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Summary

This thesis contains four parts on various types of partitions, Hecke-Rogers type

identities and false theta functions.

In the first part, we give explicit formulas for the number of partition pairs and

triples with 3 cores. The main tools that we use are Ramanujan’s 1ψ1 summation

formula and Bailey’s 6ψ6 formula. By using these formulas, we establish many

arithmetic identities satisfied by these two partition functions, which simplified the

proofs of some identities in the literature. The results described in this part appears

in [82].

In the second part, following the strategies of A.O.L. Atkin and B. Gordon, we

prove three infinite families of congruences modulo arbitrary powers of 11 for some

partition functions, including 11-regular partitions and 11-core partitions. We also

confirm a conjecture of H.H. Chan and P.C. Toh on the ordinary partition function

p(n). The results described in this part appears in [85].

In the third part, we introduce a unified modular approach to find q-product

representations for the generating functions of k-colored generalized Frobenius par-

titions. Let cφk(n) denote the number of k-colored generalized Frobenius partitions

of n and CΦk(q) be its generating function. We give various representations of

CΦk(q) for k ≤ 17. Moreover, we discover new surprising properties of CΦk(q).

ix



x Summary

This part is based on the joint work with Chan and Y.F. Yang [36].

In the fourth part, we turn to study some identities on basic hypergeometric

series. Using some elegant formulas of Liu, we prove an intriguing identity, which

involves a double series of Hecke-Rogers type associated with definite quadratic

forms. In addition, two similar identities will be given. We also provide new proofs

of five identities of Ramanujan associated with false theta functions. Our proofs do

not use the Rogers-Fine identity or Bailey transforms. This part is based on [86]

and a joint work with A.J. Yee [87].



Chapter 1
Introduction

A partition of an integer n is a sequence of non-increasing positive integers which

add up to n. We denote the number of partitions of n by p(n). For example, there

are 5 partitions of 4, namely

4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1.

Hence p(4) = 5. L. Euler found that the generating function of p(n) is

∞∑
n=0

p(n)qn =
∞∏
k=1

1

1− qk
, (1.1)

where we agree that p(0) = 1. Since the generating function of p(n) is an infinite

product, it will be convenient to introduce some q-series notation, which will be used

throughout this thesis. We define

(a; q)0 := 1, (1.2)

(a; q)n :=
n−1∏
k=0

(1− aqk), n ≥ 1, (1.3)

(a; q)∞ :=
∞∏
k=0

(1− aqk), |q| < 1, (1.4)

(a1, a2, . . . , am; q)n := (a1; q)n(a2; q)n · · · (am; q)n, (1.5)

(a1, a2, . . . , am; q)∞ := (a1; q)∞(a2; q)∞ · · · (am; q)∞, |q| < 1. (1.6)

1



2 Chapter 1. Introduction

We also define (a; q)n for negative integers n as

(a; q)n :=
1

(1− aq−1)(1− aq−2) · · · (1− aq−n)
=

1

(aq−n; q)n
=

(−q/a)nqn(n−1)/2

(q/a; q)n
.

(1.7)

Moreover, we define an rφs basic hypergeometric series by

rφs

a1, a2, . . . , ar

b1, . . . , bs
; q, z


:=

∞∑
n=0

(a1; q)n(a2; q)n · · · (ar; q)n
(q; q)n(b1; q)n · · · (bs; q)n

(
(−1)nqn(n−1)/2

)1+s−r
zn (1.8)

where q 6= 0 when r > s + 1. The general bilateral basic hypergeometric series in

base q with r numerator and s denominator parameters is defined by

rψs

a1, a2, . . . , ar

b1, . . . , bs
; q, z


:=

∞∑
n=−∞

(a1; q)n(a2; q)n · · · (ar; q)n
(q; q)n(b1; q)n · · · (bs; q)n

(−1)(s−r)nq(s−r)n(n−1)/2zn. (1.9)

In (1.9) we assume that q, z and the parameters are such that each term of the

series is well-defined.

Throughout this thesis, unless otherwise stated, we will treat numerous functions

as Laurent series in one variable q and will assume that |q| < 1. In particular, since

the infinite product in (1.4) diverges when a 6= 0 and |q| ≥ 1, the condition |q| < 1

is necessary. For more discussions about the convergence of infinite series, and in

particular the convergence of the rφs and rψs series, see [42].

Using the notation in (1.4), (1.1) can be rewritten as

∞∑
n=0

p(n)qn =
1

(q; q)∞
. (1.10)

One of S. Ramanujan’s famous works is the study of the arithmetic properties

of p(n). In 1919, Ramanujan [72, 74] found three simple congruences satisfied by

p(n), namely,

p(5n+ 4) ≡ 0 (mod 5), (1.11)
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p(7n+ 5) ≡ 0 (mod 7), and (1.12)

p(11n+ 6) ≡ 0 (mod 11). (1.13)

He gave a few proofs of (1.11). In one of his proofs, he deduced (1.11) from his

identity

∞∑
n=0

p(5n+ 4)qn = 5
(q5; q5)5

∞
(q; q)6

∞
. (1.14)

Identity (1.14) was later regarded by G.H. Hardy as “Ramanujan’s most beautiful

identity”. Ramanujan also stated without proof the following similar identity for

p(7n+ 5),

∞∑
n=0

p(7n+ 5)qn = 7
(q7; q7)3

∞
(q; q)4

∞
+ 49q

(q7; q7)7
∞

(q; q)8
∞
, (1.15)

and deduced (1.12) from (1.15). Although Ramanujan also announced that he has

a proof for (1.13), the first elementary proof was published by L. Winquist [89].

Based on the congruences (1.11)–(1.13), Ramanujan [72, 74] made a general

conjecture for congruences modulo arbitrary powers of 5, 7 and 11. His original

conjecture is not quite correct. However, much to Ramanujan’s credit, a slighted

modified correct version is

p(5jn+ δ5,j) ≡ 0 (mod 5j), (1.16)

p(7jn+ δ7,j) ≡ 0 (mod 7bj/2c+1), (1.17)

p(11jn+ δ11,j) ≡ 0 (mod 11j), (1.18)

where j ≥ 1 and δ`,j is the reciprocal modulo `j of 24. The proofs of congruences

(1.16) and (1.17) were attributed to G.N. Watson [88]. M.D. Hirschhorn and D.C.

Hunt [49] also gave a simple proof of (1.16), and using similar strategy, later F.

Garvan [39] gave an elementary proof to (1.17). The congruence (1.18) was proved

by A.O.L. Atkin [16]. For more results and complete history about the partition

function p(n), see B.C. Berndt’s book [26].
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Motivated by Ramanujan’s work on partitions, arithmetic properties of numerous

kinds of partitions have been investigated. In recent years, there are several types

of restricted partitions which have drawn much attention. These include t-core

partitions, `-regular partitions, and k-colored generalized Frobenius partitions.

To understand the definition of t-core partitions, we need to explain the concept

of hook numbers. Given a partition λ = {λ1, λ2, · · · , λk} of a positive integer n,

where

λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 1, λ1 + λ2 + · · ·+ λk = n,

one can represent it by the Ferrers diagram, which is a set of left justified rows of

equi-spaced dots wherein the i-th row has λi dots for each 1 ≤ i ≤ k. Figure 1.1

shows the Ferrers diagram of the partition λ = {3, 2, 1}. The dots are labeled by row

Figure 1.1

and column coordinates in the same way as we label the entries of a matrix. Let λ′j

denote the number of dots in column j. For each dot with label (i, j), we associate

it with a hook number H(i, j) which is defined as the number of dots directly below

and to the right of the dot (i, j) including the dot itself. That is,

H(i, j) = λi + λ′j − j − i+ 1. (1.19)

For the partition represented by Figure 1.1, the dots (1, 1), (1, 2), (1, 3), (2, 1), (2, 2)

and (3, 1) have hook numbers 5, 3, 1, 3, 1 and 1, respectively.

A partition λ of n is said to be a t-core partition or partition with t cores if it has

no hook numbers which are multiples of t. For example, the partition λ = {3, 2, 1} is

a 2-core partition since all its hook numbers are odd. It is neither a 3-core partition

nor a 5-core partition since there are some hook numbers divisible by 3 and 5,
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respectively. We denote by at(n) the number of partitions of n with t-cores. From

[41, Eq. (2.1)], the generating function of at(n) is given by

∞∑
n=0

at(n)qn =
(qt; qt)t∞
(q; q)∞

. (1.20)

A partition k-tuple (λ(1), λ(2), · · · , λ(k)) of n is a k-tuple of partitions λ(1), λ(2), · · · ,

λ(k) such that the sum of all the parts equals n. For example, let λ(1) = {3, 1}, λ(2) =

{4, 1}, λ(3) = {1}. Then (λ(1), λ(2), λ(3)) is a partition triple of 10 since (3 + 1) +

(4 + 1) + 1 = 10. A partition k-tuple of n with t-cores is a partition k-tuple

(λ(1), λ(2), · · · , λ(k)) of n where each λ(i) is t-core partition for i = 1, 2, · · · , k.

Let At(n) (resp. Bt(n)) denote the number of partition pairs (resp. triples) of n

with t-cores. From (1.20), it is not difficult to see that the generating functions for

At(n) and Bt(n) are given by

∞∑
n=0

At(n)qn =
(qt; qt)2t

∞
(q; q)2

∞
(1.21)

and
∞∑
n=0

Bt(n)qn =
(qt; qt)3t

∞
(q; q)3

∞
(1.22)

respectively.

In 1996, using the theory of modular forms, A. Granville and K. Ono [46] found

an explicit formula for a3(n):

a3(n) = d1,3(3n+ 1)− d2,3(3n+ 1), (1.23)

where dr,3(n) denotes the number of divisors of n congruent to r modulo 3. Sub-

sequently, other mathematicians such as N.D. Baruah, B.C. Berndt, Hirschhorn,

B.L.S. Lin, K. Nath, J. Sellers, L. Wang and E.X.W. Xia found many new arith-

metic identities satisfied by a3(n), A3(n) and B3(n). For instance, Baruah and Nath

[22] established three infinite families of arithmetic identities involving A3(n). They

discovered that for any integers k ≥ 0 and n ≥ 0,

A3

(
22k+2n+

2(22k − 1)

3

)
=

22k+2 − 1

3
A3(4n), (1.24)
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A3

(
22k+2n+

2(22k+2 − 1)

3

)
=

22k+2 − 1

3
A3(4n+ 2)− 22k+2 − 4

3
A3(n), (1.25)

A3

(
22k+1n+

5 · 22k − 2

3

)
=
(
22k+1 − 1

)
A3(2n+ 1). (1.26)

In view of (1.23), it is natural to ask if we can find explicit formulas for A3(n)

and B3(n). The main goal of Chapter 2 is to give an affirmative answer to this

question. By using Ramanujan’s 1ψ1 summation formula and Bailey’s 6ψ6 formula,

we give a new elementary proof of (1.23) and find explicit formulas of A3(n) and

B3(n). From these formulas, we derive numerous arithmetic relations satisfied by

A3(n) and B3(n). We also generalize many known identities associated with these

partition functions.

In Chapter 3 we apply the theory of modular forms to establish some congru-

ences modulo arbitrary powers of 11 for three partition functions a11(n), b11(n) and

p[11111](n). Here a11(n) denotes the number of 11-core partitions of n, b11(n) denotes

the number of 11-regular partitions of n and p[11111](n) is defined as

∞∑
n=0

p[11111](n)qn =
1

(q; q)∞(q11; q11)∞
.

Here for any positive integer `, a partition of n is called `-regular if none of its parts

are divisible by `. We use b`(n) to denote the number of `-regular partitions of n

and its generating function is given by

∞∑
n=0

b`(n)qn =
(q`; q`)∞
(q; q)∞

. (1.27)

Following the strategy of Atkin [16] and B. Gordon [44], we establish congruences

modulo arbitrary powers of 11 for these functions. For instance, for any integers

n ≥ 0 and k ≥ 1, we prove that

b11

(
112k−1n+

7 · 112k−1 − 5

12

)
≡ 0 (mod 11k).

We have so far encountered different types of partitions. These partitions, which

are interesting combinatorial objects, also connect to other areas of mathematics.
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For instance, they play an important role in representation theory of the symmetric

groups (see [52, 75], for example). Here we give a few examples. Let Sn be the

symmetric group on the set X = {1, 2, · · · , n}. It is known that [52, p. 6] the

number of conjugacy classes of Sn equals p(n). This implies that p(n) enumerates

the number of ordinary irreducible representations of Sn. Moreover, a conjugacy

class of a group is called a `-regular class if the order of an element in that class

is not divisible by `. It was shown in [52, p. 36, Lemma 10.2] that the number of

`-regular partitions of n equals the number of partitions of n where no parts of the

partition appear ` or more times, which is also the same as the number of `-regular

classes of Sn. Some interesting discussions about hook numbers, t-core partitions

and their applications in representation theory can be found in [46, 52, 75].

Chapter 4 is devoted to the study of the k-colored generalized Frobenius parti-

tions. The k-colored generalized Frobenius partitions were first introduced by G.E.

Andrews [4]. Let cφk(n) denote the number of k-colored generalized Frobenius par-

titions of n and

CΦk(q) :=
∞∑
n=0

cφk(n)qn. (1.28)

Andrews showed that

CΦk(q) =
1

(q; q)k∞

∑
m1,··· ,mk−1∈Z

qQ(m1,··· ,mk−1)

where

Q(m1,m2, · · · ,mk−1) =
k−1∑
i=1

m2
i +

∑
1≤i<j≤k−1

mimj.

He also found beautiful alternative representations for CΦk(q) for k = 1, 2, 3 and

5 [4]. Andrews commented that similar identity exists for k = 7, and the identity

was published later by L.W. Kolitsch [57]. Kolitsch [57, 60], N.D. Baruah and

B.K. Sarmah [23, 24] subsequently found alternative representations of CΦk(q) for

k = 4, 5, 6 and 11. However, it is not easy to apply their methods to find alternative

representations of CΦk(q) for other k. The main goal of Chapter 4 is to extend
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the list of formulas of CΦk(q). We discuss the modular properties of CΦk(q) and

then use the theory of modular forms to find alternative representations. We give

new proofs of the existing formulas of CΦk(q) and discover new representations of

CΦk(q) for k < 18. For instance, we prove that

CΦ9(q) = 324q
(q3; q3)8

∞
(q; q)9

∞
+ 19683q4 (q9; q9)12

∞
(q; q)9

∞(q3; q3)4
∞
− 240q

(q9; q9)3
∞

(q3; q3)4
∞

− 1458q2 (q9; q9)6
∞

(q; q)3
∞(q3; q3)4

∞
+

(q; q)3
∞

(q3; q3)4
∞
. (1.29)

We also prove some interesting congruences associated with cφk(n). For example,

let p be a prime and N be a positive integer which is not divisible by p. For any

integers α ≥ 1 and n ≥ 0, we prove that

cφpαN(n) ≡ cφpα−1N(n/p) (mod p2α), (1.30)

with the convention that cφk(x) = 0 whenever x is not an integer.

In Chapter 5 we turn to study some interesting basic hypergeometric series i-

dentities. It was E. Hecke who first systematically investigated theta series related

to indefinite quadratic forms [48]. For example, Hecke [48, p. 425] found that

∞∏
n=1

(1− qn)2 =
∞∑

n=−∞

∑
|m|≤n/2

(−1)n+mq(n2−3m2)/2+(n+m)/2, (1.31)

which is originally due to L.J. Rogers [76, p. 323].

In the study of q-series, Hecke-type sums are interesting objects themselves. In

early works of Andrews [5, 6], they appear as bridges between mock theta functions

and Jacobi forms. Such an essential role still holds even after S.P. Zwegers’ seminal

work on the modularity theory of mock theta functions [96]. However, unlike Hecke-

type sums associated with indefinite quadratic forms, there are few results on definite

quadratic forms (c.f. [34, 80]). One of the main results of this chapter is the following

identity associated with definite quadratic forms:

∞∑
n=1

qn(q; q2)n
(−q; q2)n(1 + q2n)

=
∞∑
n=1

∑
|m|≤n

(−1)mqn
2+m2 −

∞∑
n=1

(−1)nq2n2

. (1.32)
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Two other interesting identities will also be given. Moreover, as an application of

(1.32), we give new proofs of two congruences which appeared in [11].

In the later part of Chapter 5, we will prove some identities of Ramanujan on

False theta functions. False theta functions are series that are instances of classical

theta series except for an alteration of the signs of some of the terms in the series.

They were first introduced by Rogers [77]. By the method used in proving (1.32),

we provide new proofs of the following identities of Ramanujan [73]: for |q| < 1,

∞∑
n=0

(−1)n(q; q2)n q
n(n+1)

(−q; q)2n+1

=
∞∑
n=0

(−1)nqn(n+1)/2, (1.33)

∞∑
n=0

(q; q2)2
n q

n

(−q; q)2n+1

=
∞∑
n=0

(−1)nqn(n+1), (1.34)

∞∑
n=0

(q; q2)n q
n

(−q; q)2n+1

=
∞∑
n=0

(−1)nq3n(n+1)/2, (1.35)

∞∑
n=0

(q;−q)2n q
n

(−q; q)2n+1

=
∞∑
n=0

(−1)nq2n(n+1), (1.36)

∞∑
n=0

(q;−q)n(−q2; q2)n q
n

(−q; q)2n+1

=
∞∑
n=0

(−1)nq3n(n+1). (1.37)

These identities were first proved by Andrews [3, Section 6] by employing the Rogers-

Fine identity as well as some other identities. Recently, Andrews and S.O. Warnaar

[13] provided new proofs of (1.33)–(1.36) by using symmetric bilateral Bailey trans-

forms. However, their methods apparently do not yield proof of (1.37). Using other

bilateral Bailey transformation formulaes, W.C. Chu and W. Zhang [37] proved

many identities on false theta functions including (1.33)–(1.37). Our proofs do not

use the Rogers-Fine identity or Bailey transforms and it is evident that our method

can be applied to discover and prove many identities similar to (1.33)–(1.37).





Chapter 2
Partitions with 3 Cores

2.1 Introduction

Let at(n) be the number of partitions of n that are t-cores. From [41, Eq. (2.1)], the

generating function of at(n) is given by

∞∑
n=0

at(n)qn =
(qt; qt)t∞
(q; q)∞

.

In particular, when t = 3, we have

∞∑
n=0

a3(n)qn =
(q3; q3)3

∞
(q; q)∞

. (2.1.1)

Let At(n) (resp. Bt(n)) denote the number of bipartitions (resp. partition triples)

of n with t-cores. The generating functions for At(n) and Bt(n) are given by (1.21)

and (1.22), respectively.

In 1996, A. Granville and K. Ono [46] found the explicit formula (1.23) for a3(n)

based on the theory of modular forms. N.D. Baruah and B.C. Berndt [19] showed

that for any nonnegative integer n,

a3(4n+ 1) = a3(n).

In 2009, M.D. Hirschhorn and J.A. Sellers [50] provided an elementary proof of

(1.23) and as corollaries, they proved some arithmetic identities. For example, let

11
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p ≡ 2 (mod 3) be prime and let k be a positive even integer. Then, for all n ≥ 0,

a3

(
pkn+

pk − 1

3

)
= a3(n).

Let u(n) denote the number of representations of a nonnegative integer n in the

form x2+3y2 with x, y ∈ Z. By using Ramanujan’s theta function identities, Baruah

and K. Nath [21] proved that

u(12n+ 4) = 6a3(n).

In 2014, B.L.S. Lin [62] discovered some arithmetic identities associated with

A3(n). For example, he proved that A3(8n+ 6) = 7A3(2n+ 1). Let v(n) denote the

number of representations of a nonnegative integer n in the form x2
1 +x2

2 + 3y2
1 + 3y2

2

with x1, x2, y1, y2 ∈ Z. Lin showed that

v(6n+ 5) = 12A3(2n+ 1). (2.1.2)

Again, Baruah and Nath [22] generalized (2.1.2) and established three infinite

families of arithmetic identities involving A3(n), which are listed in (1.24)–(1.26).

E.X.W. Xia [90] found several infinite families of congruences modulo 4, 8 for A3(n).

For example, he showed that for all integers n ≥ 0,

A3(8n+ 4) ≡ 0 (mod 4), A3(16n+ 4) ≡ 0 (mod 8).

He also proposed the following conjecture.

Conjecture 2.1.1. For any positive integer j and prime p ≥ 3, there exists a

positive integer k0 such that for all n ≥ 0 and α ≥ 0,

A3

(
4k0(α+1)n+

22k0(α+1)−1 − 2

3

)
≡ 0 (mod pj).

Recently, we [81] studied the arithmetic properties of partition triples with 3-

cores. By using some identities of q series, we proved some analogous results. For

example, we proved that

B3(4n+ 1) = 3B3(2n), B3(3n+ 2) = 9B3(n), and
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B3(4n+ 3) = 3B3(2n+ 1) + 4B3(n).

From these relations we deduce three infinite families of arithmetic identities as well

as some Ramanujan-type congruences involving B3(n). For instance, for any integer

k ≥ 1, we proved that

B3(3kn+ 3k − 1) = 32kB3(n), (2.1.3)

B3

(
2k+1n+ 2k − 1

)
=

22k+2 + (−1)k

5
B3(2n), (2.1.4)

and

B3

(
2k+1n+ 2k+1 − 1

)
=

22k+2 + (−1)k

5
B3(2n+ 1) +

22k+2 − 4(−1)k

5
B3(n). (2.1.5)

Furthermore, let ω(n) denote the number of representations of a nonnegative

integer n in the form

n = x2
1 + x2

2 + x2
3 + 3y2

1 + 3y2
2 + 3y2

3, x1, x2, x3, y1, y2, y3 ∈ Z.

We found some interesting arithmetic relations between ω(n) and B3(n):

ω(6n+ 5) = 4B3(6n+ 4),

ω(12n+ 2) = 12B3(6n),

ω(12n+ 10) = 6B3(6n+ 4).

For more results and details about a3(n) and A3(n), see [19, 20, 21, 22, 50, 62, 93].

In view of the similar arithmetic identities satisfied by a3(n), A3(n) and B3(n), it

is natural to guess that explicit formulas similar to (1.23) for A3(n) and B3(n) may

also exist. In Sections 2.2 and 2.3, we confirm our guess. By using Ramanujan’s

1ψ1 summation formula and Bailey’s 6ψ6 formula, we give a new simple proof of

(1.23) and find explicit formulas for A3(n) and B3(n). With these formulas in mind,

most of the results mentioned above become direct consequences. In particular, we

will confirm Conjecture 2.1.1 and give some generalizations of the identities which

appeared in [62, 81].
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2.2 Explicit formula for A3(n)

Before we present the explicit formula for A3(n), we provide a new elementary proof

of (1.23). The main tool in this section is Ramanujan’s 1ψ1 summation formula [26,

Theorem 1.3.12].

Lemma 2.2.1 (Ramanujan’s 1ψ1 Summation). For |b/a| < |z| < 1 and |q| < 1,

∞∑
n=−∞

(a; q)n
(b; q)n

zn =
(az, q/(az), q, b/a; q)∞
(z, b/(az), b, q/a; q)∞

. (2.2.1)

Proof of (1.23). Recall from (2.1.1) that

∞∑
n=0

a3(n)qn =
(q3; q3)3

∞
(q; q)∞

.

Note that since

(q; q)∞ = (q; q3)∞(q2; q3)∞(q3; q3)∞, (2.2.2)

we deduce that
∞∑
n=0

a3(n)qn =
(q3; q3)2

∞
(q; q3)∞(q2; q3)∞

. (2.2.3)

Taking (a, b, z, q)→ (q, q4, q, q3) in (2.2.1), we obtain

∞∑
n=−∞

(q; q3)n
(q4; q3)n

· qn =
(q2, q, q3, q3; q3)∞
(q, q2, q4, q2; q3)∞

.

Dividing both sides by 1− q, after simplification, we deduce that

∞∑
n=−∞

qn

1− q3n+1
=

(q3; q3)2
∞

(q; q3)∞(q2; q3)∞
. (2.2.4)

Combining (2.2.3) with (2.2.4), we obtain

∞∑
n=0

a3(n)qn =
∞∑

n=−∞

qn

1− q3n+1
.
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Replacing q by q3 and multiplying both sides by q, we deduce that

∞∑
n=0

a3(n)q3n+1 =
∞∑
m=0

q3m+1

1− q3(3m+1)
+

−1∑
m=−∞

q3m+1

1− q3(3m+1)

=
∞∑
m=0

q3m+1

1− q3(3m+1)
+
∞∑
m=0

q−3m−2

1− q3(−3m−2)

=
∞∑
m=0

q3m+1

1− q3(3m+1)
−
∞∑
m=0

q2(3m+2)

1− q3(3m+2)

=
∞∑
m=0

∞∑
k=0

q(3m+1)(3k+1) −
∞∑
m=0

∞∑
k=0

q(3m+2)(3k+2),

(2.2.5)

where the second equality follows by replacingm by−m−1 in the second summation.

Now (1.23) follows by comparing the coefficients of q3n+1 on both sides of (2.2.5).

Let σ(n) denote the sum of positive divisors of n. Applying the method used in

proving (1.23), we can find the explicit formula for A3(n).

Theorem 2.2.2. For any integer n ≥ 0, we have A3(n) = 1
3
σ(3n + 2). If we write

3n+ 2 =
s∏
i=1

pαii as the unique prime factorization, then

A3(n) =
1

3

s∏
i=1

pαi+1
i − 1

pi − 1
.

Proof. Setting t = 3 in (1.21), and applying (2.2.2) we obtain that

∞∑
n=0

A3(n)qn =
(q3; q3)4

∞
(q; q3)2

∞(q2; q3)2
∞
. (2.2.6)

Taking (a, b, q) → (q, q4, q3) in (2.2.1), and dividing both sides by 1 − q2

z
, we

obtain
∞∑

n=−∞

(q; q3)n
(q4; q3)n

· zn

1− q2/z
=

(qz, q5/z, q3, q3; q3)∞
(z, q3/z, q4, q2; q3)∞

. (2.2.7)

Let z → q2. By L’Hospital’s rule, we deduce that

∞∑
n=−∞

(1− q) · nq2n

1− q3n+1
=

(q3; q3)4
∞

(q2; q3)2
∞(q; q3)∞(q4; q3)∞

.
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Dividing both sides by 1− q and combining with (2.2.6), we obtain

∞∑
n=0

A3(n)qn =
(q3; q3)4

∞
(q; q3)2

∞(q2; q3)2
∞

=
∞∑

n=−∞

nq2n

1− q3n+1
. (2.2.8)

Replacing q by q3 and multiplying both sides by q2, we find that

∞∑
n=0

A3(n)q3n+2 =
∞∑
m=0

mq2(3m+1)

1− q3(3m+1)
+

−1∑
m=−∞

mq2(3m+1)

1− q3(3m+1)

=
∞∑
m=0

mq2(3m+1)

1− q3(3m+1)
+
∞∑
m=0

(−m− 1)q2(−3m−2)

1− q3(−3m−2)

=
∞∑
m=0

mq2(3m+1)

1− q3(3m+1)
+
∞∑
m=0

(m+ 1)q3m+2

1− q3(3m+2)

=
∞∑
m=0

∞∑
k=0

mq(3m+1)(3k+2) +
∞∑
m=0

∞∑
k=0

(m+ 1)q(3m+2)(3k+1)

=
1

3

∞∑
m=0

∞∑
k=0

(
(3m+ 1)q(3m+1)(3k+2) + (3m+ 2)q(3m+2)(3k+1)

)
+

1

3

∞∑
m=0

∞∑
k=0

(
q(3m+2)(3k+1) − q(3m+1)(3k+2)

)
.

(2.2.9)

Interchanging the roles of k and m, we find that

∞∑
m=0

∞∑
k=0

q(3m+2)(3k+1) =
∞∑
k=0

∞∑
m=0

q(3k+2)(3m+1) =
∞∑
m=0

∞∑
k=0

q(3m+1)(3k+2).

Thus the second sum in the right hand side of (2.2.9) vanishes. Now we observe

that for any factorization 3n + 2 = ab where both a and b are positive integers,

one of the residues of a and b modulo 3 must be 1 and the other is 2. Comparing

the coefficients of q3n+2 on both sides of (2.2.9), we prove the first assertion of the

theorem. The second assertion then follows immediately.

Once we know the explicit formula for A3(n), we can verify the identities (1.24)–

(1.26) by simple arguments. For example, since σ(n) is multiplicative, by Theorem

2.2.2, we deduce that

A3(4n) =
1

3
σ(2(6n+ 1)) =

1

3
σ(2)σ(6n+ 1) = σ(6n+ 1),
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A3

(
22k+2n+

2(22k − 1)

3

)
=

1

3
σ
(
22k+1(6n+ 1)

)
=

1

3
σ(22k+1)σ(6n+ 1).

Note that σ(22k+1) = 22k+2 − 1. This proves (1.24). Identities (1.25) and (1.26) can

be proved in a similar way.

Moreover, we can extend the identities (1.24)–(1.26) to some larger families of

arithmetic identities.

Theorem 2.2.3. Let p be a prime, and let k, n be nonnegative integers.

(1) If p ≡ 1 (mod 3), we have

A3

(
pkn+

2pk − 2

3

)
=
pk − 1

p− 1
A3

(
pn+

2p− 2

3

)
− pk − p

p− 1
A3(n).

(2) If p ≡ 2 (mod 3), we have

A3

(
p2kn+

2p2k − 2

3

)
=
p2k − 1

p2 − 1
A3

(
p2n+

2p2 − 2

3

)
− p2k − p2

p2 − 1
A3(n).

Proof. We write 3n+ 2 = pmN , where N is an integer not divisible by p.

