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Summary

This dissertation reports three distinct pieces of work for uncertainty quantifi-

cation in engineering optimization applications using statistical methods. The

purpose of engineering optimization is to choose a set of settings for the design

factors of the system such that the system performance is optimized. To analyze

and optimize an engineering system, a mathematical model is typically con-

structed based on technical knowledge of how the engineering system operates

and some available data. However, the presence of various types of uncertainty

in the engineering optimization process has brought many challenges in mak-

ing a reliable decision. These uncertainties include the inherent randomness in

physical observations, modeling uncertainty (discrepancy between the mathe-

matical model and actual system), or parameter uncertainty arising from lack

of information or the ambiguity in the definition of certain parameters. In this

dissertation, only the modeling of the inherent randomness, the modeling uncer-

tainty and the parameter uncertainty in the system performance function was

covered.

The third chapter of this thesis is motivated by modeling data from a semi-

conductor manufacturing experiment. The objective is to correlate the wafer

defects with the design factors and to identify the optimum design setting. Since

the experiment is conducted on a high-quality manufacturing line, 96 percent of

the observations are zeros. It is known that zero-inflated data are very non-

informative because they provide little information on the system randomness.

Other than the zero-inflation, three different types of variations are also iden-

tified from this data. In this chapter, a multilevel zero-inflated model and its

inference method are proposed for modeling the inherent randomness arising in

the near zero-defect manufacturing process.

In engineering optimization problems, the estimation of the optimum setting

is the ultimate goal. For a process with various variations, the main concern is

that the obtained optimum setting may suffer from large estimation uncertainty.
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And an efficient experiment should collect data informative about reducing the

estimation uncertainty of the optimum setting instead of the whole regression

model. Hence, in the fourth chapter, a Bayesian optimal design framework is

developed for the efficient estimation of the optimum setting. The developed

framework employs a Shannon information utility measure to quantify the re-

duction in the uncertainty of the optimum setting from an experiment.

The fifth chapter looks into the parameter uncertainty problem in the objec-

tive function of computer model-based engineering optimization problem. When

using stochastic computer models for engineering optimization, a frequently en-

countered but ignored problem is that the objective function may contain some

uncertain parameters. In this work, we leverage on the flexible and efficient

radial basis function metamodel and a novel experimental design approach to

model the objective function as a function of both the design factors and the

uncertain objective function parameters. In this way, the system can be easily

optimized under different choices of the uncertain parameters. This facilitates

the modeling and reduction of the parameter uncertainty in the objective func-

tion.

These three developed methodologies together contribute to the modeling of

uncertainty in engineering optimization process.

Keywords: engineering optimization, process variation, parameter uncertainty,

multilevel zero-inflated model, Bayesian optimal design, Shannon information,

objective function uncertainty
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CHAPTER 1

INTRODUCTION

1.1 Uncertainties in engineering optimization

The purpose of engineering optimization is to choose a set of settings for

the design factors of the system such that the system performance is optimized.

To analyze and optimize an engineering system, a mathematical model is typ-

ically constructed based on technical knowledge of how the engineering system

operates and some available data. However, the presence of various types of

uncertainty in the engineering system has brought many challenges in building

an accurate model for predicting and optimizing the system performance. The

proper modeling of the uncertainty in the investigated engineering system is es-

sential for reliable and robust design decision making.

In engineering optimization applications, there are two broad types of uncer-

tainty: namely, the aleatory uncertainty and the epistemic uncertainty.

Aleatory uncertainty is the uncertainty associated with the natural random-

ness in a process. For example, flipping a coin and predicting either head or tail

is aleatory uncertainty. This type of uncertainty is inherent to the problem and

cannot be reduced. This uncertainty type is characterized by a probability dis-

tribution and is typically addressed by collecting a large number of observations.

To describe the probability distribution uniquely, the parameters indexing the
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distributions need to be estimated based on the collected observations. Using

these parameter estimates, the uncertainty in the model predictions can then be

evaluated through statistical inference methods such as bootstrapping. Hence,

the estimation of the distribution parameters is itself a major component of the

uncertainty analysis. However, the number of observations one can collect is

often restricted by the limited resources. Hence, efficient collection of data using

techniques such as optimal design will provide more accurate information about

the distribution parameters and can lead to high confidence in choosing the op-

timum setting for engineering optimization.

Epistemic uncertainty is the uncertainty arises from insufficient knowledge

about the processes which could be reduced with more time and resources. A

lack of knowledge about the underlying processes means that we must adopt

models that reflect our best understanding but which are actually inaccurate.

For example, when using finite element analysis for structural design, many ide-

alized assumptions about the material and geometry are made, leading to a

discrepancy between a computer model prediction and the actual system behav-

ior. To reduce the uncertainty arises from inaccurate modeling of the system,

one possibility is that a large set of functional bases could be assumed to be

adequate for describing the functional relationship between the design factors

and the process responses. For this type, model selection techniques or Bayesian

model averaging can be used to reduce the modeling uncertainties.

