GPUs, Proc. of 17th IEEE International

Conference on Parallel and Distributed Systems, pages 364–371, 2011.

[37] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, D. Burger,

Dark Silicon and the End of Multicore Scaling, Proc. of 38th Annual Inter-

national Symposium on Computer Architecture, pages 365–376, 2011.

[38] R. Farivar, A. Verma, E. Chan, R. Campbell, MITHRA: Multiple Data

Independent Tasks on a Heterogeneous Resource Architecture, Proc. of

2009 IEEE International Conference on Cluster Computing and Workshops,

pages 1–10, Aug 2009.

[39] E. Feller, L. Ramakrishnan, C. Morin, On the Performance and Energy

Efficiency of Hadoop Deployment Models, Proc. of 2013 IEEE International

Conference on Big Data, pages 131–136, 2013.

[40] M. J. Flynn, Some Computer Organizations and Their Effectiveness, IEEE

Transactions on Computers, 21(9):948–960, 1972.

[41] D. Foley, NVLink, Pascal and Stacked Memory: Feeding the Appetite for

Big Data, http://www.webcitation.org/6XL0t4iVi, 2014.

[42] I. Foster, Designing and Building Parallel Programs: Concepts and Tools

for Parallel Software Engineering, Addison-Wesley, 1995.

128

[43] GNU, GCC ARM Options, http://www.webcitation.org/6VazB3S7x, 2015.

[44] I. n. Goiri, K. Le, T. D. Nguyen, J. Guitart, J. Torres, R. Bianchini, Green-

Hadoop: Leveraging Green Energy in Data-processing Frameworks, Proc.

of 7th ACM European Conference on Computer Systems, pages 57–70, 2012.

[45] Google, Sneak Peek: Google Cloud Dataflow, a Cloud-native Data Process-

ing Service, http://www.webcitation.org/6RELNVEr8, 2014.

[46] Google, Overview of Running a MapReduce Job,

http://www.webcitation.org/6jvPnxjWV, 2016.

[47] D. Grewe, Z. Wang, M. F. P. O’Boyle, OpenCL Task Partitioning in the

Presence of GPU Contention, 2014.

[48] M. Grossman, M. Breternitz, V. Sarkar, HadoopCL: MapReduce on Dis-

tributed Heterogeneous Platforms Through Seamless Integration of Hadoop

and OpenCL, Proc. of 27th International Symposium on Parallel and Dis-

tributed Processing Workshops and PhD Forum, pages 1918–1927, 2013.

[49] V. Gupta, K. Schwan, Brawny vs. Wimpy: Evaluation and Analysis of

Modern Workloads on Heterogeneous Processors, Proc. of 27th Interna-

tional Symposium on Parallel and Distributed Processing Workshops and

PhD Forum, pages 74–83, 2013.

[50] M. Harris, Unified Memory in CUDA 6,

http://www.webcitation.org/6WrmVnwyE, 2013.

[51] M. Harris, 5 Things You Should Know About the New Maxwell GPU Ar-

chitecture, http://www.webcitation.org/6VcZH7xTv, 2014.

[52] B. He, W. Fang, Q. Luo, N. K. Govindaraju, T. Wang, Mars: A MapReduce

Framework on Graphics Processors, Proc. of 17th International Conference

on Parallel Architectures and Compilation Techniques, pages 260–269, 2008.

[53] W. He, H. Cui, B. Lu, J. Zhao, S. Li, G. Ruan, J. Xue, X. Feng, W. Yang,

Y. Yan, Hadoop+: Modeling and Evaluating the Heterogeneity for MapRe-

duce Applications in Heterogeneous Clusters, Proc. of 29th ACM on Intl.

Conference on Supercomputing, pages 143–153, 2015.

129

[54] H. Herodotou, F. Dong, S. Babu, No One (Cluster) Size Fits All: Automatic

Cluster Sizing for Data-intensive Analytics, Proc. of 2nd ACM Symposium

on Cloud Computing, pages 18:1–18:14, 2011.

[55] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin, S. Babu,

Starfish: A Self-tuning System for Big Data Analytics, Proc. of 5th Biennial

Conference on Innovative Data Systems Research, pages 261–272, 2011.

[56] U. Hoelzle, L. A. Barroso, The Datacenter As a Computer: An Introduc-

tion to the Design of Warehouse-Scale Machines, Morgan and Claypool

Publishers, 1st edition, 2009.

[57] C. Hong, D. Chen, W. Chen, W. Zheng, H. Lin, MapCG: Writing Parallel

Program Portable Between CPU and GPU, Proc. of 19th International Con-

ference on Parallel Architectures and Compilation Techniques, pages 217–

226, 2010.

[58] IBM, Datasheet - Hadoop-as-a-service, http://tinyurl.com/zb3gt6o, 2016.

[59] M. Isard, M. Budiu, Y. Yu, A. Birrell, D. Fetterly, Dryad: Distributed

Data-parallel Programs from Sequential Building Blocks, Proc. of 2nd ACM

SIGOPS/EuroSys European Conference on Computer Systems, pages 59–72,

2007.

[60] F. Ji, X. Ma, Using Shared Memory to Accelerate MapReduce on Graphics

Processing Units, Proc. of 25th IEEE International Parallel Distributed

Processing Symposium, pages 805–816, 2011.

[61] D. Jiang, B. C. Ooi, L. Shi, S. Wu, The Performance of MapReduce: An

In-depth Study, Proc. of VLDB Endowment, 3(1-2):472–483, 2010.

[62] S. Kadirvel, J. A. B. Fortes, Grey-Box Approach for Performance Prediction

in Map-Reduce Based Platforms, Proc. of 21st International Conference on

Computer Communications and Networks, pages 1–9, 2012.

[63] S. Kavulya, J. Tan, R. Gandhi, P. Narasimhan, An Analysis of Traces from a

Production MapReduce Cluster, Proc. of 10th IEEE/ACM Intl. Conference

on Cluster, Cloud and Grid Computing, pages 94–103, 2010.

130

[64] M. Khan, Y. Jin, M. Li, Y. Xiang, C. Jiang, Hadoop Performance Model-

ing for Job Estimation and Resource Provisioning, IEEE Transactions on

Parallel and Distributed Systems, 27(2):441–454, 2016.

[65] W. Lang, J. M. Patel, Energy Management for MapReduce Clusters, Proc.

of VLDB Endowment, 3(1-2):129–139, Sept. 2010.

[66] K.-H. Lee, Y.-J. Lee, H. Choi, Y. D. Chung, B. Moon, Parallel Data Pro-

cessing with MapReduce: A Survey, SIGMOD Rec., 40(4):11–20, Jan. 2012.

[67] J. Leverich, C. Kozyrakis, On the Energy (in)Efficiency of Hadoop Clusters,

SIGOPS Operating Systems Review, 44(1):61–65, Mar. 2010.

[68] M. D. Linderman, J. D. Collins, H. Wang, T. H. Meng, Merge: A Program-

ming Model for Heterogeneous Multi-core Systems, Proc. of 13th Interna-

tional Conference on Architectural Support for Programming Languages and

Operating Systems, pages 287–296, 2008.

[69] H. Liu, A Measurement Study of Server Utilization in Public Clouds, Proc.

of 9th IEEE International Conference on Dependable, Autonomic and Secure

Computing, pages 435–442, 2011.

[70] D. Loghin, L. Ramapantulu, , Y. M. Teo, Efficient Time-Energy Execution

of MapReduce on Heterogeneous Systems with GPU, Technical report, NUS,

2017.

[71] D. Loghin, L. Ramapantulu, O. Barbu, Y. M. Teo, A TimeEnergy Per-

formance Analysis of MapReduce on Heterogeneous Systems with GPUs,

Performance Evaluation, 91:255–269, 2015.

[72] D. Loghin, B. M. Tudor, H. Zhang, B. C. Ooi, Y. M. Teo, A Performance

Study of Big Data on Small Nodes, Proc. of VLDB Endowment, 8(7):762–

773, 2014.

[73] G. Marsaglia, Xorshift RNGs, Journal of Statistical Software, 8(1):1–6,

2003.

[74] Microsoft, HDInsight - A managed Apache Hadoop, Spark, R, HBase, and

Storm cloud service made easy, http://www.webcitation.org/6jvPaAOIf,

2016.

131

[75] Nvidia, Nvidia Unveils First Mobile Supercomputer for Embedded Systems,

http://www.webcitation.org/6VdkUISQn, 2014.

[76] Nvidia, CUDA, https://tinyurl.com/ye65wt2, 2017.

[77] K. Parrish, NVIDIA GPUs Can Outperform Google Brain,

http://tinyurl.com/qykle22, 2014.

[78] N. Rajovic, L. Vilanova, C. Villavieja, N. Puzovic, A. Ramirez, The Low

Power Architecture Approach Towards Exascale Computing, Journal of

Computational Science, 4(6):439–443, 2013.

[79] L. Ramapantulu, D. Loghin, Y. M. Teo, An Approach for Energy Efficient

Execution of Hybrid Parallel Programs, Proc. of 29th IEEE International

Parallel and Distributed Processing Symposium, pages 1000–1009, 2015.

[80] L. Ramapantulu, D. Loghin, Y. M. Teo, On Energy Proportionality and

Time-Energy Performance of Heterogeneous Clusters, Proc. of 18th IEEE

International Conference on Cluster Computing, pages 221–230, Sept 2016.