(1) By Theorem 2.2.2, we deduce that

A3(n) =
1

3
σ(pmN) =

1

3
σ(pm)σ(N) =

1

3
· p

m+1 − 1

p− 1
σ(N). (2.2.10)

Similarly, we have

A3

(
pn+

2p− 2

3

)
=

1

3
σ(pm+1N) =

1

3
· p

m+2 − 1

p− 1
σ(N), (2.2.11)

A3

(
pkn+

2pk − 2

3

)
=

1

3
σ(pk+mN) =

1

3
· p

k+m+1 − 1

p− 1
σ(N). (2.2.12)

Now the assertion follows from (2.2.10)–(2.2.12) by direct verification.

(2) In the same way, we have

A3

(
p2n+

2p2 − 2

3

)
=

1

3
σ(pm+2N) =

1

3
· p

m+3 − 1

p− 1
σ(N), (2.2.13)

A3

(
p2kn+

2p2k − 2

3

)
=

1

3
σ(p2k+mN) =

1

3
· p

2k+m+1 − 1

p− 1
σ(N). (2.2.14)

Combining (2.2.10), (2.2.13) and (2.2.14), we prove the assertion by direct verifica-

tion.
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As some special cases, by setting p = 2, 5, 7 in Theorem 2.2.3, we obtain the

following arithmetic identities for k, n ≥ 0,

A3

(
22kn+

22k+1 − 2

3

)
=

22k − 1

3
A3(4n+ 2)− 22k − 4

3
A3(n),

A3

(
52kn+

2 · 52k − 2

3

)
=

52k − 1

24
A3(25n+ 16)− 52k − 25

24
A3(n),

A3

(
7kn+

2 · 7k − 2

3

)
=

7k − 1

6
A3(7n+ 4)− 7k − 7

6
A3(n).

Theorem 2.2.4. Let p be a prime, and let k, n be nonnegative integers such that

p - 3n+ 2.

(1) If p ≡ 1 (mod 3), then

A3

(
pkn+

2pk − 2

3

)
=
pk+1 − 1

p− 1
A3(n).

(2) If p ≡ 2 (mod 3), then

A3

(
p2kn+

2p2k − 2

3

)
=
p2k+1 − 1

p− 1
A3(n).

Proof. From Theorem 2.2.2, we deduce that

A3

(
pkn+

2pk − 2

3

)
=

1

3
σ
(
pk(3n+ 2)

)
=

1

3
σ(pk)σ(3n+ 2) =

pk+1 − 1

p− 1
A3(n).

This implies (1). Assertion (2) can be proved in a similar way.

For example, if we set p = 2 and replace n by 2n+ 1 in (2), we obtain (1.26). If

we set p = 5 (resp. p = 7) and replace n by 5n + r (resp. 7n + r), we deduce that

for k, n ≥ 0,

A3

(
52k(5n+ r) +

2 · 52k − 2

3

)
=

52k+1 − 1

4
A3(5n+ r), r ∈ {0, 2, 3, 4}

and

A3

(
7k(7n+ r) +

2 · 7k − 2

3

)
=

7k+1 − 1

6
A3(7n+ r), r ∈ {0, 1, 2, 3, 5, 6}.

We conclude this section by proving Conjecture 2.1.1.



2.3 Explicit formula for B3(n) 19

Proof of Conjecture 2.1.1. By Theorem 2.2.2, we get

A3

(
4k0(α+1)n+

22k0(α+1)−1 − 2

3

)
=

1

3
σ
(
22k0(α+1)−1(6n+ 1)

)
=

22k0(α+1) − 1

3
σ(6n+ 1).

(2.2.15)

Let k0 = 1
2
pj(p− 1). Since 2k0(α + 1) ≡ 0 (mod pj(p− 1)), by Euler’s theorem, we

have 22k0(α+1) ≡ 1 (mod pj+1). From (2.2.15) the conjecture follows immediately.

Indeed, most of the congruences found by Xia [91] can be proved by using The-

orem 2.2.2. We omit the details here.

2.3 Explicit formula for B3(n)

In order to find the explicit formula for B3(n), we need the following formula.

Lemma 2.3.1 (Bailey’s 6ψ6 formula). For |qa2/(bcde)| < 1,

6ψ6

(q√a, −q√a, b, c, d, e
√
a, −

√
a, aq/b, aq/c, aq/d, aq/e

; q,
qa2

bcde

)
=

(aq, aq/(bc), aq/(bd), aq/(be), aq/(cd), aq/(ce), aq/(de), q, q/a; q)∞
(aq/b, aq/c, aq/d, aq/e, q/b, q/c, q/d, q/e, qa2/(bcde); q)∞

.

(2.3.1)

For the proof of this lemma, see [42, Sec. 5.3].

Theorem 2.3.2. For any integer n ≥ 0, we have

B3(n) =
∑
d|n+1

d≡1 (mod 3)

(n+ 1

d

)2

−
∑
d|n+1

d≡2 (mod 3)

(n+ 1

d

)2

.

Furthermore, if we write

n+ 1 = 3α
∏

pi≡1 (mod 3)

pαii
∏

qj≡2 (mod 3)

q
βj
j

as the unique prime factorization of n+ 1 with α, αi, βj ≥ 0, then

B3(n) = 32α
∏

pi≡1 (mod 3)

p
2(αi+1)
i − 1

p2
i − 1

∏
qj≡2 (mod 3)

q
2(βj+1)
j + (−1)βj

q2
j + 1

.
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Proof. Setting t = 3 in (1.22) and applying (2.2.2), we see that

∞∑
n=0

B3(n)qn =
(q3; q3)6

∞
(q; q3)3

∞(q2; q3)3
∞
. (2.3.2)

Taking (a, b, c, d, e, q)→ (q2, q, q, q, q, q3) in (2.3.1), we obtain

∞∑
n=−∞

(q4,−q4, q, q, q, q; q3)nq
3n

(q,−q, q4, q4, q4, q4; q3)n
=

(q5, q; q3)∞(q3; q3)7
∞

(q3; q3)∞(q4, q2; q3)4
∞
. (2.3.3)

Simplifying this identity and multiplying both sides by q(1−q2)
(1−q)4 , we obtain

∞∑
n=−∞

(1 + q3n+1)q3n+1

(1− q3n+1)3
= q · (q3; q3)6

∞
(q; q3)3

∞(q2; q3)3
∞
.

Combining this with (2.3.2), we deduce that

∞∑
n=0

B3(n)qn+1 =
∞∑
m=0

q3m+1(1 + q3m+1)

(1− q3m+1)3
+

−1∑
m=−∞

q3m+1(1 + q3m+1)

(1− q3m+1)3

=
∞∑
m=0

q3m+1(1 + q3m+1)

(1− q3m+1)3
−
∞∑
m=0

q3m+2(1 + q3m+2)

(1− q3m+2)3
,

(2.3.4)

where the second equality follows by replacing m by −m− 1 in the second sum.

It is well known that

1

1− x
=
∞∑
k=0

xk, |x| < 1.

Applying the operator x d
dx

twice to both sides, we get

x(1 + x)

(1− x)3
=
∞∑
k=1

k2xk, |x| < 1.

Applying this identity to (2.3.4), we obtain

∞∑
n=0

B3(n)qn+1 =
∞∑
m=0

∞∑
k=1

k2
(
q(3m+1)k − q(3m+2)k

)
.

The first assertion of this theorem now follows immediately by comparing the coef-

ficients of qn+1 on both sides.
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For n ≥ 1, let

f(n) =
∑
d|n

d≡1 (mod 3)

(n
d

)2

−
∑
d|n

d≡2 (mod 3)

(n
d

)2

,

so that f(n+ 1) = B3(n). Suppose m and n are integers which are coprime to each

other. It is not hard to see that

f(mn) =
∑
d|mn

d≡1 (mod 3)

(mn
d

)2

−
∑
d|mn

d≡2 (mod 3)

(mn
d

)2

=
∑
d1|m

d1≡1 (mod 3)

∑
d2|n

d2≡1 (mod 3)

+
∑
d1|m

d1≡2 (mod 3)

∑
d2|n

d2≡2 (mod 3)

( mn
d1d2

)2

−
∑
d1|m

d1≡1 (mod 3)

∑
d2|n

d2≡2 (mod 3)

−
∑
d1|m

d1≡2 (mod 3)

∑
d2|n

d2≡1 (mod 3)

( mn
d1d2

)2

=
( ∑

d1|m
d1≡1 (mod 3)

(m
d1

)2

−
∑
d1|m

d1≡2 (mod 3)

(m
d1

)2)

·
( ∑

d2|n
d2≡1 (mod 3)

( n
d2

)2

−
∑
d2|n

d2≡2 (mod 3)

( n
d2

)2)

= f(m)f(n).

This implies that f(n) is multiplicative. For any prime p, from the definition of f(n)

and by direct calculations, we obtain that

f(pk) =


32k if p = 3,

p2(k+1)−1
p2−1

if p ≡ 1 (mod 3),

p2(k+1)+(−1)k

p2+1
if p ≡ 2 (mod 3).

(2.3.5)

The second assertion of this theorem then follows since f(n) is multiplicative and

B3(n) = f(n+ 1).

Theorem 2.3.3. Let p be a prime, and let k, n be nonnegative integers.

(1) If p ≡ 1 (mod 3), then

B3

(
pkn+ pk − 1

)
=
p2k − 1

p2 − 1
B3(pn+ p− 1)− p2k − p2

p2 − 1
B3(n).
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(2) If p ≡ 2 (mod 3), then

B3(pkn+ pk − 1) =
p2k − (−1)k

p2 + 1
B3(pn+ p− 1) +

p2k + (−1)kp2

p2 + 1
B3(n).

Proof. Let n+ 1 = pmN , where N is not divisible by p.

(1) Since f(n) is multiplicative, by (2.3.5) we have

B3(n) = f(n+ 1) = f(pm)f(N) =
p2(m+1) − 1

p2 − 1
f(N), (2.3.6)

B3(pn+ p− 1) = f(p(n+ 1)) = f(pm+1)f(N) =
p2(m+2) − 1

p2 − 1
f(N), (2.3.7)

B3(pkn+ pk − 1) = f(pk(n+ 1)) = f(pk+m)f(N) =
p2(m+k+1) − 1

p2 − 1
f(N). (2.3.8)

From those identities (2.3.6)–(2.3.8), we prove (1) by direct verification.

(2) Similarly, by (2.3.5) we have

B3(n) = f(n+ 1) = f(pm)f(N) =
p2(m+1) + (−1)m

p2 + 1
f(N), (2.3.9)

B3(pn+ p− 1) = f(p(n+ 1)) = f(pm+1)f(N) =
p2(m+2) + (−1)m+1

p2 + 1
f(N),

(2.3.10)

B3(pkn+ pk − 1) = f(pk(n+ 1)) = f(pk+m)f(N) =
p2(m+k+1) + (−1)m+k

p2 + 1
f(N).

(2.3.11)

From those identities (2.3.9)–(2.3.11), we prove (2) by direct verification.

By setting p = 2 in this theorem we obtain (2.1.5) immediately. For more

examples, by setting p = 5, 7 in this theorem, we obtain for k, n ≥ 0,

B3(5kn+ 5k − 1) =
52k − (−1)k

26
B3(5n+ 4) +

52k + 25(−1)k

26
B3(n)

and

B3(7kn+ 7k − 1) =
72k − 1

48
B3(7n+ 6)− 72k − 49

48
B3(n).

In some special cases, we can obtain some relations between B3(pkn + pk − 1)

and B3(n).
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Theorem 2.3.4. Let p be a prime, and let k, n be nonnegative integers.

(1) If p = 3, then B3(3kn+ 3k − 1) = 32kB3(n).

(2) If p ≡ 1 (mod 3) and p - n+ 1, then

B3(pkn+ pk − 1) =
p2(k+1) − 1

p2 − 1
B3(n).

(3) If p ≡ 2 (mod 3) and p - n+ 1, then

B3(pkn+ pk − 1) =
p2(k+1) + (−1)k

p2 + 1
B3(n).

Proof. Throughout the proofs of (1)–(3), let n+ 1 = pmN , where N is not divisible

by p. By Theorem 2.3.2 and the fact that f(n) is multiplicative, we find that

B3(n) = f(pmN) = f(pm)f(N) (2.3.12)

and

B3(pkn+ pk − 1) = f(pk+mN) = f(pk+m)f(N). (2.3.13)

(1) By (2.3.5), (2.3.12) and (2.3.13), we deduce that

B3(3kn+ 3k − 1) = 32k+2mf(N) = 32kB3(n).

(2) Since p - n+ 1, we have m = 0. By (2.3.5), (2.3.12) and (2.3.13), we deduce

that

B3(pkn+ pk − 1) = f(pk)f(N) =
p2(k+1) − 1

p2 − 1
B3(n).

(3) Since p - n+ 1, we have m = 0. By (2.3.5), (2.3.12) and (2.3.13), we deduce

that

B3(pkn+ pk − 1) = f(pk)f(N) =
p2(k+1) + (−1)k

p2 + 1
B3(n).

Note that in this theorem, (1) is (2.1.3) exactly. By setting p = 2 and replacing

n by 2n in (3), we obtain (2.1.4) at once. For more examples, by setting p = 5 (resp.
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p = 7) and replacing n by 5n + r (resp. 7n + r) in (3) (resp. (2)) we obtain for

k, n ≥ 0,

B3

(
5k+1n+ 5k(r + 1)− 1

)
=

52k+2 + (−1)k

26
B3(5n+ r), r ∈ {0, 1, 2, 3}

and

B3

(
7k+1n+ 7k(r + 1)− 1

)
=

72k+2 − 1

48
B3(7n+ r), r ∈ {0, 1, 2, 3, 4, 5}

respectively.

Acknowledgements. I would like to thank Professor Heng Huat Chan for

showing me the Lambert series representations of the generating functions for A3(n)

and B3(n) and helpful discussions.



Chapter 3
Congruences Modulo Powers of 11 for

Some Partitions

3.1 Introduction

In this chapter, we will present congruences modulo arbitrary powers of 11 for several

other partitions. We begin with a remark on notation. Let m be an integer. Suppose

we have two Laurent series f(q) =
∑∞

n=−∞ anq
n and g(q) =

∑∞
n=−∞ bnq

n where all

the coefficients an and bn are rational numbers. If an ≡ bn (mod m) for every integer

n, then we say that the following congruence holds:

f(q) ≡ g(q) (mod m).

We go back to the S. Ramanujan’s congruences (1.16)–(1.18). The ideas for G.N.

Watson’s proof of (1.16)–(1.17) and A.O.L. Atkin’s proof of (1.18) are similar.

Let ` be a prime and n a nonnegative integer. We define

Ln,` :=


(q`; q`)∞

∞∑
m=0

p(`nm+ δ`,n)qm+1, if n is odd,

(q; q)∞
∞∑
m=0

p(`nm+ δ`,n)qm+1, if n is even.
(3.1.1)

One can show that Ln,` are modular functions on Γ0(`) for ` ∈ {5, 7, 11}. Here for

25
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any positive integer N , the congruence subgroup Γ0(N) of SL2(Z) is defined as

Γ0(N) :=

{a b

c d

∣∣∣a, b, c, d ∈ Z, ad− bc = 1, c ≡ 0 (mod N)

}
.

Therefore, we can express Ln,` using linear basis for the space of modular functions

on Γ0(`). Examining the `-adic orders of the coefficients will lead to (1.16)–(1.18).

Let

∆ = q(q; q)24
∞, E8 = 1 + 480

∞∑
n=1

n7qn

1− qn
.

H.H. Chan and P.C. Toh [33] observed empirically that there exist integers an, bn

and cn with (5, an) = (7, bn) = (11, cn) = 1 such that

Ln,5 ≡ 5nan∆ (mod 5n+1), (3.1.2)

Ln,7 ≡ 7[n/2]+1bn∆ (mod 7[n/2]+2), (3.1.3)

and

Ln,11 ≡ 11ncn∆E8 (mod 11n+1). (3.1.4)

Both (3.1.2) and (3.1.3) follow immediately from Watson’s work (see [55]). Chan

and Toh [33] suggested that (3.1.4) could be proved using Atkin’s method given in

[16]. The first goal of this chapter is to show that (3.1.4) indeed follows from Atkin’s

work [16]. So we can rewrite it as

Theorem 3.1.1. For any integer n ≥ 1, there exists an integer cn with (11, cn) = 1

such that

Ln,11 ≡ 11ncn∆E8 (mod 11n+1).

Following the notation of Chan and Toh [33], we define

∞∑
n=0

p[1ctd](n)qn =
1

(q; q)c∞(qt; qt)d∞
, c, d, t ∈ Z, t ≥ 1.

It is then clear that in this notation, the t-core partition function at(n) discussed in

Chapter 2 satisfies at(n) = p[11t−t](n). Moreover, we denote the number of `-regular
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partitions of n by b`(n). Recall that in (1.27) we gave the generating function of

b`(n) as

∞∑
n=0

b`(n)qn =
(q`; q`)∞
(q; q)∞

. (3.1.5)

This means that b`(n) = p[11`−1](n).

For some particular integer triples (c, d, t), arithmetic properties of p[1ctd](n) have

been extensively investigated. See [33, 41, 43, 49, 65, 66, 70, 83, 84], for example. For

more comprehensive reference lists about t-core partitions and t-regular partitions,

we refer the reader to [82] and [83].

It should be noted that so far almost all works concentrated on discovering

congruences modulo small powers of primes for those partition functions. There

are only a few works where congruences modulo arbitrary prime powers appear, see

[17, 30, 31, 33, 45, 58, 66, 70, 83, 84] for example. By using Ramanujan’s cubic

continued fraction, H.C. Chan [30] proved that

p[1121](3
jn+ cj) ≡ 0 (mod 32[j/2]+1),

where cj ≡ 1/8 (mod 3j). Similarly, let dj ≡ 1/8 (mod 5j), Chan and Toh [33]

showed that for any integer n ≥ 0,

p[1121](5
jn+ dj) ≡ 0 (mod 5[j/2]).

Recently, using the modular equation of fifth order, we [83] proved that for any

integers k ≥ 1 and n ≥ 0,

b5

(
52k−1n+

52k − 1

6

)
≡ 0 (mod 5k).

We [84] also proved that

p[1151]

(
5kn+

3 · 5k + 1

4

)
≡ 0 (mod 5k).

While congruences modulo arbitrary powers of 2, 3, 5 or 7 appeared in a few

literature, we observed that after the work of Atkin [16], congruences modulo powers
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of 11 for partition functions other than p(n) are seldom discussed. One of the few

examples known to us is the work of B. Gordon [44], where Gordon established many

congruences modulo arbitrary powers of 11 for the function pk(n) defined by
∞∑
n=0

pk(n)qn = (q; q)k∞. (3.1.6)

In view of this phenomenon, the second goal of this chapter is to provide more

partition congruences modulo arbitrary powers of 11. In Sections 3.2 and 3.3, we

will follow the strategy of Atkin [16] and Gordon [44] to establish those congruences

for three different types of partition functions.

Theorem 3.1.2. For any integers n ≥ 0 and k ≥ 1, we have

a11

(
11kn+ 11k − 5

)
≡ 0 (mod 11k).

Theorem 3.1.3. For any integers n ≥ 0 and k ≥ 1, we have

b11

(
112k−1n+

7 · 112k−1 − 5

12

)
≡ 0 (mod 11k).

Theorem 3.1.4. For any integers n ≥ 0 and k ≥ 1, we have

p[11111]

(
11kn+

11k + 1

2

)
≡ 0 (mod 11k).

We remark here that an equivalent form of Theorem 3.1.2 was discovered by

Garvan [43, Eq. (1.9)].

The method used here can be applied to obtain similar results for p[1c11d](n) for

other values of c, d ∈ Z. Since the partition functions in Theorems 3.1.2–3.1.4 are

more popular, we will illustrate the method by studying these examples.

3.2 Useful facts for establishing congruences mod-

ulo powers of 11

In the remaining part of this chapter, we are going to prove Theorem 3.1.1 and

Theorems 3.1.2–3.1.4. To present the proofs, we collect some facts which are essential

in proving our results. We will follow the notation of Gordon [44].
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Let H be the upper half complex plane. Recall that the Dedekind eta function

is

η(τ) = q1/24(q; q)∞, q = e2πiτ , τ ∈ H.

Let R0(N) be the Riemann surface of Γ0(N). Let K0(N) be the field of mero-

morphic functions on R0(N). It is known that R0(N) has a cusp at τ = i∞, and

q = e2πiτ is a uniformizing parameter there. If f(τ) ∈ K0(N), then the Laurent

expansion about τ = i∞ has the form

f(τ) =
∑
n≥n0

anq
n.

Let

φ(τ) =
η(121τ)

η(τ)
= q5 (q121; q121)∞

(q; q)∞
.

It is known that φ(τ) ∈ K0(121). This function will play a key role in our proofs.

We define the U -operator as

Uf(τ) =
∑

11n≥n0

a11nq
n.

It is known that (see [14, pp. 80–82], for example) if f(τ) ∈ K0(121), then Uf(τ) ∈

K0(11).

If f(τ) ∈ K0(11) and p is a point of R0(11), we use ordpf(τ) to denote the order

of f(τ) at p.

Let V be the vector space of functions g(τ) ∈ K0(11) which are holomorphic

except possibly at 0 and ∞. Atkin [16] constructed a linear basis for V . In [16,

Appendix A], Atkin first defined gn(τ) and Gn(τ) for 2 ≤ n ≤ 6 by

10g2(τ)(q; q)5
∞ = −

∞∑
n=0

(
1 +

(n− 3

11

))
p5(n)qn + 112q25(q121; q121)5

∞, (3.2.1)

14
(
g3(τ) + g2(τ)

)
(q; q)7

∞ = −
∞∑
n=0

(
1 +

(2− n
11

))
p7(n)qn + 113q35(q121; q121)7

∞,

(3.2.2)(
112 + 10G2(τ)

)
(q11; q11)5

∞ =
∞∑

n=−2

p5(11n+ 25)qn, (3.2.3)
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(
113 + 14G3(τ) + 154G2(τ)

)
(q11; q11)7

∞ =
∞∑

n=−3

p7(11n+ 35)qn, (3.2.4)

G4(τ) = G2
2(τ)− 11G3(τ), g4(τ) = g2

2(τ)− g3(τ), (3.2.5)

G6(τ) = G2(τ)G4(τ), g6(τ) = g2(τ)g4(τ), (3.2.6)

G5(τ) =
η12(τ)

η12(11τ)
, g5(τ) =

η12(11τ)

η12(τ)
, (3.2.7)

where pk(n) was defined in (3.1.6). Next, he defined inductively for n ≥ 7,

Gn(τ) = Gn−5(τ)G5(τ), gn(τ) = gn−5(τ)g5(τ). (3.2.8)

Following the notation of Gordon [44], for k 6= 0,−1, let Jk(τ) be the element of

Atkin’s basis whose order at∞ is k. We define J0(τ) = 1 and J−1(τ) = J−6(τ)J5(τ).

In terms of the notation of Atkin, we have for k ≥ 1,

Jk(τ) =


gk(τ) if k ≡ 0 (mod 5),

gk+2(τ) if k ≡ 4 (mod 5),

gk+1(τ) otherwise

(3.2.9)

and Jk(τ) = G−k(τ) for k ≤ −2.

Lemma 3.2.1. (Cf. [44, Lemma 3].) For all k ∈ Z, the following holds:

(i) Jk+5(τ) = Jk(τ)J5(τ).

(ii) {Jk(τ)|k ∈ Z} is a basis of V .

(iii) ord∞Jk(τ) = k.

(iv) ord0Jk(τ) =


−k if k ≡ 0 (mod 5),

−k − 1 if k ≡ 1, 2 or 3 (mod 5),

−k − 2 if k ≡ 4 (mod 5).

(v) The Fourier series of Jk(τ) has integer coefficients, and is of the form Jk(τ) =

qk + O(qk+1) where the symbol O(qk+1) stands for a series wherein the powers of q

are higher than k.

From [44], we know that V is mapped into itself by the linear transformation

Tλ : g(τ)→ U(φ(τ)λg(τ))
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for any integer λ. Following Atkin, we write the elements of V as row vectors and

let matrices act on the right. Let C(λ) = (c
(λ)
µ,ν) be the matrix of Tλ with respect to

the basis {Jk} of V . We have

U(φ(τ)λJµ(τ)) =
∑
ν∈Z

c(λ)
µ,νJν(τ). (3.2.10)

For any nonnegative integer n, let π(n) be the 11-adic order of n with the convention

that π(0) =∞. As shown in [44], we have

π(c(λ)
µ,ν) ≥ [(11ν − µ− 5λ+ δ)/10], (3.2.11)

where δ = δ(µ, ν) depends on the residues of µ and ν (mod 5) according to Table

3.1.

Table 3.1

µ

ν
0 1 2 3 4

0 -1 8 7 6 15

1 0 9 8 2 11

2 1 10 4 3 12

3 2 6 5 4 13

4 3 7 6 5 9

From Table 3.1, we see that δ(λ, µ) ≥ −1 for any λ, µ. Therefore, (3.2.11)

implies

π(c(λ)
µ,ν) ≥ [(11ν − µ− 5λ− 1)/10]. (3.2.12)

By Lemma 3.2.1(v) and (3.2.10) we know that the Fourier series of U(φλJµ) has

all coefficients divisible by 11 if and only if

c(λ)
µ,ν ≡ 0 (mod 11) for all ν. (3.2.13)

We define a function θ(λ, µ) as follows. If (3.2.13) holds we put θ(λ, µ) = 1 and

θ(λ, µ) = 0 otherwise. From [44], we know that

θ(λ, µ) = θ(λ− 11, µ), θ(λ+ 12, µ− 5) = θ(λ, µ). (3.2.14)
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This implies that θ(λ, µ) is completely determined by its values in the range 0 ≤

λ ≤ 10, 0 ≤ µ ≤ 4, which are listed in Table 3.2.

Table 3.2

µ

λ
0 1 2 3 4 5 6 7 8 9 10

0 0 1 0 1 0 1 0 1 1 0 0

1 1 1 0 1 0 0 0 1 1 0 0

2 1 1 1 0 0 0 0 1 1 0 0

3 1 0 1 0 1 0 0 1 1 0 0

4 1 0 1 0 1 0 1 1 0 0 0

Let Mk(Γ0(N), χ) denote the space of modular forms of weight k on Γ0(N) with

Dirichlet character χ (see [69]). In particular, if χ is the trivial Dirichlet character,

we also write Mk(Γ0(N), χ) as Mk(Γ0(N)). The following result, known as Sturm’s

criterion [79], will be used in proving Theorem 3.1.1.

Lemma 3.2.2. Let p be a prime and f(τ) =
∑∞

n=0 anq
n ∈Mk(Γ0(N)) where an ∈ Q

for all n ≥ 0. If an ≡ 0 (mod p) for

n ≤ kN

12

∏
`|N

(
1 +

1

`

)
,

where the product is over the distinct prime divisors of N , then f(τ) ≡ 0 (mod p),

i.e., an ≡ 0 (mod p) for any n ≥ 0.

3.3 Proofs of congruences modulo powers of 11

Proof of Theorem 3.1.1. As in [16, p. 20], we define a(1) = 0, a(2) = 1 and for

n ≥ 3,

a(n) =

 n− 1 if n ≡ 4 (mod 5),

n− 2 otherwise.
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Similarly, let b(1) = 0, b(2) = 1 and b(n) = a(n) + 1 (n ≥ 3).

Let X0 be the class of functions f(τ) with

f(τ) =
N∑
n=1

λn11a(n)Jn(τ), π(λ1) = 0, N ≥ 1

and let Y 0 be the class of functions f(τ) with

f(τ) =
M∑
n=1

µn11b(n)Jn(τ), π(µ1) = 0, M ≥ 1

where λn and µn are integers for any integer n. Note that we have changed Atkin’s

original definitions in terms of gn(τ) to expressions involving Jn(τ) according to

(3.2.9). We also change the sequences ξ(n) and η(n) in [16] to a(n) and b(n) accord-

ingly.

In the proof of (1.18), Atkin [16, p. 26] showed that

111−2nL2n−1,11(τ) ∈ X0, 11−2nL2n,11(τ) ∈ Y 0. (3.3.1)

For n ≥ 2, we have a(n) ≥ 1 and b(n) ≥ 1. By Lemma 3.2.1, the Fourier expansion

of Jn(τ) has integer coefficients. We deduce from (3.3.1) that

111−2nL2n−1,11(τ) ≡ λ1J1(τ) (mod 11), 11−2nL2n,11(τ) ≡ µ1J1(τ) (mod 11)

(3.3.2)

for some integers λ1 and µ1 which depend on n and are relatively prime with 11.

Thus we have shown that there exists integer cn such that (11, cn) = 1 and

11−nLn,11(τ) ≡ cnJ1(τ) (mod 11).

To prove (3.1.4), it suffices to show that

J1(τ) ≡ ∆E8 (mod 11). (3.3.3)

By Lemma 3.2.1 we know ord∞J1(τ) = 1 and ord0J1(τ) = −2. Let

f(τ) =
η11(τ)

η(11τ)
.
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From [69, Theorems 1.64 and 1.65], we know that f(τ) ∈M5(Γ0(11),
(−11
·

)
). More-

over, ord0f(τ) = 5. Hence f 4(τ)J1(τ) has no poles at the cusps and hence is

holomorphic. This implies f 4(τ)J1(τ) ∈M20(Γ0(11)).

Note that ∆E8 ∈M20(Γ0(11)), hence f 4(τ)J1(τ)−∆E8 ∈M20(Γ0(11)). Write

f 4(τ)J1(τ)−∆E8 =
∞∑
n=0

c(n)qn.

