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ABSTRACT

Surveillance cameras are widely installed in public places to monitor pedestrian

activities for security purposes. An important surveillance application is to detect

anomalous motion automatically, and notify the human observer using computer-

ized methods. Many methods have been proposed for detecting anomalous motion

patterns in surveillance videos. They can be characterized according to the ap-

proach adopted, which is supervised or unsupervised, and the features used. Su-

pervised methods group features into normal and abnormal classes using trained

classifier or probabilistic model. They train a classifier or probabilistic model us-

ing features of training data with normal class labels in the training phase. Then,

trained classifier or probabilistic model is used to classify features as normal or ab-

normal. Unsupervised methods group features into clusters without using trained

model, and they do not need labeled data. Unfortunately, existing literature has

not elucidated the essential ingredients that make the methods work as they do,

despite the fact that tests have been conducted to compare the performance of

various methods. This thesis attempts to fill this knowledge gap by studying the

videos tested by existing methods and identifying key components required by an

effective unsupervised anomaly detection algorithm. Existing methods also tend

to be very complex. Investigation into the test videos used by most of these meth-

ods suggests that they are overly complex, because speed or direction of moving

objects seems possible for unsupervised anomaly detection. This thesis investi-

gates the problem of unsupervised anomaly detection from first principle: analysis

of the test videos to identify prominent characteristics. The investigation leads to

a two-stage algorithm for unsupervised detection of anomaly based on speed or

direction, and the dominant motion. Our comprehensive test results show that

an unsupervised algorithm that captures the key components can be relatively

simple and yet perform equally well or better compared to existing methods.
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Chapter 1

Introduction

1.1 Motivation

In recent decades, surveillance cameras are widely used in public places. These

cameras help the human observer to monitor public places and ensure the public

safety. Human observers have the ability to detect anomalous motion from single

surveillance scene with low density crowd [1]. However, they can get tired after

monitoring for long hours and miss even the easy cases. Moreover, psycho-physical

scientists indicate that monitoring multiple surveillance scenes is tedious, because

most of the time nothing strange occurs in the scene [2]. Therefore, with the

improvement of computer vision techniques, the research of anomaly detection

in surveillance videos has caught further attention in the last few years. This

research attracted many researchers to help the human observer in monitoring

multiple surveillance scenes by detecting anomalous motion automatically using

computerized methods. These methods can also be used for criminal investigation

to sieve through video archives to detect anomalous activities that have happened

in the past. This research also has many promising applications, such as intelligent

surveillance [3], and safety evaluation [4]. Figure 1.1 shows a human observer

monitoring multiple surveillance screens.

The meaning of anomalous motion pattern depends on the application con-

text. This thesis focuses on surveillance videos of walking pedestrians (Fig. 1.2).

In these videos, the normal human motion is the dominant motion (Fig. 1.2,

1st column). This normal motion happens when pedestrians are walking on the

1



Chapter 1. Introduction 2

Figure 1.1: Human observer monitoring multiple surveillance screens.

Figure 1.2: The first column shows normal motion when pedestrians are walking

on the pedestrian walkway. The other columns show the abnormal motion (in red

box) when skater, cyclist or cart cross pedestrian walkway respectively.

pedestrian walkway. The abnormal motion is a motion that does not conform to

the dominant motion in a given surveillance scene, Figure 1.2 also shows anoma-

lies (bounded by red boxes) in the 2nd, 3rd, and 4th columns, when skater, cyclist,

or cart cross pedestrian walkway respectively.

Many methods have been proposed for anomaly detection with varying degree

of accuracy. They can be characterized according to the approach adopted, which

is supervised [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20] or unsupervised

[21, 22, 23, 24, 25], and the features used, which range from low-level optical flow

to high-level multiple object trajectories. In the first category, supervised methods

group features into normal and abnormal classes using classifier or probabilistic

models. They train a classifier or probabilistic model using features of training

data with normal class labels in the training phase. Then, they classify new
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observation as normal or anomalous based on the trained model. These methods

are usually accurate. However, the models of supervised methods need to be re-

trained to include new normal class with new labeled data. In the second category,

unsupervised methods group features into clusters without using trained models.

They are different from supervised method because they do not train models and

they do not need labeled data. They are also easy to expand to include new

normal motion, but their accuracy is relatively lower than supervised methods.

Since the definition of an anomaly varies in different applications, designing a

general framework for detecting anomalous motion patterns is still quit challeng-

ing. According to the nature of the problem definition of anomaly, anomalous

motion will rarely happen. In reality, it can be any motion that does not conform

to the dominant motion. Therefore, this definition will naturally lead to unbal-

anced normal/anomalous groups in which the normal group is much larger than

anomalous group, hence, the most suitable and typical approaches for deriving a

good solution are:

• Derive a supervised method that uses training data with only normal class

labels for training. In testing, what else diverges from normal patterns will

be anomalous.

• Derive an unsupervised method that groups the input data into two main

groups: dominant (normal) and non-dominant (anomalous).

The above two approaches are commonly followed by existing methods; which is

make sense; and in this thesis we will focus on them. In addition, anomalous

motion is unpredictable, and there is a lack of specific real anomalous test videos,

which introduces extra challenges to the methods who use anomalous labeled data

for training.

Unfortunately, existing literature of the most common approaches has not elu-

cidated the essential ingredients that make the methods work as they do, despite

the fact that tests have been conducted to compare the performance of various

methods. For example, test results (Chapter 4) seem to suggest that there is no

significant advantage in offline training performed by supervised methods com-

pared to well-crafted unsupervised methods. It is also uncertain whether the time
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taken to process high-level features necessarily leads to better detection accuracy.

This situation makes it difficult to optimize the methods for real-time online de-

tection and efficient video archive analysis.

1.2 Thesis Objective

This thesis attempts to fill this knowledge gap by studying the videos tested

by existing methods and identifying key components (effective features) required

by an effective unsupervised anomaly detection algorithm by proposing a two-

stage algorithm based on speed or direction, and dominant motion. We have

chosen to investigate unsupervised method instead of supervised method for the

following reasons: (1) Unsupervised method does not require tedious and time-

consuming manual labeling of training data. (2) It does not require an offline

training phase. Therefore, it can be more easily extended to handle new normal

and abnormal motion patterns that have not happened in the past. (3) Without

the need of offline training, it can be more easily adapted to real-time online

applications by implementing incremental algorithms. We focus on surveillance

videos of pedestrians captured by stationary cameras because they are widely

tested in the literature. Our comprehensive test results on these videos show that

an unsupervised algorithm that captures the key components can be relatively

simple and yet perform equally well or better compared to existing methods.

1.3 Thesis Organization

The remainder of this thesis is organized as follows: Chapter 2 discusses existing

methods of anomaly detection and localization in surveillance video, including fea-

ture extraction and representation (Section 2.1), supervised methods (Section 2.2),

and unsupervised methods (Section 2.3). A review of the test videos used in ex-

isting work (Section 2.4) and a summary of existing methods (Section 2.5) are

also presented in Chapter 2. Then, Chapter 3 formulates the problem of anomaly

detection (Section 3.1), develops the algorithm and presents the implementation

details (Section 3.2). In Chapter 4, the experimental results, comparisons with

state-of-the-art methods, and discussions are given. Finally, the conclusions are

summarized in Chapter 5.



Chapter 2

Related Work

Anomaly detection and localization in surveillance video has been widely stud-

ied in the last decade. Existing methods can be organized into two main categories:

supervised methods (Section 2.2) and unsupervised methods (Section 2.3). Re-

gardless of the category, all methods have a feature extraction and representation

stage. So, this common stage is reviewed first in Section 2.1. A review of test

videos and a summary of all these methods will be discussed in Section 2.4 and

Section 2.5 respectively.