Moreover, epistemic uncertainty also arise from model parameters which may

be unknown, unmeasurable or only indirectly observed. This parameters uncer-

tainty comes in two classes. One is the uncertain parameters that are inputs

to the mathematical model but whose exact values are unknown. For example,

when using stochastic simulation to evaluate the performance of complex stochas-

tic systems, the inputs that are used to drive the simulation are often estimated

from real-world data. The estimation error of these inputs brings epistemic un-

certainty to the model predictions. To propagate the uncertainty in model inputs

to model outputs, many numerical methods were proposed, including Bayesian

2



model average (Chick (2001)), bootstrap (Barton and Schruben (2001)), simula-

tion confidence intervals (Barton et al. (2013)), etc. The other type of parameter

uncertainty is the uncertain parameters in the system’s performance function/

objective function. In many areas of applications, the system performance func-

tion may contain some uncertain parameters, such as uncertain preference pa-

rameters for conflicting goals or difficult-to-evaluate parameters. For example,

when designing a nuclear power plant building, the cost incurred by varying rates

of leakage of radioactive material can be hard to quantify. When the objective

function contains some fuzzy part or difficult-to-evaluate parameters, a rational

procedure is to conduct sensitivity analysis (post-optimality analysis) (Wallace

(2000)). The results of sensitivity analysis provide information on how sensitive

the optimal solution is to changes in the uncertain parameters and establish the

upper and lower bounds for the uncertain parameters within which they can

vary without causing violent changes in the current optimal solution. Due to

the complexity of the engineering optimization problems, capturing this type of

uncertainty is in an early developmental stage due to the lack of computationally

efficient tools.

In this thesis, the developed three pieces of work tackle the quantification of

the process variation (aleatory uncertainty), modeling uncertainty and parame-

ter uncertainty in the objective function. The parameter uncertainty of system

inputs are beyond the scope of this thesis. The parameter uncertainty of system

inputs are beyond the scope of this thesis.

1.2 Data collection for the modeling of uncertainty

In the design and optimization of engineering systems, the system behavior

is predicted based on information from technical knowledge and available data.

A large number of data are important to accurately model the uncertainties in

the system. And these data can be collected from two different methods: (1)

physical experiment or observations; (2) computer experiment.

When physical experiments or observations are used to collect data for sys-
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tem prediction and uncertainty quantification, the following stages are typically

used: (1) selection of design factors with major effects on the system through

preliminary screening experiments or engineering knowledge, and the delimita-

tion of the design region based on the objective of the study; (2) the planning

and conducting of the physical experimental design; (3) the statistical modeling

of the experiment result; (4) the evaluation of the modeling uncertainty and

model fitness; (5) the verification of the necessity to perform follow-up experi-

ment to reduce the uncertainty. The third chapter of this thesis focuses on the

modeling of uncertainty with statistical models built from physical experiment

data. The fourth chapter focuses on efficient physical experiment data collection

for reducing the uncertainty associated with optimum setting estimation.

Computer experiments are another method for collecting data for system

prediction and uncertainty quantification. To conduct a computer experiment,

a computer model is constructed first to simulate the behavior of an engineering

system based on knowledge of how the system operates. These computer ex-

periments are useful in cases where the physical experiment of the engineering

system is very expensive to run, or the system under investigation is hypothet-

ical (to be built) such that one cannot conduct the physical experiment. The

fifth chapter of this thesis focuses on capturing the parameter uncertainty in the

objective function of computer models.

To build a computer model and conduct a computer experiment, Law and

McComas (2001) provided the following steps:

• Problem formation: define the objectives and criteria of the study; define

the performance measure of the computer model.

• Parameter specification: collect data to specify computer model parame-

ters and the distributions of the system random variables.

• Model development: develop a mathematical model; translate the mathe-

matical model to computer code; verify that the computer code executes

correctively.
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• Experiment: select the experiment design points and conduct the computer

experiments by running the computer code

• Model validation: validate the computer model by comparing the output

of the built computer model with the real system performance; update the

computer model if necessary.

The steps of data collection for the modeling of uncertainty are often highly

iterative–parts of the steps often need to be repeated many times before mak-

ing the final decision. For example, when the initial understanding of a system,

a process, or a new product is poor, a preliminary experiment is usually con-

ducted first to collect data about the uncertainties of the system. Based on the

initial data, analysis tools such as plausible reasoning, hypothesis test or model

selection can be used to identify the sources/characteristics of the uncertainties

and determine the shape of the response surface. Often, however, as the pre-

liminary experiments are conducted on a small scale, the uncertainties can be

inadequately described or can be too large. Hence, additional budgets for con-

ducting follow-up experiments can be allocated to collect data to better describe

or reduce the uncertainties. These steps are repeated until some satisfactory

results are obtained.

1.3 Objective and significance

Uncertainty quantification in engineering optimization appears in many ar-

eas of application and brings many challenges in both concept and computation.

Motivated by several engineering optimization applications, we summarizes some

of the current research gaps for the modeling of uncertainty in engineering op-

timization problems. The summary focuses on the process variation(aleatory

uncertainty), modeling uncertainty and parameter uncertainty in the objective

function. The parameter uncertainty in inputs of mathematical models are be-

yond the scope of this thesis.
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• One type of engineering optimization problems is to optimize the high-

quality manufacturing process. For example, wafers are generally manu-

factured in a near zero-defect manufacturing line. Yet, further reduction

of the defect rate through optimizing the process would make the product

more competitive and bring enormous economic benefits. In such pro-

cesses, the experimental measurements are characterized by zero-inflation.

It is known that zero-inflated count data are very non-informative be-

cause they provide little information on the inherent randomness. In such

processes, the parameter estimation can be highly biased and unstable.