By the definition of f(τ), we know that f(τ) has integral coefficients as a power

series in q = e2πτ . By Lemma 3.2.1 we know J1(τ) also has integral coefficients.

Now from the definitions of ∆ and E8, we see that c(n) ∈ Z for any n ≥ 0. Using

the definition of J1(τ), it is easy to verify that c(n) ≡ 0 (mod 11) for n ≤ 20. Hence

by Lemma 3.2.2, we deduce that

f 4(τ)J1(τ) ≡ ∆E8 (mod 11). (3.3.4)

By the binomial theorem, we have f(τ) ≡ 1 (mod 11). Therefore, (3.3.4) implies

(3.3.3) and we have completed the proof of Theorem 3.1.1.

Before we proceed to proofs of Theorem 3.1.2-3.1.4, we observe that (1.13) gives

p(11n+ 6) ≡ 0 (mod 11). (3.3.5)

It is then clear that Theorems 3.1.2-3.1.4 are true for the case k = 1. Therefore, we

only need to give proofs for k ≥ 2.

Proof of Theorem 3.1.2. Recall that

∞∑
n=0

a11(n)qn =
(q11; q11)11

∞
(q; q)∞

.

Let

L0(τ) :=
η11(11τ)η(121τ)

η(τ)η11(1331τ)
=

(q121; q121)∞
(q1331; q1331)11

∞

∑
n≥0

a11(n)qn−600.

We have

UL0(τ) =
(q11; q11)∞

(q121; q121)11
∞

∑
n≥0

a11(11n+ 6)qn−54.
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Let

L1(τ) := U2L0(τ) =
(q; q)∞

(q11; q11)11
∞

∑
n≥0

a11(112n+ 116)qn−4.

Note that L0(τ) ∈ K0(1331), hence UL0(τ) ∈ K0(121) and L1(τ) ∈ K0(11). For

r ≥ 2, we define

Lr(τ) := U(φ(τ)λr−1Lr−1(τ)) (3.3.6)

where

λr =

 1 if r is odd,

−11 if r is even.

By induction on r it is not difficult to see that for r ≥ 1, Lr(τ) ∈ V and

Lr(τ) =


(q; q)∞(q11; q11)−11

∞
∑
n≥0

a11(11r+1n+ 11r+1 − 5)qn−4 if r is odd,

(q11; q11)∞(q; q)−11
∞

∑
n≥0

a11(11r+1n+ 11r+1 − 5)qn+1 if r is even.

(3.3.7)

Let

µr =

 −4 if r is odd,

1 if r is even.

Since Lr(τ) ∈ V , from (3.3.7) we may write

Lr(τ) =
∑
ν≥µr

ar,νJν(τ), ar,ν ∈ Z. (3.3.8)

We will prove that for any r ≥ 1,

π(ar,ν) ≥ r + 1 + [
ν − µr

2
], ∀ν ≥ µr. (3.3.9)

If r = 1, we find that

L1(τ) = 167948J−4(τ) + 3529812J−3(τ) + 19501812J−2(τ) + 214358881J0(τ).

Therefore, we have

π(a1,−4) = 2, π(a1,−3) = 3, π(a1,−2) = 4, π(a1,−1) =∞, π(a1,0) = 8

and π(a1,ν) =∞ for any ν ≥ 1. Hence (3.3.9) is true for r = 1.
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Now suppose (3.3.9) holds for r − 1 (r ≥ 2). From (3.2.10) we see that

ar,ν =
∞∑

µ=µr−1

ar−1,µc
(λr−1)
µ,ν .

Thus

π(ar,ν) ≥ min
µ≥µr−1

(
π(ar−1,µ) + π(c(λr−1)

µ,ν )
)
. (3.3.10)

To complete the induction, it suffices to prove that

π(ar−1,µ) + π(c(λr−1)
µ,ν ) ≥ r + 1 +

[ν − µr
2

]
, for all µ ≥ µr−1, ν ≥ µr. (3.3.11)

By induction hypothesis and (3.2.12), we deduce that

π(ar−1,µ) + π(c(λr−1)
µ,ν ) ≥ r +

[µ− µr−1

2

]
+
[11ν − µ− 5λr−1 − 1

10

]
. (3.3.12)

If we increase µ by 2, then
[
µ−µr−1

2

]
increases by at least 1 and

[
11ν−µ−5λr−1−1

10

]
decreases by at most 1. Hence the value of the right hand side of (3.3.12) does not

decrease. Therefore, its minimum value occurs when µ = µr−1 + 1. Thus

π(ar−1,µ) + π(c(λr−1)
µ,ν ) ≥ r +

[11ν − µr−1 − 5λr−1 − 2

10

]
. (3.3.13)

If r is odd, then µr−1 = 1 and λr−1 = −11. For ν ≥ −3, we have

π(ar−1,µ) + π(c(λr−1)
µ,ν ) ≥ r + 1 +

[11ν + 42

10

]
≥ r + 1 +

[ν + 4

2

]
, (3.3.14)

For ν = −4, (3.3.11) reduces to

π(ar−1,µ) + π(c(λr−1)
µ,ν ) ≥ r + 1, µ ≥ µr−1. (3.3.15)

This inequality holds for µ = µr−1 since π(ar−1,µr−1) ≥ r and

π(c(λr−1)
µr−1,ν

) ≥ θ(λr−1, µr−1) = θ(−11, 1) = 1.

Similarly it holds for µ = µr−1 + 1. If µ ≥ µr−1 + 2, then by induction hypothesis

we have

π(ar−1,µ) ≥ r +
[µ− µr−1

2

]
≥ r + 1.
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Thus (3.3.15) holds.

Combining (3.3.14) with (3.3.15), we see that (3.3.11) holds for any odd r.

If r is even, then µr−1 = −4 and λr−1 = 1. For ν ≥ 2, from (3.3.13) we have

π(ar−1,µ) + π(c(λr−1)
µ,ν ) ≥ r + 1 +

[11ν − 13

10

]
≥ r + 1 +

[ν − 1

2

]
. (3.3.16)

For ν = 1, (3.3.11) reduces to

π(ar−1,µ) + π(c(λr−1)
µ,ν ) ≥ r + 1, µ ≥ µr−1. (3.3.17)

This inequality holds for µ = µr−1 since π(ar−1,µr−1) ≥ r and

π(c(λr−1)
µr−1,ν

) ≥ θ(λr−1, µr−1) = θ(1,−4) = 1.

Similarly it holds for µ = µr−1 + 1. If µ ≥ µr−1 + 2, then by induction hypothesis,

we have

π(ar−1,µ) ≥ r +
[µ− µr−1

2

]
≥ r + 1.

Thus (3.3.17) holds.

Combining (3.3.16) with (3.3.17), we see that (3.3.11) holds for any even r.

By induction on r, we complete the proof of (3.3.9). Therefore, for any ν ≥ µr

we have π(ar,ν) ≥ r + 1. By (3.3.8) we see that for any r ≥ 1,

Lr(τ) ≡ 0 (mod 11r+1).

From this congruence and (3.3.7) we complete the proof of the theorem.

Proof of Theorem 3.1.3. Recall that

∞∑
n=0

b11(n)qn =
(q11; q11)∞

(q; q)∞
.

Let

L0(τ) :=
η(11τ)η(121τ)

η(τ)η(1331τ)
=

(q121; q121)∞
(q1331; q1331)∞

∞∑
n=0

b11(n)qn−50.

We have

UL0(τ) =
(q11; q11)∞

(q121; q121)∞

∞∑
n=0

b11(11n+ 6)qn−4.
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Let

L1(τ) := U2L0(τ) =
(q; q)∞

(q11; q11)∞

∞∑
n=0

b11(112n+ 50)qn.

Note that L0(τ) ∈ K0(1331), hence UL0(τ) ∈ K0(121) and L1(τ) ∈ K0(11). For

r ≥ 2, we define

Lr(τ) := U(φ(τ)λr−1Lr−1(τ)) (3.3.18)

where

λr =

 1 if r is odd,

−1 if r is even.

By induction on r, it is not difficult to see that for r ≥ 1, Lr(τ) ∈ V and

Lr(τ) =


(q; q)∞(q11; q11)−1

∞

∞∑
n=0

b11(11r+1n+ 5·11r+1−5
12

)qn if r is odd,

(q11; q11)∞(q; q)−1
∞

∞∑
n=0

b11(11r+1n+ 7·11r+1−5
12

)qn+1 if r is even.

(3.3.19)

Let

µr =

 0 if r is odd,

1 if r is even.

Since Lr(τ) ∈ V , from (3.3.19) we may write

Lr(τ) =
∑
ν≥µr

ar,νJν , ar,ν ∈ Z. (3.3.20)

We will prove that for any r ≥ 1,

π(ar,ν) ≥ 1 +
[r
2

]
+
[ν − µr

2

]
, ∀ν ≥ µr. (3.3.21)

If r = 1, we find that

L1(τ) =
50∑
ν=0

a1,νJν(τ).

We have π(a1,0) = 1 and the 11-adic orders of a1,ν (1 ≤ ν ≤ 50) are given in Table

3.3, from which it is easy to verify that (3.3.21) holds for r = 1.

Now suppose (3.3.21) holds for r−1 (r ≥ 2). For the same reason as in the proof

of Theorem 3.1.2, to complete the induction, it suffices to prove that

π(ar−1,µ) + π(c(λr−1)
µ,ν ) ≥ 1 +

[r
2

]
+
[ν − µr

2

]
, for all µ ≥ µr−1, ν ≥ µr. (3.3.22)
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Table 3.3

ν 1 2 3 4 5 6 7 8 9 10

π(a1,ν) 3 4 4 7 6 8 9 10 12 12

ν 11 12 13 14 15 16 17 18 19 20

π(a1,ν) 14 14 15 17 17 19 21 22 24 24

ν 21 22 23 24 25 26 27 28 29 30

π(a1,ν) 26 26 27 29 29 31 32 34 36 36

ν 31 32 33 34 35 36 37 38 39 40

π(a1,ν) 37 38 39 41 41 43 44 45 49 48

ν 41 42 43 44 45 46 47 48 49 50

π(a1,ν) 50 51 52 55 54 56 57 58 ∞ 58

By induction hypothesis and (3.2.12), we deduce that

π(ar−1,µ) + π(c(λr−1)
µ,ν ) ≥ 1 +

[r − 1

2

]
+
[µ− µr−1

2

]
+
[11ν − µ− 5λr−1 − 1

10

]
.

Note that if we increase µ by 2, the value of the right hand side does not decrease.

Therefore, its minimum value occurs when µ = µr−1 + 1. Thus

π(ar−1,µ) + π(c(λr−1)
µ,ν ) ≥ 1 +

[r − 1

2

]
+
[11ν − µr−1 − 5λr−1 − 2

10

]
. (3.3.23)

If r is odd, then µr−1 = 1 and λr−1 = −1. We have

π(ar−1,µ)+π(c(λr−1)
µ,ν ) ≥ 1+

[r − 1

2

]
+
[11ν + 2

10

]
≥ 1+

[r
2

]
+
[ν

2

]
, ∀ν ≥ 0. (3.3.24)

Thus (3.3.22) holds for any odd r.

If r is even, then µr−1 = 0 and λr−1 = 1. For ν ≥ 2, by (3.3.23) we have

π(ar−1,µ)+π(c(λr−1)
µ,ν ) ≥ 1+

[r − 1

2

]
+1+

[11ν − 17

10

]
≥ 1+

[r
2

]
+
[ν − 1

2

]
. (3.3.25)

For ν = 1, (3.3.22) reduces to

π(ar−1,µ) + π(c(λr−1)
µ,ν ) ≥ 1 +

[r
2

]
, µ ≥ µr−1. (3.3.26)
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This inequality holds for µ = µr−1 since π(ar−1,µr−1) ≥ 1 +
[
r−1

2

]
and

π(c(λr−1)
µr−1,ν

) ≥ θ(λr−1, µr−1) = θ(1, 0) = 1.

Similarly, it holds for µ = µr−1 + 1. If µ ≥ µr−1 + 2, then by induction hypothesis,

we have

π(ar−1,µ) ≥ 1 +
[r − 1

2

]
+
[µ− µr−1

2

]
≥ 1 +

[r
2

]
.

Thus (3.3.26) holds for any even r.

Combining (3.3.25) with (3.3.26) we see that (3.3.22) holds for r.

By induction on r, we deduce (3.3.21). Therefore, for any r ≥ 1 and ν ≥ µr we

have

π(ar,ν) ≥ 1 +
[r

2

]
.

From (3.3.20) we deduce that

Lr(τ) ≡ 0 (mod 111+[r/2]).

From this congruence and (3.3.19) we complete the proof of the theorem.

Proof of Theorem 3.1.4. Let

L0(τ) :=
η(121τ)η(1331τ)

η(τ)η(11τ)
= q60 (q121; q121)∞(q1331; q1331)∞

(q; q)∞(q11; q11)∞
.

We have

L0(τ) = (q121; q121)∞(q1331; q1331)∞

∞∑
n=0

p[11111](n)qn+60.

Applying the U -operator twice, we get

L1(τ) := U2L0(τ) = (q; q)∞(q11; q11)∞

∞∑
n=0

p[11111](112n+ 61)qn+1.

Since L0(τ) ∈ K0(1331), we have UL0(τ) ∈ K0(121) and L1(τ) ∈ K0(11). For r ≥ 2,

we define

Lr(τ) := U(φλr−1(τ)Lr−1(τ)) (3.3.27)
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where λr = 1 for any r ≥ 1. By induction on r it is not difficult to see that for

r ≥ 1, Lr(τ) ∈ V and

Lr(τ) = (q; q)∞(q11; q11)∞

∞∑
n=0

p[11111]

(
11r+1n+

11r+1 + 1

2

)
qn+1. (3.3.28)

Let µr = 1 for all r ≥ 1. For any integer r ≥ 1, since Lr(τ) ∈ V we can write

Lr(τ) =
∑
ν≥µr

ar,νJν(τ), ar,ν ∈ Z. (3.3.29)

We will prove that for any r ≥ 1,

π(ar,ν) ≥ r + 1 + [
ν − µr

2
], ∀ν ≥ µr. (3.3.30)

If r = 1, we find that

L1(τ) =
60∑
ν=1

a1,νJν(τ).

The 11-adic orders of a1,ν (1 ≤ ν ≤ 60) are given in Table 3.4, from which it is not

difficult to verify that (3.3.30) holds for r = 1.

Table 3.4

ν 1 2 3 4 5 6 7 8 9 10

π(a1,ν) 2 3 3 5 5 8 8 10 11 11

ν 11 12 13 14 15 16 17 18 19 20

π(a1,ν) 13 14 14 17 16 18 19 20 22 22

ν 21 22 23 24 25 26 27 28 29 30

π(a1,ν) 24 25 25 27 27 29 31 32 34 34

ν 31 32 33 34 35 36 37 38 39 40

π(a1,ν) 36 36 37 39 39 41 42 44 46 46

ν 41 42 43 44 45 46 47 48 49 50

π(a1,ν) 47 48 49 51 51 53 54 55 59 57

ν 51 52 53 54 55 56 57 58 59 60

π(a1,ν) 59 60 61 64 63 65 66 67 ∞ 68
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Now suppose (3.3.30) holds for r−1 (r ≥ 2). For the same reason as in the proof

of Theorem 3.1.2, to complete the induction, it suffices to prove that

π(ar−1,µ) + π(c(λr−1)
µ,ν ) ≥ r + 1 +

[ν − µr
2

]
, for all µ ≥ µr−1, ν ≥ µr. (3.3.31)

By induction hypothesis and (3.2.12), we deduce that

π(ar−1,µ) + π(c(λr−1)
µ,ν ) ≥ r +

[µ− µr−1

2

]
+
[11ν − µ− 5λr−1 − 1

10

]
. (3.3.32)

Note that if we increase µ by 2, the value of the right hand side does not decrease.

Therefore, its minimum value occurs when µ = µr−1 + 1. Thus

π(ar−1,µ) + π(c(λr−1)
µ,ν ) ≥ r +

[11ν − µr−1 − 5λr−1 − 2

10

]
.

Since µr−1 = λr−1 = 1, for ν ≥ 2 we have

π(ar−1,µ) + π(c(λr−1)
µ,ν ) ≥ r + 1 +

[11ν − 18

10

]
≥ r + 1 +

[ν − 1

2

]
. (3.3.33)

For ν = 1, (3.3.31) reduces to

π(ar−1,µ) + π(c(λr−1)
µ,ν ) ≥ r + 1. (3.3.34)

By induction hypothesis, we have π(ar−1,µr−1) ≥ r. Since

π(c(λr−1)
µr−1,ν

) ≥ θ(λr−1, µr−1) = θ(1, 1) = 1,

we see that (3.3.34) holds for µ = µr−1. Similarly it holds for µ = µr−1 + 1. If

µ ≥ µr−1 + 2, then by induction hypothesis we have

π(ar−1,µ) ≥ r +
[µ− µr−1

2

]
≥ r + 1.

Thus (3.3.34) holds for all r.

Combining (3.3.33) with (3.3.34), we see that (3.3.31) holds for all r.

By induction on r, we deduce (3.3.30). Therefore, for any r ≥ 1 and ν ≥ µr, we

have

π(ar,ν) ≥ r + 1.
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By (3.3.29) we see that

Lr(τ) ≡ 0 (mod 11r+1).

From this congruence and (3.3.28), we complete the proof of the theorem.
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Chapter 4
Generalized Frobenius Partitions with k

Colors

4.1 Introduction

It is known that a partition π of n can be visualized using a Ferrers diagram by

representing the positive integer m of the s-th part by m dots on s-th row. For

example, the pictorial representation of the partition 4 + 4 + 4 + 2 of the integer 14

is given in Figure 4.1.

Figure 4.1

From the Ferrers diagram of a partition, we can construct a 2 by d matrix by

carrying out the following steps:

1. Remove all the dots lying on the diagonal of the diagram.

2. Fill the first row of the matrix with entries r1,j, where r1,j is the number of

45
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dots on the j-th row that are above the diagonal.

3. Fill the second row of the matrix with entries r2,j, where r2,j is the number of

dots on the j-th column that are below the diagonal.

For example, after Step 1, we obtained Figure 4.2 from Figure 4.1.

Figure 4.2

Carrying out Steps 2 and 3, we arrive at the matrix3 2 1

3 2 0

 .

It is clear that we can always construct a 2 by d matrix from any partition π

with d dots along the diagonal of its Ferrers diagram. The matrix obtained from a

partition π using the above procedures is called a Frobenius symbol for the partition

π. A Frobenius symbol, by construction, has strictly decreasing entries on each row.

Frobenius symbols have been introduced primarily in representation theory of the

symmetric groups (see [75], for example).

One way to find new functions that are similar to the partition function p(n) is

to start with a modified version of the Frobenius symbol. In his 1984 AMS Memoir,

Andrews [4, Section 4] introduced a generalized Frobenius symbol with at most

k repetitions for each integer by relaxing the “strictly decreasing” property and

allowing at most k-repetitions of each positive integer in each row. Andrews then

used the generalized Frobenius symbol to define the generalized Frobenius partition

of n. For a generalized Frobenius symbol with entries ri,j, i = 1, 2, 1 ≤ j ≤ d, the

generalized Frobenius partition of n is given by

n = d+
d∑
j=1

(r1,j + r2,j).
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Andrews used the symbol φk(n) to denote the number of such partitions of n. As an

example, we observe that φ2(3) = 5 and these are given by the following generalized

Frobenius symbols with at most 2 repetitions on each row:2

0

 ,

0

2

 ,

1

1

 ,

1 0

0 0

 ,

0 0

1 0

 .

Note that with this definition,

φ1(n) = p(n).

In order to restore the “strictly decreasing” property of a Frobenius symbol from

a generalized Frobenius symbol with at most k repetitions, Andrews colored the

repeated parts using “colors” denoted by 1, 2, · · · , k and imposed an ordering on

these parts as follows:

01 ≺ 02 ≺ · · · ≺ 0k ≺ 11 ≺ 12 ≺ · · · ≺ 1k ≺ 21 ≺ 22 ≺ · · · ≺ 2k ≺ · · · . (4.1.1)

Here, we use “≺” to differentiate the inequality from the usual inequality “<”.

Andrews referred to a matrix (r2,j)2×d as a k-colored generalized Frobenius symbol

if the entries

ri,j ∈ {`c|` and c are non-negative integers with 1 ≤ c ≤ k}

and

ri,j+1 ≺ ri,j, i = 1, 2 and 1 ≤ j ≤ d− 1.

Andrews associated a k-colored generalized Frobenius partition of n to a k-colored

generalized Frobeinus symbol (ri,j)2×d by setting

n = d+
d∑
j=1

(r1,j + r2,j),

where only the numerical value ` is added in the sum if ri,j = `c. He used the symbol

cφk(n) to denote the number of such partitions of n. Observe that when k = 1, the

1-colored generalized Frobenius symbols coincide with the Frobenius symbols and

cφ1(n) = p(n). To help the reader to understand k-colored generalized Frobenius
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symbols, we list the following 2-colored generalized Frobenius symbols which give

rise to 2-colored generalized Frobenius partitions of 2:11

01

 ,

11

02

 ,

12

01

 ,

12

02

 , (4.1.2)

01

11

 ,

02

11

 ,

01

12

 ,

02

12

 ,

02 01

02 01

 .

Note that there are altogether nine 2-colored generalized Frobenius partitions of 2

and hence, cφ2(2) = 9.

Let

CΦk(q) :=
∞∑
n=0

cφk(n)qn.

In [4, Theorem 5.2], Andrews showed that

CΦk(q) =
1

(q; q)k∞

∑
m1,··· ,mk−1∈Z

qQ(m1,··· ,mk−1) (4.1.3)

where

Q(m1,m2, · · · ,mk−1) =
k−1∑
i=1

m2
i +

∑
1≤i<j≤k−1

mimj. (4.1.4)

Using (4.1.3), Andrews [4, Corollary 5.2] discovered alternative expressions for CΦk(q)

when k = 2, 3 and 5. To describe Andrews’ identities, let q = e2πiτ throughout this

chapter. We define

Θ3(q) = ϑ3(0|2τ) =
∞∑

j=−∞

qj
2

, and Θ2(q) = ϑ2(0|2τ) =
∞∑

j=−∞

q(j+1/2)2 ,

where

ϑ2(u|τ) =
∞∑

j=−∞

eπiτ(j+1/2)2e(2j+1)iu

and

ϑ3(u|τ) =
∞∑

j=−∞

eπiτj
2

e2jiu.

Andrews showed that

CΦ2(q) =
(q2; q4)∞

(q; q2)4
∞(q4; q4)∞

, (4.1.5)
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CΦ3(q) =
1

(q; q)3
∞

(
Θ3(q)Θ3(q3) + Θ2(q)Θ2(q3)

)
(4.1.6)

=
1

(q; q)3
∞

(
1 + 6

∞∑
j=0

(
j

3

)
qj

1− qj

)
(4.1.7)

and

CΦ5(q) =
1

(q; q)5
∞

(
1 + 25

∞∑
j=1

(
j

5

)
qj

(1− qj)2
− 5

∞∑
j=1

(
j

5

)
jqj

1− qj

)
(4.1.8)

where

(
j

·

)
is the Kronecker symbol. For (4.1.8), we have recorded the equivalent

version of Andrews’ identity found in the work of Kolitsch [57, Lemma 1]. Andrews

[4, pp. 13–15] used Jacobi triple product identity (see for example [4, (3.1)]) and

properties of theta series to prove (4.1.5) and (4.1.6). The proofs of (4.1.7) and

(4.1.8) [4, pp. 26–27] are dependent on the work of H.D. Kloosterman [54, p. 362,

p. 358]. In a paragraph before the proofs of (4.1.7) and (4.1.8), Andrews [4, p. 26]

mentioned that similar identity exists for k = 7, but this identity was not given in

[4]. This missing identity, namely,

CΦ7(q) =
1

(q; q)7
∞

(
1 +

343

8

∞∑
j=1

(
j

7

)
qj + q2j

(1− qj)3
− 7

8

∞∑
j=1

(
j

7

)
j2qj

1− qj

)
, (4.1.9)

was later published by Kolitsch [57, Lemma 2].

Recently, Baruah and Sarmah [23, 24] used the method illustrated in Z. Cao’s

work [29] and found representations of CΦk(q) for k = 4, 5 and 6. They showed that

CΦ4(q) =
1

(q; q)4
∞

(
Θ3

3(q2) + 3Θ3(q2)Θ2
2(q2)

)
, (4.1.10)

CΦ5(q) =
1

(q; q)5
∞

(
Θ3(q10)Θ3

3(q2) + 3Θ3(q10)Θ3(q2)Θ2
2(q2) +

1

2
Θ2(q5/2)Θ3

2(q1/2)

+ 3Θ2(q10)Θ2(q2)Θ2
3(q) + Θ2(q10)Θ3

2(q2)
)

(4.1.11)

and

CΦ6(q) =
1

(q; q)6
∞

(
Θ3

3(q)Θ3(q2)Θ3(q6) +
3

4
Θ3

2(q1/2)Θ2(q)Θ2(q3/2)
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+ Θ2
3(q)Θ2(q2)Θ2(q6)

)
. (4.1.12)

Identities (4.1.10) and (4.1.11) can be found in [23, (2.2)] and [23, (2.13)] respectively

while (4.1.12) can be found in [24, (2.1)].

For k > 7, it is not clear if new identities associated with CΦk(q) could be derived

using the methods of Andrews and Baruah-Sarmah. In fact, Andrews [4, p. 15]

commented that as k increases, “the expressions quickly become long and messy”.

The main goal of this chapter is to discuss ways of finding new representations

of CΦk(q). Using the theory of modular forms, we will derive all the identities

mentioned above. In addition to providing new proofs to known identities, we will

also construct new representations for CΦk(q) for the first time for 8 ≤ k ≤ 17,.

In Section 4.2, we discuss the behavior of CΦk(q) as modular form for each integer

k > 2. In Section 4.3, we derive alternative representations of CΦk(q) for primes

k = 3, 5, 7, 11, 13 and 17 and prove Kolitsch’s identities [57, p. 223]

cφ5(n) = p(n/5) + 5p(5n− 1) (4.1.13)

and

cφ7(n) = p(n/7) + 7p(7n− 2). (4.1.14)

We also discover and prove the identities

cφ11(n) = p(n/11) + 11p(11n− 5), (4.1.15)

and

cφ13(n) = p(n/13) + 13p(13n− 7) + 26a(n) (4.1.16)

where p(x) = 0 when x is not an integer and

q

∞∏
n=1

(1− q13n)

(1− qn)2
=
∞∑
n=0

a(n)qn.

It turns out that (4.1.15) is equivalent to Kolitsch’s identity for 11-colored general-

ized Frobenius partition with order 11 [60, Theorem 3] which was first established
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using the results of F.G. Garvan, D. Kim and D. Stanton [41]. Identity (4.1.16), on

the other hand, is new. The proof of (4.1.16) motivates the discovery of a uniform

method in treating identities such as (4.1.16). We discuss this method in Section

4.4 and derive analogues of (4.1.16) for ` = 17, 19 and 23. This method also leads to

the discovery of interesting modular functions that satisfy mysterious congruences.

For example, if

h`(τ) = (q`; q`)∞CΦ`(q)− 1− `(q`; q`)∞
∞∑
j=1

p

(
`j − `2 − 1

24

)
qj − 2`(`−11)/2η

`−11(`τ)

η`−11(τ)
,

where η(τ) is the Dedekind eta function given by

η(τ) = q
1
24

∞∏
n=1

(1− qn),

then for ` = 17, 19 and 23,

h`(τ) ≡ 0 (mod ν`)

where

ν` = `2 − `p
(
`n− `2 − 1

24

)
.

In Section 4.5, we discuss the cases for k = 9 and 15, the two composite odd

integers less than 17. We derive the following congruence satisfied by cφk(n):

cφpαN(n) ≡ cφpα−1N(n/p) (mod p2α), (4.1.17)

where cφk(m) = 0 if m is not an integer, p a prime, N and α are positive integers

with (N, p) = 1. The discovery of congruence (4.1.17) is motivated by congruences

found in the study of CΦ10(q) and CΦ14(q) in Section 4.6 where identities associated

with k = 4, 6, 8, 10, 12 and 16 are given. More precisely, we discovered that

CΦ2p(q) ≡
Θ3(qp)

(qp; qp)∞
= CΦ2(qp) (mod p2), (4.1.18)

which holds for any odd prime p. The second equality follows from Andrews’ iden-

tity (4.1.5) for CΦ2(q) (see also (4.3.1)). Congruence (4.1.18) can be viewed as an

extension of Andrews’ congruence [4, Corollary 10.2]

CΦp(q) ≡
1

(qp; qp)∞
(mod p2) (4.1.19)
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if we rewrite (4.1.19) as

CΦp(q) ≡ CΦ1(qp) (mod p2) (4.1.20)

using the fact that

cφ1(n) = p(n).

The discovery of (4.1.18) leads to the congruence

CΦ`p(q) ≡ CΦ`(q
p) (mod p2), (4.1.21)

which holds for any distinct primes ` and p. Congruence (4.1.21) eventually leads

to the discovery of (4.1.17).

There may be more surprising properties to be discovered for cφk(n) and we

hope that this discussion will be helpful to future researchers who are interested in

knowing more about these functions.

4.2 Modular properties of CΦk(q)

In this section, we determine the modular properties of the function

Ak(q) := (q; q)k∞CΦk(q) =
∑

m1,··· ,mk−1∈Z

qQ(m1,··· ,mk−1), k > 1.

Let χ be a Dirichlet character and Mk(Γ0(N), χ) be the space of modular forms

on Γ0(N) with weight k and multiplier χ. When χ is the trivial Dirichlet character,

we write Mk(Γ0(N)) for Mk(Γ0(N), χ).