[81] L. Ramapantulu, B. M. Tudor, D. Loghin, T. Vu, Y. M. Teo, Modeling the

Energy Efficiency of Heterogeneous Clusters, Proc. of 43rd Intl. Conference

on Parallel Processing, pages 321–330, 2014.

[82] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, C. Kozyrakis, Eval-

uating MapReduce for Multi-core and Multiprocessor Systems, Proc. of

13th International Symposium on High Performance Computer Architecture,

pages 13–24, 2007.

[83] C. J. Rossbach, Y. Yu, J. Currey, J.-P. Martin, D. Fetterly, Dandelion:

A Compiler and Runtime for Heterogeneous Systems, Proc. of 24th ACM

Symposium on Operating Systems Principles, pages 49–68, 2013.

[84] K. Shirahata, H. Sato, S. Matsuoka, Hybrid Map Task Scheduling for GPU-

Based Heterogeneous Clusters, Proc. of 2nd International Conference on

Cloud Computing Technology and Science, pages 733–740, 2010.

[85] A. Solana, Using ARM chips and Linux, Barcelona center dreams of being

’Airbus of supercomputing’, http://www.webcitation.org/6t35IuUr5, 2015.

132

[86] J. A. Stuart, J. D. Owens, Multi-GPU MapReduce on GPU Clusters, Proc.

of 25th IEEE International Parallel and Distributed Processing Symposium,

pages 1068–1079, 2011.

[87] H. Sutter, J. Larus, Software and the Concurrency Revolution, ACM Queue,

3(7):54–62, 2005.

[88] F. Tian, K. Chen, Towards Optimal Resource Provisioning for Running

MapReduce Programs in Public Clouds, Proc. of 4th International Confer-

ence on Cloud Computing, pages 155–162, 2011.

[89] TOP500, Piz Daint, http://www.webcitation.org/6PgPSsLA8, 2012.

[90] Top500.org, Highlights - June 2017,

http://www.webcitation.org/6ssYM95Tu, 2017.

[91] B. M. Tudor, Y. M. Teo, On Understanding the Energy Consumption of

ARM-based Multicore Servers, Proc. of SIGMETRICS ’13, pages 267–278,

2013.

[92] L. van Doorn, Enabling Cloud Workloads Through Innovations in Silicon,

http://www.webcitation.org/6t33R0NZg, 2017.

[93] A. Verma, L. Cherkasova, R. H. Campbell, ARIA: Automatic Resource

Inference and Allocation for Mapreduce Environments, Proc. of 8th ACM

International Conference on Autonomic Computing, pages 235–244, 2011.

[94] A. Verma, L. Cherkasova, R. H. Campbell, Resource Provisioning Frame-

work for MapReduce Jobs with Performance Goals, Proc. of 12th Interna-

tional Middleware Conference, pages 160–179, 2011.

[95] A. Verma, L. Cherkasovab, R. H. Campbellc, Profiling and Evaluating

Hardware Choices for MapReduce Environments: An Application-aware Ap-

proach, Performance Evaluation, 79:328–344, 2014.

[96] R. P. Weicker, Dhrystone: A Synthetic Systems Programming Benchmark,

Communications of ACM, 27(10):1013–1030, 1984.

[97] Wikipedia, Electricity Pricing, http://www.webcitation.org/6R9bgVRLG,

2013.

133

[98] D. Wong, M. Annavaram, KnightShift: Scaling the Energy Proportional-

ity Wall Through Server-Level Heterogeneity, Proc. of 45th International

Symposium on Microarchitecture, pages 119–130, 2012.

[99] Y. Yan, M. Grossman, V. Sarkar, JCUDA: A Programmer-Friendly Interface

for Accelerating Java Programs with CUDA, Proc. of 15th International

Euro-Par Conference on Parallel Processing, pages 887–899, 2009.

[100] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,

M. J. Franklin, S. Shenker, I. Stoica, Resilient Distributed Datasets: A

Fault-tolerant Abstraction for In-memory Cluster Computing, Proc. of 9th

USENIX Conference on Networked Systems Design and Implementation,

pages 2–2, 2012.

[101] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, I. Stoica, Spark:

Cluster Computing with Working Sets, Proc. of 2nd USENIX Conference

on Hot Topics in Cloud Computing, pages 10–10, 2010.

[102] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, I. Stoica, Discretized

Streams: Fault-tolerant Streaming Computation at Scale, Proc. of 24th

ACM Symposium on Operating Systems Principles, pages 423–438, 2013.

[103] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, I. Stoica, Improving Map-

Reduce Performance in Heterogeneous Environments, Proc. of 8th USENIX

Conference on Operating Systems Design and Implementation, pages 29–42,

2008.

[104] Z. Zhang, L. Cherkasova, B. T. Loo, Benchmarking Approach for Designing

a Mapreduce Performance Model, Proc. of 4th ACM/SPEC International

Conference on Performance Engineering, pages 253–258, 2013.

[105] Z. Zhang, L. Cherkasova, B. T. Loo, Performance Modeling of MapRe-

duce Jobs in Heterogeneous Cloud Environments, Proc. of 6th International

Conference on Cloud Computing, pages 839–846, 2013.

134

Appendix A

Heterogeneous Systems

Characterization

Throughout this thesis, we use three brawny server systems and three wimpy

systems representing both homogeneous and heterogeneous systems, as depicted

in Figure A.1. These systems are used as homogeneous systems by enabling a

single processing unit, typically the CPU. When another processing unit, such as

a GPU or a different type of CPU is added, the systems become heterogeneous. In

Systems

HeterogeneousHomogeneous

Brawny
� i7 (w/o GPU)

�W�s�[íñUD}^^[íó�

� Xeon
�s>��[íñ�

� Amazon (w/o GPU)

�D}^^[íóU��'�[íó�

Wimpy
� Odroid (only LITTLE or only big)

�s>��[íñ�

� Kayla
�W�s�[íñ�

� Jetson (w/o GPU)

�W�s�[íñUD}^^[íóU��'�[íó�

Intra-node

Brawny
� i7+GPU (with discrete GPU)

�W�s�[íñUD}^^[íó�

� Amazon+GPU (with discrete GPU)

�D}^^[íóU��'�[íó�

Wimpy
� Kayla+GPU (with discrete GPU)

�W�s�[íñ�

Intra-chip

Wimpy
� Jetson+GPU (with integrated GPU)

�W�s�[íñUD}^^[íóU��'�[íó�

� Odroid (big.LITTLE)

�s>��[íñ�

Figure A.1: Homogeneous and heterogeneous systems

135

this section, we describe these systems and perform an in-depth characterization

at CPU, GPU, memory, storage and networking level.

A.1 Specifications

A.1.1 Brawny Systems

Brawny Homogeneous System with Intel Xeon (Xeon). As server-class

homogeneous brawny systems, we use Supermicro 813M 1U based on two Intel

Xeon E5-2603 CPUs with four cores each. This system has 8 GB DDR3 memory,

1 TB hard disk and 1 Gbit Ethernet network card. For a fair comparison with

4-core systems, we remove one of the two Xeon CPUs. The idle power of the

4-core Xeon node is 35 W, and its peak power is around 55 W, making it a lower

power brawny system.

This Xeon server system runs Ubuntu 13.04 with Linux kernel 3.8.0 for x64

architecture. The C/C++ compiler available on this system is gcc 4.7.3, while

Java code runs on Oracle’s Java Virtual Machine (JVM) version 1.7.0 45.

Brawny Intra-node Heterogeneous System with Discrete GPU (i7

or i7+GPU). As traditional brawny intra-node heterogeneous system, we use

a server system based on a quad-core Intel Core i7 processor hosting a discrete

Nvidia GPU on the PCI Express (PCIe) slot. This system has 16 GB of RAM

and a 512 GB solid-state drive (SSD) to store all datasets and workloads. We

employ the Nvidia Maxwell architecture by hosting a GTX 750 Ti video card

consisting of 640 cores with CUDA compute capability 5.0, and 2 GB of GDDR5

memory. Compared to previous Kepler architecture, Maxwell is two times more

energy-efficient [51], being the suitable choice for achieving energy efficiency. For

our comparison between heterogeneous and homogeneous systems, we add the

136

Nvidia Maxwell GPU
640-core

Intel Core i7 CPU
4-core / 8-virtual-core

8GB DDR3
main memory

2GB GDDR5
GPU memory

intra-node heterogeneity with discrete GPU

PCIe

Figure A.2: Brawny system with Intel CPU and discrete Nvidia GPU

GPU in the i7+GPU system, as depicted in Figure A.2, and remove it in a

homogeneous i7-only system.

This brawny system runs Ubuntu 13.04 with Linux kernel 3.11.0 installed on a

separate SSD. We use gcc 4.8.1 as C/C++ compiler and nvcc from CUDA toolkit

6.5 as CUDA compiler. Java code runs on Oracle’s Java Virtual Machine (JVM)

version 1.8.0 25.

Brawny Intra-node Heterogeneous Cloud System (Amazon or Ama-

zon+GPU). With the advances in cloud computing and with larger system con-

figuration space offered by the cloud, we use cloud-based intra-node heterogeneous

nodes with discrete GPUs. We employ up to 12 Amazon EC2 g2.2xlarge instances

launched in the same region. These instances are equipped with Intel Xeon E5-

2670 CPU and Nvidia GRID K520 GPU. This GPU of Kepler architecture has

1536 cores and 4 GB of memory. Each instance is configured with eight virtual

CPU cores, 15 GB of RAM and 500 GB of SSD-based storage space.