Besides the excessive zeros, the manufacturing processes are often charac-

terized by various types of process variations. As a result, the estimated

optimum setting would suffer from large prediction error if these varia-

tions/uncertainties are not modeled properly. However, there are currently

no statistical procedures that can model both the zero-inflation and the

various types of process variations together effectively. In addition, in the

current study of data modeling for engineering optimization applications,

very few works investigate the mechanism causing the randomness to arise

and attempt to develop a probability distribution of the random variable

based on engineering knowledge. Compared to simply assigning some typi-

cal distributions based on statistical testing, concurrently analyze the data

and the underlying process would facilitate a model more loyal to the true

process and reduce the modeling uncertainty.

• In many engineering optimization problems, the determination of the opti-

mum setting yielding best system performance is the ultimate goal. There-

fore, the data collection step should serve to reduce the estimation un-

certainty of the optimum setting instead of the overall predictive model.

Currently, most of the research on experimental design has been focused

on collecting information on reducing the uncertainty of the overall predic-

tive model. For example, the well-known D-optimality criterion (Chaloner

and Verdinelli (1995); Dror and Steinberg (2008); Gotwalt et al. (2009);

6



Russell et al. (2009)) assigns equal degree of importance to all elements of

the model parameters, regardless of their influence on the optimum set-

ting. However, the optimal designs for a globally well estimated model

may not be the ‘best’ with regards to reducing the uncertainty of the op-

timum point. Although many published articles are available on finding

the optimum point in a sequential experiment (Box and Wilson (1951);

Chatterjee and Mandal (1981); Liyana-Pathirana and Shahidi (2005)), lit-

tle work has been published on batch experiment design in which all design

points need to be chosen before conducting the experiment. On the other

hand, research on batch experimental design for this topic has been lim-

ited to assuming the optimum point being a stationary point (see Chaloner

(1989); Mandal and Heiligers (1992); Pronzato and Walter (1993); Fedorov

and Müller (1997)). However, in many practical instances, the design re-

gion and hence the optimum point is limited within a constrained region

of interest. In such cases, the optimum point can be located at the bound-

aries when the stationary point is a saddle point or be located outside the

region of interest. Therefore, a more general treatment which relaxes the

restrictive stationary point assumption on the optimum point is desired.

• In the design of complex engineering systems, a frequently encountered but

often ignored problem is that the objective function representing system

performance may contain some uncertain parameters, such as uncertain

trade-offs (weights) among conflicting goals or difficult-to-evaluate parame-

ters. In the optimization literature, an ideal procedure for a multi-objective

problem is the posteriori approach (Burke and Kendall (2013)), in which

a set of different trade-off optimal solutions is first obtained and then a

multiple-criterion decision-making technique (such as using high-level in-

formation) (Deb and Sundar (2006)) is used to analyze the solutions to

choose a most preferred solution. Likewise, when the objective function

contains some difficult-to-evaluate parameters, a rational procedure is to

conduct sensitivity analysis (post-optimality analysis) (Wallace (2000)).
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As pointed by Burke and Kendall (2013), the classical methods use a dif-

ferent philosophy such that the objective function uncertainty is artificially

forced out of sight, mainly due to a lack of suitable optimization tools to

obtain many optimal solutions efficiently. Development of computationally

efficient solution to capture this objective parameter uncertainty is hence of

great importance to facilitate robust decisions in engineering optimization

problems.

Motivated by several engineering optimization applications, this thesis intends

to solve three aspects of the quantification of uncertainty in engineering opti-

mization. To be specific, the following problems are to be solved:

• The development of a multilevel zero-inflated model that provides a data

analysis tool for zero-inflate defect data collected from a high-quality man-

ufacturing line with multilevel process variations. This model should be

able to describe the characteristics of various types of variations in a near

zero-defect manufacturing process. Model inferential procedures such as

parameter estimation methods and parameter uncertainty quantification

tools should be provided.

• The development of a Bayesian optimal designs framework for the efficient

estimation of the optimum setting of an engineering system. The devel-

oped framework should collect data that is informative for reducing the

uncertainty of the estimation of the optimum setting. The efficient eval-

uation method of the proposed design criterion should also be developed

to facilitate the implementation of the developed framework in practical

applications.

• To properly capture the parameter uncertainty in the system performance

function, the most straightforward method should be to optimize the sys-

tem many times with various settings of the uncertain parameters. How-

ever, for a time-consuming stochastic computer model, this would usually

incur extensive computational burden. A computationally efficient tool

8



should be developed to obtain many optimal solutions efficiently for differ-

ent choice of the uncertain parameter in the system performance function.

The results of this thesis may provide more efficient tools for capturing and re-

ducing the uncertainties in engineering optimization problems. More specifically,

the tools developed in this thesis may help in improving

• The modeling of the uncertainties in multilevel high-quality manufacturing

process.

• The reduction of the uncertainty in estimating the optimum settings of a

system through efficient experimental design.

• The determination of an optimal system setting that is robust to param-

eter uncertainty in system performance function through computationally

efficient tools.

1.4 Organization

This thesis contains 6 chapters. In Chapter 2, a literature review is pro-

vided for regression models for system defects data analysis, experimental design

method for reducing the uncertainties in engineering optimization, and parame-

ter uncertainty in system performance function.