Let

An =


2 1 1 · · · 1

1 2 1 · · · 1

· · · · · · · · · · · · · · ·

1 1 1 · · · 2


n×n

. (4.2.1)
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Then det(An) = n+ 1 and

A−1
n =



n

n+ 1
− 1

n+ 1
− 1

n+ 1
· · · − 1

n+ 1

− 1

n+ 1

n

n+ 1
− 1

n+ 1
· · · − 1

n+ 1

· · · · · · · · · · · · · · ·

− 1

n+ 1
− 1

n+ 1
− 1

n+ 1
· · · n

n+ 1


. (4.2.2)

Let n be a positive even integer and

χAn(·) =

(
(−1)n/2 det(An)

·

)
=

(
(−1)n/2(n+ 1)

·

)
.

Since all the diagonal components of An and (n + 1)A−1
n are even, we deduce from

[68, Corollary 4.9.5 (3)] that if

θ(τ ;An) =
∑
m∈Zn

eπiτ ·m
tAnm =

∑
m∈Zn

q
1
2
mtAnm =

∑
m∈Zn

qQ(m1,···mn),

then

θ(τ ;An) =
∑
m∈Zn

qQ(m1,···mn) = An+1 ∈Mn/2

(
Γ0(n+ 1), χAn

)
. (4.2.3)

Next, let n > 1 be an odd positive integer and

Bn =

An 0

0 2

 .

Then detBn = 2(n+ 1). We have

θ(τ ;Bn) =
∑

m∈Zn+1

eπiτ ·m
tBnm =

∑
m∈Zn

q
1
2
mtAnm

∑
mn+1∈Z

qm
2
n+1

=
∑
m∈Zn

qQ(m1,···mn)
∑

mn+1∈Z

qm
2
n+1

= An+1(q)Θ3(q).
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Note that

B−1
n =

A−1
n 0

0 1
2

 .

Let

χBn(·) =

(
(−1)(n+1)/2 det(Bn)

·

)
=

(
2(−1)(n+1)/2(n+ 1)

·

)
.

Since all the diagonal components of Bn and 2(n+ 1)B−1
n are even, we deduce from

[68, Corollary 4.9.5 (3)] that

θ(τ ;Bn) = An+1(q)Θ3(q) ∈M(n+1)/2

(
Γ0(2(n+ 1)), χBn

)
. (4.2.4)

Similarly, let

Cn =

An 0

0 4

 .

Then detCn = 4(n+ 1). Note that

C−1
n =

A−1
n 0

0 1
4

 .

Let

χCn(·) =

(
(−1)(n+1)/2 det(Cn)

·

)
=

(
(−1)(n+1)/2(n+ 1)

·

)
.

Since all the diagonal components of Cn and 4(n+1)C−1
n are even, we find from [68,

Corollay 4.9.5 (3)] that

θ(τ ;Cn) = An+1(q)Θ3(q2) ∈M(n+1)/2

(
Γ0(4(n+ 1)), χCn

)
. (4.2.5)

From (4.2.3), (4.2.4) and (4.2.5), we deduce the following theorem:

Theorem 4.2.1. If k = 2r + 1 is odd, then

Ak(q) ∈M(k−1)/2

(
Γ0(k),

((−1)r · k
·

))
.

If k = 2r is even, then

Θ3(q)Ak(q) ∈Mk/2

(
Γ0(2k),

(2(−1)r · k
·

))
,

and

Θ3(q2)Ak(q) ∈Mk/2

(
Γ0(4k),

((−1)r · k
·

))
.
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4.3 Generating function of cφk(n) when k is a prime

In this section, we will derive expressions for CΦk(q) when k is a prime number less

than 18.

4.3.1 Case k = 2

Our proof for k = 2 is exactly the same as that of Andrews’ proof of (4.1.5) and we

include it for the sake of completeness. From (4.1.3), we find that

CΦ2(q) =
Θ3(q)

(q; q)2
∞
. (4.3.1)

Using Jacobi triple product identity (see [4, (3.1)]), we deduce that

Θ3(q) = (−q; q2)2
∞(q2; q2)∞. (4.3.2)

Substituting (4.3.2) into (4.3.1) and simplifying, we complete the proof of (4.1.5).

4.3.2 Case k = 3

From Theorem 4.2.1, we deduce that A3(q) is a modular form of weight 1 on Γ0(3)

with multiplier
(−3
·

)
. From [38, Theorem 4.8.1] we know that

E3,1 := 1 + 6
∞∑
j=1

(
3

j

)
qj

1− qj
. (4.3.3)

is an Eisenstein series in M1(Γ0(3),
(−3
·

)
). Thus E3,1(τ)A3(q) ∈ M2(Γ0(3)) and

E2
3,1 ∈ M2(Γ0(3)). From [69, Theorem 1.34] we compute that dimM2(Γ0(3)) = 1.

By comparing the Fourier coefficients of E3,1(τ)A3(q) and E2
3,1, we deduce that

E3,1(τ)A3(q) = E2
3,1.

Hence

A3(q) = E3,1

and we have completed the proof of (4.1.7).



56 Chapter 4. Generalized Frobenius Partitions with k Colors

Another proof of (4.1.7) can also be found, for example, in the article by J.M.

Borwein, P.B. Borwein and Garvan [28, p. 43].

We next show that (4.1.6) follows from a general identity. Let ω = (1+
√
−d)/2,

with d ≡ 3 (mod 4). Observe that the set

S = {m+ nω|m,n ∈ Z}

is a disjoint union of

S0 = {m+ nω|m,n ∈ Z, n ≡ 0 (mod 2)} and S1 = {m+ nω|m,n ∈ Z, n ≡ 1 (mod 2)} .

Let

N(m+ nω) = m2 +mn+

(
d+ 1

4

)
n2.

Then ∑
v∈S

qN(v) =
∑
v∈S0

qN(v) +
∑
v∈S1

qN(v).

Simplifying the above, we deduce that∑
m,n∈Z

qm
2+mn+( d+1

4 )n2

= Θ3(q)Θ3(qd) + Θ2(q)Θ2(qd). (4.3.4)

Identity (4.1.6) follows from (4.3.4) with d = 3.

4.3.3 Case k = 5

We first establish three representations of CΦ5(q):

Theorem 4.3.1. The following identities hold:

CΦ5(q) =
1

(q; q)5
∞

(
1 + 25

∞∑
j=1

(
j

5

)
qj

(1− qj)2
− 5

∞∑
j=1

(
j

5

)
jqj

1− qj

)
, (4.3.5)

CΦ5(q) =
1

(q5; q5)∞
+ 25q

(q5; q5)5
∞

(q; q)6
∞
, (4.3.6)

CΦ5(q) =
1

(q5; q5)∞
+ 5

∞∑
j=1

p(5j − 1)qj. (4.3.7)



4.3 Generating function of cφk(n) when k is a prime 57

Proof. From Theorem 4.2.1, we deduce that

A5(q) ∈M2

(
Γ0(5),

(
5

·

))
.

Since [69, Theorem 1.34]

dimM2

(
Γ0(5),

(
5

·

))
= 2,

we deduce that the two modular forms

E5,1 : =
∞∑
m=1

∞∑
d=1

(
d

5

)
mqmd =

∞∑
j=1

(
j

5

)
qj

(1− qj)2
(4.3.8)

and

E5,2 : = 1− 5
∞∑
m=1

∞∑
d=1

(
d

5

)
d2qmd = 1− 5

∞∑
j=1

(
j

5

)
jqj

1− qj
,

which are inM2

(
Γ0(5),

(
5
·

))
(see [38, Sec. 4.6]), form a basis for this space of modular

forms. By comparing Fourier coefficients of A5(q), E5,1 and E5,2, we deduce that

A5(q) = 25E5,1 + E5,2

and the proof of (4.3.5) is complete.

Before we begin with our proof of (4.3.6), we observe that if p > 3 is a prime,

then by Theorem 4.2.1,

CΦp(q)(q
p; qp)∞

is a modular function on Γ0(p). This implies that the function can be expressed in

terms of combinations of infinite products. For more details, see for example the

paper by Chan, H. Hahn, R.P. Lewis and S.L. Tan [32]. In [4, Corollary 10.2],

Andrews showed that if p is a prime, then

CΦp(q) =
1

(qp; qp)∞
+ p2Gp(q)

for some Gp(q) analytic inside |q| < 1 with integral power series coefficients. He

then asked [4, Problem 6] for explicit closed forms for Gp(q). Since

Gp(q)(q
p; qp)∞ =

1

p2
(CΦp(q)(q

p; qp)∞ − 1) ,
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we conclude that Gp(q) is a modular function on Γ0(p) for p > 3. This provides an

answer to Andrews’ question. The above discussion also gives us a way to derive

alternative expressions for CΦp(q) whenever the functions invariant under Γ0(p) can

be expressed as a rational function of a single modular function. This happens for

p = 5, 7, and 13. We now use this fact to derive an expression for CΦ5(q). It is

known from T. Kondo’s work [61] that every modular function on Γ0(5) is a rational

function of η6(5τ)/η6(τ), where

η(τ) = eπiτ/12

∞∏
j=1

(
1− e2πijτ

)
.

Since CΦ5(q)(q5; q5)∞ is a modular function on Γ0(5), by comparing the Fourier

coefficients and direct calculations, we deduce that

CΦ5(q)(q5; q5)∞ = 1 + 25
η6(5τ)

η6(τ)
.

This completes the proof of (4.3.6).

Using the fact that
1

(q; q)∞
=
∞∑
j=0

p(j)qj

and Ramanujan’s identity [26, Theorem 2.3.4],

∞∑
j=1

p(5j − 1)qj = 5q
(q5; q5)5

∞
(q; q)6

∞
, (4.3.9)

we deduce (4.3.7) from (4.3.6).

Remark 4.3.1. Identity (4.3.5) is Andrews’ (4.1.8), which was first proved us-

ing results found in Kloosterman’s work [54]. Identity (4.3.7) immediately implies

(4.1.13). We emphasize here that our proof of (4.1.13) is different from Kolitsch’s

proof as we have used (4.3.6) instead of (4.1.8).

As shown in (4.1.11), there is a fourth representation of CΦ5(q) due to Baruah

and Sarmah. This identity can be proved by realizing that

A5(q) ∈M2

(
Γ0(40),

(
5

·

))
,
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together with the fact that the space M2

(
Γ0(40),

(
5
·

))
has a basis consisting of the

modular forms

Θ3(q)Θ3
3(q5), Θ3

3(q)Θ3(q5), Θ3(q2)Θ3
3(q10), Θ3

3(q2)Θ3(q10),

Θ3(q)Θ3(q5)Θ2
2(q2), Θ3(q2)Θ3(q10)Θ2

2(q2), Θ3
2(q1/2)Θ2(q5/2), (4.3.10)

Θ2
3(q)Θ2(q2)Θ2(q10), Θ3

2(q2)Θ2(q10), and Θ2
3(q5)Θ2(q2)Θ2(q10).

Remark 4.3.2. From [26, Corollary 1.3.4] we know that

Θ2(q) = 2q1/4 (q4; q4)2
∞

(q2; q2)∞
, Θ3(q) =

(q2; q2)5
∞

(q; q)2
∞(q4; q4)2

∞
. (4.3.11)

Hence all the functions in (4.3.10) can be expressed as eta-quotients. By [69, Theo-

rems 1.64 and 1.65], it is straightforward to check that these functions belong to the

space M2

(
Γ0(40),

(
5
·

))
. Moreover, by comparing their Fourier coefficients, we can

verify that they are linearly independent. Now by [69, Theorem 1.41] we compute

that

dimM2

(
Γ0(40),

(5

·
))

= 10.

Therefore, the functions in (4.3.10) form a basis of M2

(
Γ0(40),

(
5
·

))
. In the sequel,

we will omit those details of verifying that the functions we constructed are basis of

certain spaces of modular forms.

4.3.4 Case k = 7

Theorem 4.3.3. The following identities are true:

CΦ7(q) =
1

(q; q)7
∞

(
1− 7

8

∞∑
k=1

(
k

7

)
k2qk

1− qk
+

343

8

∞∑
k=1

(
k

7

)
qk + q2k

(1− qk)3

)
, (4.3.12)

CΦ7(q) =
1

(q7; q7)∞
+ 49q

(q7; q7)3
∞

(q; q)4
∞

+ 343q2 (q7; q7)7
∞

(q; q)8
∞
, (4.3.13)

CΦ7(q) =
1

(q7; q7)∞
+ 7

∞∑
j=1

p(7j − 2)qj. (4.3.14)
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Proof. Before giving the proof of (4.3.12), we observe that (4.3.12) is the same as

(4.1.9). We will prove (4.3.12) using the theory of modular forms. Note that by

Theorem 4.2.1, we have A7(q) ∈ M3

(
Γ0(7),

(−7
·

))
. From [69, Theorem 1.34] we

deduce that

dimM3

(
Γ0(7),

(
−7

·

))
= 3.

From [38, Theorem 4.5.2] we find that the two Eisenstein series

E7,1 :=
∞∑
m=1

∞∑
d=1

(
d

7

)
m2qmd =

∞∑
j=1

(
j

7

)
qj + q2j

(1− qj)3
,

and

E7,2 := 1− 7

8

∞∑
m=1

∞∑
d=1

(
d

7

)
d2qmd = 1− 7

8

∞∑
j=1

(
j

7

)
j2qj

1− qj

belong to M3

(
Γ0(7),

(−7
·

))
. Moreover, by using [69, Theorems 1.64 and 1.65], it is

straightforward to check that

S7 := η3(τ)η3(7τ) ∈M3

(
Γ0(7),

(
−7

·

))
.

It is easy to verify that E7,1, E7,2 and S7 are linearly independent. Hence they form a

basis of M3

(
Γ0(7),

(−7
·

))
. By comparing Fourier coefficients of these modular forms

and A7(q), we deduce that

A7(q) =
343

8
E7,1 + E7,2.

This complete the proof of (4.3.12).

The proof of (4.3.13) is similar to the proof of (4.3.6). We recall from [61] that

modular functions invariant under Γ0(7) is a rational function of

η4(7τ)

η4(τ)
.

Since (q7; q7)∞CΦ7(q) is such a function, by comparing the Fourier coefficients and

direct calculations, we deduce that

(q7; q7)∞CΦ7(q) = 1 + 49
η4(7τ)

η4(τ)
+ 343

η8(7τ)

η8(τ)
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and the proof of (4.3.13) is complete.

Ramanujan discovered that [26, Theorem 2.4.2]

∞∑
j=1

p(7j − 2)qj = 7q
(q7; q7)3

∞
(q; q)4

∞
+ 49q2 (q7; q7)7

∞
(q; q)8

∞
. (4.3.15)

Using (4.3.15) and (4.3.13), we deduce (4.3.14).

Identity (4.3.14) immediately implies Kolitsch’s identity (4.1.14). We emphasize

here that our proof of (4.1.14) uses (4.3.13) instead of (4.3.12).

As in the case for k = 5, we are able to find a representation of CΦ7(q) in terms

of theta functions. This new identity is an analogue of (4.1.11). We first observe

that A7(q) ∈M3

(
Γ0(28),

(−28
·

))
. Furthermore the modular forms

Θ5
3(q)Θ3(q7), Θ3

3(q)Θ3
3(q7), Θ3(q)Θ5

3(q7), Θ4
3(q)Θ2(q1/2)Θ2(q7/2),

Θ4
3(q7)Θ2(q1/2)Θ2(q7/2), Θ4

3(q)Θ2(q)Θ2(q7), Θ4
3(q7)Θ2(q)Θ2(q7),

Θ3
2(q1/2)Θ3

2(q7/2), Θ3
2(q)Θ3

2(q7), Θ5
2(q)Θ2(q7), and Θ2(q)Θ5

2(q7)

form a basis for M3

(
Γ0(28),

(−28
·

))
. Hence, by comparing the Fourier coefficients,

we deduce that

CΦ7(q) =
1

(q; q)7
∞

(
− 15

32
Θ5

3(q)Θ3(q7) +
55

16
Θ3

3(q)Θ3
3(q7)− 63

32
Θ3(q)Θ5

3(q7)

+
15

16
Θ4

3(q)Θ2(q1/2)Θ2(q7/2) +
105

16
Θ4

3(q7)Θ2(q1/2)Θ2(q7/2)

− 15

16
Θ4

3(q)Θ2(q)Θ2(q7) +
525

16
Θ4

3(q7)Θ2(q)Θ2(q7)

+
105

32
Θ3

2(q1/2)Θ3
2(q7/2) +

95

8
Θ3

2(q)Θ3
2(q7)

+
15

16
Θ5

2(q)Θ2(q7)− 189

16
Θ2(q)Θ5

2(q7)

)
. (4.3.16)

We next prove some congruences satisfied by cφ7(n) using (4.3.16) and (4.3.13).

Theorem 4.3.4. For any integer n ≥ 0,

cφ7(5n+ 3) ≡ 0 (mod 5).
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Proof. From (4.3.16), we deduce that

∞∑
j=0

cφ7(j)qj ≡ 1

(q; q)7
∞

(
Θ3(q)Θ5

3(q7) + Θ2(q)Θ5
2(q7)

)
(mod 5)

≡ 1

(q5; q5)2
∞

(
(q; q)3

∞Θ3(q)Θ3(q35) + (q; q)3
∞Θ2(q)Θ2(q35)

)
(mod 5).

(4.3.17)

Using Jacobi’s identity for (q; q)3
∞ [26, Theorem 1.3.9], we find that

(q; q)3
∞Θ3(q) =

∞∑
i=0

∞∑
j=−∞

(−1)i(2i+ 1)qi(i+1)/2+j2 . (4.3.18)

Now, observe that

m =
i(i+ 1)

2
+ j2

is equivalent to

8m+ 1 = (2i+ 1)2 + 8j2.

Note that 8m ≡ −1 (mod 5) if and only if m ≡ 3 (mod 5). Since(
−8

5

)
= −1,

we deduce that

(2i+ 1)2 + 8j2 ≡ 0 (mod 5)

holds if and only if

2i+ 1 ≡ j ≡ 0 (mod 5).

Similarly, we have

q35/4(q; q)3
∞Θ2(q) =

∞∑
i=0

∞∑
j=0

(−1)i(2i+ 1)q9+i(i+1)/2+j(j+1). (4.3.19)

Observe that

m = 9 +
i(i+ 1)

2
+ j(j + 1)

is equivalent to

8m− 69 = (2i+ 1)2 + 2(2j + 1)2.
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Note that 8m− 69 ≡ 0 (mod 5) if and only if m ≡ 3 (mod 5). Since(
−2

5

)
= −1,

we deduce that

(2i+ 1)2 + 2(2j + 1)2 ≡ 0 (mod 5)

holds if and only if

2i+ 1 ≡ 2j + 1 ≡ 0 (mod 5).

From (4.3.17), (4.3.18) and (4.3.19), we conclude that if m ≡ 3 (mod 5) then

cφ7(m) ≡ 0 (mod 5),

or equivalently,

cφ7(5n+ 3) ≡ 0 (mod 5)

for any integer n ≥ 0.

Remark 4.3.2. It is possible to deduce Theorem 4.3.4 without using (4.3.16). We

first recall a recent result of Garvan and J.A. Sellers [40] which states that if p is a

prime number and 0 < r < p, then the congruence

cφk(pn+ r) ≡ 0 (mod p), for all n ∈ N

implies that

cφpN+k(pn+ r) ≡ 0 (mod p), for all n ∈ N.

In [4, (10.3)], Andrews showed that for all integers n ≥ 0,

cφ2(5n+ 3) ≡ 0 (mod 5). (4.3.20)

Applying the result of Garvan and Sellers with p = 5, r = 3, N = 1 and k = 2, we

complete the proof of Theorem 4.3.4.

Our next set of congruences are consequences of (4.3.13).
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Theorem 4.3.5. For any integer n ≥ 0, we have

cφ7(7n+ 3) ≡ cφ7(7n+ 5) ≡ cφ7(7n+ 6) ≡ 0 (mod 73). (4.3.21)

Proof. From (4.3.13), we find that

∞∑
k=0

cφ7(k)qk ≡ 1

(q7; q7)∞
+ 49q

(q7; q7)3
∞

(q; q)4
∞

(mod 73). (4.3.22)

Let

q
(q7; q7)3

∞
(q; q)4

∞
=
∞∑
j=0

a(j)qj.

Then

∞∑
n=0

cφ7(7n+ r)qn ≡ 49
∞∑
n=0

a(7n+ r)qn (mod 73), 1 ≤ r ≤ 6. (4.3.23)

By the binomial theorem, we find that

∞∑
j=0

a(j)qj ≡ q(q7; q7)2
∞(q; q)3

∞ ≡ (q7; q7)2
∞

(
∞∑
i=0

(−1)i(2i+ 1)qi(i+1)/2+1

)
(mod 7).

(4.3.24)

Since

1 +
i(i+ 1)

2
≡ 0, 1, 2 or 4 (mod 7),

we deduce that

a(7n+ 3) ≡ a(7n+ 5) ≡ a(7n+ 6) ≡ 0 (mod 7). (4.3.25)

Combining (4.3.23) with (4.3.25) we complete the proof of (4.3.21).

4.3.5 Case k = 11

Theorem 4.3.6. We have

CΦ11(q) =
1

(q11; q11)∞
+ 11

∞∑
j=1

p(11j − 5)qj. (4.3.26)
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Proof. By Theorem 4.2.1, we know that A11(q) ∈ M5

(
Γ0(11),

(−11
·

))
. The dimen-

sion of M5

(
Γ0(11),

(−11
·

))
is 5 [69, Theorem 1.34] and this space is spanned by the

modular forms

η11(11τ)

η(τ)
,

η11(τ)

η(11τ)
, (q; q)11

∞

∞∑
j=1

p(11j − 5)qj,

∞∑
m=1

∞∑
d=1

(
d

11

)
m4qmd and

1275

11
+
∞∑
m=1

∞∑
d=1

(
d

11

)
d4qmd.

By comparing the coefficients of A11(q) with those of the five modular forms above,

we deduce that

A11(q) =
η11(τ)

η(11τ)
+ 11(q; q)11

∞

∞∑
j=1

p(11j − 5)qj.

This proves (4.3.26).

It is immediate that (4.3.26) implies (4.1.15). There is no simple analogue of

(4.3.5) and (4.3.12) for k = 11. But an analogue for (4.1.11) and (4.3.16) exists.

This expression for CΦ11(q) is complicated and we omit it. In Section 6, when k is

composite, we will give some identities similar to (4.1.11) and (4.3.16) if we do not

have other representations for (qk; qk)∞CΦk(q).

4.3.6 Case k = 13

Theorem 4.3.7. We have

CΦ13(q) =
1

(q13; q13)∞
+ 169

(
q

(q13; q13)∞
(q; q)2

∞
+ 36q2 (q13; q13)3

∞
(q; q)4

∞
+ 494q3 (q13; q13)5

∞
(q; q)6

∞

+ 3380q4 (q13; q13)7
∞

(q; q)8
∞

+ 13182q5 (q13; q13)9
∞

(q; q)10
∞

+ 28561q6 (q13; q13)11
∞

(q; q)12
∞

+ 28561q7 (q13; q13)13
∞

(q; q)14
∞

)
(4.3.27)

CΦ13(q) =
1

(q13; q13)∞
+ 13

∞∑
j=1

p(13j − 7)qj + 26q
(q13; q13)∞

(q; q)2
∞

. (4.3.28)
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Proof. From the discussion at the end of Section 4.3.3, we know that

(q13; q13)∞CΦ13(q)

is a modular function invariant under Γ0(13) and since modular functions invariant

under Γ0(13) are rational functions of H = η2(13τ)/η2(τ) [61], by comparing the

Fourier coefficients and direct calculations, we deduce that

(q13; q13)∞CΦ13(q)

= 1 + 169

(
H + 36H2 + 494H3 + 3380H4 + 13182H5 + 28561H6 + 28561H7

)
and (4.3.27) follows.

Around 1939, motivated by Ramanujan’s identities (4.3.9) and (4.3.15), H. Zuck-

erman [95, Eq. (1.15)] discovered that

∞∑
j=1

p(13j − 7)qj = 11q
(q13; q13)∞

(q; q)2
∞

+ 468q2 (q13; q13)3
∞

(q; q)4
∞

+ 6422q3 (q13; q13)5
∞

(q; q)6
∞

+ 43940q4 (q13; q13)7
∞

(q; q)8
∞

+ 171366q5 (q13; q13)9
∞

(q; q)10
∞

+ 371293q6 (q13; q13)11
∞

(q; q)12
∞

+ 371293q7 (q13; q13)13
∞

(q; q)14
∞

. (4.3.29)

Using (4.3.29) to simplify (4.3.27), we deduce that

CΦ13(q) =
1

(q13; q13)∞
+ 13

∞∑
j=1

p(13j − 7)qj + 26q
(q13; q13)∞

(q; q)2
∞

and this yields (4.3.28).

Identity (4.3.28) immediately implies (4.1.16).

We observe that the appearance of

(q13; q13)∞

∞∑
j=1

p(13j − 7)qj

simplifies (4.3.27), leading to (4.3.28) with only three terms on the right hand side.

Identity (4.3.28) is clearly an analogue of Kolitsch’s identities (4.3.7) and (4.3.14).
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In Section 4, we will prove identities involving both CΦk(q) and

∞∑
j=1

p

(
kj − k2 − 1

24

)
qj

when k > 3 is a prime. This method appears to yield the simplest (in terms of the

number of modular forms involved) representation of CΦk(q) for any prime k > 3

and it does not involve the construction of basis for

M(k−1)/2

(
Γ0(k),

((−1)(k−1)/2k

·
))
.

Constructing such basis could get complicated for large k, as we shall see in the next

subsection.

4.3.7 Case k = 17

Let

Ea(τ) = q17B2(a/17)/2

∞∏
m=1

(1− q17(m−1)+a)(1− q17m−a), (4.3.30)

be generalized Dedekind eta functions, where B2(x) = x2 − x+ 1/6. Let

f17,1 = η7(τ)η(17τ), f17,2(τ) = η(τ)η7(17τ),

g17,1(τ) =
1

8
(17E2(17τ)− E2(τ)),

g17,2(τ) = η4(17τ)
7∑

k=0

E2·3k(τ)E14·3k(τ)E4·3k(τ)2E12·3k(τ)E6·3k(τ)E10·3k(τ)2E8·3k(τ),

h17,1(τ) = g2
17,1(τ), h17,2(τ) = g17,1(τ)g17,2(τ), h17,3(τ) = g2

17,2(τ),

h17,4(τ) = η4(τ)η4(17τ), h17,5(τ) =
1

24

(
289E4(17τ)− E4(τ)

)
.

From Theorem 4.2.1, we know A17(q) ∈ M8

(
Γ0(17),

(
17
·

))
. By [69, Theorem

1.34], we find that

dimM8

(
Γ0(17),

(17

·
))

= 12.

Let

B17,1 = f17,1h17,1, B17,2 = f17,1h17,2, B17,3 = f17,1h17,3, B17,4 = f17,1h17,4,



68 Chapter 4. Generalized Frobenius Partitions with k Colors

B17,5 = f17,1h17,5, B17,6 = f17,2h17,1, B17,7 = f17,2h17,2, B17,8 = f17,2h17,3,

B17,9 = f17,2h17,4, B17,10 = f17,2h17,5, B17,11 =
η17(τ)

η(17τ)
, and B17,12 =

η17(17τ)

η(τ)
.

One can verify that {B17,j|1 ≤ j ≤ 12} forms a basis of M8

(
Γ0(17),

(
17
·

))
. By

comparing the Fourier coefficients of A17(q) and B17,j, 1 ≤ j ≤ 12 and with the help

of Mathematica, we deduce the following identity:

Theorem 4.3.8. We have

CΦ17(q) =
1

(q; q)17
∞

(1491529

118
B17,1 −

20931981

236
B17,2 −

117030839

236
B17,3 (4.3.31)

+
78308596

59
B17,4 −

988669

236
B17,5 +

424841849

59
B17,6 −

10654955751

236
B17,7

− 17109438979

236
B17,8 +

7515406274

59
B17,9 +

91750275

236
B17,10

+B17,11 + 6975757441B17,12

)
.

Note that all the coefficients of B17,j, j 6= 11, are divisible by 172. Therefore,

CΦ17(q) ≡ 1

(q17; q17)∞
(mod 172),

or equivalently,

cφ17(n) ≡ p(n/17) (mod 172).

This is a special case of Andrews’ congruence [4, Theorem 10.2 and Corollary 10.2]

cφp(n) ≡ cφ1(n/p) (mod p2), (4.3.32)

which is true for all primes p.

In the next section, we will provide an analogue for Kolitsch’s identities (4.3.7)

and (4.3.14) for CΦ17(q).
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4.4 k-colored generalized Frobenius partitions and

ordinary partitions

Kolitsch’s identities (4.1.13), (4.1.14), and Andrews’ congruence (4.3.32) show a

close relation between k-colored generalized Frobenius partitions and ordinary par-

titions. In this section, we will give a more precise description of the relation and

prove (4.3.7), (4.3.14), (4.3.26) and (4.3.28) in a uniform way. We will also give an

alternative representation for CΦ17(q) and illustrate for any prime ` > 3, a gener-

al procedure to express CΦ`(q) in terms of other modular functions, one of which

involves generating functions for p(`n− (`2 − 1)/24).

Let

F (τ)
∣∣∣
a b

c d

 := F

(
aτ + b

cτ + d

)
.