From the software perspective, the cloud instances run Ubuntu OS with Linux

kernel 3.13.0. We compile native code with gcc 4.8.2 and nvcc from CUDA toolkit

6.5, while Java code runs on Oracle’s jdk1.8.0 25.

137

A.1.2 Wimpy Systems

Wimpy Intra-chip Heterogeneous System based on ARM big.LITTLE

(Odroid). We use Odroid XU as many-core intra-node heterogeneous wimpy

system, as depicted in Figure A.3. Odroid XU is a development board equipped

with Samsung Exynos 5410 System on a Chip (SoC). This board is representative

for high-end mobile phones. For example, Samsung Exynos 5410 is used in the

international version of the Samsung Galaxy S4 phones. Other high end contem-

porary mobile devices employ SoCs with very similar performance characteristics,

such as Qualcomm Snapdragon 80x and Nvidia Tegra 4. Specific to the Exynos

5410 SoC is that the CPU has two types of cores: ARM Cortex-A7 little cores,

which consume a small amount of power and offer slow in-order execution, and

ARM Cortex-A15 big cores which support faster out-of-order execution, but with a

higher power consumption. This heterogeneous CPU architecture is termed ARM

big.LITTLE [19]. The CPU has a total of eight cores, split in two groups1 of

cores: one group of four ARM Cortex-A7 little cores, and one group of four ARM

Cortex-A15 big cores. Each core has a pair of dedicated L1 data and instruction

caches, and each group of cores has an L2 unified cache.

Although the CPU has eight cores, Exynos 5410 allows either the four big cores,

or the four little cores to be active at one moment. To save energy, when one group

is active, the other one is powered down. Thus, a program cannot execute on both

the big and the little cores at the same time. Instead, the operating system (OS)

can alternate the execution between them. Switching between the two groups

incurs a small performance price, as the L2 and L1 caches of the newly activated

group must warm up.

1In the computer architecture literature, this group of cores is termed cluster of cores. How-
ever, due to potential confusion with cluster of nodes encountered in distributed computing, we
shall use the term group of cores.

138

2MB L2 cache 2MB L2 cache

Cortex-A15
Core 4

Quad-core ARM big CPU (0.6-1.6 GHz)

Cortex-A15
Core 3

Cortex-A15
Core 2

Cortex-A15
Core 1

Cortex-A7
Core 4

Quad-core ARM LITTLE CPU (250-600 MHz)

Cortex-A7
Core 3

Cortex-A7
Core 2

Cortex-A7
Core 1

Cache Coherent Interconnect

2GB LPDDR3 main memory

intra-chip heterogeneity with many-cores

Figure A.3: Wimpy ARM big.LITTLE system

The core clock frequency of the little cores ranges from 250 to 600 MHz, and

that of big cores ranges from 600 MHz to 1.60 GHz. Dynamic voltage and fre-

quency scaling (DVFS) is employed to increase the core frequency in response to

the increase in CPU utilization. On this ARM big.LITTLE architecture, the OS

can be instructed to operate the cores in three configurations:

1. little: only use the ARM Cortex-A7 little cores, and their frequency is al-

lowed to range from 250 to 600 MHz.

2. big : only use the ARM Cortex-A15 big cores, and their frequency is allowed

to range from 600 to 1600 MHz.

3. big.LITTLE : when the OS is allowed to switch between the two types of

cluster. The switching frequency is 600 MHz.

We have build a 4-node Odroid cluster, as shown in Figure A.4. Each Odroid

XU node has 2 GB of low-power DDR3 memory, a 64 GB eMMC flash-storage

and a 100 Mbit Ethernet card. However, to improve the network performance, we

connect a Gbit Ethernet adapter on the USB 3.0 interface.

The ARM-based Odroid XU board runs Ubuntu 13.04 operating system with

139

Figure A.4: Wimpy Odroid cluster

Linux kernel 3.4.67, which is the latest kernel version working on this platform.

For compiling native C/C++ programs, we use gcc 4.7.3 arm-linux-gnueabihf.

Wimpy Intra-node Heterogeneous System with Discrete GPU (Kayla

or Kayla+GPU). The intra-node heterogeneous wimpy systems with discrete

GPUs are represented by a Kayla DevKit equipped with Nvidia Tegra 3 System-

on-a-Chip (SoC) having four ARM Cortex-A9 cores and 2 GB of low-power DDR2.

This system has a PCI Express x16 port that can accommodate a full-fledged dis-

crete GPU. Moreover, it has a SATA interface which enables the connection of a

high-capacity disk. We use a 512 GB SSD to store datasets and workloads. For the

Nvidia Maxwell GPU
640-core

ARM Cortex-A9 CPU
4-core

2GB LPDDR2
main memory

2GB GDDR5
GPU memory

intra-node heterogeneity with discrete GPU

PCIe

Figure A.5: Wimpy system with ARM CPU and discrete Nvidia GPU

140

Figure A.6: Wimpy Kayla with GPU

comparison of heterogeneous and homogeneous systems, we add the GPU in the

Kayla+GPU system, or remove it in a homogeneous Kayla-only system. The

diagram of the heterogeneous system with discrete GPU is shown in Figure A.5

and the real system in shown Figure A.6.

By default, Ubuntu 12.04 with Linux kernel 3.1.10 is installed on system’s

flash storage. On top of this OS, we install CUDA toolkit 6.5 and necessary

Nvidia drivers. To compile native code, we use gcc 4.6.3 and nvcc from CUDA

toolkit. Java code runs on Oracle’s Java Virtual Machine (JVM) version 1.8.0 06.

Wimpy Intra-chip Heterogeneous System with Integrated GPU (Jet-

son or Jetson+GPU). With the increasing adoption of integrated CPU-GPU

systems [75], we use an intra-chip heterogeneous wimpy system represented by Jet-

son TK1 based on Nvidia Tegra K1 SoC which integrates four ARM Cortex-A15

CPU cores, 192 Nvidia Kepler GPU cores and a shared 2 GB low-power memory.

This system’s diagram is presented in Figure A.7, and a 6-node Jetson cluster is

shown in Figure A.8. Beside the four fully-fledged Cortex-A15 cores, Tegra K1

incorporates a transparent low-power companion core which runs the OS at low

system utilization. On this Jetson system, the OS is installed on a 16 GB eMMC.

141

Nvidia Kepler GPU
192-core

ARM Cortex-A15 CPU
4-core

2MB L2 cache 128kB L2 cache

2GB LPDDR3
shared memory

intra-chip heterogeneity with integrated GPU

Figure A.7: Wimpy system with ARM CPU and integrated Nvidia GPU

Figure A.8: Wimpy Jetson TK1 cluster

We connect a 512 GB SSD on the SATA port to store our datasets and workloads.

For the comparison between heterogeneous and homogeneous systems, we use the

system without GPU in Jetson-only configuration and the system with GPU in

Jetson+GPU configuration.

Jetson runs Ubuntu 14.04 OS with Linux kernel 3.10.40 installed on the eMMC.

To compile native code, we use gcc 4.8.2 and nvcc, while Java runs on Oracle’s

Java Virtual Machine (JVM) version 1.8.0 06. By default, Jetson TK1 comes with

CUDA toolkit 6.0 and associated Nvidia drivers. However, we encountered kernel

142

panics and errors when running Hadoop-CUDA on this default setup. Upgrading

the drivers and CUDA toolkit to version 6.5 solved these issues.

A.2 Characterization

To assess system performance and to evaluate the gap between wimpy and brawny

systems, we perform a measurement-driven characterization of the six systems at

the CPU, GPU, memory, storage and networking level. The results are summa-

rized in Table A.1.

143

Table A.1: Systems characterization

Brawny Wimpy
homogeneous with discrete GPU with discrete GPU many-core with discrete GPU with integrated GPU

Xeon i7 Amazon
ARM big.LITTLE (Odroid)

Kayla Jetson
LITTLE big

Specs

System Supermicro 813M Dell Optiplex g2.2xlarge Odroid XU Kayla Jetson TK1
CPU Intel Xeon E5-2603 Intel Core i7 Intel Xeon E5-2670 ARM Cortex-A7 ARM Cortex-A15 ARM Cortex-A9 ARM Cortex-A15
ISA x86-64 x86-64 x86-64 ARMv7l ARMv7l ARMv7l ARMv7l
Cores 4 4 (8 threads) 8 (virtual) 4 4 4 4
Frequency [GHz] 1.20 - 1.80 1.60 - 3.40 2.60 0.25 - 0.60 0.60 - 1.60 0.05 - 1.40 0.05 - 2.32
L1 D-Cache (per core) [kB] 32 32 32 32 32 32 32
L2 Cache [MB] 1 1 2 2 2 1 2
L3 Cache [MB] 10 8 20 - - - -
GPU Architecture - Nvidia Maxwell Nvidia Kepler - - Nvidia Maxwell Nvidia Kepler
Memory Type DDR3 DDR3 - LPDDR3 LPDDR3 LPDDR2 LPDDR3
Memory Size [GB] 16 8 15 2 2 2 2