2.1 Feature Extraction and Representation

The existing methods begin by extracting features from the input videos and

then representing them to make detection decisions based on the feature repre-

sentation. The feature representation can be subdivided into two main groups:

hand-crafted and learned, where the hand-crafted feature representation include:

trajectory of feature point and region-based representation.

Trajectory is a sequence of spatial locations (x, y) of a moving feature point, this

feature point can be tracked over time. The trajectories of feature points can be

obtained through tracked interest points [7, 11] or targets [23, 24]. Shandong Wu

et al. [7] calculate optical flow, and then employ particle advection [26] to estimate

the positions of moving particles using sub-pixel-level optical flow interpolation.

Cui et al. [11] use the method of [27] to detect spatio-temporal interest points

(STIP), and then track the STIP using KLT tracker [28, 29]. The tracked interest

5
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points can be grouped to represent the moving object, which helps in obtaining

high-level information (e.g., speed, direction, etc.). However, it is difficult to track

trajectory’s point in extremely crowded scenes, due to dynamic background and

scene clutter. Moreover, the trajectories tend to drift due to frequent occlusions.

Regarding pedestrian detection and multi-target tracking [23, 24], the objects

of interest are detected first and marked as regions. These regions are tracked

over time. The tracked region results in trajectory of region, and each region is

tagged with a frame index and position for localization after anomaly detection.

Yuan et al. [23] use the 3-D DCT model proposed in [30] to detect and track

pedestrians. Lin et al. [24] employ the multiple hypothesis tracking algorithm

proposed in [31] to track multiple pedestrians. This trajectory of pedestrian region

facilitates the detection of abnormality at high-level semantics such as irregular

long-term trajectory, speed and direction of object. However, the trajectory of

region suffers from detection, segmentation, and tracking errors, and these errors

dramatically increase in crowded or cluttered scenes. In addition, the trajectory

of region is computationally expensive in terms of detection and tracking.

The region-based representation begins by dividing the video frames into re-

gions, and then extract the features for each region to model or learn spa-

tio and/or temporal motion patterns from image pixels [17, 21], 2D spatial re-

gions [5, 6, 10, 12, 14, 16, 19, 20, 22, 23, 24] or 3D spatio-temporal regions

[8, 9, 10, 13, 15, 18, 19, 25] of the video. The extracted features include optical flow

[5, 12, 21, 22], histogram of optical flow (HOF) [6, 8, 18, 19, 20, 23, 24], histogram

of oriented gradient (HOG) [8, 18], 3D SIFT [8, 25], histogram of edge orientation

[20], descriptors of intensity, gradient, object persistence, motion direction, optical

flow orientation, speed, etc. [10, 13, 16], structural descriptors based on HOF [23],

particle advection based on optical flow [17], and dynamic textures [32] used in

[9, 15]. Compared to the trajectory of feature point, region based representation

was proposed to avoid tracking individual objects and to overcome tracking limita-

tions. Moreover, simple features, such as optical flow and intensity gradient, take

much less time to extract compared to features extracted by complex algorithms,

such as pedestrian detection and multiple target tracking [23, 24]. However, these

features need further processing to give high-level information. They are also not
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reliable in terms of object detection. Furthermore, this feature representation

emphasizes dynamics in regions, ignoring anomalous object appearance. On the

other hand, some methods have more complete representation that considers both

appearance and motion. For example, [9, 15] introduce a mixtures of dynamic tex-

tures model to jointly utilize appearance and motion features, and [13] extracts

both appearance and motion features over spatial neighborhoods.

The methods of [11, 17] characterize motion flow with interaction between crowd

elements and introduce social models such as social force model. These methods

have been inspired by the classical sociological study of crowd behavior in [33]. As

for modeling crowd elements interactions, Cui et al. [11] propose an interaction

energy potential to model the pedestrian interactions. After they extract the

trajectories, each trajectory will be represented by interaction energy potentials.

Then, standard bag-of-words method is used to represent each video clip. Mehran

et al. [17] introduce social force model to analyze pedestrian dynamics. In their

method, the extracted particles will be considered as individuals. The interaction

forces of the particles are estimated using social force model. Then, the estimated

interaction forces will be mapped into the frame to characterize Force Flow for

each pixel. Even though the methods of [11, 17] model the interactions between

crowd elements, their models mainly focused on motion information and need a

prior knowledge for specific scenarios.

Si Wu et al. [6] represent the position, speed, and direction of the spatial fore-

ground 2D regions with a three probability density function (pdf). Shandong Wu

et al. [7] draw inspiration from the mathematical theory of chaotic systems to

model and analyze nonlinear dynamics of trajectories used in [34]. To charac-

terize a chaotic system, they calculate two chaotic invariants, namely the largest

Lyapunov exponent and the correlation dimension. Cheng et al. [8] construct

code-book using bottom-up greedy clustering of the extracted descriptors. Cong

et al. [19, 20] extract Histogram of Optical Flow (HOF), then employ sparsity

consistency to obtain an optimal subset of non-redundant features free of noise.

This optimal subset is considered as training dictionary. By extracting Multi-scale

Histogram of Optical Flow (MHOF), the method of [20] improves the detection

performance compared to [19]. Duan-Yu Chen et al. [22] quantize optical flow
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Figure 2.1: The structure of the stacked denoising auto-encoders (SDAE) proposed

by Xu et al. [5]. The multi-scale 2D spatial regions will be warped into equal size.

orientations in 2D regions. Lin et al. [24] detect the foreground at multiple scales

using the method of [35] based on the GMM modeling. They next detect Re-

gion Of Interest (ROI) of the foreground by scanning the input video using a

2D sliding window. In this way, most of the background will be filtered out,

which reduces the computational cost and suppresses the effect of noise. For each

ROI in the foreground the optical flow of each pixel is calculated using Horn and

Schunck’s method [36]. Javan et al. [25] adopt a probability density function (pdf)

to model the densely sampled 3D saptio-temporal regions of HOG features. In

their method, the high-dimensional pdf need to be approximated, and it suffers

from the problem of curse of dimensionality. Yuan et al. [23] use the 3-D DCT

model proposed in [30] to detect and track pedestrians. Each detected pedestrian

will be represented in a 2D bounding box. They also propose a structural descrip-

tor based on HOF. The proposed descriptor will be extracted for each bounding

box.

The common shortcoming of the previously mentioned hand-crafted features is

that they need a prior knowledge to design an effective representation, which is

time-consuming and difficult. Nowadays, deep learning has become a hot topic,

in which the researchers employ deep learning methods to learn features automat-

ically from input raw data. Deep learning methods have been successfully used
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in many computer vision tasks, such as object detection [37], image classifica-

tion [38] and activity recognition [39]. The key reason behind using deep learning

methods is that discriminative and meaningful features can be adaptively learned

through multi-layer nonlinear transformations. Thus, it makes sense that de-

tecting anomalous motion patterns in videos can also benefit from deep learning

features.

An autoencoder is a feedforward neural network used for unsupervised feature

learning. It has an input layer, an output layer and at least one hidden layer in be-

tween. The output layer of an autoencoder must has the same number of nodes as

the input layer. The aim of an autoencoder is to reconstruct its own inputs. Thus,

auto-encoders are unsupervised learning models. Auto-encoders have been used

to extract features from video in [5, 14, 18]. Xu et al. [5] propose a novel approach

based on stacked denoising auto-encoder (SDAE) [40] to learn features of both

appearance and motion patterns in an unsupervised way. They introduce a three

pipelines of SDAE as shown in Figure 2.1. The inputs are: multi-scale 2D spatial

regions of original frame (to capture appearance), 2D regions of optical flow mea-

sures (to capture motion), and a joint vector that combines 2D spatial regions with

their corresponding optical flow measures. The number of nodes of the first layer

of the 2D spatial regions and 2D optical flow regions is both set to 1024 (dimension

of the input vector), while the first layer of the joint vector pipeline is set to 2048.