In Chapter 3, we built a multilevel zero-inflated model motivated by solving

a real engineering optimization problem from a local semiconductor company.

Specifically, we extend the zero-inflated model, which assumes the system ran-

domly shifts between a zero state and a count state, to a multilevel model to

capture the low failure observation and multilevel variations in a high-quality

manufacturing line. To develop this multilevel model, we first analyzed the

mechanism causing the uncertainty in the state shift to determine at which level

the state shift occurs. Then, the distribution describing the uncertainties in the

count state is derived based on the underlying mechanism of the engineering

problem. And finally, flexible distributions of random effects are incorporated
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into the model to account for the non-normal variations. An approximate Adap-

tive Gaussian Quadrature EM algorithm is then proposed to estimate the param-

eters of the model. The formulas for calculating the uncertainty in estimating

the parameters are also derived. Our analysis of the process and development of

the model enables reducing of the modeling uncertainty and accurate modeling

of the aleatory uncertainty.

In Chapter 4, we focus on the development of Bayesian optimal designs for

the efficient estimation of the optimum setting of an engineering system. The

developed framework employs a Shannon information utility measure to quan-

tify the reduction in the uncertainty of the optimum setting from an experiment.

To evaluate the developed utility measure, we provide an efficient approxima-

tion method based on decomposing the criterion into the utility measure for D-

optimal criterion and a ‘missing information’ term which can be estimated using

Monte Carlo without a nested structure. This approximation greatly reduces

the computational burden of a pure MCMC algorithm and makes searching for

the optimal design feasible. We motivate, develop, and illustrate this framework

with an example from semiconductor manufacturing, where the design objective

is to optimize the etching step to reduce the surface defects on the wafers.

In Chapter 5, we look into metamodel-based optimization of stochastic com-

puter models where there are uncertain parameters in the objective function.

These uncertain parameters may come from difficult-to-evaluate parameters in

the cost function or the subjective trade-off parameters between conflicting goals

such as the scale parameters in desirability function. We employ a flexible and

efficient radial basis function metamodel to model the objective function as a

function of both the design factors and the uncertain objective function param-

eters. We propose the use of a design that is a Cartesian product of a design for

the design factors and a design for the uncertain parameters. This allows us to

derive a fast fitting algorithm to construct the RBF metamodel. To illustrate

the effectiveness of the developed tools in solving practical problems, they are

applied to optimize a drug delivery system with conflicting goals.
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Finally, Chapter 6 summarizes these studies for capturing the uncertainties

in engineering optimization and provides some directions for future work.
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CHAPTER 2

LITERATURE REVIEW

In this thesis, the first work focuses on the modeling of zero-inflated count

data with multilevel variations. The second work focuses on efficient data col-

lection for reducing the uncertainty associated with optimum setting estimation,

and the third work builds a solution to capture the parameter uncertainty in

objective function of computer models. These problems account for several im-

portant research gaps in uncertainty modeling in engineering optimization prob-

lems. In this chapter, we review the previous works on these topics.

2.1 Review of regression analysis for modeling pro-

cess variations in count data

The first work of this thesis is motivated by modeling the physical experiment

data for improving the integrated circuits design. The experiment collects wafer

defect data for different settings of the design factors. A preliminary analysis

of the data identified two characteristics of the collected defective count: exces-

sive zeros and multilevel variations. It is known that zero-inflated data are very

non-informative because they provide little information on the randomness and

make the modeling of the uncertainties extremely difficult. These two character-
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istics are common in high-quality manufacturing lines that are subjected to multi

sources of inherent uncertainty. Typically, the defective counts are modeled by

the generalized linear models (GLMs) such as the Poisson regression model. In

high-quality manufacturing processes, however, standard GLMs can consider-

ably overestimate the probability of zeros. The zero-inflated family of models

were proposed by Mullahy (1986), Lambert (1992) and Greene (1994) to han-

dle this extra uncertainty induced by excessive zeros. Zero-inflated (ZI) models

(Lambert (1992)) assume the distribution of the response is a mixture of a point

mass at zero and a count distribution. Lambert (1992) examined zero-inflated

defects in manufacturing, noting that one interpretation for the excessive zeros

is that changes of unobserved factors may cause the process to shift randomly

between a zero state in which defects are nonexistent and a count state in which

defects can occur according to a Poisson distribution. Hurdle models (Mullahy

(1986)) take a slightly different approach: they combine a zero component with

a truncated count distribution.

In the presence of multilevel process variations and underlying heterogeneity

, extensions of the ZI models to the multilevel modeling are desired. Hall (2000)

extended Lambert (1992)’s ZI model to a mixed effect model by incorporating a

normally distributed random effects into the log-linear parts of the ZI model to

capture the block level uncertainty. They were motivated by an example from

horticulture, where count data with excess zeros were collected in an experiment

with blocks. Although directly incorporating normally distributed random ef-

fects in the ZI models is convenient, it can, however, cause problems in certain

situations. Furthermore, for engineering optimization problems where the opti-

mum setting is of interest , a wrong assumption on the random effects can lead

to a poor estimation of the optimum setting, as this optimum point is function-

ally dependent on the mean of the random effects in the ZI model. Currently,

however, there are no straightforward approaches to incorporate a more flexible

distribution to capture various types of variations in manufacturing line.
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2.2 Review of Bayesian experimental design for effi-

cient estimation of optimum point

As computational power has evolved over the decades, the development of

Bayesian experimental design is facilitating more complex design problems to be

solved. The Bayesian framework provides a unified approach for incorporating

prior information regarding the statistical model, with a utility function describ-

ing the experimental objectives.