CPU

Dhrystone [MIPS] 10350 22161 17726 2192 4936 2526 7434
CPU power [W] 15.0 39.5 - 0.5 3.4 2.3 3.0
System power [W] 50.0 65.3 - 4.4 7.3 10.0 6.1
Dhrystone PPR [MIPS/W] 690 561 - 4384 1452 1106 2470
CoreMark [iterations/s] 9456 17237 15664 3025 5628 3952 8155
CPU power [W] 15.6 25.9 - 0.3 2.5 2.4 2.7
System power [W] 50.6 51.7 - 4.2 6.4 10.1 5.9
CoreMark PPR [iterations/sW] 606 666 - 10082 2251 1658 3009
Java [MIPS] 653 1365 1083 242 605 411 880
CPU power [W] 16.5 37.0 - 0.3 3.4 2.6 3.5
System power [W] 51.5 62.8 - 3.0 6.1 10.3 6.7
Java PPR [MIPS/W] 40 37 - 807 178 159 251
Idle system power [W] 35.0 25.8 - 3.1 3.1 7.7 3.2

GPU
Performance [GFLOPS] - 1514 2157 - - 1512 209
Average system power [W] - 105.2 - - - 44.0 6.1
Idle system power [W] - 40.6 - - - 19.2 3.2

Storage
Write throughput [MB/s] 165.0 198.0 123.0 32.6 39.2 89.7 161.0
Read throughput [MB/s] 173.0 284.0 138.0 118.0 121.0 85.1 275.0
Buffer read throughput [GB/s] 4.6 10.0 7.3 0.8 1.2 0.4 1.6

Network
TCP bandwidth [Mbits/s] 942 - 1080 199 308 - 921
UDP bandwidth [Mbits/s] 811 - 808 295 420 - 804
Ping latency [ms] 0.2 - 0.2 0.7 0.7 - 2.7

144

To assess CPU performance, we run three benchmarks, (i) the traditional Dhry-

stone benchmark [96], (ii) the emerging CoreMark benchmark which is increas-

ingly used by hardware vendors, including ARM [16], and (iii) our in-house micro-

benchmark to asses Java performance. We first measure CPU MIPS native perfor-

mance with traditional Dhrystone benchmark [96]. We are compiling the code with

gcc using maximum level of optimization, -O3, and tuning the code for the target

processor (e.g. for ARM big.LITTLE we use -mcpu=cortex-a7 -mtune=cortex-a7

for little cores, and -mcpu=cortex-a15 -mtune=cortex-a15 for big cores). We

observe that Dhrystone MIPS are proportional with core clock frequency. How-

ever, in terms of Dhrystone MIPS per MHz, we obtain a surprising result on ARM

big.LITTLE: little cores perform 21% better than big cores, as per MHz. This is

unexpected because ARM reports that Cortex-A7 has lower Dhrystone MIPS per

MHz than Cortex-A15, but using its internal armcc compiler [17]. We conclude

that it is the gcc way of generating machine code that leads to these results. To

check our results, we run newer CoreMark CPU benchmark which is being increas-

ingly used by embedded market players, including ARM [16]. We use compiler

optimization flags to match those employed in the reported performance results

for an ARM Cortex-A15. More precisely, we activate NEON SIMD (-mfpu=neon),

hardware floating point operations (-mfloat-abi=hard) and aggressive loop op-

timizations (-faggressive-loop-optimizations). We obtain a score of 3.52 per

core per MHz, as opposed to the reported 4.68 for ARM Cortex-A15. We attribute

this difference to different compiler and system setup. However, little cores are

again more energy-efficient, obtaining more than half the score of big cores with

only 0.3 W of power. The difference between ARM cores and Xeon cores is similar

for both Dhrystone and CoreMark benchmarks. ARM Cortex-A9 core is around

two times slower than Cortex-A15 and four times slower than Intel i7 processor.

However, A15’s clock frequency is 65% higher, while i7’s clock frequency is more

145

 0

 20

 40

 60

 80

 100

 0 5000
 10000

 15000

 20000

 25000

P
o
w

e
r

[W
]

Performance [iterations/s]

i7
Xeon

Odroid
Kayla

Jetson

(a) One core

 0

 20

 40

 60

 80

 100

 0 20000

 40000

 60000

 80000

 100000

 120000

P
o
w

e
r

[W
]

Performance [iterations/s]

i7
Xeon

Odroid
Kayla

Jetson

(b) All cores

Figure A.9: Systems power-performance profile

146

than double compared to A9. Interestingly, A15 uses almost the same power per

core as A9 to deliver twice the performance. This shows the significant improve-

ments in energy efficiency of ARM processors. On the other hand, Intel processor

uses five times more power compared to the wimpy processors. In terms of idle

power, which is measured when the systems are running only the OS, Odroid

XU and Jetson systems are the most efficient, while the Kayla-only and i7-only

systems consumes around two and eight time more power, respectively.

We summarize CoreMark performance and power results of all systems in Fig-

ure A.9 when the benchmark is running on a single core and on all available

cores. We observe a big gap of 30W in terms power consumed between wimpy

and brawny systems. On the other hand, performance gap is much smaller and is

mainly due to higher core count of x86-64 systems. This PPR plots demonstrate

the power efficiency of wimpy systems based on ARM cores.

Since Big Data frameworks, such as Hadoop and Spark, run on top of Java

Virtual Machine, we also benchmark Java execution. We develop a synthetic

benchmark performing integer and floating point operations such that it stresses

core’s pipeline. In correlation with Dhrystone and CoreMark results, we observe

that MIPS performance is proportional to core clock frequency. Interestingly,

ARM Cortex-A15 cores on Tegra K1 deliver more MIPS that Xeon cores. On

ARM big.LITTLE, the little Cortex-A7 cores obtain less than half the MIPS of

Cortex-A15 cores. On the other hand, the big Cortex-A15 cores achieve just 7%

fewer MIPS than Xeon cores, but using quarter the power.

In summary, ARM cores outperform by an order of magnitude Intel cores in

terms of PPR, but at the cost of lower raw performance. For ARM cores, Cortex-

A7 achieves the best PPR, but the lowest raw performance. ARM Cortex-A15

cores on Jetson TK1 achieve better PPR than ARM Cortex-A15 cores on Odroid

XU. We attribute this to different hardware implementation and different core

147

clock frequency.

With the GPU being a key device in heterogeneous systems, we measure peak

performance in terms of FLOPS, data transfer bandwidth and latency between

main (host) memory and GPU (device) memory. We use MaxFlops to get arith-

metic performance and BusSpeedDownload for host-device bandwidth, both from

level zero benchmarks of Scalable HeterOgeneous Computing (SHOC) [32] bench-

marking suite. However, on Jetson TK1 integrated system there is no point in

measuring host-device bandwidth since data resides in the same shared memory.

Thus, we additionally measure the latency using our custom benchmark that sup-

ports unified memory feature [50]. Benchmarking code is compiled with nvcc com-

piler from CUDA toolkit with -arch=sm_50, -arch=sm_30 and -arch=sm_32 flags

on i7+GPU, Amazon g2.2xlarge and Jetson+GPU, respectively. For the Maxwell

GTX 750 Ti GPU, the processing performance is the same on both Kayla+GPU

and i7+GPU systems, peaking at more than 1500 GFLOPS when performing

single-precision arithmetic.

Interestingly, to deliver this performance, the i7+GPU draws more than two

times the power of the Kayla+GPU, as shown in Table A.1. We attribute this

difference to at least three factors. First, by analyzing benchmark behaviour, we

discover that it highly utilizes one CPU core. From our CPU analysis, one Intel

i7 core draws around 25 W compared to around 2.5 W for one Cortex-A9 core.

Second, the PCI Express on Kayla system consists of only four lanes, being more

energy-efficient but having lower throughput. Although we are not able to measure

PCI Express stand-alone energy usage, we believe it is much lower on the Kayla

system. Third, since Kayla board is a low-power, embedded-class system, it uses

more efficient circuitry, including power-regulators. In terms of idle power, the

discrete Maxwell GPU consumes more than 10 W. Hence, the idle power of Kayla

doubles by adding this GPU. In contrast, Jetson’s idle power is the same since the

148

 0.01

 0.1

 1

 10

 100

1kB 4kB 64kB 256kB 1MB 4MB 64MB 256MB

B
a
n
d
w

id
th

 [
G

B
/s

]

Transfer Size

i7+GPU
Amazon+GPU

Kayla+GPU

Figure A.10: Host-device transfer bandwidth

integrated GPU is not activated during idle periods. These results emphasize the

energy efficiency of the Jetson system.

For host-device transfers, i7+GPU obtains the best results, being two times

higher than g2.2xlarge and 40 times higher compared to the wimpy Kayla+GPU,

as shown in Figure A.10. This explains the poor performance of this configuration

for MapReduce workloads that require significant transfers. In terms of latency,

Jetson with integrated GPU is surprisingly not the best in all cases. While for

larger transfers Jetson+GPU has ten times lower latency, for small transfers of

less than 128kB the i7+GPU and g2.2xlarge show lower latency. As expected,

Kayla+GPU has the highest latency. This, together with the low bandwidth,

seriously affects the ability of Kayla+GPU to process data-intensive applications.

It is a known fact that wimpy systems have smaller memories than brawny sys-

tems. Less well-known is the performance of these memories. We evaluate main

memory bandwidth using pmbw 0.6.2 (Parallel Memory Bandwidth Benchmark)

tool [23]. Figure A.12 plots the memory bandwidth comparison of all systems,

while Figure A.13 shows the comparison within ARM big.LITTLE system. In-

149

 0.01

 0.1

 1

 10

 100

 1000

1kB 2kB 64kB 256kB 1MB 4MB 64MB 256MB

L
a
te

n
c
y
 [
m

s
]

Transfer Size

i7+GPU
Amazon+GPU

Kayla+GPU
Jetson+GPU

Figure A.11: Host-device transfer latency

terestingly, Jetson exhibits main memory bandwidths close to those of Xeon and

i7 systems, while Odroid XU and Kayla exhibit two and four times lower band-

widths. We attribute this high memory bandwidth of Jetson to newer technology

and better memory controller implementation. When data fits into cache, Xeon,

i7 and g2.2xlarge have bandwidths of 450 GB/s. The four Cortex-A15 cores on

Jetson TK1 exhibit 6-8 times lower bandwidth, while the A15 cores on Odroid

XU exhibit around ten times lower bandwidth compared to the brawny systems.