Therefore, the encoder structure can be defined as: 1024(2048)⇒ 512(1024)⇒
256(512)⇒ 128(256), and the decoder is a symmetric structure. Based on [40],

the output of any layer in a SDAE can be used as learned feature representation.

In their structure, they choose the output vector of the last hidden layer in the

encoder part because it is the smallest feature vector that gives a more compact

feature representation. Similarly, Mohammad et al. [18] use the architecture of

denoising auto-encoders proposed in [41] to learn input features, but the input of

their method is the 3D spatio-temporal regions. Despite the fact that the pro-

posed novel unsupervised feature learning methods [5, 18] extract effective and

compact feature representation, their methods only consider short-term temporal

motion, i.e., optical flow measures (only two consecutive frames). Feng et al. [14]

use also the SDAE proposed in [5], and their method learns long-term temporal

motion using recurrent neural network, which performs non-linear transformation
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and considers both the current input state and the previous hidden state. More

specifically, they adopt long short-term memory (LSTM) framework [42] because

it is capable of learning long-term temporal motion dependencies. For all methods

that use auto-encoder, the stochastic gradient descent (SGD) is used to optimize

and learn them. Auto-encoders can extract and learn features efficiently without

need a prior knowledge, where they can be easily generalized for different scenar-

ios. However, auto-encoders take a large amount of time to train. They also have

fuzzy design decisions (e.g., number of nodes, layers, learning parameters, etc.)

with a lack of theoretical-based justification.

2.2 Supervised Methods

Supervised methods classify features into normal and abnormal classes using

trained models. They typically work in two phases: training phase and testing

phase. In the training phase, these methods use class classifiers to learn a model

of the labeled normal training data. In the testing phase, they determine whether

new testing data belong to the normal class. The training models include prob-

abilistic model [6, 7, 8, 9, 12, 15, 16, 17, 18], dictionary [10, 13, 19, 20], and

classifier [5, 11, 14]. Unlike supervised methods, Saligrama et al. [13] use k-nn to

find anomalies, where their method does not need the training phase.

Methods of [6, 7, 8, 9, 12, 15, 16, 17, 18] use the samples with only normal

class label to train a probabilistic model in the training phase. They infer the

likelihood of a test sample with respect to a trained probabilistic model, where

the test sample with low-probability will be considered as anomaly in the testing

phase. Among the methods that train a probabilistic model, Si Wu et al. [6]

train probability density functions (pdfs) using a probabilistic conjugate Bayesian

analysis. Shandong Wu et al. [7] train the Gaussian mixture models (GMMs)

using the chaotic feature set to describe the probability density function of the

normal motion patterns. The GMMs are trained using expectation maximization

(EM). Cheng et al. [8] adopt a Gaussian process regression (GPR) model. Li and

Mahadevan et al. [9, 15] detect temporal anomaly using the popular background

subtraction method in [43]. The method of [43] employs GMM at each 2D region

for modeling the local distribution of region intensities. In [9, 15] the GMM
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is replaced by Mixture of Dynamic Textures (MDT) [32]. The MDT of spatio-

temporal 3D regions is learned using EM in the training phase.

To detect spatial anomaly, Li and Mahadevan et al. [9, 15] also use the discrim-

inant saliency criteria of [44], where the anomalous spatial 2D regions are those

whose saliency measures above a pre-defined threshold. The method of [9] apply

a Conditional Random Field (CRF) filter on multi-scale image regions, which sig-

nificantly improves the detection performance compared to [15]. Kim et al. [16]

model the descriptors of 2D spatial regions with a mixture of probabilistic prin-

cipal component analysis (MPPCA) models. Then, they adopt Markov Random

Field (MRF) model, where the nodes in the MRF graph correspond to a 2D spa-

tial regions in the video frames, and neighboring nodes are associated with links.

Finally, the trained MPPCA model and MRF graph are used to compute maxi-

mum a posterior estimate of new observation. Adam et al. [12] and Sabokrou et

al. [18] model the extracted feature representation with simple probability distri-

butions such as Gaussian distributions, where they have a simple training phase

that estimates only the distribution parameters (i.e., mean and variance). Mehran

et al. [17] select randomly a spatio-temporal volumes of Force Flow, they model

normal motion patterns in the video using a probabilistic graphical model called

Latent Dirichlet Allocation (LDA) [45] and they use EM to train LDA model.

There is another group of methods [10, 13, 19, 20] that construct a dictionary

using only the normal training samples in the training phase. In the testing phase,

these methods use the reconstruction error of a new observation as a metric for

anomaly detection. Boiman et al. [10] introduce an inference by composition

method to compute the joint probability between a training dictionary and a

new testing sample. Bayesian network propagation is used to compute the joint

probability. They consider new testing sample as anomalous if it cannot be recon-

structed from training dictionary. Cong et al. [19, 20] consider an optimal subset

of feature representation as training dictionary. In their method, each testing

sample could be a sparse linear combination from the training dictionary using

weighted l1 minimization. They determine whether testing sample is normal or

not based on its linear reconstruction cost.
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Saligrama et al. [13] propose a supervised method that does not need the train-

ing phase. They first compute the K-nearest neighbor (K-NN) for each 3D spatio-

temporal region based on Euclidean distance. Then, they aggregate weighted

K-NN distances from all regions to compute normalized composite score. This

composite score will be ranked with respect to other such composite scores asso-

ciated with training normal samples. They finally declare anomalies as low scores

against offline templates.

Regarding the methods that train a classifier [5, 11, 14], Cui et al. [11] and

Xu et al. [5] adopt support vector machine (SVM) classifier to find the abnormal

motion patterns. The method of [5] is a bit different, it uses one-class SVM [46]

for each of three types of learned feature representations (three pipelines). They

train one-class SVM of radial basis function (RBF) kernel using only normal sam-

ples. Then, the three anomaly scores of the three one-class SVMs are computed

and combined using unsupervised late fusion scheme. Finally, they consider a test

sample as anomalous if its score below a pre-defined threshold. As mentioned

previously, even though Xu et al. [5] extract effective and compact feature rep-

resentation, their methods only consider short-term temporal motion. Therefore,

Feng et al. [14] adopt LSTM model to learn long-term temporal motion depen-

dencies by taking both the current input state and the previous hidden state as

inputs to predict time dependencies. The test sample that disobeys the predicted

dependency is considered as anomaly.

The methods that train a probabilistic model are based on a firm theoretical

foundation, they are also theoretically justified to get optimal solution. However,

some models introduce more parameters, which increases the complexity. They

also suffer from the curse of dimensionality. Regarding the methods that construct

a dictionary, even though they are based on a firm theoretical foundation, these

methods need to exhaustively sample 2D/3D regions from the video, which leads

to higher computational cost. Moreover, these methods cannot be adopted or

applied directly in an online manner, because they require the entire dictionary to

be constructed beforehand so that these methods can proceed. As for the methods

that train classifiers, the training of SVM is relatively easy because SVM is defined

by a convex optimisation problem (no local minima). SVM also can scale relatively
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well to high-dimensional data. However, it is reasoning to manually choose the

kernel of SVM. On the other hand, deep learning methods [5, 14, 18] can learn

discriminative features automatically. However, deep learning methods are hard

to train and there is no significant advantage of deep learning methods compared

to other supervised methods based on our test results (Chapter 4). In General,

well-trained supervised methods can be accurate. Moreover, their testing phases

are typically efficient enough for real-time applications, provided the features can

be extracted efficiently. However, this approach may suffer from a high false

positive rate, since any normal example not included in the training data will be

detected as anomaly. Therefore, it is difficult to extend these methods to include

new normal scenario.