One of the most commonly used formation of utility function for Bayesian

design criteria is the mutual information (Lindley et al. (1972)). From a Bayesian

point of view, Lindley et al. (1972) suggested that an efficient way of experimen-

tal design is to specify a utility function reflecting the value of the experiment,

regard the design choice as a decision problem, and select a design that maxi-

mizes the utility.

Specifically, the Bayesian optimal design e˚, maximizes the expected utility

function Upeq over the experimental design space XE with respect to the future

observations ye P Y and model parameter θ P Rp:

e˚ “ argmaxePXEEtUpe,θ,yequ

“ argmaxePXE

ż

Y

ż

Rp

Upe,θ,yeqppθ|e,yeqppye|eqdyedθ
(2.1)

For example, the well-known Bayesian D-optimality criterion (Chaloner and

Verdinelli (1995); Dror and Steinberg (2008); Cook et al. (2008); Lewi et al.

(2009); Drovandi et al. (2013); Huan and Marzouk (2013); Ryan et al. (2014))

seeks to maximize the mutual information between the observations and the

parameter vector. This criterion puts equal attention to all elements of the

parameter vector, regardless of their influence on the potential measurement of

interest. However, it is of great importance that the utility function incorporates

the specific experimental objectives and is specific to the application of interest.

For example, the utility function for efficient estimation of parameter may not

perform well when the design objective is to reduce the prediction uncertainty.
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Therefore, other utility functions such as utilities for model discrimination (Box

and Hill (1967); Ng and Chick (2004); Cavagnaro et al. (2010); McGree et al.

(2012)) and utilities for prediction of future observations (Zidek et al. (2000);

Solonen et al. (2012); Liepe et al. (2013) have been proposed to incorporate spe-

cific design objectives.

Nevertheless, the literature on Bayesian optimal designs for estimating op-

timum points is scarce despite the fact that many engineering problems have

estimation of optimum settings as their ultimate goal.

Although many published articles are available on finding the optimum point

in a sequential experiment (Box and Wilson (1951); Chatterjee and Mandal

(1981); Liyana-Pathirana and Shahidi (2005)), these algorithms can not be used

when the experiment is not sequential in nature, as dictated by practical con-

straints. Box and Wilson (1951) initiated the research on sequentially attaining

optimum point by estimating the first derivatives of the response surface and

moving toward the optimum with the path of steepest ascent defined by previ-

ous estimates. However, this sequential search method would not be applicable

to many manufacturing and clinical experiments where measurements are carried

out simultaneously in a batch (for example, see Millette et al. (1995); Ruiz et al.

(2013)). In such cases, all the design points have to be chosen without feedback

information. On the other hand, research on batch experimental design for this

topic has been limited to assuming the optimum point being a stationary point

(Chaloner (1989); Mandal and Heiligers (1992); Pronzato and Walter (1993); Fe-

dorov and Müller (1997)). For example, Chaloner (1989); Mandal and Heiligers

(1992) studied the problem with linear regression models, and assumed that the

optimum point was a stationary point and can be written as a closed form func-

tion of the model parameters. However, in many practical instances, the design

region and hence the optimum point is limited within a constrained region of in-

terest. In such cases, the optimum point can be located at the boundaries when

the stationary point is a saddle point or be located outside the region of interest.

Currently there are no design criteria that relax the restrictive stationary point
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assumption on the optimum point.

The reason that Bayesian optimal design has been limited to simple utility

functions mainly because of the computational burden to perform the integra-

tion and maximization of equation 4.1. To evaluate the Bayesian utility function,

one must estimate the posterior distribution ppθ|e,yeq. Generally, thousands of

these posterior distributions must be calculated for each potential future exper-

imental observations ye, which is drawn from the prior predictive distribution

ppye|e,θqppθq. To evaluate these posterior distributions, many computational

strategies have been proposed. These include Laplace approximation Chaloner

and Verdinelli (1995); Long et al. (2013); smoothing of Monte Carlo simulations

(Müller (2005)), Markov Chain Monte Carlo (MCMC) (Ryan (2003); Müller

(2005)); and sequential Monte Carlo methods (Amzal et al. (2006)).

In the case where the utility function represents the information gain on the

optimum point, the posterior distributions of the optimum point are required to

be calculated. And the conditions for normal approximation are no longer satis-

fied, the Chaloner and Verdinelli (1995)’s method can not be directly followed.

On the other hand, it can be too computationally intensive to perform Monte

Carlo to estimate the posterior distribution of optimum point for each of the

thousands of iterations required in the optimal search algorithms.

To broaden the applicability of Bayesian optimal design by making it more

accessible to practitioners, efficient evaluation of the utility function is desirable.

2.3 Review of the objective function uncertainty prob-

lem of stochastic computer models

With the constantly upgraded computing power, stochastic computer mod-

els are becoming important tools for understanding and optimizing engineering

systems that are analytically intractable and subject to random fluctuations.