Let ` be a prime ≥ 5 and let A`(τ) denote the function A`(q) when the function

A`(q) is viewed as a function of τ with q = e2πiτ . By Theorem 4.2.1,

A`(τ) = A`(q) = (q; q)`∞CΦ`(q) =
∑

m1,...,m`−1∈Z

qQ(m1,...,m`−1)

is a modular form of weight (` − 1)/2 with character χ(−1)(`−1)/2` on Γ0(`), where

Q(m1, . . . ,m`−1) is the quadratic form defined by (4.1.4) and χd is the character

defined by χd(·) =
(
d
·

)
. It follows that

f`(τ) :=
η(`τ)

η(τ)`
A`(τ) (4.4.1)

is a modular function on Γ0(`). On the other hand, η(`2τ)/η(τ) is a modular function

on Γ0(`2) and by a lemma of A.O.L. Atkin and J. Lehner [18, Lemma 7], we find

that

η(`2τ)

η(τ)

∣∣∣U` :=
1

`

`−1∑
k=0

η(`2τ)

η(τ)

∣∣∣
1 k

0 `

 = (q`; q`)∞

∞∑
j=1

p

(
`j − `2 − 1

24

)
qj

is also a modular function on Γ0(`).
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Set

g`(τ) := 1 + `
η(`2τ)

η(τ)

∣∣∣U` = 1 + `(q`; q`)∞

∞∑
j=1

p

(
`j − `2 − 1

24

)
qj. (4.4.2)

We now compare the analytic behaviors of f`(τ) and g`(τ) at cusps associated

with Γ0(`).

Lemma 4.4.1. Let ` ≥ 5 be a prime and

δ` =
`2 − 1

24
.

At the cusp ∞, we have

f`(τ)−g`(τ) =


`(`− p(`− δ`))q +O(q2), if ` ≤ 23,

`2q +

(
1

4
`2(`2 − 2`+ 9)− `p(2`− δ`)

)
q2 +O(q3), if 29 ≤ ` ≤ 47,

`2q +
1

4
`2(`2 − 2`+ 9)q2 +O(q3), if ` ≥ 53.

At the cusp 0, we have

(f`(τ)− g`(τ))
∣∣∣
0 −1

` 0

 =


O(q), if ` = 5, 7, 11,

2q−1 − 4 +O(q), if ` = 13,

2q−(`2−1)/24+(`−1)/2(1− q +O(q2)), if ` ≥ 17.

Proof. It is clear from the definition of g`(τ) that

g`(τ) = 1 + `(q`; q`)∞
∑

n≥(`2−1)/24`

p(`n− δ`)qn

=


1 + `p(`− δ`)q +O(q2), if ` ≤ 23,

1 + `p(2`− δ`)q2 +O(q3), if 29 ≤ ` ≤ 47,

1 +O(q3), if ` ≥ 53.

(4.4.3)

On the other hand, we have

Q(m1, . . . ,m`−1) = (m2
1 + · · ·+m2

`−1) +
1

2

∑
i 6=j

mimj

=
1

2
(m2

1 + . . .+m2
`−1) +

1

2
(m1 + · · ·+m`−1)2.



4.4 k-colored generalized Frobenius partitions and ordinary partitions 71

From this, we see that Q(m1, . . . ,m`−1) = 1 if and only if exactly one of mj is ±1

and the other are all 0, or mi = 1 and mj = −1 for some i, j with i 6= j and all

others are 0. Likewise, we can check that Q(m1, . . . ,m`−1) = 2 if and only if there

are two 1’s and two −1’s among mj, or there are two 1’s and one −1 among mj, or

there are two −1’s and one 1 among mj. Thus, the number of integer solutions of

Q(m1, . . . ,m`−1) = 2 is

1

4
(`− 1)(`− 2)(`− 3)(`− 4) + 2 · 1

2
(`− 1)(`− 2)(`− 3) =

1

4
`(`− 1)(`− 2)(`− 3).

Consequently, we have

A`(τ) = 1 + `(`− 1)q +
1

4
`(`− 1)(`− 2)(`− 3)q2 + · · ·

and

f`(τ) =
(q`; q`)∞

(1− q − q2 + · · · )`

(
1 + `(`− 1)q +

1

4
`(`− 1)(`− 2)(`− 3)q2 + · · ·

)
= 1 + `2q +

1

4
`2(`2 − 2`+ 9)q2 + · · · .

Together with (4.4.3), this yields the first half of the lemma. We next consider the

analytic behavior of f`(τ)− g`(τ) at 0.

Recall that if Λ is an even integral lattice of rank n, then the theta series asso-

ciated with Λ is defined as

θΛ(τ) =
∑
x∈Λ

eiπτ‖x‖
2

, τ ∈ H. (4.4.4)

If we denote the Gram matrix of Λ by G, then this theta series can also be written

as

θΛ(τ) =
∑
m∈Zn

eiπτm
tGm. (4.4.5)

Moreover, if Λ′ is the dual lattice of Λ, then the Gram matrix of Λ′ is G−1. Their

theta series θΛ(τ) and θΛ′(τ) are related by the transformation formula (see [78,

Proposition 16, Chapter VII])

θΛ′(−1/τ) =
(τ
i

)n/2
ν(Λ)θΛ(τ), (4.4.6)
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where ν(Λ) is the volume of the lattice Λ. Here, we let Λ be the lattice of rank `− 1

whose Gram matrix is `A−1
`−1, where An and A−1

n are given by (4.2.1) and (4.2.2),

respectively. The determinant of `A−1
`−1 is ``−1/ det(A`−1) = ``−2. Hence

ν(Λ) = ``/2−1.

Let B`(τ) be the theta series of Λ. Observe that the Gram matrix of Λ′ is A`−1/`.

Hence from (4.4.5) and (4.2.1) we know that the theta series of Λ′ is A`(τ/`). Thus,

by (4.4.6), we have

A`
(
− 1

`τ

)
= ``/2−1

(τ
i

)(`−1)/2

B`(τ). (4.4.7)

Now using (4.4.1), (4.4.7) and

η

(
− 1

`τ

)
=

√
`τ

i
η(`τ), and η

(
−1

τ

)
=

√
τ

i
η(τ),

we deduce that

f`(τ)
∣∣∣
0 −1

` 0

 = f`

(
− 1

`τ

)
=

η(−1/τ)

η(−1/(`τ))`
A`(−

1

`τ
) =

1

`

η(τ)

η(`τ)`
B`(τ). (4.4.8)

We now consider g`(− 1
`τ

).

We have

`

(
η(`2τ)

η(τ)

∣∣∣U`) ∣∣∣
0 −1

` 0

 =
`−1∑
k=0

η(`2τ)

η(τ)

∣∣∣
k` −1

`2 0

 .

For k = 0, the transformation formula for η(τ) yields

η(`2τ)

η(τ)

∣∣∣
 0 −1

`2 0

 =
1

`

η(τ)

η(`2τ)
. (4.4.9)

For 1 ≤ k ≤ `− 1, we find that

η

(
`2k`τ − 1

`2τ

)
= η

(
k`− 1

τ

)
= e2πik`/24η(−1/τ) = e2πik`/24

√
τ

i
η(τ). (4.4.10)
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Next, since 1 ≤ k ≤ ` − 1, we have (k, `) = 1. Hence there exist integers a and

k′ such that kk′ − a` = 1. This implies that

η

(
k`τ − 1

`2τ

)
= η

(
τ − k′

`

) ∣∣∣
k a

` k′

 =

(
k′

`

)
i(1−`)/2e2πi`(k+k′)/24

√
`τ

i
η

(
τ − k′

`

)
.

(4.4.11)

It follows from (4.4.10) and (4.4.11) that

η(`2τ)

η(τ)

∣∣∣
k` −1

`2 0

 =
1√
`

(
k′

`

)
i(`−1)/2e−2πi`k′/24 η(τ)

η(τ − k′/`)

=
1√
`

(
k′

`

)
i(`−1)/2e−2πimk′/` +O(q),

where m = (`2 − 1)/24. Hence,

`−1∑
k=1

η(`2τ)

η(τ)

∣∣∣
k` −1

`2 0

 =
i(`−1)/2

√
`

`−1∑
k=1

(
k′

`

)
e−2πimk′/` +O(q)

=
i(`−1)/2

√
`

(
−m
`

) `−1∑
n=1

(n
`

)
e2πin/` +O(q)

= i(`−1)/2

(
−m
`

)1 +O(q), if ` ≡ 1 mod 4,

i+O(q), if ` ≡ 3 mod 4,

=

(
8

`

)(
−m
`

)
+O(q)

=

(
12

`

)
+O(q),

(4.4.12)

where we have used Gauss’ result [15, Section 9.10] in our third equality. Combining

(4.4.8), (4.4.9), and (4.4.12), we find that

(f`(τ)− g`(τ))
∣∣∣
0 −1

` 0

 =
1

`
q−(`2−1)/24(q; q)∞

(
B`(τ)

(q`; q`)`∞
− 1

(q`2 ; q`2)∞

)

−
(

12

`

)
− 1 +O(q).

(4.4.13)

We now claim that

B`(τ) = 1 + 2`q(`−1)/2 + · · · , (4.4.14)
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so that

B`(τ)

(q`; q`)`∞
− 1

(q`2 ; q`2)∞
=
(
1 + 2`q(`−1)/2 +O(q`)

) (
1 +O(q`)

)
= 2`q(`−1)/2 + · · · .

Recall that B`(τ) is defined to be the theta series associated to the lattice whose

Gram matrix is `A−1
`−1, where A−1

n is given by (4.2.2). In other words, we have

B`(τ) =
∑

m1,...,m`−1∈Z

qQ
′(m1,...,m`−1), q = e2πiτ ,

where

Q′(m1, . . . ,m`−1) =
`− 1

2
(m2

1 + · · ·+m2
`−1)− 1

2

∑
i 6=j

mimj

=
1

2

(
`(m2

1 + · · ·+m2
`−1)− (m1 + · · ·+m`−1)2

)
.

For each (m1, . . . ,m`−1) ∈ Z`−1\{0}, let r be the number of nonzero entries in the

tuple. By the Cauchy-Schwarz inequality, we have

(m1 + · · ·+m`−1)2 ≤ r(m2
1 + · · ·+m2

`−1).

Then

Q′(m1, . . . ,m`−1) ≥ 1

2
(`− r)(m2

1 + · · ·+m2
`−1) ≥ 1

2
(`− r)r ≥ `− 1

2
.

Therefore, the coefficient of qj in B`(τ) vanishes for j = 1, . . . , (` − 1)/2 − 1. Also,

the contribution to the q(`−1)/2 term comes from the cases where r = 1 or r = `− 1

and equality holds for each of the inequality above. In other words, the contribution

to q(`−1)/2 comes from the tuples where exactly one of mj is ±1 and all the others

are 0 or (m1, . . . ,m`−1) = ±(1, . . . , 1). We conclude that the coefficient of q(`−1)/2

in B`(τ) is 2`. This proves the claim (4.4.14).

For the cases ` = 5 and ` = 7, we have (`2 − 1)/24 < (`− 1)/2 and
(

12
`

)
= −1.

Therefore,

(f`(τ)− g`(τ))
∣∣∣
0 −1

` 0

 = O(q). (4.4.15)
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When ` = 11, we have (`2− 1)/24 = (`− 1)/2 and
(

12
`

)
= 1. Again, (4.4.13) implies

that (4.4.15) holds in this case. For other cases, we note that in general, we have

B`(τ) = 1 + 2`q(`−1)/2 + `(`− 1)q`−2 + · · · ,

and hence,

q−(`2−1)/24(q; q)∞

(
B`(τ)

(q`; q`)`∞
− 1

(q`2 ; q`2)∞

)
= 2`q−(`2−1)/24+(`−1)/2(1− q − q2 + · · · )

for ` ≥ 11. When ` = 13, we have −(`2 − 1)/24 + (` − 1)/2 = −1 and
(

12
13

)
= 1.

Then from (4.4.13), we deduce that

(f`(τ)− g`(τ))
∣∣∣
0 −1

` 0

 = 2q−1 − 4 +O(q).

For other primes ` ≥ 17, (4.4.13) yields

(f`(τ)− g`(τ))
∣∣∣
0 −1

` 0

 = 2q−(`2−1)/24+(`−1)/2(1− q +O(q2))

instead. This completes the proof of the lemma.

Theorem 4.4.2. Let ` ≥ 5 be a prime. Let

f`(τ) = (q`; q`)∞CΦ`(q),

and

g`(τ) = 1 + `(q`; q`)∞

∞∑
n=1

p

(
`n− `2 − 1

24

)
qn.

1. If ` = 5, 7, 11, then f`(τ) = g`(τ).

2. If ` = 13, then

f13(τ) = g13(τ) + 26
η2(13τ)

η2(τ)
.

3. If ` ≥ 17, then

h`(τ) := f`(τ)− g`(τ)− 2`(`−11)/2

(
η(`τ)

η(τ)

)`−11

(4.4.16)
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is a modular function on Γ0(`) with a zero at ∞ and a pole of order (`+1)(`−

13)/24 at 0 and

h`(τ)(η(τ)η(`τ))`−13

is a holomorphic modular form of weight `−13 with a zero of order (`−1)(`−

11)/24 at ∞.

4. We have

h`(τ) ≡ 0 mod


170, when ` = 17,

266, when ` = 19,

506, when ` = 23.

5. For any prime ` > 11,

h`(τ) ≡ `F`(τ) (mod `2)

where F`(τ) is a non-zero modular form of weight `− 1 on SL(2,Z).

Proof. We first remark that the functions f`(τ) and g`(τ) are both holomorphic on

the upper half-plane. Thus, to prove that f`(τ) = g`(τ) for the cases ` = 5, 7, 11, we

only need to verify that f`(τ)− g`(τ) does not have poles at cusps and f`(τ)− g`(τ)

vanishes at one particular point in these three cases. Indeed, by Lemma 4.4.1,

f`(τ)− g`(τ) vanishes at both cusps in the three cases since p(`− δ`) = ` for ` = 5, 7

and 11. This proves (1). We remark that in fact, it suffices to know that f`(τ)−g`(τ)

has no pole at the cusp 0 since it would mean that f`(τ) − g`(τ) is a constant.

Since the expansion at ∞ begins with ` (`− p(`− δ`)) q, the only possibility that

f`(τ)− g`(τ) is a constant is when p(`− δ`) = `. In other words, without listing out

the partitions of 5, 7 and 11, we know that p(4) = 5, p(5) = 7 and p(6) = 11.

We next consider the case ` = 13. By Lemma 4.4.1, the Fourier expansion of

f`(τ)− g`(τ) at 0 is

2q−1 − 4 + · · · .
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Now we observe that η(13τ)2/η(τ)2 is also a modular function on Γ0(13) and satisfies

η2(13τ)

η2(τ)

∣∣∣
 0 −1

13 0

 =
1

13

η2(τ)

η2(13τ)
=

1

13
(q−1 − 2 + · · · ).

Therefore, f`(τ)− g`(τ)− 26η(13τ)2/η(τ)2 is a modular function on Γ0(13) that has

no poles and vanishes at the cusps. We conclude that f`(τ)−g`(τ)−26η(13τ)2/η(τ)2

is identically 0 and the proof of (2) is complete.

Similarly, for primes ` ≥ 17, using Lemma 4.4.1 and the transformation formula

of η(τ), we find that

h`(τ)
∣∣∣
0 −1

` 0

 = 2q−(`2−1)/24+(`−1)/2((1− q +O(q2))− (1− (`− 11)q +O(q2)))

= 2(`− 12)q−(`+1)(`−13)/24 + · · · .

Therefore, h`(τ) has a pole of order (` + 1)(` − 13)/24 for ` ≥ 17. From Lemma

4.4.1, it is clear that h`(τ) has a zero at ∞. It follows that h`(τ)(η(τ)η(`τ))`−13 is a

holomorphic modular form of weight ` − 13 on Γ0(`) and this completes the proof

of (3).

The congruences in (4) can be verified using Sturm’s criterion [79] (See also

Lemma 3.2.2).

Next, observe from (4.1.19) that

f`(τ) ≡ 1 (mod `2).

For ` > 13,

h`(τ) ≡ f`(τ)− g`(τ) ≡ −`(q`; q`)∞
∞∑
j=1

p

(
`j − `2 − 1

24

)
qj (mod `2).

It is known that (see [9, p. 157, Corollary 5.15.1] for a proof given by J.P. Serre)

(q`; q`)∞

∞∑
j=1

p

(
`j − `2 − 1

24

)
qj ≡ F`(τ) (mod `)

where F`(τ) is a cusp form on SL(2,Z) of weight `− 1. This implies that

h`(τ) ≡ −`F`(τ) (mod `2).
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The fact that F`(τ) is non-zero follows from the result of S. Ahlgren and M. Boylan

[1, Theorem 1].

We now give another representation for CΦ17(q). Let

h1(τ) = η8(17τ)
7∑

k=0

E−1
3k

(τ)E−2
2·3k(τ)E−1

5·3k(τ) = q4 + 3q5 + 8q6 + 5q7 + · · ·

and

h2(τ) = η8(17τ)
7∑

k=0

E7·3k(τ)E−2
3k

(τ)E−1
3k+1(τ)E−1

5·3k(τ)E−1
8·3k(τ) = q4 + q5 + 8q6 + · · · ,

where Ea(τ) is given by (4.3.30). One can check that both h1(τ) and h2(τ) belong to

M4(Γ0(17). Now by Theorem 4.4.2 (c) we know that the function h17(τ)η4(τ)η4(17τ)

lies in the same space. By [69, Theorem 1.34] we find that dimM4(Γ0(17)) = 4.

Hence by comparing the Fourier coefficients, we deduce that

h17(τ)η4(τ)η4(17τ) = 595h1(τ)− 425h2(τ).

Now using (4.4.16) and the definitions of f`(τ) and g`(τ) given in Theorem 4.4.2, we

obtain

CΦ17(q) =
1

(q17; q17)∞
+ 17

∞∑
j=1

p(17j − 12)qj + 2 · 173q4 (q17; q17)5
∞

(q; q)6
∞

+
1

q3(q; q)4
∞(q17; q17)5

∞
(595h1(τ)− 425h2(τ)) . (4.4.17)

Note the simplicity of (4.4.17) as compared to (4.3.31). Identities similar to (4.4.17)

exist for k = 19, 23 and other primes and they involve generalized Dedekind eta

functions similar to Ea(τ).

4.5 Generating function of cφk(n) for k = 9 and 15

There are two cases to consider in this section, namely, k = 9 and 15.
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4.5.1 Case k = 9

Let

E9,1 =
1

240
+
∞∑
k=1

k3qk

1− qk
,

E9,2 =
1

240
+
∞∑
k=1

k3q3k

1− q3k
,

E9,3 =
1

240
+
∞∑
k=1

k3q9k

1− q9k

and

E9,4 =
∞∑
n=1

(n
3

)∑
d|n

d3qn.

These are Eisenstein series of M4(Γ0(9)).

Theorem 4.5.1. We have

CΦ9(q) = 324q
(q3; q3)8

∞
(q; q)9

∞
+ 19683q4 (q9; q9)12

∞
(q; q)9

∞(q3; q3)4
∞
− 240q

(q9; q9)3
∞

(q3; q3)4
∞

(4.5.1)

− 1458q2 (q9; q9)6
∞

(q; q)3
∞(q3; q3)4

∞
+

(q; q)3
∞

(q3; q3)4
∞

=
1

(q; q)9
∞

(
81E9,1 − 84E9,2 + 243E9,3 − 3E9,4 − 6q(q3; q3)8

∞
)
. (4.5.2)

Proof. By Theorem 4.2.1, we find that A9(q) ∈M4(Γ0(9)). Next, from [69, Theorem

1.34], we find that dimM4(Γ0(9)) = 5 and a basis is given by

B9,1 = η8(3τ), B9,2 =
η12(9τ)

η4(3τ)
, B9,3 =

η9(τ)η3(9τ)

η4(3τ)
,

B9,4 =
η6(τ)η6(9τ)

η4(3τ)
, B9,5 =

η12(τ)

η4(3τ)
.

By comparing Fourier coefficients of A9(q) and B9,j, 1 ≤ j ≤ 5, we deduce that

A9(q) = 324B9,1 + 19683B9,2 − 240B9,3 − 1458B9,4 +B9,5. (4.5.3)

This proves (4.5.1).

We can replace the basis {B9,j|1 ≤ j ≤ 5} by {B9,1, E9,j|1 ≤ j ≤ 4}. Using these

modular forms as a basis for M4(Γ0(9)), we deduce (4.5.2).
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Theorem 4.5.2. For any integer n ≥ 0, we have

cφ9(9n+ 3) ≡ cφ9(9n+ 6) ≡ 0 (mod 9), (4.5.4)

cφ9(3n+ 1) ≡ 0 (mod 81) (4.5.5)

and

cφ9(3n+ 2) ≡ 0 (mod 729). (4.5.6)

Proof. From [81, Lemma 2.5], we find that

(q; q)3
∞ = S(q3)− 3q(q9; q9)3

∞, (4.5.7)

where

S(q) = (q; q)∞
(
Θ3(q)Θ3(q3) + Θ2(q)Θ2(q3)

)
. (4.5.8)

From (4.5.1), we deduce that

∞∑
n=0

cφ9(n)qn ≡ 22 · 34q
(q3; q3)8

∞
(q; q)9

∞
− 240q

(q9; q9)3
∞

(q3; q3)4
∞

+
(q; q)3

∞
(q3; q3)4

∞
(mod 729)

≡ 22 · 34q(q3; q3)5
∞ − 240q

(q9; q9)3
∞

(q3; q3)4
∞

+
S(q3)

(q3; q3)4
∞
− 3q

(q9; q9)3
∞

(q3; q3)4
∞

(mod 729).

(4.5.9)

Comparing the coefficients of q3n+2 on both sides, we deduce that

cφ9(3n+ 2) ≡ 0 (mod 729).

Extracting the terms of the form q3n+1 on both sides of (4.5.9), dividing by q

and replacing q3 by q, we deduce that

∞∑
n=0

cφ9(3n+ 1)qn ≡ 22 · 34(q; q)5
∞ − 240

(q3; q3)3
∞

(q; q)4
∞
− 3

(q3; q3)3
∞

(q; q)4
∞

(mod 729)

≡ 22 · 34(q; q)5
∞ − 243

(q3; q3)3
∞

(q; q)4
∞

(mod 729)

≡ 22 · 34(q; q)5
∞ − 35(q; q)5

∞ (mod 729)
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≡ 34(q; q)5
∞ (mod 729), (4.5.10)

which implies (4.5.5).

Extracting the terms of the form q3n on both sides of (4.5.9) and replacing q3 by

q, we find that

∞∑
n=0

cφ9(3n)qn ≡ S(q)

(q; q)4
∞

(mod 729)

≡ 1

(q; q)3
∞

(
Θ3(q)Θ3(q3) + Θ2(q)Θ2(q3)

)
(mod 729). (4.5.11)

From [81, Lemma 2.6], we deduce that

1

(q; q)3
∞

=
(q9; q9)3

∞
(q3; q3)12

∞

(
S2(q3) + 3qS(q3)(q9; q9)3

∞ + 9q2(q9; q9)6
∞
)
. (4.5.12)

From [25, Corollary (i) and (ii), p. 49], we find that

Θ3(q) = Θ3(q9) + 2qf(q3, q15), (4.5.13)

and

Θ2(q) = Θ2(q9) + 2q1/4f(q6, q12), (4.5.14)

where

f(a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞.

Substituting (4.5.12)–(4.5.14) into (4.5.11), we deduce that

∞∑
n=0

cφ9(3n)qn ≡ (q9; q9)3
∞

(q3; q3)12
∞

(
S2(q3) + 3qS(q3)(q9; q9)3

∞

)
×

(
Θ3(q3)

(
Θ3(q9) + 2qf(q3, q15)

)
+ Θ2(q3)

(
Θ2(q9) + 2q1/4f(q6, q12)

))
(mod 9).

(4.5.15)

Extracting the terms of the form q3n+1 on both sides of (4.5.15), dividing by q

and replacing q3 by q, applying (4.5.8), we deduce that

∞∑
n=0

cφ9(9n+ 3)qn
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≡ S2(q)
(q3; q3)3

∞
(q; q)12

∞

(
3

(q3; q3)3
∞

(q; q)∞
+ 2

(
Θ3(q)f(q, q5) + q−1/4Θ2(q)f(q2, q4)

))
(mod 9)

≡ S2(q)
(q3; q3)3

∞
(q; q)12

∞

×
(

3
(q3; q3)3

∞
(q; q)∞

+ 2
(q2; q2)7

∞(q3; q3)∞(q12; q12)∞
(q; q)3

∞(q4; q4)3
∞(q6; q6)∞

+ 4
(q4; q4)3

∞(q6; q6)2
∞

(q2; q2)2
∞(q12; q12)∞

)
(mod 9),

(4.5.16)

where the last congruence follows by converting

Θ3(q)f(q, q5) + q−1/4Θ2(q)f(q2, q4)

to infinite products.

From [92, (3.75), (3.38)], we find that

(q3; q3)∞
(q; q)3

∞
=

(q4; q4)6
∞(q6; q6)3

∞
(q2; q2)9

∞(q12; q12)2
∞

+ 3q
(q4; q4)2

∞(q6; q6)∞(q12; q12)2
∞

(q2; q2)7
∞

(4.5.17)

and

(q3; q3)3
∞

(q; q)∞
=

(q4; q4)3
∞(q6; q6)2

∞
(q2; q2)2

∞(q12; q12)∞
+ q

(q12; q12)3
∞

(q4; q4)∞
. (4.5.18)

By (4.5.17), we find that

2
(q2; q2)7

∞(q3; q3)∞(q12; q12)∞
(q; q)3

∞(q4; q4)3
∞(q6; q6)∞

(4.5.19)

= 2
(q2; q2)7

∞(q12; q12)∞
(q4; q4)3

∞(q6; q6)∞

( (q4; q4)6
∞(q6; q6)3

∞
(q2; q2)9

∞(q12; q12)2
∞

+ 3q
(q4; q4)2

∞(q6; q6)∞(q12; q12)2
∞

(q2; q2)7
∞

)
= 2

(q4; q4)3
∞(q6; q6)2

∞
(q2; q2)2

∞(q12; q12)∞
+ 6q

(q12; q12)3
∞

(q4; q4)∞
(4.5.20)

and this implies that

2
(q2; q2)7

∞(q3; q3)∞(q12; q12)∞
(q; q)3

∞(q4; q4)3
∞(q6; q6)∞

+ 4
(q4; q4)3

∞(q6; q6)2
∞

(q2; q2)2
∞(q12; q12)∞

= 6
(q4; q4)3

∞(q6; q6)2
∞

(q2; q2)2
∞(q12; q12)∞

+ 6q
(q12; q12)3

∞
(q4; q4)∞

= 6
(q3; q3)3

∞
(q; q)∞

, (4.5.21)
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where we have used (4.5.18) in the last equality. Substituting (4.5.21) into (4.5.16),

we deduce that

cφ9(9n+ 3) ≡ 0 (mod 9).

Extracting the terms of the form q3n+2 on both sides of (4.5.15), dividing by q2

and replacing q3 by q, we deduce that

∞∑
n=0

cφ9(9n+ 6)qn

≡ S(q)
(q3; q3)6

∞
(q; q)12

∞

(
6

(q2; q2)7
∞(q3; q3)∞(q12; q12)∞

(q; q)3
∞(q4; q4)3

∞(q6; q6)∞
+ 3

(q4; q4)3
∞(q6; q6)2

∞
(q2; q2)2

∞(q12; q12)∞

)
(mod 9)

≡ 0 (mod 9),

where we have used (4.5.20) to deduce the last congruence. Hence

cφ9(9n+ 6) ≡ 0 (mod 9).

Congruences (4.5.4) and (4.5.5) can also be established using congruences dis-

covered by Kolitsch. In [56], Kolitsch generalized Andrews’ congruence (4.3.32) and

proved that ∑
d|(k,n)

µ(d)cφ k
d
(
n

d
) ≡ 0 (mod k2), (4.5.22)

where µ(n) is the Möbius function (see for example [15, Section 2.2]). We now

prove a generalization of (4.5.4) and (4.5.5). For any non-negative integer k, we set

cφk(x) = 0 whenever x 6∈ Z. We can then rewrite (4.5.22) as∑
d|k

µ(d)cφ k
d

(n
d

)
≡ 0 (mod k2). (4.5.23)

Theorem 4.5.3. Let p be a prime and N be a positive integer which is not divisible

by p. For any integers α ≥ 1 and n ≥ 0, we have

cφpαN(n) ≡ cφpα−1N(n/p) (mod p2α), (4.5.24)
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or equivalently,

cφpαN(pn+ r) ≡ 0 (mod p2α), 1 ≤ r ≤ p− 1, (4.5.25)

and

cφpαN(pn) ≡ cφpα−1N(n) (mod p2α). (4.5.26)

Proof. Let Ω(N) be the number of prime divisors of N (counting multiplicities).

We proceed by induction on Ω(N). If Ω(N) = 0, then N = 1. Setting k = pα in

(4.5.23), we deduce that

cφpα(n) ≡ cφpα−1(n/p) (mod p2α). (4.5.27)

Thus, (4.5.24) is true if Ω(N) = 0. Assume that (4.5.24) is true if Ω(N) < h, where

h is a positive integer. When Ω(N) = h, we set k = pαN in (4.5.23). Since p does

not divide N , any positive divisor of pαN has the form pjd where 0 ≤ j ≤ α and

d|N . In particular, if j ≥ 2, then µ(pjd′) = 0. Hence by (4.5.23), we obtain∑
d|N

(
µ(d)cφ pαN

d

(n
d

)
+ µ(pd)cφ pα−1N

d

( n
pd

))
≡ 0 (mod p2α). (4.5.28)

According to d = 1 or d > 1, we separate the summands on the left hand side of

(4.5.28) and deduce that

cφpαN(n)− cφpα−1N

(n
p

)
(4.5.29)

+
∑

d|N,d>1

µ(d)
(
cφ pαN

d

(n
d

)
− cφ pα−1N

d

( n
pd

))
≡ 0 (mod p2α).