2.3 Unsupervised Methods

Unsupervised methods [21, 22, 23, 24, 25] typically group extracted features

into clusters without training a model and without relying on labeled data. The

clustering algorithms that have been used include hierarchical cluster merging [22],

k-means [24], online weighted clustering [24], and fuzzy probabilistic clustering

[25]. After clustering, these methods label dominant clusters (i.e., clusters with

the most members) as normal and the other clusters as abnormal. The threshold

for deciding which clusters are dominant is empirically set. The methods of [21]

and [23], on the other hand, do not perform clustering. Instead, the method of [21]

detects high speed motion and performs line intersection to detect the center of

crowd dispersion, and the method of [23] measures dissimilarity between features

to detect anomalies.

Duan-Yu Chen et al. [22] apply hierarchical cluster merging. The similarity

measure is used to calculate distance between feature points. Hierarchical cluster-

ing is easy to implement and does not need a prior information about the number

of clusters required. However, in hierarchical clustering algorithm, there is no

objective function need to be minimized and the time complexity is O(n2 log n),

which makes the clustering of feature points of large video computationally ex-

pensive. Lin et al. [24] quantize the flow vectors within Region Of Interest (ROI)

using k-means clustering to obtain the Adaptive Multi-scale Histogram Optical
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Flow (AMHOF) features. Compared to hierarchical clustering, k-means has a lin-

ear time complexity, but k-means requires the number of clusters to be initialized

(empirically set). Each ROI is characterized by AMHOF and spatial location. An

online weighted clustering of ROIs is performed to obtain abnormal clusters. They

adopt weighted clustering to overcome the perspective distortion. To improve the

detection performance, they also apply a simplified Multi-Target Tracker (MTT)

algorithm [31]. The method of Lin et al. [24] is able to catch slow changes of

normal motion patterns in an online adaptive manner. However, their method

cannot be optimized to be real-time, because they use MTT algorithm with two

clustering methods. Javan et al. [25] perform a fuzzy probabilistic clustering to

obtain the abnormal clusters. The resultant clusters of the fuzzy probabilistic

clustering can be characterized by a small number of parameters. However, fuzzy

probabilistic clustering usually converges to local minimum.

Chun-Yu Chen and Yu Shao [21] compute the weighted speed of pedestrians

based on optical flow to detect pedestrian escape motion pattern using an empir-

ically set threshold. They also introduce the divergent centers analysis to detect

the center of crowd dispersion by intersecting the paths of escaping pedestrians.

Their method is very simple and fast. However, their method is only able to de-

tect high speed motion and will fail in detecting other anomalies (e.g., direction,

appearance, and interaction). Yuan et al. [23] propose a measure of dissimilarity

between descriptors to detect anomalies. The method of [23] can perform in an

online manner. However, it cannot be optimized to be real-time. Moreover, The

method of [23] is mainly based on the 3-D DCT tracking method of [30], which

means the detection of anomalies will be mainly related to robust detection and

tracking of pedestrians (tracking failure leads to detection failure).

Compared to supervised methods, unsupervised methods do not require manu-

ally labeled training data, do not have separate training phase and testing phase,

and do not perform offline training. Unsupervised methods can be easily extended

to handle new normal/abnormal motion patterns, because they do not need to re-

train a model and do not need new labeled data. Moreover, unsupervised methods

that use incremental algorithms are very suitable for real-time online applications.
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Table 2.1: The test videos used by various papers.
Datasets

Surveillance Non-Surveillance

Reference Pedestrian Traffic Human

UCSDped1 UCSDped2 UMN Subway PETS2009 BEHAVE U-turn QMUL Web [25, 47]

[5, 14]

[6, 7, 22]

[8]

[9, 19]

[10]

[11]

[12, 16]

[13]

[15, 20, 24]

[17]

[18]

[21]

[23]

[25]

2.4 Review of Test Videos

This section reviews test videos used by existing methods of common approaches

(Table 2.1). These test videos have surveillance and non-surveillance videos. The

surveillance videos are divided into: pedestrian videos and traffic videos. On the

other hand, the non-surveillance videos are only human videos.

As shown in Table 2.1, there are many datasets tested by existing work. Some

of them are commonly used including UCSDped1, UCSDped2, UMN, Subway,

and PETS2009. The rest are not commonly used including BEHAVE, U-turn,

QMUL, Web, and the dataset in [47, 25].

This thesis focuses on surveillance videos of pedestrians. Therefore, this sec-

tion analyzes in details the surveillance videos with pedestrian activities. These

datasets include UCSDped1, UCSDped2, UMN, PETS2009, Subway, and BE-

HAVE. Each surveillance video in these datasets is recorded using stationary

camera.

The UCSD dataset [48] is divided into 50 training videos and 48 testing videos.

Each video has a length ranging from 120 to 200 frames. For the training video of

UCSD, it contains only pedestrians walking in different directions at pedestrian

walkway, and this is considered as normal motion. For the testing video of UCSD,
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Figure 2.2: UCSD dataset. the first row is ped1 scene and the second row is ped2

scene. The first column shows normal motion when pedestrians are walking on

the pedestrian walkway. The other columns show the abnormal motion (in red

box) when skater, cyclist or cart cross pedestrian walkway respectively.

it contains mostly pedestrian walking in different directions at pedestrian walkway,

but occasionally some carts, cyclists, or skaters cross the pedestrian walkway at

higher speed compare to pedestrians, and this is considered as abnormal motion

(because they pose hazard to the pedestrians). The training and testing videos

are not staged or synthesized and all of the anomalous motions naturally occur.

Two of test videos contain a wheelchair, and the wheelchair moves at the same

speed as pedestrian walking. In these two test videos, the wheelchair is labeled as

abnormal, but this is actually ambiguous whether should be normal or abnormal,

because these are also pedestrian but on wheelchair; unlike other anomalies they

do not pose hazard to the pedestrians.

The videos of UCSD are captured in two different scenes called “ped1” and

“ped2”, as shown in Figure 2.2. The first scene, denoted “ped1”, contains 34

training videos and 36 testing videos. It has videos with 158x238 resolution and

the pedestrians walking vertically with respect to the camera. The second scene,

denoted “ped2” contains 16 training videos and 12 testing videos. It has videos

with 240x360 resolution and the pedestrians walking horizontally with respect to

the camera.

The testing videos of UCSD show that all anomalous entities such as skaters,

cyclists and carts are moving at higher speed than pedestrians. For UCSDped2

“Test002” and “Test004” videos, the speeds of moving objects are computed by
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computing the speeds of distinctive feature points associated to the moving ob-

jects. To provide more detailed analysis, the speeds of distinctive feature points

over the whole video are plotted in two graphs for UCSDped2 “Test002” and

“Test004” videos as shown in Figure 2.3. In each graph, there is a dominant group

(green box) of feature points with similar speed. This is regarded as the normal

group. There are also smaller dominant groups (red boxes) of feature points with

similar speed, and they correspond to abnormal motion (e.g., skaters, cyclists and

carts). These are the abnormal groups with higher speed. The rest of the feature

points (do not belong to any of dominant groups) are considered as ambiguous

points. Obviously, the speeds of normal and abnormal groups are very different.

In the same Figure 2.3, the point (a) is more likely to be normal, the point (c) is

more likely to be abnormal, and the point (b) in the middle is very ambiguous.