These tools have been recently successfully applied to many engineering opti-

mization applications including the integrated photonic filters design in electrical
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engineering (Weng et al. (2017)), aerospike nozzle design in aerospace engineer-

ing(Stevens and Branam (2015)), continuous stirred-tank (CSTR) reactor design

in chemical engineering (Ding et al. (2010)), etc.

An ideal case would be such that the design engineer or the investigator

has complete knowledge for determining the objective functions for optimizing

the system performance. However, this may not always be true especially when

analyzing complex engineering systems. In many areas of applications, there

are multiple objectives or difficult-to-evaluate parameters in the objective func-

tions (for example Ristow et al. (2005); Pant et al. (2011); Bozsak et al. (2015)).

When multiple objectives need to be optimized simultaneously, the most popular

method is to form a composite objective function through weighted sum (Marler

and Arora (2010)) or desirability functions (Wu (2004); Park and Kim (2005)),

where a weight or scale parameter proportional to the user preference is as-

signed to a particular objective. However, the determination of these preference

parameters is usually highly subjective and not straightforward. It requires an

investigation of the qualitative and experience-driven information to determine

the quantitative preference parameter values. Without the possible trade-off

optimal solutions in hand, this is an even more challenging task. Besides these

uncertain preference parameters, the uncertainty in an objective function may

also come from the difficult-to-evaluate parameters. For example, when design-

ing a nuclear power plant building, the cost incurred by varying rates of leakage

of radioactive material can be hard to quantify (Korsakissok et al. (2013)). And

a change in the potential cost will possibly result in a totally different optimal

solution. This objective function uncertainty problem appears in various areas

of application and brings many challenges in both concept and computation.

When dealing with this uncertainty problem, the current development of

stochastic computer models mainly focuses on replacing the uncertain parame-

ters by some estimates and assuming the objective function is precisely deter-

mined, for example, see Humphrey and Wilson (2000); Cao et al. (2004); Ristow

et al. (2005); Kleijnen (2014); Weng et al. (2017). By such a choice, the uncer-
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tainty is pushed out of sight through approximating the uncertain parameters

by some particular estimates, such as decision maker’s preference information,

expert judgment, historical records, or a sample mean. Meanwhile, the inferen-

tial procedure for other choices of the uncertain parameters is simply ignored.

However, unless a reliable preference or accurate estimate is available, the opti-

mal solution obtained by such methods would be highly subjective to the specific

investigator or largely sensitive to the choice of the estimates(Wurl and Albin

(1999)).

In the optimization literature, an ideal procedure for a multi-objective prob-

lem is the posteriori approach (Burke and Kendall (2013)), in which a set of dif-

ferent trade-off optimal solutions is first obtained and then a multiple-criterion

decision-making technique (such as using high-level information) (Deb and Sun-

dar (2006)) is used to analyze the solutions to choose a most preferred solution.

This is because any two different optimal solutions (such as Pareto-points) rep-

resent different trade-offs among the objectives, and the decision maker would

be in a better position to balance risk when such choices are presented. Like-

wise, when the objective function contains some difficult-to-evaluate parameters,

a rational procedure is to conduct sensitivity analysis (post-optimality analysis)

(Wallace (2000)). For example, when the cost of failure is uncertain, it is impor-

tant for the investigator to know how profit would be affected by a change in the

potential failure cost. The results of sensitivity analysis provide how sensitive

the optimal solution is to the change in the uncertain parameters and establish

the upper and lower bounds for the uncertain parameters within which they can

vary without causing violent changes in the current optimal solution.

As pointed by Burke and Kendall (2013), the classical methods use a different

philosophy such that the objective function uncertainty is artificially forced out of

sight, mainly due to a lack of suitable optimization tools to obtain many optimal

solutions efficiently. To properly capture this uncertainty, the most straightfor-

ward method should be to optimize the system many times with various settings

of the uncertain parameters. However, for a time-consuming stochastic com-
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puter model, this would usually incur extensive computational burden. In the

context of multi-objective optimization, an alternative solution is the interac-

tive approach (Deb et al. (2010); Boyle and Shin (1996)), in which the decision

maker’s responses to specific questions were used iteratively to guide the solution

towards the preferred part of the Pareto-optimal region. Although this method

reduces the computational burden of optimizing the system repeatedly for many

different uncertain parameter choices, it requires a lot of cognitive efforts of the

decision maker. Moreover, when the modeler and the decision maker is not the

same person, this method can be infeasible or very inefficient.

20



CHAPTER 3

A MULTILEVEL ZERO-INFLATED MODEL FOR

INTEGRATED CIRCUITS DESIGN

In this chapter, we focus on the development of regression and inferential

analysis methods for zero-inflated manufacturing processes. This work is mo-

tivated by modeling the results of a large-scale semiconductor experiment, for

improving the integrated circuits design.

3.1 Introduction

One type of engineering optimization problems is to optimize the high-quality

manufacturing process. For example, wafers are generally manufactured in a

near zero-defect manufacturing line. Yet, further reduction of the defect rate

through optimizing the process would make the product more competitive and

bring enormous economic benefits. In such processes, the experimental measure-

ments are characterized by zero-inflation. It is known that zero-inflated count

data are very non-informative because they provide little information on the in-

herent randomness. In such processes, the parameter estimation can be highly

biased and unstable. Besides the excessive zeros, the manufacturing processes

are often characterized by various types of process variations. As a result, the

estimated optimum setting would suffer from large prediction error if these vari-
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ations/uncertainties are not modeled properly. These two characteristics are

common in high-quality manufacturing lines that are subjected to multi sources

of variability/uncertainty. However, there are currently no statistical procedures

that can handle both these complex characteristics together effectively.