Note that in the summand, since d > 1, we have Ω(N
d

) < h and hence by assumption,

cφ pαN
d

(n
d

)
− cφ pα−1N

d

( n
pd

)
≡ 0 (mod p2α). (4.5.30)

From (4.5.30) and (4.5.29), we deduce that

cφpαN(n)− cφpα−1N

(n
p

)
≡ 0 (mod p2α).
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Hence (4.5.24) is true when Ω(N) = h. This completes the proof of (4.5.24).

Replacing n in (4.5.24) by pn+ r, where 0 ≤ r ≤ p− 1, and observing that

cφpα−1N

(
pn+ r

p

)
= 0, 1 ≤ r ≤ p− 1,

we deduce (4.5.25) and (4.5.26).

Let (p, α,N) = (3, 2, 1) in Theorem 4.5.3. By (4.5.25), we deduce that

cφ9(3n+ 1) ≡ cφ9(3n+ 2) ≡ 0 (mod 81),

and this gives another proof of (4.5.5). Similarly, by (4.5.26), we deduce that

cφ9(3n) ≡ cφ3(n) (mod 81). (4.5.31)

By (4.3.32), we find that

cφ3(3n+ 1) ≡ cφ3(3n+ 2) ≡ 0 (mod 9).

Substituting these congruences into (4.5.31), we complete the proof of (4.5.4).

4.5.2 Case k = 15

Let

f15(τ) =
η2(τ)η2(15τ)

η(3τ)η(5τ)
,

h15(τ) = η4(τ)η4(5τ)− 9η4(3τ)η4(15τ),

g15,1(τ) = −1

8
(E2(τ) + 3E2(3τ)− 5E2(5τ)− 15E2(15τ)) ,

g15,2(τ) = − 1

12
(E2(τ)− 3E2(3τ) + 5E2(5τ)− 15E2(15τ)) ,

g15,3(τ) = η(τ)η(3τ)η(5τ)η(15τ),

and

g15,4(τ) =
1

8
(E2(τ)− 3E2(3τ)− 5E2(5τ) + 15E2(15τ)) ,
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where

E2(τ) = 1− 24
∞∑
k=1

kqk

1− qk
.

Using dimension formula [69, Theorem 1.34], we find that

dimM7

(
Γ0(15),

(−15

·
))

= 14.

The modular forms

B15,1 = f15g
3
15,1, B15,2 = f15g

2
15,1g15,2,

B15,3 = f15g15,1g
2
15,2, B15,4 = f15g

3
15,2,

B15,5 = f15g
2
15,1g15,3, B15,6 = f15g

2
15,1g15,4,

B15,7 = f15g15,1g15,2g15,3, B15,8 = f15g15,1g15,2g15,4,

B15,9 = f15g
2
15,2g15,3, B15,10 = f15g

2
15,2g15,4

B15,11 = f15g15,1h15 B15,12 = f15g15,2h15,

B15,13 =
η14(3τ)η14(5τ)

η7(τ)η7(15τ)
and B15,14 =

η17(τ)η2(5τ)

η4(3τ)η(15τ)

form a basis for M7

(
Γ0(15),

(−15
·

))
.

Using the fact that A15(q) ∈M7

(
Γ0(15),

(−15
·

))
, we deduce that

Theorem 4.5.4. For |q| < 1,

CΦ15(q) =
1

(q; q)15
∞

(18125225

1156
B15,1 −

845079

34
B15,2 −

87564447

1156
B15,3

+
2491641

34
B15,4 +

147166525

1156
B15,5 +

341957

68
B15,6

− 483081

17
B15,7 −

28623

4
B15,8 −

9784683

68
B15,9

− 1168839

34
B15,10 +

7263781

68
B15,11 −

97629

4
B15,12

+ 3375B15,13 − 3374B15,14

)
.
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4.6 Generating function of cφk(n) for even integer

2 < k < 16

In this section, we derive alternative expressions for CΦk(n) when k > 2 is even.

4.6.1 Case k = 4

Theorem 4.6.1. We have

CΦ4(q) =
1

(q; q)4
∞

(
Θ3

3(q2) + 3Θ3(q2)Θ2
2(q2)

)
(4.6.1)

=
Θ4

3(q)

(q; q)4
∞Θ3(q2)

+
Θ2

3(−q)Θ2
2(q2)

(q; q)4
∞Θ3(q2)

. (4.6.2)

Proof. Let k = 4 in Theorem 4.2.1. We deduce that A4(q)Θ3(q) ∈ M2

(
Γ0(8),

(
2
·

))
.

From [69, Theorem 1.34], we deduce that

dimM2

(
Γ0(8),

(2

·
))

= 3.

It can be verified that

Θ3(q)Θ3
3(q2), Θ3(q)3Θ3(q2), and Θ3(q2)Θ2

2(q2)Θ3(q)

form a basis of M2

(
Γ0(8),

(
2
·

))
. Comparing the Fourier coefficients of A4(q)Θ3(q)

and the given basis of M2

(
Γ0(8),

(
2
·

))
, we deduce that

A4(q)Θ3(q) =
(

Θ3
3(q2) + 3Θ3(q2)Θ2

2(q2)
)

Θ3(q),

which proves (4.6.1).

Theorem 4.2.1 also implies that Θ3(q2)A4(q) ∈M2

(
Γ0(16)

)
. From [69, Theorem

1.34], we find that dimM2

(
Γ0(16)

)
= 5. Identity (4.6.2) then follows from the fact

that

Θ4
3(q), Θ4

3(q2), Θ4
3(q4), Θ2

3(−q)Θ2
3(−q2), and Θ2

3(−q)Θ2
2(q2)

form a basis of M2

(
Γ0(16)

)
.
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Remark 4.6.1. The representation (4.6.2) was first deduced by W. Zhang and

C. Wang [94] from (4.6.1), where they used it to give an elementary proof of the

congruence

cφ4(7n+ 5) ≡ 0 (mod 7).

Modular proofs of this congruence can be found in [35]. For more congruences

satisfied by cφ4(n), we refer the reader to [51, 63, 91].

4.6.2 Case k = 6

Theorem 4.6.2. We have

CΦ6(q) =
4

9

(q; q)5
∞(q4; q4)2

∞
(q2; q2)5

∞(q3; q3)3
∞
− 1

3

(q2; q2)4
∞(q4; q4)2

∞
(q; q)4

∞(q6; q6)3
∞

+
8

9

(q4; q4)11
∞

(q; q)4
∞(q2; q2)5

∞(q12; q12)3
∞

+ 36q
(q4; q4)2

∞(q3; q3)9
∞

(q; q)7
∞(q2; q2)5

∞
+ 27q2 (q4; q4)2

∞(q6; q6)9
∞

(q; q)4
∞(q2; q2)8

∞

+ 72q4 (q12; q12)9
∞

(q; q)4
∞(q2; q2)5

∞(q4; q4)∞
. (4.6.3)

Proof. Let k = 6 in Theorem 4.2.1. We deduce that Θ3(q)A6(q) ∈M3

(
Γ0(12),

(−12
·

))
.

From [69, Theorem 1.34], we deduce that

dimM3

(
Γ0(12),

(−12

·
))

= 7.

Let

B6,1 =
η9(τ)

η3(3τ)
, B6,2 =

η9(2τ)

η3(6τ)
, B6,3 =

η9(4τ)

η3(12τ)
, B6,4 =

η9(3τ)

η3(τ)
,

B6,5 =
η9(6τ)

η3(2τ)
, B6,6 =

η9(12τ)

η3(4τ)
and B6,7 = η3(2τ)η3(6τ).

The set {B6,j|1 ≤ j ≤ 7} forms a basis of M3

(
Γ0(12),

(−12
·

))
and by comparing the

Fourier coefficients of Θ3(q)A6(q) and modular forms in {B6,j|1 ≤ j ≤ 7}, we deduce

that

Θ3(q)A6(z) =
4

9
B6,1 −

1

3
B6,2 +

8

9
B6,3 + 36B6,4 + 27B6,5 + 72B6,6. (4.6.4)

This proves (4.6.3).
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Congruences for cφ6(n) have drawn much attention in recent years. For example,

Baruah and Sarmah [24] established 3-dissections of CΦ6(q) and proved that

cφ6(3n+ 1) ≡ 0 (mod 9) (4.6.5)

and

cφ6(3n+ 2) ≡ 0 (mod 9). (4.6.6)

We remark here that the congruences above follow directly from (4.5.25) with

(p, α,N) = (3, 1, 2). Moreover, setting (p, α,N) = (2, 1, 3) in (4.5.25), we deduce

that

cφ6(2n+ 1) ≡ 0 (mod 4). (4.6.7)

Congruence (4.6.7) appears to be new.

For more congruences satisfied by cφ6(n), see a recent paper of C. Gu, L. Wang

and E.X.W. Xia [47] and their list of references.

4.6.3 Case k = 8

Theorem 4.6.3. We have

CΦ8(q) =
1

(q; q)8
∞

(
Θ7

3(q4) + 28Θ6
3(q4)Θ2(q4) + 105Θ5

3(q4)Θ2
2(q4) (4.6.8)

+ 112Θ4
3(q4)Θ3

2(q4) + 147Θ3
3(q4)Θ4

2(q4) + 84Θ2
3(q4)Θ5

2(q4) + 35Θ3(q4)Θ6
2(q4)

)
.

Proof. Let k = 8 in Theorem 4.2.1. We deduce that Θ3(q)A8(q) ∈ M4(Γ0(16)).

From [69, Theorem 1.34], we find that

dimM4(Γ0(16)) = 9

and one can verify that

B8,1 = Θ3(q)Θ7
3(q4), B8,2 = Θ3(q)Θ6

3(q4)Θ2(q4), B8,3 = Θ3(q)Θ5
3(q4)Θ2

2(q4),
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B8,4 = Θ3(q)Θ4
3(q4)Θ3

2(q4), B8,5 = Θ3(q)Θ3
3(q4)Θ4

2(q4), B8,6 = Θ3(q)Θ2
3(q4)Θ5

2(q4),

B8,7 = Θ3(q)Θ7
2(q4), B8,8 = Θ8

2(q4), and B8,9 = Θ3(q)Θ3(q4)Θ6
2(q4).

form a basis for M4(Γ0(16)). By comparing the Fourier coefficients of the basis and

those of Θ3(q)A8(q), we find that

Θ3(q)A8(q) =B8,1 + 28B8,2 + 105B8,3 + 112B8,4 + 147B8,5 + 84B8,6 + 35B8,9.

(4.6.9)

This completes the proof of (4.6.8).

By (4.5.27), we find that

cφ8(n) ≡ cφ4(n/2) (mod 64). (4.6.10)

In [23], Baruah and Sarmah proved that

cφ4(2n+ 1) ≡ 0 (mod 42), (4.6.11)

cφ4(4n+ 2) ≡ 0 (mod 4), (4.6.12)

and

cφ4(4n+ 3) ≡ 0 (mod 44). (4.6.13)

Combining (4.6.11)–(4.6.13) with (4.6.10), we obtain the following congruences for

cφ8(n):

Theorem 4.6.4. For any integer n ≥ 0,

cφ8(2n+ 1) ≡ 0 (mod 64), (4.6.14)

cφ8(4n+ 2) ≡ 0 (mod 16), (4.6.15)

cφ8(8n+ 4) ≡ 0 (mod 4) (4.6.16)

and

cφ8(8n+ 6) ≡ 0 (mod 64). (4.6.17)
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4.6.4 Case k = 10

By Theorem 4.2.1, we have Θ3(q)A10(q) ∈ M5

(
Γ0(20), (−20

· )
)
. From [69, Theorem

1.34], we deduce that

dimM5

(
Γ0(20), (

−20

·
)
)

= 14.

Let

B10,1 = Θ9
3(q)Θ3(q5), B10,2 = Θ3(q)Θ3

2(q1/2)Θ3
2(q)Θ3

2(q5/2),

B10,3 = Θ3(q)Θ3
3(q5)Θ2

2(q1/2)Θ2
2(q)Θ2

2(q5/2), B10,4 = Θ3(q)Θ3(q5)Θ2
2(q1/2)Θ6

2(q5/2),

B10,5 = Θ3(q)Θ3(q5)Θ8
2(q), B10,6 = Θ7

3(q)Θ3
3(q5),

B10,7 = Θ6
3(q5)Θ3

2(q1/2)Θ2(q5/2), B10,8 = Θ3(q)Θ5
3(q5)Θ4

2(q),

B10,9 = Θ3
3(q5)Θ2(q1/2)Θ5

2(q)Θ2(q5/2), B10,10 = Θ6
3(q)Θ3

2(q)Θ2(q5),

B10,11 = Θ3(q)Θ3(q5)Θ8
2(q1/2), B10,12 = Θ3(q)Θ3(q5)Θ6

2(q)Θ2
2(q5),

B10,13 = Θ5
3(q)Θ5

3(q5), and B10,14 = Θ3
3(q)Θ3

3(q5)Θ3
2(q1/2)Θ2(q5/2).

The set {B10,j|1 ≤ j ≤ 14} forms a basis of M5

(
Γ0(20), (−20

· )
)

and we deduce the

following:

Theorem 4.6.5. We have

CΦ10(q) =
1

Θ3(q)(q; q)10
∞

(13

8
B10,1 +

435

32
B10,2 +

9275

128
B10,3 +

175

32
B10,4 −

31

8
B10,5

− 15

4
B10,6 +

225

4
B10,7 −

775

32
B10,8 +

221

32
B10,10 −

857

512
B10,11 +

155

8
B10,12 +

25

8
B10,13

)
.

(4.6.18)

Let

f10 =
η(τ)η(2τ)η(10τ)η(20τ)

η(4τ)η(5τ)

f10,1 = Θ3(q)Θ3(q5)
η10(τ)

η2(5τ)

and

f10,2 = Θ6
3(q5)

η5(20τ)

η(4τ)
.
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Let

g10,1 =
1

6
(E2(τ)− 4E2(2τ) + 4E2(4τ) + 5E2(5τ)− 20E2(10τ) + 20E2(20τ)) ,

g10,2 = Θ2
3(q)Θ2

3(q5),

g10,3 =
1

4
(−E2(2τ) + 5E2(10τ)) ,

g10,4 = − 1

24
(E2(τ) + E2(2τ) + 4E2(4τ)− 5E2(5τ)− 5E2(10τ)− 20E2(20τ)) ,

g10,5 = η2(2τ)η2(10τ)

and

g10,6 =
5

4
Θ4

3(q5)− 1

4
Θ4

3(q).

Let

B∗10,1 = f10g
2
10,1, B∗10,2 = f10g10,1g10,2,

B∗10,3 = f10g
2
10,2, B∗10,4 = f10g10,1g10,3,

B∗10,5 = f10g10,1g10,4, B∗10,6 = f10g10,1g10,5,

B∗10,7 = f10g10,1g10,6, B∗10,8 = f10g10,2g10,3,

B∗10,9 = f10g10,2g10,4, B∗10,10 = f10g10,2g10,5,

B∗10,11 = f10g10,2g10,6, B∗10,12 = f10g
2
10,3,

B∗10,13 = f10,1, and B∗10,14 = f10,2.

We can replace the basis {B10,j|1 ≤ j ≤ 14} by the basis {B∗10,j|1 ≤ j ≤ 14} and

deduce that

CΦ10(q) =
1

Θ3(q)(q; q)10
∞

(5075

2
B∗10,1 +

4525

4
B∗10,2 +

29375

4
B∗10,3 +

4525

2
B∗10,4 − 4525B∗10,5

− 6525B∗10,6 +
6275

4
B∗10,7 − 4950B∗10,8 + 2300B∗10,9 − 22375B∗10,10

+
10325

4
B∗10,11 − 10150B∗10,12 +B∗10,13 + 200000B∗10,14

)
. (4.6.19)

Identity (4.6.19) leads immediately to

CΦ10(q) ≡ Θ3(q5)

(q5; q5)2
∞

(mod 52). (4.6.20)
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Remark 4.6.2. Congruence (4.6.20) is the motivation behind the discovery of The-

orem 4.5.3. Interpreting the congruence (4.5.24) with (p, α,N) = (p, 1, `) in terms

of generating functions, we obtain the congruence

CΦp`(q) ≡ CΦ`(q
p) (mod p2) (4.6.21)

for any distinct primes p and `. Congruence (4.6.20) is a special case of (4.6.21)

once we identify the right hand side of (4.6.20) with CΦ2(q5) (see (4.3.1)).

Theorem 4.6.6. For any integer n ≥ 0, we have

cφ10(2n+ 1) ≡ 0 (mod 4), (4.6.22)

cφ10(5n+ r) ≡ 0 (mod 52), 1 ≤ r ≤ 4 (4.6.23)

and

cφ10(25n+ 15) ≡ 0 (mod 5). (4.6.24)

Proof. Congruences (4.6.22) and (4.6.23) follow from Theorem 4.5.3 by setting

(p, α,N) = (2, 1, 5) and (5, 1, 2), respectively. Congruence (4.6.23) also follows from

(4.6.20). Furthermore, from (4.6.20), we deduce that

∞∑
n=0

cφ10(5n)qn ≡ Θ3(q)

(q; q)2
∞
≡ Θ3(q)(q; q)3

∞
(q; q)5

∞
(mod 5) (4.6.25)

≡ 1

(q5; q5)∞

(
∞∑

i=−∞

∞∑
j=0

(−1)j(2j + 1)qi
2+j(j+1)/2

)
(mod 5).

Note that

n = i2 +
j(j + 1)

2
if and only if 8n+ 1 = 8i2 + (2j + 1)2.

Since

(
−8

5

)
= −1, we find that 8n + 1 ≡ 0 (mod 5) if and only if i ≡ 2j + 1 ≡ 0

(mod 5). We also observe that 8n + 1 ≡ 0 (mod 5) if and only if n ≡ 3 (mod 5).

Hence, by (4.6.25), we deduce that

cφ10(5(5n+ 3)) ≡ 0 (mod 5).
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Remark 4.6.3. One can prove (4.6.24) by first observing that (4.6.20) implies

cφ10(5n) ≡ cφ2(n) (mod 52).

Using (4.3.20), we deduce (4.6.24).

4.6.5 Case k = 12

By Theorem 4.2.1, we have Θ3(q)A12(q) ∈M6

(
Γ0(24), (24

· )
)
. By [69, Theorem 1.34],

we deduce that

dimM6

(
Γ0(24), (

24

·
)
)

= 22.

Let

B12,1 = Θ3
3(q)Θ9

3(q6), B12,2 = Θ11
3 (q)Θ3(q6),

B12,3 = Θ3(q2)Θ3(q3)Θ10
2 (q2), B12,4 = Θ2

3(q)Θ3(q2)Θ3(q3)Θ4
2(q)Θ4

2(q3),

B12,5 = Θ2
3(q)Θ3(q2)Θ5

3(q3)Θ2
2(q)Θ2

2(q3), B12,6 = Θ2
3(q)Θ3(q2)Θ9

3(q3),

B12,7 = Θ3(q)Θ3
3(q6)Θ4

2(q2)Θ4
2(q6), B12,8 = Θ3(q)Θ5

3(q2)Θ3
2(q2)Θ3

2(q6),

B12,9 = Θ3(q)Θ3(q2)Θ5
2(q2)Θ5

2(q6), B12,10 = Θ3(q)Θ5
3(q2)Θ3

2(q)Θ3
2(q3),

B12,11 = Θ3(q)Θ3(q2)Θ5
2(q)Θ5

2(q3), B12,12 = Θ3(q)Θ7
3(q6)Θ2

2(q)Θ2
2(q3),

B12,13 = Θ3(q)Θ3
3(q6)Θ4

2(q)Θ4
2(q3), B12,14 = Θ3(q)Θ5

3(q2)Θ2(q)Θ2
2(q2)Θ2(q3)Θ2

2(q6),

B12,15 = Θ3(q)Θ3(q2)Θ2(q)Θ8
2(q2)Θ2(q3), B12,16 = Θ3(q)Θ3

3(q2)Θ2(q)Θ6
2(q2)Θ2(q3),

B12,17 = Θ3(q)Θ5
3(q2)Θ2(q)Θ4

2(q2)Θ2(q3), B12,18 = Θ3(q)Θ9
3(q2)Θ2(q)Θ2(q3),

B12,19 = Θ3(q)Θ2
3(q2)Θ3(q6)Θ8

2(q2), B12,20 = Θ3(q)Θ6
3(q2)Θ3(q6)Θ4

2(q2),

B12,21 = Θ3(q)Θ8
3(q2)Θ3(q6)Θ2

2(q2), and B12,22 = Θ3(q)Θ10
3 (q2)Θ3(q6).

The set {B12,j|1 ≤ j ≤ 22} forms a basis of M6(Γ0(24), (24
· )). Using the above

basis, we deduce the following identity:

Theorem 4.6.7. We have

CΦ12(q) =
1

Θ3(q)(q; q)12
∞

(
− 36207

160
B12,1 +

923091

4000
B12,4 +

35829

100
B12,5 +

891

4
B12,6

− 1485

8
B12,7 −

143247

1000
B12,8 −

891

4
B12,9 −

8109

160
B12,10
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− 582717

4000
B12,11 +

227691

200
B12,12 +

714249

8000
B12,13 +

8109

80
B12,14

+
33

8
B12,15 +

1179561

4000
B12,16 −

16503

400
B12,17 −

99

8
B12,18 +

10559

200
B12,19

− 128807

100
B12,20 +

25647

160
B12,21 +

727

160
B12,22

)
. (4.6.26)

Next, we give some congruences satisfied by cφ12(n).

Theorem 4.6.8. We have

cφ12(2n+ 1) ≡ 0 (mod 16), (4.6.27)

cφ12(3n+ 1) ≡ 0 (mod 9) (4.6.28)

and

cφ12(3n+ 2) ≡ 0 (mod 9). (4.6.29)

Proof. This follows directly from Theorem 4.5.3 by setting (p, α,N) = (2, 2, 3) and

(3, 1, 4).

4.6.6 Case k = 14

By Theorem 4.2.1, we know Θ3(q)A14(q) ∈ M7

(
Γ0(28), (−28

· )
)
. By [69, Theorem

1.34], we deduce that

dimM7

(
Γ0(28), (

−28

·
)
)

= 27.

Let

B14,1 = Θ13
3 (q)Θ3(q7), B14,2 = Θ7

3(q)Θ3
3(q7)Θ2

2(q1/2)Θ2
2(q7/2),

B14,3 = Θ5
3(q)Θ3(q7)Θ4

2(q1/2)Θ4
2(q7/2), B14,4 = Θ3(q)Θ5

3(q7)Θ4
2(q1/2)Θ4

2(q7/2),

B14,5 = Θ5
3(q)Θ3

3(q7)Θ2
2(q)Θ4

2(q7/2), B14,6 = Θ3
3(q)Θ7

3(q7)Θ2
2(q1/2)Θ2

2(q7/2),

B14,7 = Θ11
3 (q)Θ3

3(q7), B14,8 = Θ12
3 (q)Θ2(q1/2)Θ2(q7/2),

B14,9 = Θ8
3(q)Θ3

2(q1/2)Θ3
2(q7/2), B14,10 = Θ4

3(q)Θ5
2(q1/2)Θ5

2(q7/2),

B14,11 = Θ3(q)Θ3(q5)Θ8
2(q1/2), B14,12 = Θ12

3 (q)Θ2(q)Θ2(q7),
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B14,13 = Θ8
3(q)Θ3

2(q)Θ3
2(q7), B14,14 = Θ4

3(q)Θ5
2(q)Θ5

2(q7),

B14,15 = Θ7
2(q)Θ7

2(q7), B14,16 = Θ8
3(q)Θ3(q7)Θ2

2(q1/2)Θ3
2(q),

B14,17 = Θ6
3(q)Θ3

3(q7)Θ2
2(q1/2)Θ3

2(q), B14,18 = Θ8
3(q)Θ2(q)Θ4

2(q2)Θ2(q7),

B14,19 = Θ2
3(q)Θ7

3(q7)Θ2
2(q1/2)Θ3

2(q), B14,20 = Θ9
3(q7)Θ2

2(q1/2)Θ3
2(q),

B14,21 = Θ10
3 (q)Θ3(q7)Θ2(q)Θ2

2(q7/2), B14,22 = Θ4
3(q)Θ3(q7)Θ3

2(q)Θ6
2(q7/2),

B14,23 = Θ2
3(q)Θ3

3(q7)Θ3
2(q)Θ6

2(q7/2), B14,24 = Θ5
3(q7)Θ3

2(q)Θ6
2(q7/2),

B14,25 = Θ11
3 (q)Θ2(q1/2)Θ2(q)Θ3

2(q7/2), B14,26 = Θ2
3(q)Θ4

3(q7)Θ2(q1/2)Θ2
2(q)Θ5

2(q7/2),

and

B14,27 = Θ4
3(q)Θ2

3(q7)Θ2(q1/2)Θ2
2(q)Θ5

2(q7/2).

The set {B14,j|1 ≤ j ≤ 27} forms a basis of M7

(
Γ0(28), (−28

· )
)
. This basis allows

us to derive the following identity:

Theorem 4.6.9. We have

CΦ14(q) =
1

Θ3(q)(q; q)14
∞

(
− 3

4
B14,1 −

332339

1024
B14,2 +

255927

4096
B14,3 −

197519

4096
B14,4

+
17325

64
B14,5 +

1407329

2048
B14,6 +

7

4
B14,7 +

3

4
B14,8 −

13765

256
B14,9

− 52045

1024
B14,10 +

3861

512
B14,12 +

429

16
B14,13 +

6623

64
B14,16 −

79799

512
B14,17

+
29407

512
B14,19 −

3989

64
B14,21 +

19803

128
B14,22 −

16807

256
B14,23

+
50421

256
B14,26 −

6895

256
B14,27

)
. (4.6.30)

By setting (p, α,N) = (7, 1, 2) in (4.5.24), we get

cφ14(n) ≡ cφ2(n/7) (mod 49), (4.6.31)

By (4.5.25), we deduce that

cφ14(7n+ r) ≡ 0 (mod 49), 1 ≤ r ≤ 6. (4.6.32)

Moreover, setting (p, α,N) = (2, 1, 7) in (4.5.25), we deduce that

cφ14(2n+ 1) ≡ 0 (mod 4). (4.6.33)
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4.6.7 Case k = 16

By Theorem 4.2.1, we know Θ3(q)A16(q) ∈ M8

(
Γ0(32), (−2

· )
)
. By [69, Theorem

1.34], we deduce that

dimM8

(
Γ0(32), (

−2

·
)
)

= 32.

Let

B16,j = Θ3(q)Θj−1
3 (q2)Θ16−j

2 (q8), 1 ≤ j ≤ 15,

B16,j = Θ3
3(q)Θj−16

3 (q2)Θ29−j
2 (q8), 16 ≤ j ≤ 29,

B16,30 = Θ5
3(q)Θ2

3(q2)Θ9
3(q8),

B16,31 = Θ9
3(q)Θ3(q4)Θ6

3(q8),

and

B16,32 = Θ3
3(q)Θ3(q4)Θ3(q8)Θ11

2 (q8).

The set {B16,j|1 ≤ j ≤ 32} forms a basis of M8

(
Γ0(32), (−2

· )
)
. Hence, we deduce

the following identity:

Theorem 4.6.10. We have

CΦ16(q) =
1

Θ3(q)(q; q)15
∞

(
− 16384B16,1 + 122880B16,2 − 431024B16,3

+ 10384B16,4 + 3956568B16,5 − 12663584B16,6

+ 21477101B16,7 − 23125005B16,8 + 15986724B16,9

− 6153988B16,10 + 108966B16,11 + 1259002B16,12 − 678464B16,13

+ 162042B16,14 − 15218B16,15 + 61440B16,18 − 337920B16,19

+ 844918B16,20 − 870438B16,21 − 327528B16,22 + 122540544B16,23

− 2366700B16,24 + 1511404B16,25 − 484664B16,26 + 34128B16,27

+ 20722B16,28 − 58B16,29 + 59B16,30

)
. (4.6.34)

By Theorem 4.5.3, we obtain

cφ16(2n+ 1) ≡ 0 (mod 256) (4.6.35)
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and

cφ16(2n) ≡ cφ8(n) (mod 256). (4.6.36)

4.7 Möbius inversion and Kolitsch’s congruence

(4.5.22)

In this section, we will use a different notation for k-colored generalized Frobenius

symbol λ. The color of a part will be placed on the left hand side of the part. In

other words, our symbol λ is now written as

λ =

c1(z1) c2(z2) · · · cd(zd)

c′1(z′1) c′2(z′2) · · · c′d(z
′
d)

 , (4.7.1)

where cj and c′j denote colors from the set {1, 2, · · · , k} and zj, z
′
j denote the parts.

For example, the 2-colored generalized Frobenius symbol

λ0 :=

22 21

12 01

 (4.7.2)

is now written as

λ0 =

2(2) 1(2)

2(1) 1(0)

 .

Let σk be the k-cycle (1 2 · · · k). Let the symbol· · · · · ·
· · · · · ·

sort

denote sorting the resulting rows to be strictly decreasing according to (4.1.1). We

say that λ has order ` with respect to σk if ` is the smallest positive integer for

which the equality of the following symbols holds:c1(z1) c2(z2) · · · cd(zd)

c′1(z′1) c′2(z′2) · · · c′d(z
′
d)

 =

σ`k(c1)(z1) σ`k(c2)(z2) · · · σ`k(cd)(zd)

σ`k(c
′
1)(z′1) σ`k(c

′
2)(z′2) · · · σ`k(c

′
d)(z

′
d)

sort

.
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For example, applying the 2-cycle σ2 = (1 2) and the sorting process to λ0 given

in (4.7.2), we getσ2(2)(2) σ2(1)(2)

σ2(2)(1) σ2(1)(0)

sort

=

1(2) 2(2)

1(1) 2(0)

sort

=

2(2) 1(2)

1(1) 2(0)

 .