Additionally, the feature points correspond to abnormal groups are visualized in

Figure 2.4 for both test videos “Test002” and “Test004”. The “Test002” has the

second dominant group (red box), the feature points of this group are visual-

ized and cover cyclist crosses the pedestrian walkway as illustrated in Figure 2.4

(column 1). Regarding to the “Test004”, it has the second and third dominant

groups (red boxes), the feature points of these groups are visualized, where they

cover cart (second dominant group) and cyclist (third dominant group) cross the

pedestrian walkway as illustrated in Figure 2.4 (column 2). On the other hand,

UCSDped1 testing videos contains only 2 videos (Test021 and Test023) where

the anomalous entities move in a speed similar to walking pedestrians speed. For

example, in UCSDped1 “Test021” video, wheelchair crosses the pedestrian walk-

way in a speed similar to pedestrian walking speed. Figure 2.5 plot of the speeds

of distinctive feature points over video frames for UCSDped1 “Test021”. After

looking at Figure 2.5, it has only the first dominant group.

The UMN dataset [49] contains one video. This video has 7710 frames. It is

captured in three different scenes as shown in Figure 2.6. Each scene has a different

length. The video of UMN contains pedestrians walking in different directions,

and this is considered as normal motion (6280 frames). Suddenly, the pedestrians

start escaping in panic at higher speed, and this is considered as abnormal motion

(1430 frames). However, this video is staged, synthesized, and so artificial. It also

produces a very large difference in speed when pedestrians start running in the
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Figure 2.3: The speeds of distinctive feature points over video frames for UCS-

Dped2 “Test002” and “Test004” videos. The x-axis represents the first frame

where tracking of the feature point strats.

Figure 2.4: The first column is the visualization of feature points (red points)

correspond to abnormal group in UCSDped2 “Test002” (at frame 160). The

second column is the visualization of feature points (red points) correspond to

two abnormal groups in UCSDped2 “Test004” (at frame 170).

abnormal case.

For further analysis; Figure 2.7 is plot of the speeds of distinctive feature points

over video frames for UMN 1st scene and 3rd scene. It is clear in Figure 2.7 there
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Figure 2.5: The speeds of distinctive feature points over video frames for UCS-

Dped1 “Test021” video.

Figure 2.6: UMN dataset. Three different scenes with normal/abnormal scenarios.

is a large dominant group (green box) of feature points with similar speed. This

is regarded as the normal group. There are also smaller dominant groups (red

boxes) of feature points with similar speed, and they correspond to abnormal

motion. The speed is very different between normal and abnormal motion as

illustrated in Figure 2.7.

The PETS2009 dataset [50] contains two anomaly scenarios. For each scenario,

there are 4 videos captured in 4 different views by different cameras as shown in

Figure 2.8. Each view has 576x768 frame resolution. The first scenario has 223

frames, and the second scenario has 378 frames.

For the first scenario of PETS2009, it contains a group of pedestrians walking

at pedestrian walkway, and this is considered as normal motion; abnormal mo-
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Figure 2.7: The speeds of distinctive feature points over video frames for UMN

1st and 3rd scenes.

Figure 2.8: PETS2009 dataset. Each row is a scenario and each column is a view.

tion happens when pedestrians suddenly start running in one direction. For the

second scenario of PETS2009, it contains three groups of pedestrians walking to

the center of pedestrian walkway, then they merge at the center, and this is con-

sidered as normal motion; abnormal motion happens when pedestrians suddenly

start running in different directions. However, the two scenarios have significant

differences in the field of view and illumination for the four views. Moreover, the

test videos of PETS2009 are staged, synthesized, and so artificial. It also produces

a very large difference in speed when pedestrians start running in the abnormal

case.

For more detailed analysis; Figure 2.9 is plot of the speeds of distinctive feature

points over video frames for the PETS2009 1st and 2nd scenarios (first view). It is

clear in Figure 2.9, there is a large dominant group (green box) of feature points
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Figure 2.9: The speeds of distinctive feature points over video frames for

PETS2009 1st and 2nd scenarios. These scenarios are taken from the first view.

with similar speed. This is regarded as the normal group. There are also groups

(red boxes) with higher speed, and they correspond to abnormal motion.

The Subway dataset [12] contains two videos. These videos are recorded from

the entrance (96 min, around 145k frames) and exit (43 min, around 65k frames)

of a subway station with 384x512 frame resolution.

The videos of Subway contain passengers entering and exiting the station from

the entrance and exit respectively, and this is considered as normal motion; ab-

normal motion happens when passengers are exiting from the entrance or entering

from the exit as shown in Figure 2.10. These test videos have only two anomalous

motion patterns, and predictable spatial localization of anomaly (at entrance and

exit regions). Speed alone is not enough to detect anomalies for these test videos.

However, direction alone would further improve the detection of anomalies.

The BEHAVE dataset [51] contains 4 videos with 480x640 frame resolution.

These videos contain pedestrian group activities, including meeting, splitting up,

standing, walking, and ignoring each other; these activities are considered as

normal motion. Abnormal motion starts when fighting or escaping happens as

shown in Figure 2.11. However, these videos are staged, synthesized, and so

artificial. They are also speed dependent and produce a very large difference in

speed when pedestrians start fighting or running in the abnormal case.
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Figure 2.10: Subway dataset. The first row is the entrance scene and the second

is the exit scene. The first column is the normal motion pattern and the others

are the possible anomalies.

Figure 2.11: BEHAVE dataset. The first picture shows normal motion, where

pedstrians walking. The second picture shows abnormal motion, where the fight-

ing happens.

2.5 Summary

Supervised methods in general need to re-train a classifier or probabilistic model

to include new normal scenario, and they need new labels. Unsupervised methods

do not train a classifier or probabilistic model beforehand, and they do not need

labels; which makes them easy to expand. Supervised methods follow the common

approach and train models from only normal samples.

By reviewing the surveillance test videos of pedestrians, most of them are speed

dependent (i.e., UCSDped1, UCSDped2, UMN, PETS2009, and BEHAVE). The

Subway dataset is not speed dependent, but it is direction dependent. The BE-

HAVE dataset is not commonly used (only used by one paper [11]); anyway the
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escape and fighting anomalies in BEHAVE are about speed, and their scenarios are

already included in other test videos. Therefore, this thesis proposes a two-stage

algorithm for unsupervised detection of anomaly based on speed or direction, and

the dominant motion.
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Unsupervised Anomaly Detection

3.1 Problem Formulation

In the common pedestrian test videos analyzed in Section 2.4, the pedestrians

are the normal moving entities. Moreover, they are the dominant moving entities

and they move at roughly the same speed or direction. Therefore, the dominant

motion can be regarded as normal motion. On the other hand, abnormal moving

entities such as carts, cyclists, skaters, escaping humans move at a higher speed

or opposite direction. They are not the dominant motion in the whole video.

The essence of unsupervised method is to group feature points into non-

overlapping clusters that each contains consistent members. Therefore, unsu-

pervised detection and localization of anomalous motion can be decomposed into

two sub-problems: (1) grouping of feature points into clusters, and (2) labeling of

clusters.

The first sub-problem is formulated as follows: Given either motion speed or

motion direction of n feature points fi, i = 1, . . . , n, in video, group fi into m

non-overlapping clusters Cj, j = 1, . . . ,m. Each cluster Cj is characterized by the

cluster size | Cj | and the cluster center, which is the average feature value f̄j of

the features in Cj. The grouping should satisfy the following constraints:

1. Small intra-cluster difference dv(Cj).

dv(Cj) =
1

| Cj |
∑
f∈Cj

(f − f̄j)
2
. (3.1)

24
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2. Large inter-cluster difference dx(Cj, Ck).

dx(Cj, Ck) = (f̄j − f̄k)
2
. (3.2)

3. Well-separated clusters.

dv(Cj) < dx(Cj, Ck), ∀ Cj, and all Ck 6= Cj. (3.3)

The second sub-problem is formulated as follows: Given clusters Cj, j =

1, . . . ,m, label each cluster as either normal, abnormal or ambiguous according

to the following conditions:

1. Clusters with the largest sizes are normal.

2. Clusters with the highest speeds are abnormal.

3. Clusters not labeled as normal or abnormal are ambiguous.

A video frame that contains any of anomalous feature points is regarded as

abnormal; otherwise, it is normal. In the abnormal frame, abnormal moving

entities are localized based on positions and frame indices of the anomalous feature

points.