Within Odroid XU, the bandwidth of big.LITTLE configuration is the same

as big-only configuration when accessing main memory, but lower when accessing

the cache. This is attributed to the cache penalty of switching from little to big

cores. The bandwidth of little cores is two times lower compared to big cores.

For storage and network throughput and latency, we use Linux tools such as

dd, ioping, iperf and ping. Read and write throughput is in the range of 100 to

200 MB/s, except for Kayla and for write throughput on Odroid XU. We attribute

lower throughput on Kayla to a poor implementation of SATA 2 controller, while

on Odroid there is an issue with the NAND flash eMMC storage. When using

150

 4

 16

 64

 256

 1024

1kB 32kB 1MB 32MB 1GB

B
a

n
d

w
id

th
 [

G
B

/s
]

Memory Access Size

Xeon
i7

Amazon

Odroid
Kayla

Jetson

Figure A.12: Memory bandwidth comparison

 2

 4

 8

 16

 32

 64

1kB 32kB 1MB 32MB 1GB

B
a
n
d
w

id
th

 [
G

B
/s

]

Memory Access Size

LITTLE (ARM Cortex-A7)
big (ARM Cortex-A15)

big.LITTLE (ARM big.LITTLE)

Figure A.13: Memory bandwidth comparison of ARM big.LITTLE

151

little cores, the throughput is even smaller, suggesting that disk driver and file

system have high CPU usage. Since modern operating systems are caching small

files in memory, we also measured buffered read throughput. The results are cor-

related with memory bandwidth values considering that only one core is used. For

example, buffered read on big ARM Cortex-A15 cores has 1.2 GB/s throughput,

while the main memory bandwidth when using all four cores is 4.9 GB/s. Brawny

systems use their superior memory size and bandwidth to outperform the wimpy

systems at buffered reads. In term of networking, systems with native Gigabit

Ethernet interface reach TCP bandwidths of more than 900 Mbits/s. On Odroid

XU, the Gigabit interface delivers only 300 Mbits/s TCP bandwidth, being limited

by the USB 3.0 connection. In summary, wimpy systems have significantly lower

performance, especially at memory level, which negatively impacts data analytics

performance.

152

Appendix B

Data-parallel Execution on

Many-core Heterogeneous

Systems

With the explosion of Big Data analytics, datacenter designers still advocate the

usage of high-performance systems, such as those based on Intel Xeon or AMD

Opteron CPUs [56]. However, these systems have high idle power and generate

large amounts of heat. Hence, a significant part of datacenter wasted energy is due

to cooling. On the other hand, many datacenter jobs, such as Big Data analytics as

opposed to compute-intensive applications, stress storage and network subsystems

rather than the CPU.

In the last five years, mobile device market has driven the improvement of

energy-efficient systems such as those based on ARM processors. These low-power

systems are now capable of running modern operating systems and a full range of

applications. As phones gradually evolved into smartphones, their CPUs became

increasingly complex. Initially, these processors had single in-order cores, also

called little cores due to their low power consumption and low performance. Grad-

153

ually, these devices have integrated out-of-order, high performance cores which are

called big cores. With the entrance into dark silicon era, ARM developed hetero-

geneous big.LITTLE architecture [19]. This architecture combines little and big

cores on the same processor. The typical big.LITTLE implementation uses ARM

Cortex-A7 in-order, low-power cores together with ARM Cortex-A15 out-of-order,

power hungry cores. Mobile applications typically use this architecture by schedul-

ing background tasks on little cores and critical task on big cores. But it is not

clear how these platforms are able to handle server-class or Big Data analytics

workloads.

In this section, we present a measurement-driven analysis of Big Data Map-

Reduce processing on low-power ARM big.LITTLE systems, in comparison with

traditional Intel Xeon server systems. This analysis is part of our high-level ap-

proach of modeling Big Data execution and efficiently mapping parallel tasks on

heterogeneous resources. We first summarize the hardware and software setup, and

then present the measurement-driven analysis of running a series of well-known

Big Data workloads on Hadoop. Lastly, we evaluate the total cost of ownership

(TCO) of running Big Data workloads on heterogeneous systems.

B.1 Setup

To characterize Big Data execution on small nodes and to compare them with

traditional server-class nodes, we measure total execution time and total energy

at cluster level. We run typical Big Data analytics MapReduce applications on

Hadoop 1.2.1, the open-source implementation for MapReduce framework. We

select a subset of the applications presented in Section 4.1 to stress each subsystem,

such as the CPU using Pi and Kmeans, the memory using Terasort and the I/O

using WordCount and Grep. Selected applications are presented in Table B.1. All

154

Table B.1: Big Data workloads

Workload Input Type Input Size Bottleneck

Terasort synthetic 12 GB I/O, Memory
Pi synthetic 16× 109 samples CPU
Kmeans Netflix 4 GB CPU, Memory
WordCount Wikipedia 12 GB I/O
Grep Wikipedia 12 GB I/O

these applications are part of Hadoop examples, except Kmeans which is adapted

from PUMA benchmarking suite [2]. The input dataset for Kmeans is taken from

the same source and trimmed to 4 GB. For benchmarks that take text input, we

use Wikipedia’s articles latest dump and trim it to 12 GB. This size is chosen such

that, even when running on a six nodes cluster, each system processes 2 GB of

data which is more that can fit into 2 GB of Odroid XU main memory since the

OS and Hadoop are also using memory. All workloads are executed three times

and the average execution time and energy is reported.

When running MapReduce programs, we set the number of slots equal to the

number of cores on each node. For a fair comparison, we physically disable four

cores of the Xeon system and set the number of slots to four. We run the workloads

on clusters of one, two, four and six Odroid XU, respectively, Xeon E5-2603 based

systems. For power and energy measurements, we use Yokogawa WT210 power

monitor connected to cluster’s AC input line. A controller system is used to start

the benchmarks and to collect all the logs. This setup is similar to the one depicted

in Figure 4.1.

B.2 Time-Energy Analysis

First, we analyze the performance of Hadoop Distributed File System (HDFS)

which is the underlying file system for many Big Data frameworks such as Hadoop,

155

Hive, Spark, among others. We measure the throughput and energy usage of HDFS

read and write distributed operations using Hadoop’s TestDFSIO benchmark with

12 GB input. Figure B.1 plots the throughput, as reported by TestDFSIO, and

measured energy consumption of write and read on single node and 6-node clusters.

The throughput significantly decreases when writing on multiple nodes, especially

for Xeon nodes. This decrease occurs because of HDFS replication mechanism,

which, by default, replicates each block three times. The additional network and

storage operations due to replication increase the execution time and lower the

overall throughput. This observation is validated by the less visible degradation of

throughput for read operation. The increasing execution time of write on multiple

nodes leads to higher energy consumption, especially for Xeon nodes. On a 6-node

cluster, the write throughput of Xeon is two times higher compared to ARM, but

the energy usage is more than four times bigger. For read, Xeon’s throughput is

three times better that ARM’s big.LITTLE, while the energy ratio is five. On

ARM nodes with little cores, the execution times of HDFS write and read opera-

tions increase due to lower JVM performance. Hence, the energy consumption is

higher compared to running on big and big.LITTLE configurations.

In summary ARM big.LITTLE is more energy-efficient than Xeon when exe-

cuting HDFS read and write operations, at the cost of 2-3 times lower throughput.

Second, we evaluate time performance and energy-efficiency of Hadoop by run-

ning six widely-used workloads, as shown in Table B.1. We use default Hadoop

settings, except that we set the number of slots to four such that it equals the

number of cores on each node. Using this configuration, all workloads run without

errors, except for Terasort and Kmeans which fail on Odroid XU due to insufficient

memory. After experimenting with more alternative configurations, we found two

that allow both programs to finish without failure. Firstly, we decrease the num-

ber of slots to two on Odroid XU. Secondly, we keep using four slots but limit the

156

 0

 50

 100

 150

 200

 250

W
rite(Xeon)

W
rite(big)

W
rite(little)

W
rite(big.LITTLE)

Read(Xeon)

Read(big)

Read(little)

Read(big.LITTLE)

 0

 50

 100

 150

 200

 250

T
h
ro

u
g
h
p
u
t
[M

B
/s

]

E
n
e
rg

y
 [
k
J
]

Throughput
Energy

(a) On one node

 0

 50

 100

 150

 200

 250

W
rite(Xeon)

W
rite(big)

W
rite(little)

W
rite(big.LITTLE)

Read(Xeon)

Read(big)

Read(little)

Read(big.LITTLE)

 0

 50

 100

 150

 200

 250

T
h
ro

u
g
h
p
u
t
[M

B
/s

]

E
n
e
rg

y
 [
k
J
]

Throughput
Energy

(b) On two nodes

 0

 50

 100

 150

 200

 250

W
rite(Xeon)

W
rite(big)

W
rite(little)

W
rite(big.LITTLE)

Read(Xeon)

Read(big)

Read(little)

Read(big.LITTLE)

 0

 50

 100

 150

 200

 250

T
h
ro

u
g
h
p
u
t
[M

B
/s

]

E
n
e
rg

y
 [
k
J
]

Throughput
Energy

(c) On six node

Figure B.1: HDFS performance

157

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

big little
big.LITTLE

Xeon
big little

big.LITTLE

Xeon
big little

big.LITTLE

Xeon

1 node

2 nodes 6 nodes
T

im
e
 [
s
]

Pi Java
Pi C++

Figure B.2: MapReduce Pi estimator in Java and C++

io.sort.mb to 50 MB, half of its default value. These two settings have different

effects on the two programs. For example, on 4-node cluster, Terasort running on

two slots is 10-20% faster than using a limited io.sort.mb. This result is due

to the fact that Terasort is data-intensive, hence, it benefits less form using more

cores but having limited memory buffer. On the other hand, Kmeans benefits

more from running on four slots, being 20% faster on big cores and 35% faster

on little cores, compared to running on two slots. Kmeans is a compute-intensive

workload executing a large number of floating point operations in both map and

reduce phases. Thus, it benefits from running on higher core counts. In the

remainder of this paper, we present the results on two slots for Terasort, and on

four slots with io.sort.mb of 50 for Kmeans, when running on ARM big.LITTLE

nodes.