Applying σ2 and sorting the resulting rows again, we arrive atσ2(2)(2) σ2(1)(2)

σ2(1)(1) σ2(2)(0)

sort

=

1(2) 2(2)

2(1) 1(0)

sort

=

2(2) 1(2)

2(1) 1(0)

 .

Thus we get back to λ0 again. This means that λ0 has order 2 with respect to σ2.

Let Ψk,`(n) be the number of k-colored generalized Frobenius symbols of n that

have order `. When ` = k, we follow Kolitsch and denote Ψk,k(n) by cφk(n). The

function cφk(n) is implicitly mentioned by Kolitsch in [56] and the following identity

was later given by him in [57, p. 220]:

Theorem 4.7.1. Let k and n be positive integers. Then

cφk(n) =
∑
`|(k,n)

µ(`)cφ k
`

(n
`

)
. (4.7.3)

With (4.7.3), (4.5.22) can be written as

cφk(n) ≡ 0 (mod k2). (4.7.4)

Congruence (4.7.4) provides an elegant analogue of Andrews’ original congruence

(4.3.32), which states that

cφp(n) ≡ 0 (mod p2)

for primes p not dividing n. Using the definition of cφk(n), we can rewrite (4.1.13),

(4.1.14) and (4.1.15) [60, Theorem 3] as

cφ5(n) = 5p(5n− 1), cφ7(n) = 7p(7n− 2) and cφ11(n) = 11p(11n− 5)

where n is any positive integer.

In this section, we prove the following:
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Theorem 4.7.2. Let k and n be positive integers. Then

cφk(n) =
∑
`|k

cφ`

(
n

(k/`)

)
=
∑
`|k

cφk/`

(n
`

)
, (4.7.5)

where we agree that for any integer m ≥ 1, cφm(x) = 0 if x is not an integer.

We then establish (4.7.3) using Theorem 4.7.2. We will also take this opportunity

to present Kolitsch’s proof of (4.7.4) (see Theorem 4.7.4). Our presentation of

Kolitsch’s proof contains more details than that given in [59]. We feel that it is

important for us (and perhaps the reader) to fully understand Koltisch’s proof as it

is an important congruence and that it is essential in our proof of Theorem 4.5.3.

We now begin our proof of Theorem 4.7.2.

Proof of Theorem 4.7.2. Every k-colored generalized Frobenius symbol has an order

` with respect to σk. We first show that the order of a k-colored generalized Frobenius

symbol λ must divide k. Suppose not. Let m = ds be the order of λ with d = (m, k)

and s > 1. Observe that σdk splits into a product of d disjoint cycles Cj, 1 ≤ j ≤ d,

of length k/d. Since (s, k/d) = 1,
(
σdk
)s

is again a product of d disjoint cycles

C ′j, 1 ≤ j ≤ d, and the integers in Cs
j are the same as those in Cj. Hence, if σmk

leaves λ invariant, it would have been left invariant under σdk but this contradicts

the minimality of m. Therefore, the order of λ must be a divisor of k and we deduce

that

cφk(n) =
∑
`|k

Ψk,`(n).

To prove (4.7.5), it suffices to show that

Ψk,`(n) = cφ`

(
n

(k/`)

)
. (4.7.6)

For `|k, we know that σ`k splits into ` disjoint cycles Cj, j = 1, 2, · · · , ` of length

k/`. Now, if λ is a k-colored generalized Frobenius symbol of order `, then it means

that if an entry cν(z), with cν appears in Cj, appears in λ then cµ(z) must appear

in λ for every color cµ that appears in the cycle Cj. We now replace all the colors in
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this cycle where cν belongs by the color represented by the smallest integer, which

can be chosen to be less than `. In this way, we will obtain a `-colored generalized

Frobenius symbol where each entry cj(z) appears k/` times. In other words, from

n = d+
d∑
i=1

ci(zi) +
d∑
i=1

c′i(z
′
i),

we obtain a `-colored generalized Frobenius symbol giving rise the partition

n = d+
k

`

d/(k/`)∑
i=1

cji(zi) +

d/(k/`)∑
i=1

c′ji(z
′
i)

 ,

which implies that

n

(k/`)
=

d

(k/`)
+

d/(k/`)∑
i=1

cji(zi) +

d/(k/`)∑
i=1

c′ji(z
′
i).

We have thus constructed from λ the `-colored generalized Frobenius symbol of

n/(k/`), which we denote as λ∗. We claim that λ∗ has order ` with respect to

γ = (1 2 · · · `).

If λ∗ is of order m less than `, then this means that

γm =
m∏
j=1

C ′j,

where each C ′j is a `/m cycle, leaves λ∗ invariant. Since m < `, at least two of

the integers u and v between 1 and ` are in some cycle C ′j. When we reverse the

above process of obtaining `-colored generalized Frobenius symbol of n/(k/`) from

a k-colored generalized Frobenius symbol of n of order `, we would obtain a symbol

λ which is fixed by a cycle that includes both u and v. But u and v are in disjoint

cycles in the decomposition of σ`k and this contradicts the fact that λ has order `.

Hence, λ∗ cannot have order strictly less than ` and its order must be `.

Conversely, given a `-colored generalized Frobenius symbol of n/(k/`) of order `

with respect to γ, we reverse the process to obtain a k-colored generalized Frobenius

symbol of n of order `. Hence, we have (4.7.6) and the proof of Theorem 4.7.2 is

complete.
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Theorem 4.7.1 now follows from Theorem 4.7.2 by using the following lemma

with F (n, k) = cφk(n) and G(n, k) = cφk(n):

Lemma 4.7.3. Let F (n, k) and G(n, k) be two-variable arithmetical functions. Then

F (n, k) =
∑
`|(n,k)

G(n/`, k/`), (4.7.7)

if and only if

G(n, k) =
∑
`|(n,k)

µ(`)F (n/`, k/`). (4.7.8)

Proof. To prove (4.7.8), we set n = dn′ and k = dk′ where d = (n, k). From (4.7.7),

we have

F (n′d, k′d) =
∑
`|d

G(n′d/`, k′d/`).

Using the Möbius inversion formula, we deduce that

G(n′d, k′d) =
∑
`|d

µ(`)F (n′d/`, k′d/`),

or

G(n, k) =
∑
`|d

µ(`)F (n/`, k/`).

The converse follows in a similar way from the Möbius inversion formula.

Remark 4.7.1. We observe that using the above inversion, we can find an expres-

sion of Möbius function in terms of Ramanujan’s sum cq(n). We will write Ramanu-

jan’s sum as c(q, n). It is known that [15, Section 8.3]

c(q, n) =
∑
`|(q,n)

µ(q/`)`.

Now, we observe that
c(q, n)

(q, n)
=
∑
`|(q,n)

µ(q/`)
`

(q, n)
.

Using the inversion formula with

F (q, n) =
c(q, n)

(q, n)
and G(q, n) =

µ(q)

(q, n)
,
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we deduce that
µ(q)

(q, n)
=
∑
`|(q,n)

c(q/`, n/`)

(q, n)
`µ(`),

or

µ(q) =
∑
`|(q,n)

c(q/`, n/`)`µ(`).

We now restate (4.7.4) as the following theorem, which is due to Kolitsch.

Theorem 4.7.4. Let k and n be positive integers. Then

cφk(n) ≡ 0 (mod k2).

Proof of Theorem 4.7.4. Given a k-colored generalized Frobenius symbol λ repre-

sented by (4.7.1), we say that the color difference of λ is m when m is the sum of

the numerical values of the colors on the first row minus the sum of the numerical

values of the colors on the second row of λ. In other words,

m = c1 + c2 + · · ·+ cd − (c′1 + c′2 + · · ·+ c′d).

Let cφk(m,n) denote the number of k-colored generalized Frobenius symbol λ of n

with color difference m and order k. Let cφk(m,n) denote the number of k-colored

generalized Frobenius symbol λ of n with color difference m. These functions satisfy

the following analogue of (4.7.5):

cφk(m,n) =
∑
`|k

cφ`

(
m

k/`
,
n

k/`

)
. (4.7.9)

The proof of (4.7.9) is the same as (4.7.5) by checking that there is a one to one

correspondence between a k-colored generalized Frobenius symbol of n with color

difference m and order ` and a `-colored generalized Frobenius symbol of n/(k/`)

with color difference m/(k/`) and order `. The only additional step we need to

observe is that under our previous construction, when we replace the k-colored

generalized Frobenius symbol λ of n with a k-colored generalized Frobenius symbol

λ† with only colors j with 1 ≤ j ≤ ` (by identifying colors belong to the cycle
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containing j), the color difference of λ† becomes m/(k/`). This is because if a color

j appears in λ, then the rest of the colors belonging to the cycle containing j are of

the form j + w`, 1 ≤ w < k/`.

Using inversion formula similar to Lemma 4.7.3 with two-variable arithmetical

functions replaced by three-variable arithmetical functions, we deduce from (4.7.9)

that

cφk(m,n) =
∑
`|k

µ(`)cφk/`

(m
`
,
n

`

)
. (4.7.10)

Now, the function
∞∑

m=−∞

∞∑
n=0

cφk(m,n)tmqn

is the constant term, i.e., coefficient of z0 of the function

k∏
j=1

(ztjq; q)∞(z−1t−j; q)∞,

which we shall write as

∞∑
m=−∞

∞∑
n=0

cφk(m,n)tmqn = CT

(
k∏
j=1

(ztjq; q)∞(z−1t−j; q)∞

)
. (4.7.11)

See [4, pp. 4–6, Theorems 5.1 and 5.2] for examples of expressing generating func-

tions of various partitions functions as constant term of infinite products involving

z.

From (4.7.10) and (4.7.11), we deduce that

∞∑
m=−∞

∞∑
n=0

cφk(m,n)tmqn =
∑
`|k

µ(`)
∞∑

m=−∞

∞∑
n=0

cφk/`

(m
`
,
n

`

)
tmqn

=
∑
`|k

µ(`)
∞∑

m=−∞

∞∑
n=0

cφk/` (m,n) t`mq`n

=
∑
`|k

µ(`)CT

 k/`∏
j=1

(zt`jq`; q`)∞(z−1t−`j; q`)∞


=
∑
`|k

µ(`)CT

 k/`∏
j=1

(z`t`jq`; q`)∞(z−`t−`j; q`)∞

 , (4.7.12)
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where the last equality follows from the fact that (4.7.11) holds with z replaced by

za for any positive integer a.

Next, we rewrite the left hand side of (4.7.11) as

∞∑
m=−∞

∞∑
n=0

cφk(m,n)tmqn =
k−1∑
j=0

∞∑
s=−∞

∞∑
n=0

cφk(sk + j, n)tsk+jqn

=
∞∑
n=0

(
k−1∑
j=0

∞∑
s=−∞

cφk(sk + j, n)tsk+j

)
qn. (4.7.13)

Let

ck(j, n) =
∞∑

m=−∞
m≡j (mod k)

cφk(m,n).

Let t = 1 in (4.7.13). Note that

cφk(n) =
∞∑

m=−∞

cφk(m,n).

We find that
k−1∑
j=0

ck(j, n) = cφk(n). (4.7.14)

Next, if t = ζ 6= 1 is a primitive r-th of unity with r|k, then from (4.7.13), we

deduce that
∞∑

m=−∞

∞∑
n=0

cφk(m,n)ζmqn =
∞∑
n=0

k−1∑
j=0

ck(j, n)ζjqn. (4.7.15)

To complete the proof of (4.7.4), we need the following lemma:

Lemma 4.7.5. Let ζk be a primitive k-th root of unity. Then ζsk is a root of

Pn(t) :=
k−1∑
j=0

ck(j, n)tj

for all 1 ≤ s ≤ k − 1.

Assuming that Lemma 4.7.5 is true. It would imply that Pn(t) is divisible by

Q(t) = 1 + t + · · · + tk−1 and since the degrees of Pn(t) and Q(t) are the same, we
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must conclude that ck(j, n) = ck(0, n) are all equal for 1 ≤ j ≤ k−1. From (4.7.14),

we conclude that

cφk(n) = kck(0, n).

Let S0 be the set of k-colored generalized Frobenius symbols of n of order k with

color difference divisible by k. Note that |S0| = ck(0, n). If π ∈ S0 then π under

the action of σjk, 1 ≤ j ≤ k − 1 is also in S0 since the residue of the color difference

is invariant modulo k under the action of σk and the order of π is k. This implies

that S0 can be grouped into disjoint sets containing k elements in each set, which

implies that k divides ck(0, n). Therefore,

cφk(n) ≡ 0 (mod k2)

and this completes the proof of (4.7.4).

It remains to prove Lemma 4.7.5.

Proof of Lemma 4.7.5. Given any integer j between 1 and k − 1, there exists an

integer r|k such that ζjk is a primitive r-th root of unity. Therefore, to prove Lemma

4.7.5, it suffices to prove that Pn(ζ) = 0 for any primitive r-th root of unity with

r|k. From (4.7.12) and (4.7.15), we deduce that

∞∑
n=0

Pn(ζ)qn =
∑
`|k

µ(`)CT

 k/`∏
j=1

(z`ζ`jq`; q`)∞(z−`ζ−`j; q`)∞

 . (4.7.16)

The presence of the factor µ(`) in (4.7.16) shows that we only need to consider

divisors of the squarefree part of k. Fix a prime p which divides r and separate the

sum in (4.7.16) into a sum over divisors of the form d where (p, d) = 1 and a sum

over divisors of the form pd. We only need to show that the term corresponding to

d cancels with the term corresponding to pd.

Observe that since d is squarefree and (d, p) = 1, we can write d = ww′ where

w|r and (w′, r) = 1. Note that the term corresponding to d = ww′ is

CT

µ(ww′)

k/(ww′)∏
j=1

(zww
′
ζww

′jqww
′
; qww

′
)∞(z−ww

′
ζ−ww

′j; qww
′
)∞
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= µ(ww′)CT
(

(zrw
′
qrw

′
; qrw

′
)k/(rw

′)
∞ (z−rw

′
; qrw

′
)k/(rw

′)
∞

)
since ζw is a r/w-th primitive root of unity and

ν∏
j=0

(1− zζjν) = (1− zν).

Similarly, the term corresponding to pd = pww′ is

CT

µ(pww′)

k/(pww′)∏
j=1

(zpww
′
ζpww

′jqpww
′
; qpww

′
)∞(z−pww

′
ζ−pww

′j; qpww
′
)∞


= µ(pww′)CT

(
(zrw

′
qrw

′
; qrw

′
)k/(rw

′)
∞ (z−rw

′
; qrw

′
)k/(rw

′)
∞

)
.

Clearly these two terms cancel as µ(pww′) = −µ(ww′). This completes the proof of

the lemma.
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Chapter 5
Hecke-Rogers Type Identities and False

Theta Functions

5.1 Introduction

Hecke-Rogers type series are of the following type:∑
(m,n)∈D

(−1)H(m,n)qQ(m,n)+L(m,n),

where H and L are linear forms, Q is a quadratic form, and D is some subset of

Z× Z. The following classical identity of Jacobi is of this type:

∞∑
n=−∞

∑
m≥|n|

(−1)mq(m2+m)/2 =
∞∏
n=1

(1− qn)3.

Here and throughout this chapter, as usual we need to assume that |q| < 1. Motivat-

ed by the Jacobi identity, E. Hecke systematically investigated theta series related

to indefinite quadratic forms [48]. For instance, Hecke [48, p. 425] found that

∞∑
n=−∞

∑
|m|≤n/2

(−1)n+mq(n2−3m2)/2+(n+m)/2 =
∞∏
n=1

(1− qn)2,

which is originally due to L.J. Rogers [76, p. 323]. The deepest work on this topic

is that of V.C. Kac and D.H. Peterson who showed how to prove the Hecke identity

using affine Lie algebra [53].

109
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In q-series, Hecke-Rogers type series have played an important role and received

a lot of attention. However, unlike such series associated with indefinite quadratic

forms, there are few results on series associated with definite quadratic forms (c.f.

[34, 80]). Recently, an interesting double series associated with definite quadratic

forms has arisen from the work of G.E. Andrews, A. Dixit, D. Schultz, and A.J. Yee

on partition functions associated with Ramanujan’s third order mock theta function

ω(q) [11], where

ω(q) =
∞∑
n=0

q2n2+2n

(q; q2)2
n+1

.

The first purpose of this chapter is to prove a double series identity, which is

given in the following theorem.

Theorem 5.1.1. We have

∞∑
n=1

qn(q; q2)n
(−q; q2)n(1 + q2n)

=
∞∑
n=1

∑
|m|≤n

(−1)mqn
2+m2 −

∞∑
n=1

(−1)nq2n2

. (5.1.1)

In [10], Andrews, Dixit and Yee discovered a new partition function associated

with ω(q). The coefficient of qn in qω(q) counts the number pω(n) of partitions of n

in which all odd parts are less than twice the smallest part [10]. In [11], Andrews,

Dixit, Schultz and Yee considered an overpartition analogue pω(n) of the partition

function. Namely, pω(n) enumerates the number of overpartitions of n such that all

odd parts are less than twice the smallest part, and in which the smallest part is

always overlined. They revealed various congruence properties of pω(n).

The summation on the left hand side of Theorem 5.1.1 was studied to prove some

mod 4 congruences of pω(n). To be more specific, in [11], it was shown that

A(q) ≡ −1

4
+

1

4

(
∞∑

n=−∞

(−1)nq2n2

)2

+ q

(
∞∑
n=0

q2n(n+1)

)2

(mod 4), (5.1.2)

where A(q) is the summation on the left-hand side of Theorem 5.1.1. Indeed, A(q)

also has the representation as follows:

A(q) = −1

4
+

1

4

(
∞∑

n=−∞

(−1)nq2n2

)2

+ q

(
∞∑
n=0

(−1)nq2n(n+1)

)2

, (5.1.3)
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which can be deduced from Theorem 5.1.1. (See Lemma 5.3.1.)

Note that (5.1.2) and (5.1.3) differ only in the the signs of their odd power terms.

We also note that A(q) has such a beautiful mod 2 dissection, i.e., the even power

terms are the square of a theta series while the odd power terms are the square of

a false theta series.

False theta functions, first introduced generally by Rogers [77], are series that are

instances of classical theta series except for an alteration of the signs of some of the

series’ terms. While theta series enjoy modularity and are well studied, false theta

series have strange behavior and receive less attention. However, several special

cases were considered by Ramanujan in his notebooks [71] and lost notebook [73].

For instance, on page 13 of Ramanujan’s lost notebook [73] (c.f. [8, Section 9.3, pp.

227–232], [13]), the following identities are given:
∞∑
n=0

(−1)n(q; q2)n q
n(n+1)

(−q; q)2n+1

=
∞∑
n=0

(−1)nqn(n+1)/2, (5.1.4)

∞∑
n=0

(q; q2)2
n q

n

(−q; q)2n+1

=
∞∑
n=0

(−1)nqn(n+1), (5.1.5)

∞∑
n=0

(q; q2)n q
n

(−q; q)2n+1

=
∞∑
n=0

(−1)nq3n(n+1)/2, (5.1.6)

∞∑
n=0

(q;−q)2n q
n

(−q; q)2n+1

=
∞∑
n=0

(−1)nq2n(n+1), (5.1.7)

and
∞∑
n=0

(q;−q)n(−q2; q2)n q
n

(−q; q)2n+1

=
∞∑
n=0

(−1)nq3n(n+1). (5.1.8)

By rewriting the summands on the left-hand side in (5.1.1) as

(−q2; q2)n−1(q; q2)nq
n

(−q; q)2n

,

we see that its denominator is analogous to that of the summands in (5.1.4)–(5.1.8).

In addition, the following identity can be found in Ramanujan’s lost notebook, Part

1 [8, p. 236, Entry 9.4.9]:
∞∑
n=0

(q; q2)n q
n

(−q; q)2n

=
∞∑
n=0

(−1)nqn(3n+1)/2(1 + q2n+1), (5.1.9)
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which may be considered as a companion of the series on the left-hand side in (5.1.6),

in which the denominator is replaced by (−q; q)2n. Thus, it would be interesting to

investigate further identities. In this chapter, along with (5.1.1), we will prove the

following two new identities.

Theorem 5.1.2. We have

∞∑
n=1

qn
2

(−q; q2)n(1 + q2n)
=
∞∑
n=1

∑
|m|≤n/2

(−1)mqn
2−2m2 −

∞∑
n=1

(−1)nq2n2

.

Theorem 5.1.3. We have

∞∑
n=1

(−1)n−1qn(q2; q2)n−1

(−q2; q2)n
=
∞∑
n=1

∑
|m|≤n/2

(−1)mqn
2−2m2 −

∞∑
n=1

(−1)nq2n2

.

This chapter is organized as follows. In Section 5.2, we recall some q-series

identities and formulas from the theory of basic hypergeometric series. Section 5.3

is devoted to proving Theorem 5.1.1 and (5.1.3). Theorems 5.1.2 and 5.1.3 will be

proved in Sections 5.4 and 5.5, respectively. As an application of Theorem 5.1.1, in

Section 5.6, we give new proofs of the following congruences in [11]:

pω(4n+ 3) ≡ 0 (mod 4), (5.1.10)

pω(8n+ 6) ≡ 0 (mod 4). (5.1.11)

Lastly, in Section 5.7, we provide new proofs of Ramanujan’s identities (5.1.4)–

(5.1.8) for false theta functions. It should be noted that the essential tools for our

proofs are amazing formulas discovered by Z.G. Liu [64], which are recalled in the

next section.

5.2 Preliminaries

In this section, we collect some identities on basic hypergeometric series from the

literature for later use.
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From [42, p. 15] (see also [2, p. 527]), we have

2φ1

a, b

c
; q, z

 =
(az; q)∞
(z; q)∞

∞∑
n=0

(a, c/b; q)n
(q, c, az; q)n

(−bz)nq(
n
2). (5.2.1)

From [42, p.40, Eq. (2.2.1)], [42, p.71, Eq. (3.2.5)] and [42, p.71, Eq. (3.2.6)],

we find that

3φ2

(
q−n, aqn, aq/bc

aq/b, aq/c
; q, q

)
=

(b, c; q)n
(aq/b, aq/c; q)n

(aq
bc

)n
, (5.2.2)

3φ2

(
q−n, a, b

d, e
; q,

deqn

ab

)
=

(e/a; q)n
(e; q)n

3φ2

(
q−n, a, d/b

d, aq1−n/e
; q, q

)
, (5.2.3)

and

3φ2

(q−n, aqn, b

d, e
; q,

de

ab

)
=

(aq/d, aq/e; q)n
(d, e; q)n

(
de

aq

)n
3φ2

(q−n, aqn, abq/de

aq/d, aq/e
; q,

q

b

)
.

(5.2.4)

We also need the following transformation formulas due to Liu: For |αab/q| < 1,

[64, p.2089]

(αq, αab/q; q)∞
(αa, αb; q)∞

3φ2

(
q/a, q/b, β

c, d
; q,

αab

q

)

=
∞∑
n=0

(1− αq2n)(α, q/a, q/b; q)n(−αab/q)nq(
n
2)

(1− α)(q, αa, αb; q)n
3φ2

(
q−n, αqn, β

c, d
; q, q

)
(5.2.5)

and [64, Proposition 2.4]

(−1)n
(αq; q)n
(q; q)n

q(
n+1
2 )

3φ2

(
q−n, αqn+1, αcd/q

αc, αd
; q, 1

)

=
n∑
j=0

(−1)j
(1− αq2j)(α, q/c, q/d; q)j

(1− α)(q, αc, αd; q)j
qj(j−3)/2(αcd)j. (5.2.6)

We remark that (−1)n on the left-hand side is missing in the latter formula in [64].
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5.3 Proof of Theorem 5.1.1

Proof of Theorem 5.1.1. Let

A(q) =
∞∑
n=1

qn(q; q2)n
(−q; q2)n(1 + q2n)

.

Then

1 + 2A(q) =
∞∑
n=0

qn(q; q2)n(−1; q2)n
(−q; q2)n(−q2; q2)n

= 3φ2

(
q2, q, −1

−q, −q2
; q2, q

)
. (5.3.1)

Now, in (5.2.5), replace q by q2 and take (α, β, a, b, c, d) = (q2,−1, 1, q,−q,−q2).

Then we obtain

3φ2

(
q2, q, −1

−q, −q2
; q2, q

)
=
∞∑
n=0

(−1)nqn
2

(1 + q2n+1)3φ2

(
q−2n, q2n+2, −1

−q, −q2
; q2, q2

)
.

(5.3.2)

Replacing q by q2 and taking (a, b, d, e) = (q2n+2, q,−q,−q2) in (5.2.3), we deduce

that

3φ2

(
q−2n, q2n+2, q

−q, −q2
; q2, 1

)
=

(−q−2n; q2)n
(−q2; q2)n

3φ2

(
q−2n, q2n+2, −1

−q, −q2
; q2, q2

)
.

Note that
(−q−2n; q2)n
(−q2; q2)n

=
n∏
k=1

1 + q−2k

1 + q2k
= q−n(n+1).

Thus,

3φ2

(
q−2n, q2n+2, −1

−q, −q2
; q2, q2

)
= qn(n+1)

3φ2

(
q−2n, q2n+2, q

−q, −q2
; q2, 1

)
. (5.3.3)

Replacing q by q2 and taking (α, c, d) = (1,−q,−q2) in (5.2.6), we deduce that

(−1)nqn(n+1)
3φ2

(
q−2n, q2n+2, q

−q, −q2
; q2, 1

)
= 1 + 2

n∑
j=1

(−1)jqj
2

. (5.3.4)
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Now we substitute (5.3.4) into (5.3.3), and then substitute the result into (5.3.2).

We deduce that

3φ2

(
q2, q, −1

−q, −q2
; q2, q

)
=
∞∑
n=0

qn
2

(1 + q2n+1)

(
1 + 2

n∑
j=1

(−1)jqj
2

)

=
∞∑
n=0

qn
2

n∑
j=−n

(−1)jqj
2

+
∞∑
n=0

q(n+1)2
n∑

j=−n

(−1)jqj
2

= 1 +
∞∑
n=1

qn
2

n∑
j=−n

(−1)jqj
2

+
∞∑
n=1

qn
2

n−1∑
j=−n+1

(−1)jqj
2

= 1 + 2
∞∑
n=1

n∑
j=−n+1

(−1)jqn
2+j2 . (5.3.5)

Therefore, by (5.3.1)

∞∑
n=1

qn(q; q2)n
(−q; q2)n(1 + q2n)

=
∞∑
n=1

n∑
j=−n+1

(−1)jqn
2+j2 ,

which completes the proof.

Remark 5.3.1. We note that (5.3.4) can be obtained by replacing q by q−1 in the

identity (4.5) of Liu’s paper [64], which is also equivalent to the identity (6.16) in

Andrews’ paper [7].

As mentioned in the introduction, (5.1.3) can be derived as a corollary of Theo-

rem 5.1.1. We first need a lemma.

Lemma 5.3.1. We have

∞∑
n=1

n∑
m=−n+1

(−1)mqm
2+n2

= −1

4
+

1

4

(
∞∑

n=−∞

(−1)nq2n2

)2

+ q

(
∞∑
n=0

(−1)nq2n(n+1)

)2

.

Proof. First note that

−1

4
+

1

4

( ∞∑
n=−∞

(−1)nq2n2
)2

= −1

4
+

1

4

(
1 + 2

∞∑
n=1

(−1)nq2n2
)2

=
∞∑
n=1

(−1)nq2n2

+
( ∞∑
n=1

(−1)nq2n2
)2
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=
∞∑
n=1

(−1)nq2n2

+
∞∑
n=1

∞∑
m=1

(−1)n+mq2n2+2m2

=
∞∑
n=1

(−1)nqn
2+n2

+
∞∑
n=1

∞∑
m=1

(−1)n−mq(n+m)2+(n−m)2 .

Let k = n−m, l = n+m. Then when (n,m) ranges over all positive integer pairs,

(k, l) ranges on integer pairs of Z2 which satisfy

l ≥ 2, −l < k < l, k ≡ l (mod 2).

Therefore,

−1

4
+

1

4

( ∞∑
n=−∞

(−1)nq2n2
)2

=
∞∑
n=1

∑
−n+1≤m≤n
m≡n (mod 2)

(−1)mqm
2+n2

. (5.3.6)

Similarly,

q
( ∞∑
n=0

(−1)nq2n(n+1)
)2

=
∞∑
n=0

∞∑
m=0

(−1)n+mq2n(n+1)+2m(m+1)+1

=
∞∑
n=0

∞∑
m=0

(−1)n+mq(n+m+1)2+(n−m)2 .

Now, let k = n−m, l = n+m+ 1. Then, when (n,m) ranges over all nonnegative

integer pairs, (k, l) ranges over all integer pairs in Z2 with

−l + 1 ≤ k ≤ l, k ≡ l + 1 (mod 2).

Therefore,

q
( ∞∑
n=0

(−1)nq2n(n+1)
)2

=
∞∑
n=1

∑
−n+1≤m≤n

m≡n+1 (mod 2)

(−1)mqm
2+n2

. (5.3.7)

Thus we complete the proof by (5.3.6) and (5.3.7).