3.2 Proposed Algorithm

The goal of this thesis is to identify the essential ingredients for effective un-

supervised detection of anomalies in pedestrian surveillance videos. To achieve

this goal, we apply the principle of Occam’s razor: given several equally effective

alternatives, we choose the simplest alternative. Therefore, we call our method

OCCAM. Similar to unsupervised methods based on clustering, OCCAM consists

of four main stages:

1. Extract and track distinctive feature points.

2. Group feature points into clusters based on speed.

3. Label clusters based on speed and size.

4. Finally, anomalous motions are detected and localized in the videos.
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Stage 1: Feature Extraction and Tracking

Analysis of common test videos used in existing work (Section 2.4) shows that

normal and abnormal motion may be differentiated by either motion speed or

motion direction alone, depending on the test videos. Therefore, OCCAM uses

motion speed or motion direction as the feature. OCCAM extracts and tracks

distinctive feature points using the dense trajectory features proposed by Wang et

al. [52, 53]. Their method densely samples feature points at multiple spatial scales.

It also tracks feature points using median filtering in a dense optical flow field [54].

Their method tracks the feature points for 15 frames (to avoid drifting) and sample

new feature points to replace them. Additionally, their method removes the static

feature points, and removes feature points with large displacements between two

consecutive frames to reduce errors.

Each feature point pi, i = 1, . . . , n, has a sequence of spatial locations over time

{xt
i, . . . ,x

t+l
i }, where xt

i is a position (x, y) of point i at frame t, and l is the

trajectory length. The speed si and direction θi of feature point pi are calculated

by:

si =
‖xt+l

i − xt
i‖

l
. (3.4)

θi =

(
arctan

(yt+l
i − yti
xt+l
i − xti

)
× 180◦

π

)
mod 360◦ (3.5)

In UCSDped1 test videos, objects and humans move toward and away from

the camera, and there is a noticeable amount of perspective distortion. This

distortion results in motion parallax, where objects that are closer to camera

move faster than objects that are further away from camera. This perspective

distortion does not give the actual speed of feature points, which directly affects

the accuracy of the proposed method on UCSDped1. Therefore, to overcome this

distortion, the feature points of UCSDped1 are projected into the ground plane

using an estimated Homography. The speed of feature point is calculated after

the projection, to give the actual speed for this special case. Section 4.6 discusses

the direct effect of projected points on detection accuracy.

Stage 2: Feature Clustering
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Feature clustering is performed on either motion speed or motion direction. Let

us denote the extracted feature values as fi, i = 1, . . . , n. Since the features are

1-D, the simplest way to cluster fi is to divide the feature value range (minimum

to maximum) into m equal intervals, and regard each interval as a cluster Cj, j =

1, . . . ,m. Then, features fi can be clustered efficiently into their respective clusters

in a fixed O(n) time. Each cluster Cj is characterized by the cluster size |Cj| and

the cluster center, which is the average feature value f̄j of the features in Cj. This

simple and efficient clustering method ensures that the intra-cluster differences

are much smaller than the inter-cluster differences, which satisfies the constraint

of well-separated clusters (will be explained in an example later Fig. 3.2).

After clustering, normalized cluster size Sj and normalized cluster center Fj

are computed for each cluster Cj. Let us denote the dominant cluster, the cluster

with the largest size, as C+ and the largest feature value as f ∗. Then, Sj and Fj

are computed as follows:

Sj = |Cj|/|C+|, Fj = f̄j/f
∗. (3.6)

Therefore, these normalized values range between 0 and 1. Each cluster Cj is now

characterized by a characteristic vector of two components, namely normalized

cluster size Sj and normalized cluster center Fj.

Stage 3: Cluster Labeling

Unlike existing methods, OCCAM labels the clusters into three types: normal,

abnormal, and ambiguous. The ambiguous clusters allow the normal and abnor-

mal clusters to be separated as widely as possible. Since the characteristic vectors

of the clusters are 2-D, 2-D k-means clustering is used to group the clusters Cj

into three groups Gh, h = 1, 2, 3.

First, k-means clustering is initialized as follows: The center of group G1 is

initialized by the characteristic vector of the dominant cluster C+. Similarly, the

abnormal group G2 is initialized with the cluster C− whose cluster center is the

furthest from that of C+ because C− is most likely to be abnormal. The ambiguous

group G3 is initialized with the cluster that is approximately equidistant to C+

and C−.

Next, k-means clustering is executed to group the remaining clusters Cj into

the three groups Gh. The distance between a cluster and a group is measured
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Figure 3.1: The pictures above were taken from UCSDped2, Test002 video at

frame 150. The first picture visualizes the feature points (green points). The

second picture visualizes the feature point trajectories (green lines).

in terms of the Euclidean distance between their characteristic vectors. After

clustering, all the clusters in groupG1 are labeled as normal, those inG2 abnormal,

and those in G3 ambiguous. In addition, the abnormal cluster that is nearest to

G1 is re-labeled as ambiguous so as to widen the separation between normal and

abnormal clusters.

Stage 4: Anomaly Detection and Localization

After cluster labeling, the features fi in abnormal clusters are labeled as ab-

normal features. The corresponding trajectory positions xi(t) of fi are labeled as

abnormal feature points. Finally, the video frames that contain abnormal feature

points are labeled as abnormal frames.

Example

Let us illustrate the proposed algorithm using test video “Test002” from UCS-

Dped2. This video will be processed through the four main stages. In the first

stage, the distinctive feature points pi are extracted and tracked; Figure 3.1 visu-

alizes the feature points and their trajectories.

In the second stage, the speeds of feature points si are divided into equal speed

intervals Cj, j = 1, . . . ,m. Figure 3.2 shows an example of equal speed intervals,

where m = 10, and the black horizontal lines are the interval boundaries. From
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Figure 3.2: Plot of ten intervals of feature point speeds (UCSDped2, Test002

video). The x-axis is the first frame number and the y-axis is the speed in

pixel/frame.

Figure 3.2, C3 (third interval) has a very large size. The last interval C10 has

a smaller size, and it is very different in speed compering to C3. From Fig. 3.2

we can recognize that the points in each interval are approximately identically

distributed, which makes the center for each interval (interval points mean) to be

roughly in the middle, the intra-cluster difference for each interval equals roughly

to the half of the interval length, and the inter-cluster difference between two

adjacent intervals (smallest inter-cluster difference) equals roughly to the interval

length. Thus, the largest intra-cluster difference is roughly equal to the half

of smallest inter-cluster difference, in which that satisfies the constraint of well-

separated clusters. Figure 3.3 also sketches normalized cluster size Sj (x-axis) and

normalized cluster center Fj (y-axis).

In the third stage, The resultant intervals Cj, are labeled based on normalized

cluster size Sj and normalized cluster center Fj using 2-D k-means clustering. Fig-

ure 3.4 sketches initial cluster centers in stars (left plot) and the clustering results
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Figure 3.3: Plot of normalized size Sj (x-axis) and speed Fj (y-axis) of ten intervals

(UCSDped2, Test002 video).

after few iterations (right plot). Based on resultant clusters, stage 4 localizes the

anomalous feature points of abnormal group G2 (red squares). Each anomalous

feature point is visualized as a red transparent circle with radius equal to four

pixels as shown in Figure 3.5.



Chapter 3. Unsupervised Anomaly Detection 31

Figure 3.4: The left plot sketches initial cluster centers in stars. The right plot is

clustering results after few iterations with the final centers (UCSDped2, Test002

video).