When running the experiments, we observe low performance of Pi on Odroid

XU. Compared to Xeon, Pi on big and big.LITTLE runs 7-9 times slower, and

on little cores up to 20 times slower. This is surprising because Pi is compute-

intensive and we show in Section A.2 that the performance ratio between Xeon

158

 10

 100

 1000

 10000

 100000

T
im

e
 [

s
]

Pi Java Pi C++ Grep

Xeon

ARM big

ARM LITTLE

ARM big.LITTLE

 10

 100

 1000

 10000

 100000

1 2 4 6

Kmeans

1 2 4 6

Nodes

Terasort

1 2 4 6

Wordcount

Figure B.3: MapReduce scaling

and ARM cores is at most five. We further investigate the cause of this result.

Firstly, we profile TaskTracker execution on Odroid XU. We observed that JVM

spends 25% of the time in __udivsi3. This function emulates 32-bit unsigned

integer division in software, although the Exynos 5410 SoC on Odroid XU board

supports UDIV hardware instruction. But other SoCs may not implement this

instruction, since it is defined as optional in ARMv7-A ISA [18]. Thus, JVM uses

the safer approach of emulating it in software. Secondly, we port Pi in C++ and

run it using Hadoop Pipes mechanism. We use the same gcc compilation flags as

for native benchmarks in Section A.2. The comparison between Java and C++

implementations is shown in Figure B.2. Compared to original Java version, C++

implementation is around five times faster on ARM nodes and only 1.2 times faster

on Xeon-based nodes. With this minor software porting, we obtain a significant

improvement in execution time which leads to energy savings, as we further show.

In the remainder of this section, we show the results for both Pi Java and Pi C++

implementations.

We present time and energy performance of the six workloads on Xeon and

159

10

100

1000

10000

T
im

e
 [
s
]

Xeon
ARM big

ARM LITTLE
ARM big.LITTLE

 10

 100

P
o
w

e
r

[W
]

 0.01

 0.1

 1

 10

 100

Pi Java Pi C++ Grep Kmeans Terasort Wordcount

E
n
e
rg

y
 [
k
J
]

Figure B.4: MapReduce on 6-node cluster

ARM clusters. First, since scalability is a main feature of MapReduce framework,

we investigate how does Hadoop scale on clusters of small nodes. We show time

scaling in log scale on four cluster sizes in Figure B.3. All workloads exhibit sub-

linear scaling on both Intel and ARM nodes, which we attribute to housekeeping

overheads of Hadoop when running on more nodes. When the overheads dominate

the useful work, the scaling degrades. For Pi workload running on six nodes

there is too little useful work for mappers to perform, hence, there is not much

improvement in the execution time on both types of servers. On the other hand,

Kmeans and Grep exhibit higher speedup on the 6-node ARM cluster compared

to Xeon because the slower ARM cores have enough compute-intensive work to

perform.

Figure B.4 shows the time, power and energy of 6-node clusters using log scale.

Based on the energy usage, the workloads can be categorized into three classes:

160

Table B.2: MapReduce performance-to-power ratio1

Workload
Xeon

ARM (Odroid XU)
big LITTLE big.LITTLE

1 2 4 6 1 2 4 6 1 2 4 6 1 2 4 6

Pi Java 1.44 1.58 0.88 0.63 0.68 0.60 0.60 0.56 0.78 0.83 0.80 0.58 0.67 0.60 0.61 0.57
Pi C++ 2.51 1.89 1.04 0.71 3.23 3.03 2.95 2.64 4.56 4.37 4.01 2.78 3.33 2.95 2.78 2.56
Grep 0.56 0.46 0.27 0.21 1.03 0.93 0.92 0.92 1.47 1.34 1.31 1.27 1.03 0.93 0.86 0.92
Kmeans 0.50 0.41 0.25 0.22 0.21 0.19 0.19 0.20 0.28 0.25 0.23 0.23 0.21 0.19 0.18 0.20
Terasort 0.28 0.22 0.15 0.14 0.31 0.25 0.30 0.27 0.35 0.28 0.35 0.30 0.32 0.25 0.30 0.27
Wordcount 0.17 0.14 0.09 0.08 0.12 0.11 0.10 0.09 0.18 0.16 0.12 0.10 0.12 0.11 0.10 0.10

• Pi Java and Kmeans execution times are much larger on ARM compared

to Xeon. Both workloads incur high CPU usage on ARM, which results in

high power usage. The combined effect is a slightly higher energy usage on

ARM nodes.

• Pi C++ and Grep exhibit a much smaller execution time gap. Both are

compute-intensive and have high power usage, but overall, their energy usage

is significantly lower on ARM.

• Wordcount and Terasort are data-intensive workloads, as indicated by lower

power usage on ARM compared to the other workloads. They obtain better

execution time on Xeon due to higher memory and storage bandwidths.

However, time improvement does not offset the higher power usage of Xeon,

therefore, energy on ARM is lower.

We sum up by showing the PPR of all workloads on all cluster configurations as

a heat-map in Table B.2. PPR is defined as the amount of useful work performed

per unit of energy. For workloads that scan all input, we compute the PPR as the

ratio between input size and energy. For Pi, the input file contains the number

of samples to be generated during the map phase. Hence, we express the PPR as

millions of samples (Msamples) per unit of energy. Higher (green) PPR represents

a more energy-efficient execution. In correlation with our classification, Pi Java

and Kmeans exhibit better PPR on Xeon, while all other workloads have the

1Values represent 106 samples per Joule for Pi, and MB per Joule for the other workloads.

161

highest PPR on ARM little cores. As indicated in Table B.2, single node achieves

maximum PPR because there is no communication overhead and fault tolerance

mechanism as on multi-node clusters.

B.3 Time-Energy Performance Equivalence

In the previous section, we have shown that a single wimpy node always exhibit

longer MapReduce execution time compared to a single brawny node. An im-

portant question is how many wimpy nodes achieve the same execution time as

one brawny node and how much energy are they using. Figure B.5 answers this

question by showing how many ARM-based nodes can achieve the execution time

of one Xeon node. We select ARM big.LITTLE configurations which exhibit the

closest execution time compared to one Xeon. For compute-intensive workloads,

such as Pi C++ and Grep, two wimpy nodes achieve the same execution time and

use less energy compared to one Xeon node. For I/O- and mix-intensive workloads,

six wimpy nodes can perform the job of one Xeon node, but use more energy. For

Wordcount, the difference between six ARM nodes and one Xeon node is large,

and thus, we estimate based on the scaling behavior that eight ARM nodes exhibit

a closer execution time, but use almost double the energy.

B.4 Cost Analysis

We analyze the total cost of ownership (TCO) of executing Big Data applica-

tions on emerging low-power ARM servers, in comparison with traditional x86-64

servers. We derive lower and upper bounds for per hour cost of compute- and

data-intensive workloads on a single node. We consider Pi and Terasort as rep-

resentatives for compute- and data-intensive workloads, respectively. Moreover,

162

 100

 500

 1000

 1500

 2000

Pi Java Pi C++ Grep Kmeans Terasort Wordcount

 10

 50

 100

 150

 200

T
im

e
 [
s
]

E
n
e
rg

y
 [
k
J
]

Xeon Time
ARM Time

6 ARMs

2 ARMs

2 ARMs

6 ARMs

6 ARMs

8 ARMs*

Xeon Energy
ARM Energy

Figure B.5: Xeon-ARM performance equivalence

we use execution time and energy results of Pi C++ implementation because it

better exploits ARM nodes.

Throughout this section, we use a series of notations and default values as

summarized in Table B.3. All costs are expressed in US dollars. The values in

Table B.3 are either based on our direct measurements or taken from the literature,

as indicated2. For example, we assume three years of typical server lifetime and

12 years lifetime for a datacenter [56]. For typical server utilization, we consider

a lower bound of 10%, typical for cloud servers [69], and an upper bound of 75%

as exhibited by Google datacenters [56].

The cost of electricity is a key factor in the overall datacenter costs. But elec-

tricity price is not the same all-over the world. Thus, we consider more alternatives

for servers’ location and electricity price [97]. Among these alternatives, we select

a lower bound of 0.024 $/kWh (price of electricity in Russia) and an upper bound

of 0.398 $/kWh (price in Australia). Although we acknowledge that datacenter

location may also influence equipment, hosting and manpower costs, throughout

2Listed values are marked with ∗ if they are taken from the literature, with + if they are
based on our measurements, and with # if they represent output values.