In this work, motivated by modeling the results of a large-scale semicon-

ductor experiment, we develop a multilevel zero-inflated model for modeling

observations from zero-inflated manufacturing processes. The objective of the

motivating experiment is to correlate the integrated circuits defective count with

several design factors and find the optimum setting yielding minimum defects.

Typically, when defective count data is encountered, the counts are modeled

by generalized linear model (GLM) which assumes the counts distributed as Pois-

son or Negative binomial distribution. Hamada and Nelder (1997) provides com-

prehensive guidelines on the use of GLMs for a range of applications in quality-

improvement experiments. In high quality manufacturing processes, however,

there are often many more zeros than the count distributions can predict. The

zero-inflated family of models were proposed by Mullahy (1986), Lambert (1992)

and Greene (1994). Lambert (1992) examines defects in manufacturing, noting

that one interpretation for the excessive zeros is that changes of unobserved en-

vironment factors may cause the process to shift randomly between a zero state

in which defects are non existent and a count state in which defects can occur

according to a Poisson distribution.

In semiconductor manufacturing, it has also been widely reported that there

are multi-sources of variability. For example, Stapper (1985) modeled the wafer

to wafer variation with a compound distribution that assumes the mean number

of defects per wafer behaves like another random variable with its own proba-

bility distribution P tN “ ku, where k “ 0, 1, 2, . . .. Albin and Friedman (1989)

applied a Neyman distribution to model wafer defect data that exhibits cluster-

ing. In our motivating problem, we observed that there are variations in the

layer, wafer and lot levels. In this work, the multilevel variations are handled in

three different ways. Variation among the four metal layers is modeled by a hi-
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erarchical/nested model structure. For the wafer-to-wafer variation, through in-

vestigating the observations and decomposing the distribution based on a hillock

height variable and a hillocks number variable, we conclude that it is most likely

caused by small variations in the mean number of hillocks for different wafers.

Hence, we treat the mean number of hillocks for different wafers in the same lot

as a random variable instead of a fixed parameter. This is similar to the obser-

vations and treatment of Stapper (1985). Finally, the lot-to-lot variation is the

dominant source of variation, and it was generally modeled as a normally dis-

tributed random factor Robinson et al. (2006). However, in the current case, the

lot random effect displays multi-modal and skewed distribution features. To ac-

count for this, we treat it as a random factor and adopt the semi-nonparametric

(SNP) representation proposed by Gallant and Nychka (1987) to model its dis-

tribution. This SNP density is flexible, enabling skewed, multi-modal and tailed

features to be modeled, and includes the normal as a special case.

The remainder of this chapter is organized as follows: Section 1.2 describes

the details of our motivating experiment. Section 1.3 reviews the current work

on modeling zero-inflated data. In Section 1.4, some preliminary analyses are

done to identify the key characteristics of the data, and several assumptions are

made for further model development. In Section 1.5, we link the characteristics

identified for the observations back to the underlying process, and derive the

response distribution based on the mechanism giving rise to the data. Then a

multilevel ZI model is proposed and an approximate Adaptive Gaussian Quadra-

ture EM (approximate AGQ-EM) algorithm is proposed to estimate the model

parameters, and the estimation procedure of the standard error is provided. The

algorithm’s performance is then evaluated through simulation. Finally, Section

1.6 provide a detailed analysis of the motivating problem using the proposed

model and recommendations for design.
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Figure 3.1: (a) shows a single layer of hillocks growing up from a Cu layer below
(Kang and Chou (2004)); (b) shows a Cu hillock growing from the bottom metal
line across the insulator to top metal line causing a short; (c) a magnified picture
of (b), showing the connection formed between the two layers by the copper
hillock

3.2 Motivating example

In this section, we describe the large-scale experiment in detail.

In most modern Integrated circuits (ICs) today, the back end interconnects

are made of layers of copper lines. As ICs are rapidly shrinking in size, copper

hillocks growing vertically from the copper lines may cause inter-layer metallic

shorts and reliability issues. Growth of hillocks (Figure 3.1) is an inherent part

of the manufacturing process, but these hillocks are harmless unless they grow

high enough to connect the layers. A better understanding of copper hillocks

growth is required in order to minimize shorts through wisely designing the

copper metal dimensions. In our collaborating lab, a large-scale manufacturing

experiment was conducted to explore the design factors’ effect on the formation

of hillocks through measuring the metallic shorts. By analyzing the experiment

observations and properly capturing the system uncertainties , we hope to be

able to infer how the hillocks growth process is influenced by the process condi-

tions and design factors, and recommend to designers Design For Manufacturing

(DFM) rules to ensure robust and reliable manufacturing.

From the literature, it is known that the growth of hillocks are governed

by factors such as deposition stress, heating cycling and ICs design parameters

(Herley et al. (2001); Jakkaraju and Greer (2002)). However, in a typical semi-

conductor fab, the process factors are usually fixed and little tuning can be done
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without adversely affecting the other parts of the complex process and the relia-

bility performance of the ICs. Thus, in this experiment, the width and length of

the metal layer in ICs are identified as key controllable design factors that can

be optimized to reduce copper hillocks growth. Figure 3.1b show a magnified

picture of a hillock found on a production wafer. In order to physically identify

this individual hillock, great effort has been expended by the failure analysis

team to slice through the wafer and carefully examine the cross sections under

a transmission electron microscope. Therefore, it would not be feasible to phys-

ically detect and measure each hillock in the experiment. Given the difficulty

to measure hillocks directly, an indirect method is applied, i.e. measuring the

shorts they cause.