Figure 3.5: Visualization of anomalous feature points of UCSDped2 Test002 video

at frame 150.
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Experiments and Discussions

4.1 Datasets

To evaluate the performance of the proposed method, OCCAM will be applied

on five publicly available datasets namely UCSDped1, UCSDped2, Subway, UMN,

and PETS2009 (Section 2.4). For OCCAM, motion directions were extracted from

Subway video whereas motion speeds were extracted from the other videos. Next,

feature clustering and cluster labeling were performed to detect abnormal feature

points and abnormal frames.

4.2 Evaluation Methodology

The frame-level criterion and the pixel-level criterion are two common criteria,

and they are used to evaluate the performance of anomaly detection and localiza-

tion.

The frame-level criterion evaluates the detection by comparing the detection

results (at frame level) to the video’s frame-level ground-truth annotations. This

criterion determines four primary parameters:

• True positive (TP): a frame is a true positive, if the algorithm detects an

anomalous frame, and it matches the ground truth frame’s annotation.

• False positive (FP): a frame is a false positive, if the algorithm detects an

anomalous frame, and it does not match the ground truth frame’s annota-

tion.

32
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• True negative (TN): a frame is a true negative, if the algorithm does not

detect an anomalous frame, and it matches the ground truth frame’s anno-

tation.

• False negative (FN): a frame is a false negative, if the algorithm does not

detect an anomalous frame, and it does not match the ground truth frame’s

annotation.

The pixel-level criterion evaluates the localization by comparing the localization

results (at pixel level) to the video’s pixel-level ground-truth annotations. A frame

is a true positive if it is positive and at least 40 percent of its anomalous pixels are

localized as proposed in many papers such as [9, 15]. A frame is a false positive

if it is negative and has any of anomalous pixels are localized.

The two criteria measure false positive rate “FPR”, true positive rate “TPR”,

and accuracy “ACC” using the following equations:

FPR =
FP

TN + FP
. (4.1)

TPR =
TP

TP + FN
. (4.2)

ACC =
TP + TN

TP + FP + FN + TN
. (4.3)

4.3 Experimental Setup and Determination of

m

There are two parameters need to be set. The first one l is the trajectory

length, and the second one m is the number of clusters in stage 2. l is set to

the default value as determined by Wang et al. [52, 53] and equal to 15. To

determine the best value of m, a test was performed on USCDped1, UCSDped2,

PETS2009scen1, and PETS2009scen2 datasets with varying the value of m. This

test measures the accuracy (ACC) at frame-level criterion using different values

of m, and shows the direct effect of m on the accuracy (ACC).
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Table 4.1: Effect of different values of m on detection accuracy (ACC) from

different datasets.

Dataset ACC

m = 5 m = 7 m = 10 m = 13 m = 16 m = 20

USCDped1 0.8937 0.9028 0.9072 0.8810 0.8247 0.8196

USCDped2 0.8243 0.8593 0.9530 0.9595 0.9635 0.9460

PETS2009scen1 0.8738 0.9005 0.9100 0.8924 0.9063 0.9013

PETS2009scen2 0.8773 0.8992 0.9874 0.9211 0.9801 0.9727

Table 4.1 shows that with m = 10, the dataset’s accuracy (ACC) is sufficiently

high. For USCDped1, PETS2009scen1, and PETS2009scen2, the best value of

m is 10, and it achieves the highest accuracy (ACC). For USCDped2, the best

value of m that achieves the highest ACC is 16, but at m = 10 the ACC does not

significantly change. Therefore, m is fixed at 10 for subsequent tests.

4.4 Benefit of Ambiguous Clusters

This test illustrates the benefit of having ambiguous clusters. A variant of

OCCAM, denoted as OCCAM−, was tested such that its cluster labeling stage

ran k-means clustering with k = 2 for normal and abnormal groups, without

ambiguous group. Existing methods also label their clusters as either normal or

abnormal, without ambiguous clusters. Both OCCAM and OCCAM− were tested

on the common test videos discussed in Section 2.4. True positive rate (TPR) and

false positive rate (FPR) were measured for the detected abnormal frames.

Table 4.2 compares the results of OCCAM and OCCAM−. For all test videos

at frame-level, OCCAM’s TPR is slightly smaller than that of OCCAM−, but

OCCAM’s FPR is significantly smaller than that of OCCAM−. That is, by

regarding some clusters as ambiguous, OCCAM makes significantly fewer false

detections than does OCCAM− without significantly sacrificing its true detection

rate.
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Table 4.2: Benefit of ambiguous clusters. OCCAM (O) has slightly smaller TPR,

but significantly smaller FPR compared to OCCAM− (O−).

Test videos TPR FPR

O O− O O−
UCSDped1 0.887 0.982 0.214 0.741

UCSDped2 0.957 0.994 0.154 0.677

Subway Entrance 0.835 0.942 0.152 0.773

Subway Exit 0.850 0.967 0.136 0.634

UMN 0.910 0.999 0.002 0.818

PETS2009 Scene 1 0.892 0.973 0.079 0.482

PETS2009 Scene 2 0.987 0.999 0.125 0.395

4.5 Performance Comparison

OCCAM’s results are compared based on frame-level criterion with all of the

existing methods discussed in Section 2.2 and Section2.3. These methods belong

to the following categories:

• Supervised (training from only normal examples): AMDN [5], BM [6], CI

[7], GPR [8], H-MDT-CRF [9], IBC [10], IEP [11], LMH [12], Local-KNN

[13], LSTM [14], MDT [15], MPPCA [16], OF [17], SF [17], Sabokrou [18],

SRC [19], and STMC [20]. [17] tested both OF and SF methods.

• Unsupervised: DC [21], FF [22], OADC-SA [23], OWC-MTT [24], and STC

[25].

In this section, most of existing methods use the receiver operating characteristic

(ROC) curve to present their results. This curve combines the two measurements,

FPR (x-axis) and TPR (y-axis), and plots multiple points by varying threshold.

The results of others’ ROC curves are collected either by directly contacting the

authors or by using software to trace the curve points from different papers. OC-

CAM has no parameter to tune. So, we plot only a point instead of a ROC curve

for OCCAM.

Most of these methods were tested only on some of the test videos. The test

results on UCSDped1, UCSDped2, and Subway were reported as ROC curves.
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Figure 4.1: Performance comparison at frame-level. 14 methods are available for

comparison on UCSDped1 videos. Supervised methods (dashed lines), unsuper-

vised methods (solid lines).

For the test results on UMN, some papers reported ROC curves whereas others

reported only accuracy. For PETS2009, only accuracy was reported. ROC curves

are not reported for H-MDT-CRF [9] on UCSDped1 and UCSDped2, LMH [12]

and MPPCA [16] on Subway, and Sabokrou [18] on UMN. Therefore, they are not

included in our ROC graphs.

For UCSDped1 and UCSDped2 (Fig. 4.1 and Fig. 4.2) and UMN videos

(Fig. 4.5), OCCAM is among the best performers compared to existing methods.

For the Subway videos (Fig. 4.3 and Fig. 4.4), OCCAM’s performance is compa-

rable to those of existing methods that are far more complex than OCCAM. For

the same FPR, OCCAM achieves the highest TPR compared to existing meth-

ods for UCSDped2 (Fig. 4.2), Subway exit (Fig. 4.4), and UMN (Fig. 4.5), the

3rd highest TPR for UCSDped1 (Fig. 4.2), and the 4th highest TPR for Subway

entrance (Fig. 4.3). In applications where high FPR is tolerable, OCCAM can

run as OCCAM− without ambiguous clusters. Then, OCCAM− achieves TPR of

close to 1.0 for all test cases. Fig. 4.1, 4.2, 4.3, 4.4 and 4.5 also show that existing

unsupervised methods can perform as well as or better than supervised methods.
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Figure 4.2: Performance comparison at frame-level. 10 methods are available for

comparison on UCSDped2 videos. Supervised methods (dashed lines), unsuper-

vised methods (solid lines).