163

Table B.3: TCO notations and values

Notation Value Description

Cs,Xeon $1100 + cost of Xeon-based server node
Cs,ARM $280 + cost of ARM-based server node
Ts 3 years ∗ server lifetime
Ul 10% ∗ low server utilization
Uh 75% ∗ high server utilization
Cd

datacenter total costs
Td 12 years ∗ datacenter lifetime
Cp

electricity total costs
Cph

∗ electricity cost per hour
Pa

+ average server power
Pp,Xeon 55 W + Xeon-based node peak power
Pp,ARM 16 W + ARM-based node peak power
Pi,Xeon 35 W + Xeon-based node idle power
Pi,ARM 4 W + ARM-based node idle power

this study we consider only the difference in electricity price.

B.4.1 Marginal Cost

We begin by describing a simple cost model which incorporates equipment and

electricity costs. This model estimates the marginal cost of self-hosted systems,

being suitable for small, in-house computing clusters. Total cost is

C = Cs + Cp (B.1)

where electricity cost for server lifetime period is:

Cp = Ts · Cph · (U · Pa + (1− U) · Pi) (B.2)

We further investigate the effects of server utilization and idle power on marginal

cost. As we define lower and upper bounds for server utilization, there are two

scenarios for evaluating electricity costs. Firstly, given a low Xeon server utiliza-

164

Table B.4: Effect of server utilization on marginal cost

Job Utilization Server Min cost [$/h] Max cost [$/h]
type ratio [%] ratio Xeon ARM Xeon ARM

compute-intensive 10:20 1:1 0.043 0.011 0.044 0.013
data-intensive 10:49 1:1 0.043 0.011 0.056 0.013
compute-intensive 75:82 1:2 0.043 0.022 0.060 0.031
data-intensive 75:86 1:6 0.043 0.065 0.059 0.079

tion of 10% and the execution times of Pi and Terasort workloads on Xeon and

ARM nodes, we obtain two values for ARM-based server utilization. For Pi, ARM

server exhibits 20% utilization, while for Terasort, the utilization increases to al-

most 50%. Secondly, given the upper bound of 75% for Xeon server utilization, we

obtain over 100% utilization for ARM server. Thus, we must employ more than

one ARM server to execute the workload of one Xeon. We use server substitution

ratios derived in Section B.3 and depicted in Figure B.5. For compute-intensive

Pi, we use two ARM servers with 82% utilization to achieve the performance of

one Xeon server. For data-intensive Terasort, we use six ARM servers with 86%

utilization to execute the same workload as one 75%-utilized Xeon. The six ARM

servers occupy less space than one rack-mounted traditional server but may have

a higher equipment cost. We present the results for both scenarios as cost per

hour in Table B.4. For low utilization, the cost per hour of ARM is almost four

times lower compared to Xeon. Moreover, compute- and data-intensive jobs have

the same cost. On the other hand, the cost of highly utilized servers is slightly

higher. Surprisingly, for data-intensive jobs, ARM incurs up to 50% higher cost

because six ARM servers are required to perform the work of one Xeon.

Next, we investigate the influence of idle power, as a key factor in total electric-

ity costs. This influence may be alleviated by employing energy-saving strategies,

such as All-In Strategy [65]. This strategy assumes that servers can be inducted to

a low-power state during inactive periods. At certain intervals, they are woken-up

165

 0

 0.02

 0.04

 0.06

 0.08

 0.1

Xeon, CPU-int.

ARM, CPU-int.

Xeon, I/O-int.

ARM, I/O-int.

Xeon, CPU-int.

ARM, CPU-int.

Xeon, I/O-int.

ARM, I/O-int.

low utilization

high utilization

C
o

s
t

[$
/h

]

With Idle Power
W/O Idle Power

Figure B.6: Effect of idle power on marginal cost

to execute the jobs, and afterwards put back to sleep. In reality, servers consume a

small amount of power in deep-sleep or power-off mode and may incur high power

usage during wake-up phase. However, we assume that during inactive periods

servers draw no power, and perform the study on both utilization scenarios de-

scribed above. With these assumptions, the influence of idle power is more visible

on low-utilized Xeon servers, as shown in Figure B.6. In this case, putting Xeon

servers to sleep can reduce hourly cost by 22%. For ARM servers, cost reduction

is 6–10% since idle power is much lower. At high utilization, the reductions are

smaller because the servers are active most of the time.

B.4.2 Total Cost

We analyze a more complex TCO model which includes datacenter costs. We use

Google TCO calculator which implements the model described in [56]. For this

model, total cost is

C = Cd + Cs + Cp (B.3)

166

Table B.5: Effect of server utilization on TCO

Job Utilization Server Min cost [$/h] Max cost [$/h]
type ratio [%] ratio Xeon ARM Xeon ARM

compute-intensive 10:20 1:1 0.066 0.018 0.086 0.025
data-intensive 10:49 1:1 0.066 0.017 0.085 0.021
compute-intensive 75:82 1:2 0.066 0.035 0.086 0.051
data-intensive 75:86 1:6 0.066 0.104 0.085 0.127

We conduct our study based on the following assumptions regarding all three

components of the TCO model. Firstly, datacenter costs include capital and op-

erational expenses. Capital expenses represent the cost for designing and building

a datacenter. This cost depends on datacenter power capacity, and it is expressed

as price per Watt. We use a default value of 15 $/W as in [56]. Operational

expenses represent the cost for maintenance and security, and depend on data-

center size which, in turn, is proportional to its power capacity. We use a default

value of 0.04 $/kWmonth [56]. Secondly, for server costs, beside the equipment

itself, there are operational expenses related to maintenance. These expenses are

expressed as overhead per Watt per year. We use the default value of 5% for

both types of servers. Moreover, for building a real datacenter, the business may

take loan. The model includes the interest rate for such a loan. We use a value

of 8% per year, although for building a datacenter with emerging ARM systems

this rate may be higher due to potential risk associated with this emerging server

platform. Thirdly, electricity expenses are modeled based on the average power

consumption. In addition, the overhead costs, such as those for cooling, are ex-

pressed based on the Power Usage Effectiveness (PUE) of the servers. For the

employed Xeon servers, we use the lowest PUE value of 1.1 representing the most

energy-efficient Google servers [56]. For ARM servers, we use a higher PUE of 1.5

to incorporate less energy-efficient power supply and the power drawn by the fan,

which is up to 1.5 W and represents ∼10% of the 16 W peak power.

167

 0

 20

 40

 60

 80

 100

 120

Xeon, Min

ARM, Min

Xeon, Max

ARM, Max

Xeon, Min

ARM, Min

Xeon, Max

ARM, Max

compute-intensive data-intensive
C

o
s
t
[$

]

Datacenter
Server
Power

Figure B.7: Costs per month

In Figure B.7 we present TCO values for high utilization scenario. We show

these values as break-down of monthly cost into datacenter, server equipment and

power costs, as defined in Equation B.3. The cost is dominated by equipment

expenses. For data-intensive workloads, equipment and power expenses of the six

ARM nodes make low-power servers more expensive than traditional Xeon. We

summarize TCO values for both utilization scenarios in Table B.5.

B.5 Summary

In this section, we have presented a performance study of executing Big Data an-

alytics on emerging low-power nodes in comparison with traditional server nodes.

Using clusters of Odroid XU boards representing high-end ARM big.LITTLE ar-

chitecture, and Intel Xeon systems as representative of traditional server nodes,

we have evaluated the time, energy and cost performance of well-known MapRe-

duce workloads exercising CPU cores, memory and I/O in different proportion.

The results show that there is no one size fits all rule for the efficiency of the

two types of server nodes. However, small memory size, low memory and I/O

168

bandwidth, and software immaturity concur in canceling the lower-power advan-

tage of ARM nodes. For compute-intensive Pi estimator implemented in Java, a

software-emulated instruction results in ten times slower execution time on ARM.

Implementing this workload in C++ improves the execution time by a factor of

five, leading to almost four times cheaper data analytics on ARM servers com-

pared to Xeon. For data-intensive workloads, such as Terasort, six ARM nodes

are required to perform the work of one Xeon node with 75% utilization. This

substitution leads to 50% higher TCO of ARM servers. In future, with the devel-

opment of 64-bit ARM server systems having bigger memory and faster I/O, and

with software improvements, ARM-based servers are well positioned to become a

serious contender for traditional Intel/AMD server systems.

169

Appendix C

MoSS Programming Example

In this section, we present MoSS API and an example of implementing Grep, a

well-known MapReduce application, in MoSS. MoSS API is listed in Table C.1

being divided in three parts, (i) general usage functions, (ii) string manipulation

functions and (iii) functions for conversion between string and numerical types.

General usage functions are used to initialize GPU kernel processing, to retrieve

<key, value> pairs, to emit results and to handle additional data needed for

processing. These additional data are required by some applications in the Map

phase. For example, Grep requires a string representing the regular expression to

be matched against each line of the input. These additional data structures can

be passed to GPU kernels using gpuAllocExtra() and gpuAllocCopyExtra()

functions.