By Theorem 5.1.1 and Lemma 5.3.1, we obtain (5.1.3), which can be restated as

follow:

Corollary 5.3.2. We have

∞∑
n=1

qn(q; q2)n
(−q; q2)n(1 + q2n)

= −1

4
+

1

4

(
∞∑

n=−∞

(−1)nq2n2

)2

+ q

(
∞∑
n=0

(−1)nq2n(n+1)

)2

.
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5.4 Proof of Theorem 5.1.2

We first need two lemmas.

Lemma 5.4.1. We have

∞∑
n=0

(−1; q2)n q
n2

(−q; q)2n

=
∞∑
n=0

q2n2−n(1 + q4n+1)
(q; q)2n

(−q; q)2n

. (5.4.1)

Proof. Note that

∞∑
n=0

(−1; q2)n q
n2

(−q, q2)n(−q2, q2)n
= lim

a→0
3φ2

−1, q2, q2/a

−q, −q2
; q2,−a

q

 .

Now, replacing q by q2 and setting (b, c, d, α, β) = (1,−q,−q2,−q,−1) in (5.2.5), we

deduce that

(−q3,−a/q; q2)∞
(−aq,−q; q2)∞

3φ2

−1, q2, q2/a

−q, −q2
; q2,−a

q


=
∞∑
n=0

(1 + q4n+1)(−q, q2/a, q2; q2)n(a/q)nq2(n2)

(1 + q)(q2,−aq,−q; q2)n
3φ2

q−2n, −q1+2n, −1

−q, −q2
; q2, q2

 .

By letting a→ 0, we obtain

∞∑
n=0

(−1; q2)nq
n2

(−q, q2)n(−q2, q2)n
=
∞∑
n=0

(−1)n(1 + q4n+1)q2n2−n
3φ2

(q−2n, −q1+2n, −1

−q, −q2
; q2, q2

)
.

(5.4.2)

Replacing q by q2 and set (a, b, d, e) = (−q1+2n, q,−q, q) in (5.2.3), we obtain

3φ2

(q−2n, −q1+2n, q

−q, q
; q2, 1

)
=

(−q−2n; q2)n
(q; q2)n

3φ2

(q−2n, −q1+2n, −1

−q, −q2
; q2, q2

)
.

(5.4.3)

Replacing q by q2 and set (α, c, d) = (−q−1, q2,−q2) in (5.2.6), we obtain

3φ2

(q−2n, −q1+2n, q

−q, q
; q2, 1

)
= (−1)n

(q2; q2)n
(−q; q2)n

q−n(n+1). (5.4.4)
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Substituting (5.4.4) into (5.4.3), we get

3φ2

(q−2n, −q1+2n, −1

−q, −q2
; q2, q2

)
= (−1)n

(q; q2)n(q2; q2)n
(−q; q2)n(−q2; q2)n

. (5.4.5)

Substituting (5.4.5) into (5.4.2), we obtain (5.4.1).

Lemma 5.4.2. We have

∞∑
n=1

∑
|m|≤n/2

(−1)mqn
2−2m2 −

∞∑
n=1

(−1)nq2n2

=
∞∑
n=1

(−1)nq2n2
n∑

r=−n+1

(−1)rq−r
2

. (5.4.6)

Proof.

∞∑
n=1

∑
|m|≤n/2

(−1)mqn
2−2m2 −

∞∑
n=1

(−1)nq2n2

=
∞∑
n=1

qn
2

+ 2
∞∑
n=1

∑
1≤m≤n/2

(−1)mqn
2−2m2 −

∞∑
n=1

(−1)nq2n2

(replace n by 2m+ r)

=
∞∑
n=1

(−1)n−1q2n2

+
∞∑
n=1

qn
2

+ 2
∞∑
m=1

∞∑
r=0

(−1)mq2m2+4mr+r2 (let n = m+ r)

=
∞∑
n=1

(−1)n−1q2n2

+
∞∑
n=1

qn
2

+ 2
∞∑
n=1

(−1)nq2n2
n−1∑
r=0

(−1)rq−r
2

=
∞∑
n=1

(−1)nq2n2
n∑

r=−n+1

(−1)rq−r
2

.

We are now ready to prove Theorem 5.1.2. Let us recall the theorem:

∞∑
n=1

qn
2

(−q; q2)n(1 + q2n)
=
∞∑
n=1

∑
|m|≤n/2

(−1)mqn
2−2m2 −

∞∑
n=1

(−1)nq2n2

.

Proof of Theorem 5.1.2. Let

X(q) =
∞∑
n=1

qn
2

(−q; q2)n(1 + q2n)
. (5.4.7)

Then we have

1 + 2X(q) =
∞∑
n=0

(−1; q2)nq
n2

(−q2; q2)n(−q; q2)n
(5.4.8)
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=
∞∑
n=0

q2n2−n(1 + q4n+1)
(q; q)2n

(−q; q)2n

,

where the second equality follows from Lemma 5.4.1. We now show that

∞∑
n=0

q2n2−n(1 + q4n+1)
(q; q)2n

(−q; q)2n

= 1− 2
∞∑
n=1

(q; q)n−1(−1)nqn(n+1)/2

(−q; q)n
. (5.4.9)

The right hand side of (5.4.9) is

1− 2
∞∑
n=1

(q; q)n−1(−1)nqn(n+1)/2

(−q; q)n

= 1− 2
∞∑
n=1

q2n2+n(q; q)2n−1

(−q; q)2n

+ 2
∞∑
n=1

q2n2−n(q; q)2n−2

(−q; q)2n−1

= 1 + 2
∞∑
n=1

q2n2−n(q; q)2n

(−q; q)2n

− 2
∞∑
n=1

q2n2−n(q; q)2n−1

(−q; q)2n

+ 2
∞∑
n=1

q2n2−n(q; q)2n−2

(−q; q)2n−1

= 1 +
∞∑
n=1

q2n2−n(q; q)2n

(−q; q)2n

+
∞∑
n=1

q2n2−n(q; q)2n−2(1 + q2n−1 + q2n + q4n−1)

(−q; q)2n

= 1 +
∞∑
n=1

q2n2−n(q; q)2n

(−q; q)2n

+
∞∑
n=1

q2n2−n(q; q)2n−2(1 + q2n−1)(1 + q2n)

(−q; q)2n

= 1 +
∞∑
n=1

q2n2−n(q; q)2n

(−q; q)2n

+
∞∑
n=1

q2n2−n(q; q)2n−2

(−q; q)2n−2

.

Also, the left hand side of (5.4.9) is

∞∑
n=0

q2n2−n(1 + q4n+1)
(q; q)2n

(−q; q)2n

= 1 +
∞∑
n=1

q2n2−n (q; q)2n

(−q; q)2n

+
∞∑
n=1

q2n2−n (q; q)2n−2

(−q; q)2n−2

.

Thus (5.4.9) holds true. We now recall the following identity from [67, Eq. (2.11)]:

∞∑
n=1

(q; q)n−1(−1)nqn(n+1)/2

(−q; q)n
=
∞∑
n=1

n∑
j=−n+1

(−1)n+j+1q2n2−j2 , (5.4.10)

which with (5.4.6) and (5.4.9) completes the proof.

5.5 Proof of Theorem 5.1.3

Let us recall the identity in Theorem 5.1.3:

∞∑
n=1

(−q)n(q2; q2)n−1

(−q2; q2)n
= −

∞∑
n=1

∑
|m|≤n/2

(−1)mqn
2−2m2

+
∞∑
n=1

(−1)nq2n2

. (5.5.1)
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Proof of Theorem 5.1.3. Let Y (q) denote the left hand side of (5.5.1). We have

Y (q) =
∞∑
n=1

(−q)n(q2; q2)n−1

(−q2; q2)n

=
−q

1 + q2

∞∑
n=0

(−q)n(q2; q2)n
(−q4; q2)n

. (5.5.2)

Replacing q by q2 and setting (a, b, c, z) = (q2, q2,−q4,−q) in (5.2.1), we obtain

Y (q) = − q

(1 + q)(1 + q2)

∞∑
n=0

(−q2; q2)nq
n2+2n

(−q3,−q4; q2)n

= − q

(1 + q)(1 + q2)

(
1 + q−1

∞∑
n=2

(−q2; q2)n−1q
n2

(−q3,−q4; q2)n−1

)

= − q

(1 + q)(1 + q2)

(
1 +

(1 + q)(1 + q2)

2q

∞∑
n=2

(−1; q2)nq
n2

(−q; q)2n

)

= − q

(1 + q)(1 + q2)
− 1

2

∞∑
n=2

(−1; q2)nq
n2

(−q; q)2n

= − q

(1 + q)(1 + q2)
− 1

2

∞∑
n=0

(−1; q2)nq
n2

(−q; q)2n

+
1

2

(
1 +

2q

(1 + q)(1 + q2)

)

=
1

2

(
1−

∞∑
n=0

(−1; q2)nq
n2

(−q; q)2n

)
. (5.5.3)

Therefore, we have

1− 2Y (q) =
∞∑
n=0

(−1; q2)nq
n2

(−q; q)2n

. (5.5.4)

Comparing (5.5.4) with (5.4.8), we conclude that Y (q) = −X(q) where X(q) is

defined in (5.4.7). Therefore, Theorem 5.1.3 follows from Theorem 5.1.2.

From (5.5.3) we deduce that

Y (q) =
1

2

(
1−

∞∑
n=0

(−1; q2)nq
n2

(−q; q)2n

)

= −1

2

∞∑
n=1

(−1; q2)nq
n2

(−q; q2)n(−q2; q2)n

= −
∞∑
n=1

qn
2

(−q; q2)n(1 + q2n)
. (5.5.5)
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Replacing q by −q and recall the definition of Y (q), we obtain the following inter-

esting identity.

Corollary 5.5.1. We have

∞∑
n=1

(−1)nqn
2

(q; q2)n(1 + q2n)
= −

∞∑
n=1

qn(q2; q2)n−1

(−q2; q2)n
.

We also find another fascinating result.

Corollary 5.5.2. We have

−1∑
n=−∞

qn(n+1)/2

1 + q2n
−
∞∑
n=1

qn(n+1)/2

1 + q2n
=
∞∑
n=1

∑
|m|≤n/2

(−1)mqn
2−2m2 −

∞∑
n=1

(−1)nq2n2

. (5.5.6)

Proof. By Theorem 5.1.3, it suffices to show that

Y (q) = −
∞∑
n=1

(1− qn)qn(n+1)/2

1 + q2n
. (5.5.7)

We have

∞∑
n=1

(−q)n(q2; q2)n−1

(−q2; q2)n
= − q

1 + q2

∞∑
n=0

(q2; q2)n(−q)n

(−q4; q2)n

= − q

1 + q2

∞∑
n=0

(q,−q; q)n
(q2 i,−q2 i; q)n

(−q)n

= − q

1 + q2 3φ2

q, −q, q

q2i, −q2i
; q,−q

 . (5.5.8)

In (5.2.5), we set (α, β, a, b, c, d) = (q2, q, 1,−1, q2i,−q2i). Then

(q3,−q; q)∞
(q2,−q2; q)∞

3φ2

q, −q, q

q2i, −q2i
; q,−q


=
∞∑
n=0

(1− q2n+2)(q2, q,−q; q)nqn(n+1)/2

(1− q2)(q, q2,−q2; q)n
3φ2

q−n, qn+2, q

q2i, −q2i
; q, q

 .

So

3φ2

q, −q, q

q2i, −q2i
; q,−q

 =
∞∑
n=0

(1− qn+1)qn(n+1)/2
3φ2

q−n, qn+2, q

q2i, −q2i
; q, q

 .

(5.5.9)
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By (5.5.8) and (5.5.9),

∞∑
n=1

(−q)n(q2; q2)n−1

(−q2; q2)n
= − q

1 + q2

∞∑
n=0

(1− qn+1)qn(n+1)/2
3φ2

q−n, qn+2, q

q2i, −q2i
; q, q

 .

(5.5.10)

Setting (a, b, c) = (q2,−iq, iq) in (5.2.2), we deduce that

3φ2

q−n, qn+2, q

q2i, −q2i
; q, q

 =
(−iq, iq; q)nqn

(iq2,−iq2; q)n
=

(−q2; q2)nq
n

(−q4; q2)n
=

(1 + q2)qn

1 + q2n+2
.

(5.5.11)

Substituting (5.5.11) into (5.5.10), we conclude that

∞∑
n=1

(−q)n(q2; q2)n−1

(−q2; q2)n
=−

∞∑
n=0

(1− qn+1)q(n+1)(n+2)/2

1 + q2n+2

=−
∞∑
n=1

(1− qn)qn(n+1)/2

1 + q2n
(5.5.12)

=−
∞∑
n=1

qn(n+1)/2

1 + q2n
+

−1∑
n=−∞

qn(n+1)/2

1 + q2n
.

Remark 5.5.1. It would be interesting if one can find a direct proof of Corollary

5.5.2. This will lead to a new proof of Theorem 5.1.3.

5.6 An application

Let

P (q) :=
∞∑
n=1

qn(qn+1; q)n(q2n+2; q2)∞
(1 + qn)(−qn+1; q)n(−q2n+2; q2)∞

.

From [11, Lemma 4.1], we have that

P (q) =
∞∑
n=1

qn(q; q2)n
(−q; q2)n(1 + q2n)

−
∞∑
n=1

(−1)nq2n2

,
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from which with Corollary 5.3.2, it follows that

P (q) = −1

4
+

1

4

(
1 + 2

∞∑
n=1

(−1)nq2n2
)2

+ q
( ∞∑
n=0

(−1)nq2n(n+1)
)2

−
∞∑
n=1

(−1)nq2n2

=
( ∞∑
n=1

(−1)nq2n2
)2

+ q
( ∞∑
n=0

(−1)nq2n(n+1)
)2

. (5.6.1)

Recall from [11] that

∞∑
n=1

pω(n)qn =
∞∑
n=1

qn(−qn+1; q)n(−q2n+2; q2)∞
(1− qn)(qn+1; q)n(q2n+2; q2)∞

.

From [11, Eq. (4.14)] we know that

∞∑
n=1

pω(n)qn ≡ P (q) (mod 4).

Thus by (5.6.1) we have

∞∑
n=1

pω(n)qn ≡
( ∞∑
n=1

(−1)nq2n2
)2

+ q
( ∞∑
n=0

(−1)nq2n(n+1)
)2

(mod 4), (5.6.2)

which yields the congruences (5.1.10) and (5.1.11) for pω(n) given in [11].
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5.7 New proofs of Ramanujan’s identities on false

theta functions

We will give new proofs to (5.1.4)–(5.1.8) in this section.

Proof of (5.1.4). We observe that

∞∑
n=0

(−1)n(q; q2)nq
n(n+1)

(−q2; q2)n(−q3; q2)n
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= lim
a→0

∞∑
n=0

(q; q2)n(q2/a; q2)na
n

(−q2; q2)n(−q3; q2)n

= lim
a→0

3φ2

q, q2, q2/a

−q2, −q3
; q2, a

 . (5.7.1)

Replacing q by q2 and setting (b, c, d, α, β) = (1,−q2,−q3, q2, q) in (5.2.5), we get

(q4, a; q2)∞
(q2a, q2; q2)∞

3φ2

q, q2, q2/a

−q2, −q3
; q2, a


=
∞∑
n=0

(1− q4n+2)(q2, q2/a, q2; q2)n(−a)nqn(n−1)

(1− q2)(q2, q2a, q2; q2)n
× 3φ2

q−2n, q2n+2, q

−q2, −q3
; q2, q2

 .

(5.7.2)

Taking a→ 0 in (5.7.2) and substituting this into (5.7.1), we obtain

∞∑
n=0

(−1)n(q; q2)nq
n(n+1)

(−q2; q2)n(−q3; q2)n

=
∞∑
n=0

(1− q4n+2)q2n2

3φ2

q−2n, q2n+2, q

−q2, −q3
; q2, q2

 . (5.7.3)

Replacing q by q2 and setting (a, b, c) = (q2,−q2,−q) in (5.2.2), we deduce that

3φ2

q−2n, q2n+2, q

−q2, −q3
; q2, q2

 =
(−q,−q2; q2)nq

n

(−q2,−q3; q2)n
=

(1 + q)qn

1 + q2n+1
. (5.7.4)

Substituting (5.7.4) into (5.7.3) and dividing both sides by 1 + q, we deduce that

∞∑
n=0

(−1)n(q; q2)nq
n(n+1)

(−q; q)2n+1

=
∞∑
n=0

(1− q2n+1)q2n2+n

=
∞∑
n=0

q2n2+n −
∞∑
n=0

q(2n+1)(n+1)

=
∞∑
n=0

q2n(2n+1)/2 −
∞∑
n=0

q(2n+1)(2n+2)/2

=
∞∑
n=0

(−1)nqn(n+1)/2.
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Proof of (5.1.5). We observe that

∞∑
n=0

(q; q2)2
nq

n

(−q; q)2n+1

=
∞∑
n=0

(q; q2)2
nq

n

(1 + q)(−q2,−q3; q2)n

=
1

1 + q
3φ2

(q q2 q

−q2 −q3
; q2, q

)
. (5.7.5)

Replacing q by q2 and setting (a, b, c, d, α, β) = (aq, 1,−q2,−q3, q2/a, aq) in (5.2.5),

we obtain

(a−1q4, q; q2)∞
(q3, a−1q2; q2)∞

3φ2

(a−1q q2 aq

−q2 −q3
; q2, q

)
(5.7.6)

=
∞∑
n=0

(1− a−1q4n+2)(a−1q2, a−1q, q2; q2)n(−1)nqn
2

(1− a−1q2)(q2, q3, a−1q2; q2)n

× 3φ2

(q−2n a−1q2+2n aq

−q2 −q3
; q2, q2

)
.

Replacing q by q2 and taking (a, b, c)→ (a−1q2,−a−1q2,−a−1q) in (5.2.2), we deduce

that

3φ2

(q−2n a−1q2+2n aq

−q2 −q3
; q2, q2

)
=

(−a−1q,−a−1q2; q2)n
(−q2,−q3; q2)n

(aq)n. (5.7.7)

Substituting this identity into (5.7.6) and setting a = 1, we obtain

(q4, q; q2)∞
(q3, q2; q2)∞

3φ2

(q q2 q

−q2 −q3
; q2, q

)
=
∞∑
n=0

(1− q4n+2)(q2, q, q2; q2)n(−1)nqn
2

(1− q2)(q2, q3, q2; q2)n
· (−q,−q2; q2)nq

n

(−q2,−q3; q2)n

=
∞∑
n=0

1− q4n+2

1− q2
· 1− q

1− q2n+1
· 1 + q

1 + q2n+1
· (−1)nqn

2+n

=
∞∑
n=0

(−1)nqn
2+n. (5.7.8)

It is not difficult to show that the first line of (5.7.8) agrees with the right hand side

of (5.7.5). Hence we have completed the proof of (5.1.5).
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Proof of (5.1.6). We observe that

∞∑
n=0

(q; q2)nq
n

(−q; q)2n+1

=
1

1 + q

∞∑
n=0

(q; q2)nq
n

(−q2; q2)n(−q3; q2)n

=
1

1 + q
3φ2

q2, q, 0

−q2, −q3
; q2, q

 . (5.7.9)

Replacing q by q2 and setting (a, b, c, d, α, β) = (1, q,−q2,−q3, q2, 0) in (5.2.5), we

deduce that

(q4, q; q2)∞
(q2, q3; q2)∞

3φ2

q2, q, 0

−q2, −q3
; q2, q


=
∞∑
n=0

(1− q4n+2)(q2, q2, q; q2)n(−q)nqn(n−1)

(1− q2)(q2, q2, q3; q2)n
3φ2

q−2n, q2n+2, 0

−q2, −q3
; q2, q2


=
∞∑
n=0

(−1)nqn
2 · 1 + q2n+1

1 + q
· 3φ2

q−2n, q2n+2, 0

−q2, −q3
; q2, q2

 . (5.7.10)

Next, we recall the following formula in [42, p.71]:

2φ1

q−n, d/b

d
; q, bq/e

 = (−1)nq−(n2)(e; q)ne
−n

3φ2

q−n, b, 0

d, e
; q, q

 . (5.7.11)

Replacing q by q2 and setting (b, d, e) = (q2n+2,−q2,−q3) in (5.7.11), we get

2φ1

q−2n, −q−2n

−q2
; q2,−q2n+1


=q−n(n+2)(−q3; q2)n3φ2

q−2n, q2n+2, 0

−q2, −q3
; q2, q2

 . (5.7.12)

Now we need the following famous transformation formula of Heine for 2φ1 series

(see [42, p.13]):

2φ1

a, b

c
; q, z

 =
(b, az; q)∞
(c, z; q)∞

2φ1

c/b, z

az
; q, b

 . (5.7.13)
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Replacing q by q2 and setting (a, b, c, z) = (q−2n,−q−2n,−q2,−q2n+1) in (5.7.13), we

obtain

2φ1

q−2n, −q−2n

−q2
; q2,−q2n+1


=

(−q−2n,−q; q2)∞
(−q2,−q2n+1; q2)∞

2φ1

q2n+2, −q2n+1

−q
; q2,−q−2n


=q−n(n+1)(−q; q2)n(−q2; q2)n2φ1

−q2n+1, q2n+2

−q
; q2,−q−2n

 . (5.7.14)

Next, we will apply the following identity of W.N. Bailey and J.A. Daum [42, Eq.

(1.8.1)]:

2φ1

a, b

aq/b
; q,−q

b

 =
(−q; q)∞(qa, aq2/b2; q2)∞

(aq/b,−q/b; q)∞
. (5.7.15)

Replacing q by q2 and setting (a, b) = (−q2n+1, q2n+2) in (5.7.15) and assuming that

1− 2n ≡ r (mod 4) with r = 1 or 3, we deduce that

2φ1

−q2n+1, q2n+2

−q
; q2,−q−2n


=

(−q2; q2)∞(−q2n+3,−q1−2n; q4)∞
(−q,−q−2n; q2)∞

=
(−q2; q2)∞
(−q; q2)∞

· (−q2n+3; q4)∞(−qr; q4)∞(1 + q1−2n)(1 + q5−2n) · · · (1 + qr−4)

(−q2; q2)∞(1 + q−2n)(1 + q−2n+2) · · · (1 + q−2)

=
qn(n+1)(−qr; q4)∞(−q4−r; q4)∞

(−q; q2)∞(−q2; q2)n
q−
(

(4−r)+···+(2n−5)+(2n−1)
)

=
qn(n+1)/2

(−q2; q2)n
. (5.7.16)

Substituting (5.7.16) into (5.7.14), we deduce that

2φ1

q−2n, −q−2n

−q2
; q2,−q2n+1

 = q−n(n+1)/2(−q; q2)n. (5.7.17)

Now substituting (5.7.17) into (5.7.12), we obtain

3φ2

q−2n, q2n+2, 0

−q2, −q3
; q2, q2

 =
(1 + q)q(n2+3n)/2

1 + q2n+1
. (5.7.18)
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Finally, substituting (5.7.18) into (5.7.10), we deduce that

1

1 + q
3φ2

q2, q, 0

−q2, −q3
; q2, q

 =
∞∑
n=0

(−1)nq3n(n+1)/2. (5.7.19)

By (5.7.9), we complete our proof.

Proof of (5.1.7). We observe that

∞∑
n=0

(q,−q)2nq
n

(−q; q)2n+1

=
1

1 + q

∞∑
n=0

(q; q2)n(−q2; q2)nq
n

(−q2; q2)n(−q3; q2)n

=
1

1 + q

∞∑
n=0

(q; q2)nq
n

(−q3; q2)n

=
1

1 + q
2φ1

q2, q

−q3
; q2, q

 . (5.7.20)

Replacing q by q2 and setting (a, b, c, z) = (q2, q,−q3, q) in (5.2.1), we deduce that

2φ1

q2, q

−q3
; q2, q

 =
(q3; q2)∞
(q; q2)∞

∞∑
n=0

(q2,−q2; q2)n
(q2,−q3, q3; q2)n

· (−q2)nqn(n−1)

=
1

1− q

∞∑
n=0

(−q2; q2)n(−1)nqn(n+1)

(−q3; q2)n(q3; q2)n

=
1

1− q

∞∑
n=0

(−q2; q2)n
(−q3; q2)n(q3; q2)n

lim
a→0

(
q2

a
; q2)na

n

=
1

1− q
lim
a→0

3φ2

q2/a, q2, −q2

−q3, q3
; q2, a

 . (5.7.21)

Replacing q by q2 and setting (b, c, d, α, β) = (1,−q3, q3, q2,−q2) in (5.2.5), we get

(q4, a; q2)∞
(q2a, q2; q2)∞

3φ2

q2/a, q2, −q2

−q3, q3
; q2, a


=
∞∑
n=0

(1− q4n+2)(q2, q2/a, q2; q2)n(−a)nqn(n−1)

(1− q2)(q2, q2a, q2; q2)n
3φ2

q−2n, q2n+2, −q2

−q3, q3
; q2, q2

 .

(5.7.22)
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We can now take the limit a→ 0 so that

lim
a→0

3φ2

q2/a, q2, −q2

−q3, q3
; q2, a

 =
∞∑
n=0

(1− q4n+2)q2n2

3φ2

q−2n, q2n+2, −q2

−q3, q3
; q2, q2

 .

(5.7.23)

Replacing q by q2 and setting (a, b, c) = (q2,−q, q) in (5.2.2), we get

3φ2

q−2n, q2n+2, −q2

−q3, q3
; q2, q2

 =
(−q, q; q2)n

(−q3, q3; q2)n
(−q2)n =

1− q2

1− q4n+2
(−1)nq2n.

(5.7.24)

Substituting (5.7.24) into (5.7.23), we deduce that

lim
a→0

3φ2

−q2, q2/a, q2

−q3, q3
; q2, a

 = (1− q2)
∞∑
n=0

(−1)nq2n2+2n. (5.7.25)

Substituting (5.7.25) into (5.7.21) and then combining with (5.7.20), we complete

the proof of (5.1.7).

Proof of (5.1.8). We observe that

∞∑
n=0

(q;−q)n(−q2; q2)nq
n

(−q; q)2n+1

=
1

1 + q

∞∑
n=0

(q;−q)nqn

(−q3; q2)n
. (5.7.26)

We will next consider the sum on the right with q replaced by −q. For this sum we

note that

∞∑
n=0

(−q; q)n(−q)n

(q3; q2)n
=
∞∑
n=0

(−q; q)n(−q)n

(q3/2; q)n(−q3/2; q)n
= 3φ2

q, −q, 0

q3/2, −q3/2
; q,−q

 .

(5.7.27)

Setting (a, b, c, d, α, β) = (1,−1, q3/2,−q3/2, q2, 0) in (5.2.5), we deduce that

(q3,−q; q)∞
(q2,−q2; q)∞

3φ2

q, −q, 0

q3/2, −q3/2
; q,−q


=
∞∑
n=0

1− q2n+2

1− q2
· (q2, q,−q; q)nqnqn(n−1)/2

(q, q2,−q2; q)n
3φ2

q−n, qn+2, 0

q3/2, −q3/2
; q, q
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=
∞∑
n=0

(1− qn+1)qn(n+1)/2

1− q 3φ2

q−n, qn+2, 0

q3/2, −q3/2
; q, q

 . (5.7.28)

Setting (b, d, e) = (qn+2, q3/2,−q3/2) in (5.7.11), we deduce that

2φ1

q−n, q−n−
1
2

q3/2
; q,−qn+ 3

2


=(−1)nq−(n2)(−q3/2; q)n(−q3/2)−n3φ2

q−n, qn+2, 0

q3/2, −q3/2
; q, q


=q−n(n+2)/2(−q3/2; q)n3φ2

q−n, qn+2, 0

q3/2, −q3/2
; q, q

 . (5.7.29)

Setting (a, b) = (q−n, q−n−1/2) in (5.7.15), we deduce that

2φ1

q−n, q−n−1/2

q3/2
; q,−qn+ 3

2

 =
(−q; q)∞(q1−n; q2)∞(qn+3; q2)∞

(q3/2; q)∞(−qn+3/2; q)∞
. (5.7.30)

It is clear that if n ≥ 1 is odd, then the left hand side of (5.7.30) equals 0. Now we

assume that n is even. We have

(−q; q)∞(q1−n; q2)∞(qn+3; q2)∞
(q3/2; q)∞(−qn+3/2; q)∞

=
(−q; q)∞(1− q1−n) · · · (1− q−3)(1− q−1)(q; q2)∞(q; q2)∞

(1− q)(1− q3) · · · (1− qn+1)

· 1

(q3/2; q)∞
· (1 + q3/2)(1 + q5/2) · · · (1 + qn+1/2)

(−q3/2; q)∞

=
(q; q2)∞(−1)n/2q−n

2/4(1− q)(1− q3) · · · (1− qn−1)

(1− q)(1− q3) · · · (1− qn+1)
· 1

(q3/2; q)∞
· (−q3/2; q)n

(−q3/2; q)∞

=
(1− q)(−1)n/2q−n

2/4(−q3/2; q)n
1− qn+1

. (5.7.31)

Substituting (5.7.30) and (5.7.31) into (5.7.29), we obtain

3φ2

q−n, qn+2, 0

q3/2, −q3/2
; q, q

 =

 0 n is odd;

1−q
1−qn+1 (−1)n/2qn

2/4+n n is even.
(5.7.32)

Substituting (5.7.32) into (5.7.28) and combining with (5.7.27), we deduce that

1

1− q

∞∑
n=0

(−q; q)n(−q)n

(q3; q2)n
=

∞∑
n=0, n even

(−1)n/2q
3
4
n2+ 3

2
n
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=
∞∑
n=0

(−1)nq3n2+3n. (5.7.33)

Replacing q by −q in (5.7.33) and noting that 3n2 + 3n = 3n(n+ 1) is always even,

by (5.7.26) we complete our proof.
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