Table 4.3: Frame-level performance comparison on UMN. OCCAM has the highest

overall accuracy. (S) Supervised method, (U) unsupervised method.

Method Type ACC

Scene 1 Scene 2 Scene 3 Overall

OCCAM U 0.9862 0.9742 0.9934 0.9819

BM [6] S 0.9903 0.9536 0.9663 0.9640

CI [7] S 0.9062 0.8506 0.9158 0.8791

SF [17] S 0.8441 0.8235 0.9083 0.8509

SRC [19] S 0.9052 0.7848 0.9270 0.8470

DC [21] U 0.9704 0.9534 0.9647 0.9598

FF [22] U 0.8869 0.8000 0.7792 0.8104

Some existing papers reported only accuracy on UMN and PETS2009 videos.

Tables 4.3, 4.4 and 4.5 show that OCCAM is more accurate than these methods

for both UMN and PETS2009.

For UCSDped1 and UCSDped2 videos, Li and Mahadevan [9, 15] also pro-

posed a pixel-level criterion to measure the spatial accuracy of detected abnormal
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Figure 4.3: Performance comparison at frame-level. 6 methods are available for

comparison on Subway entrance video. Supervised methods (dashed lines), unsu-

pervised methods (solid lines).

frames. This error measure depends on the number of detected abnormal pixels in

an abnormal region. Since OCCAM detects only selected pixels in these regions

instead of the whole regions, pixel-level criterion is not appropriate for OCCAM.

Instead, this thesis measures spatial accuracy in terms of precision, which is the

percentage of detected abnormal pixels that are true positives. OCCAM achieves

abnormal pixel detection precision of 0.72 for UCSDped1 and 0.78 for UCSDped2.

Moreover, most of the false positive pixels are located around the abnormal re-

gions. On the other hand, the spatial precision of OCCAM− on UCSDped1 and

UCSDped2 is, respectively, 0.37 and 0.40, which is much lower than that of OC-

CAM. Therefore, ambiguous clusters are important for OCCAM to achieve high

spatial accuracy in detecting abnormal pixels. For visualization purposes, OC-

CAM’s localization result is compared directly with pixel-level ground truth by

sketching a red transparent circle with radius equal to four pixels for each anoma-

lous feature point. The localization results applied on USCDped1 and USCDped2

are visualized in Figure 4.6 and Figure 4.7 respectively.
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Figure 4.4: Performance comparison at frame-level. 2 methods are available for

comparison on Subway exit video. Supervised methods (dashed lines), unsuper-

vised methods (solid lines).

Table 4.4: Frame-level performance comparison on videos of PETS2009, 1st sce-

nario. OCCAM has the highest overall accuracy. (S) Supervised method, (U)

unsupervised method.

Method Type ACC

View 1 View 2 View 3 View 4 Overall

OCCAM U 0.8964 0.8514 0.9324 0.9596 0.9100

BM [6] S 0.9245 0.8302 0.8962 0.9057 0.8892

CI [7] S 0.5660 0.8302 0.8113 0.5283 0.6040

SF [17] S 0.6321 0.7076 0.5283 0.4811 0.5873

FF [22] U 0.3774 0.3774 0.3774 0.3774 0.3774

4.6 Discussions

A. Computational Complexity: The time complexity of OCCAM is mainly

related to the two clustering levels: linear one-dimensional clustering (stage

2) and two-dimensional k-means clustering (stage 3). In stage 2, the timing

is linear and depends on the number of feature points n; the time complexity

of the second stage is O(n). In stage 3, the timing is affected by four
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Figure 4.5: Performance comparison on UMN video. 7 methods are available

for comparison at frame-level. Supervised methods (dashed lines), unsupervised

methods (solid lines).

Figure 4.6: The comparison of ground truth and localization results generated by

OCCAM on UCSDped1. Red pixels represent the TP pixels, blue pixels represent

FP pixels, yellow pixels represent FN pixels, and all other pixels represent TN

pixels.

parameters: number of groups Gh, number of iterations N , number of input

clusters m and the dimension of their characteristic vector. The number of

groups and the cluster dimension are fixed and equal to 3 and 2 respectively.

Therefore the time complexity of the third stage is O(mN). Most of the

time, the number of iterations needed to converge is very small because the
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Figure 4.7: The comparison of ground truth and localization results generated by

OCCAM on UCSDped2. Red pixels represent the TP pixels, blue pixels represent

FP pixels, yellow pixels represent FN pixels, and all other pixels represent TN

pixels.

Table 4.5: Frame-level performance comparison on videos of PETS2009, 1st sce-

nario. OCCAM has the highest overall accuracy. (S) Supervised method, (U)

unsupervised method.

Method Type ACC

View 1 View 2 View 3 View 4 Overall

OCCAM U 0.9735 0.9894 0.9920 0.9947 0.9874

BM [6] S 0.9601 0.9415 0.9521 0.9149 0.9422

CI [7] S 0.9495 0.9202 0.9415 0.8936 0.9262

SF [17] S 0.9122 0.8936 0.9468 0.6463 0.8497

FF [22] U 0.945 0.6383 0.9548 0.9681 0.8766

number of groups Gh and m are small too.

B. The effect of projected feature points on UCSDped1: As mentioned in Sec-

tion 3.2 (stage 1), the amount of perspective distortion in UCSDped1 is

very high. This perspective distortion gives wrong speed of feature points,

which affects overall accuracy. To overcome this distortion, the feature point

positions of UCSDped1 only are projected into the ground plane using an

estimated Homography. To show the effect of the point projection, the
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Table 4.6: The effect of projected feature points on the accuracy of OCCAM

applied on UCSD.

Method ACC

UCSDped1 UCSDped2

OCCAM with projection 0.912 0.961

OCCAM without projection 0.641 0.963

accuracy (ACC) of OCCAM applied on UCSD at frame-level is computed

with/without projection in Table 4.6. Form this table, it is clear that pro-

jecting the points significantly improves the accuracy of OCCAM applied on

UCSDped1 videos. For OCCAM applied on UCSDped2 videos, the accuracy

almost the same with/without the projection.



Chapter 5

Conclusions

This thesis investigated the essential components (effective features) required for

effective unsupervised detection of anomalies in surveillance videos of pedestrians.

It shows that relatively simple but well-designed unsupervised algorithm like OC-

CAM can perform as well as or better than existing supervised and unsupervised

methods. In particular, simple but informative features such as motion direction

and motion speed are sufficient for achieving high TPR with low FPR. Moreover,

inclusion of ambiguous clusters in the cluster labeling process reduces FPR sig-

nificantly without sacrificing TPR much. At the same FPR, OCCAM achieves

among the highest TPR compared to existing methods. It also has the highest

accuracy for UMN and PETS2009 videos compared to existing methods that re-

ported only accuracy. In applications where high FPR is tolerable, OCCAM can

run as OCCAM− without ambiguous clusters. Then, OCCAM− achieves TPR

of close to 1.0 for all test cases. With ambiguous clusters, OCCAM’s spatial pre-

cision of detecting abnormal pixels is also very high. In general, OCCAM and

existing unsupervised methods can perform as well as or better than supervised

methods. Therefore, our research results can serve as a useful benchmark for

testing new algorithms and for developing more advanced algorithms that require

features other than motion speed and direction.

The lesson learned in this thesis is that the analysis of input data is the key

to address the right problem and derive the possible solution. Additionally, the

objective of scientific research is not necessarily to come up with the best algo-

rithm, but rather to understand the approach of solving the right problem in more

structured way. This way of understating seems more logical and systematic.
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