171

Function Description

void gpuInit(TaskContextGPU* ctx) initializes Map/Reduce context data structures on GPU
void gpuGetKey(TaskContextGPU* ctx, char** key) returns the key from the input <key,val> pair
void gpuGetValue(TaskContextGPU* ctx, char** val) returns the value from the input <key,val> pair
void gpuEmit(TaskContextGPU* ctx, char* key, char* val) outputs a <key,val> pair
int gpuIdleThread(TaskContextGPU* ctx) returns true if calling thread is out of worker threads range

void gpuAllocExtra(TaskContextGPU* ctxHost,

TaskContextGPU* ctxDev, size t size) allocates GPU memory needed by Map/Reduce CUDA kernels
void gpuAllocCopyExtra(TaskContextGPU* ctxHost,

TaskContextGPU* ctxDev, void* src, size t size) allocates GPU memory and copied data needed by Map/Reduce CUDA kernels
SettingsPipesGPU* getSettingsPipesGPU() get MoSS Pipes settings
void gpuStrCpy(char* src, char* dst) copies string src into dst

void gpuStrCpyLen(char* src, char* dst, int* len) copies string src into dst and puts the length in len

char* gpuStrTok(char** pstr, char delim) returns next substring delimited by delim

int gpuStrSearch(char* str, char* substr) searches for a substring in a string
void gpuStrToInt(char* str, s32Int* n) converts string to 32-bit integer
void gpuStrToLong(char* str, s64Int* n) converts string to 64-bit integer
void gpuStrToFloat(char* str, float* z) converts string to single precision floating point
void gpuStrToDouble(char* str, double* z) converts string to double precision floating point
int gpuIntToStr(s32Int n, char* str) converts 32-bit integer to string and returns string length
int gpuIntToHexStr(s32Int n, char* str) represents 32-bit integer in hexa and returns string length
int gpuLongToStr(s64Int n, char* str) converts 64-bit integer to string and returns string length
int gpuFloatToStr(float z, char* str, int ndec) converts single precision floating point to string using ndec decimals and returns string length
int gpuDoubleToStr(double z, char* str, int ndec) converts double precision floating point to string using ndec decimals and returns string length

Table C.1: MoSS API

172

Listing C.1: Grep application in MoSS

1 #in
lude "hadoop /Pipes .hh"

2 #in
lude "hadoop /Pipes .cu"

3 #in
lude "hadoop / TemplateFactory.hh"

4 #in
lude "hadoop /StringUtils .hh"

5

6 using namespa
e std ;

7

8

9 #ifndef MaxCudaBlocks

10 #define MaxCudaBlocks 1

11 #endif

12

13 #ifndef MaxCudaThreadsBlock

14 #define MaxCudaThreadsBlock 256

15 #endif

16

17 #define MaxLine 8192

18

19 #define MaxRegex 8

20

21 #define GrepMapKey "match"

22

23 #define GrepRegexKey "mapred .mapper .regex "

24

25 // map kernel on the GPU

26 __global__ void mapKernel (HadoopPipes :: MapContextGPU* context) {

27
har* line;

28
har exp [MaxRegex];

29

30 HadoopPipes :: gpuInit (context);

31 if (HadoopPipes :: gpuIdleThread(context))

32 return;

33

34 HadoopPipes :: gpuGetValue (context , \& line);

35

36 HadoopPipes :: gpuStrCpy ((
har*)context ->extra , exp);

37

38 if (HadoopPipes :: gpuStrSearch(line , exp))

39 HadoopPipes :: gpuEmit (context , exp , "1");

40 }

41

42
lass GrepMapper : publi
 HadoopPipes ::Mapper {

43 publi
:

44 string exp ;

45

46 GrepMapper (HadoopPipes ::TaskContext & context) {

47 HadoopPipes :: JobConf * conf =

48 (HadoopPipes :: JobConf *) context .getJobConf ();

49 if (conf != NULL) {

50 exp = conf ->get (GrepRegexKey);

51 }

52 else {

53 exp = "";

54 }

55 #ifdef F_MAP_GPU

56 gpuInit (context .getMapContextGPUHost (),

57 context .getMapContextGPUDevice ());

58 #endif

59 }

60

61 // map function on the CPU

62 void map (HadoopPipes ::MapContext & context) {

63 string line = context .getInputValue();

64 int pos = line.find(exp);

65 if (pos >= 0 && pos < line.size())

173

66 context .emit(exp , "1");

67 }

68

69 // initialize GPU regex

70 void gpuInit (HadoopPipes :: MapContextGPU* ctxHst ,

71 HadoopPipes :: MapContextGPU* ctxDev) {

72 HadoopPipes :: gpuAllocCopyExtra(ctxHst , ctxDev , (void*)exp .c_str (),

73 exp .length () + 1);

74 }

75

76 // map function on the GPU

77 void gpuMap (HadoopPipes :: MapContextGPU* context ,

78 int gpuBlocks , int gpuThreads) {

79 mapKernel <<<gpuBlocks , gpuThreads >>>(context);

80 }

81 };

82

83 // . . .

84

85 int main(int argc ,
har *argv[]) {

86 HadoopPipes :: SettingsPipesGPU* settings =

87 HadoopPipes :: getSettingsPipesGPU ();

88 settings ->cudaBlocks = MaxCudaBlocks;

89 settings -> cudaThreadsBlock = MaxCudaThreadsBlock;

90 settings -> cudaMaxInBuff = MaxLine ;

91 settings -> cudaMaxOutBuff = MaxLine ;

92

93 #ifdef F_MAP_GPU

94 #ifdef F_MAP_CPU

95 settings ->flagMapCPU = 1;

96 settings ->flagMapGPU = 1;

97 #else

98 settings ->flagMapCPU = 0;

99 settings ->flagMapGPU = 1;

100 #endif

101 #else

102 settings ->flagMapCPU = 1;

103 settings ->flagMapGPU = 0;

104 #endif

105

106 return HadoopPipes :: runTask (

107 HadoopPipes :: TemplateFactory <GrepMapper , GrepReducer >());

108 }

Listing C.1 presents MoSS code for Grep1. In addition to Hadoop Pipes C++

code, developer has to (i) define a GPU Map kernel, (ii) write handling code inside

Mapper class and (iii) set MoSS Pipes parameters in main() function. Grep GPU

kernel uses MoSS API and has the same functionality as its CPU counterpart. This

kernel is called from gpuMap() function inside Mapper class. Moreover, Grep needs

an additional data structure inside Map kernel. This additional data structure is

a string representing the regular expression to be matched against each line of

the input. The string is passed to GPU kernel through gpuAllocCopyExtra()

1Specific MoSS code is highlighted using lightgreen background.

174

function called in Mapper class constructor. In the end, the developer sets MoSS

execution parameters such as GPU thread count, input/output buffer size and

whether the CPU, GPU or both are to be used for processing.

In summary, MoSS provides an expressive API to handle data-parallel pro-

cessing on heterogeneous systems with GPU which is seamlessly integrated with

Hadoop.

175

	Abstract
	Acknowledgements
	Table of Contents
	List of Publications
	List of Figures
	List of Tables
	List of Algorithms and Code Listings
	1 Introduction
	1.1 Data-Parallel Applications
	1.2 Heterogeneous Systems
	1.3 Objective, Approach and Contributions
	1.4 Thesis Organization

	2 Related Work
	2.1 Techniques for Data-parallel Processing
	2.1.1 On Homogeneous Systems
	2.1.2 On Heterogeneous Systems

	2.2 Performance Models for Data-parallel Processing
	2.3 Energy Efficiency of Data-parallel Processing
	2.4 Summary and Limitations

	3 Techniques for Efficient Data-parallel Execution
	3.1 Approach Overview
	3.2 Lazy Processing
	3.3 Dynamic Mapping
	3.4 Implementation of MoSS
	3.5 Summary

	4 Measurement-driven Performance Analysis
	4.1 Applications
	4.2 Systems
	4.3 MoSS Setup and Evaluation
	4.3.1 Determining GPU Thread Count
	4.3.2 Effect of Unified Memory
	4.3.3 Comparison of Dynamic Mapping Techniques
	4.3.4 Comparison with Chunking

	4.4 Homogeneous versus Heterogeneous Systems
	4.4.1 Analysis on Nvidia Jetson TK1
	4.4.2 Analysis on Amazon EC2

	4.5 Brawny versus Wimpy Systems
	4.5.1 Time-Energy Performance Analysis at Single-Node Level
	4.5.2 Bottleneck Analysis
	4.5.3 Time-Energy Performance Equivalence

	4.6 Summary

	5 Model-driven Performance Analysis
	5.1 Execution Time Model
	5.2 Energy Model
	5.3 Validation
	5.4 Formal Model-driven Analysis
	5.4.1 Formal Analysis of Lazy Processing
	5.4.2 Formal Analysis of Dynamic Techniques

	5.5 System Profile Analysis
	5.6 Model-driven Analysis of Scale-out Workloads and Systems
	5.6.1 Homogeneous versus Heterogeneous
	5.6.2 Brawny versus Wimpy

	5.7 Summary

	6 Conclusions
	6.1 Summary
	6.2 Future Work

	References
	A Heterogeneous Systems Characterization
	A.1 Specifications
	A.1.1 Brawny Systems
	A.1.2 Wimpy Systems

	A.2 Characterization

	B Data-parallel Execution on Many-core Heterogeneous Systems
	B.1 Setup
	B.2 Time-Energy Analysis
	B.3 Time-Energy Performance Equivalence
	B.4 Cost Analysis
	B.4.1 Marginal Cost
	B.4.2 Total Cost

	B.5 Summary

	C MoSS Programming Example