For that purpose, an electrical test (E-Test) structure was designed. E-test

structures are purposefully designed structures that are placed along scribe lines

that lie between the ICs produced on a wafer. These structures are separate from

the ICs and do not affect their function in any way. To detect the shorts from

the structures, two layers with interlacing structures that are electrically sepa-

rate were designed. In the non-defective case where no hillocks are higher than

the the layer spacing, the two structures are separate and no current should be

detected across them. In the defective case, at least one hillock growing higher

than the layer spacing would cause a short (A detailed explanation of the E-test

structure is provided in the supplementary material).

Limited space available in the scribe lines and competition for space dic-

tated the number of designs the engineers could study. Due to this limitation,

it was decided to cover at least length and width design factors separately. Six

combinations of width and length settings were identified by the designers and

designed in the E-test structures. These coincide with the typical design settings

and range requested by customers. These structures are placed on 11 selected

sites on each wafer across the four layers: Metal1-Metal2 (Layer 1), Metal2-

Metal3 (Layer 2), Metal3-Metal4 (Layer 3) and Metal4-Metal5 (Layer 4) (see

Figure 3.2). As the metal layers are stacked one on top of another, earlier metal
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Figure 3.2: Left panel: ICs Layers; Right panel: Hillocks growing between layers

layers undergo more heat treatment and stress as more layers are capped and

processed above it. Hence, the metal layers can have an effect on the hillock

growth, and the six design settings are nested in the four metal layers in the

experiment. The design settings in the four layers are summarized in Table 3.1

below.

The experiment was conducted on 70 lots with 25 pieces of wafer in each lot.

Design Layer1 Layer2

Width Length Width Length
1 -1.48 0.68 -1.48 0.68
2 -1.00 0.68 -1.00 0.68
3 -0.35 0.68 -0.35 0.68
4 0.94 0.68 0.94 0.68
5 0.94 -0.89 0.94 -0.89
6 0.94 -1.83 0.94 -1.83

Design Layer3 Layer4

Width Length Width Length
1 -1.48 0.68 -1.48 0.68
2 -1.00 0.68 -1.00 0.68
3 -0.35 0.68 -0.35 0.68
4 0.94 0.68 0.94 0.68
5 0.94 -0.89 0.94 -0.89
6 0.94 -1.83 0.94 -1.83

Table 3.1: Experiment design: six width and length settings nested in four layers.
For confidentiality reasons, the values of width and length have been centered
by their means and scaled by their standard deviations.

From each E-test structure, an independent binary observation for binary vari-

able yilwsd, of design d, site s, wafer w, layer l, and lot i was obtained. Figure 3.3

shows the multilevel structure of the wafer manufacturing line. In this multilevel
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Figure 3.3: multilevel structure of wafer manufacturing line

Figure 3.4: hierarchy structure of wafer manufacturing experiment

experiment, the 6 design settings are crossed in four layers and these four layers

are crossed in 70 lots. Meanwhile, 11 sites are nested in each wafer and 25 wafers

are nested in each of the 70 lots. Graph 3.4 plots this hierarchical structure and

Table 3.2 details the index and observation numbers for the experiment.

One major consideration in the experiment is the multiple sources of varia-

lot layer wafer site design observations
Index i l w s d yilwsd
Number I=70 L=4 W=25 S=11 D=6 n=462000

Table 3.2: Experiment observations

tions. To get a practical and accurate analysis result, these variations should be

either controlled or modeled appropriately. Typical ICs are produced through a

series of processes, including lithography, etch, deposition, polishing and clean-

ing. Each of these processes can add process variability to the final product.

Steps like in-line control are taken to reduce variation and ensure stability of

the production line. Listed below are four types of variability identified in our
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experiment:

1. Site level variability: In the experiment, 11 sites on the wafers are mea-

sured, including the sites in the center and on the edges. Potential site

level variability can be caused by the occasional uneven circular patterns

from the center of the wafer.

2. Layer level variability: As stated, the layer level variability is caused by

the earlier metal layers undergoing more heat treatment and stress. This

level of variability is identified as a nested effect.

3. Wafer level variability: Wafers are typically processed in lots of 25, and

wafers in the same lot tend to go through the same manufacturing tools (al-

though sometimes through different chambers), and have the same amount

wait time between processing. However, due to the possible different cham-

bers used, there can be some wafer-to-wafer variation in terms of thickness

deposited, thickness removed etc.

4. Lot level variability: Wafers in the fab are grouped into lots of 25 and are

processed together. Hence they are relatively uniform across a lot. The lots

however tend to vary from one to another due to their processing on differ-

ent tools and conditions. This type of process variation is potentially the

largest among the variations. Hence adequately capturing and modeling it

is important for identifying the key features of the process.

3.3 Review of literature

Typically, when defective counts data are observed, generalized linear models

(GLMs) such as Poisson regression model are adopted to fit the data. Hamada

and Nelder (1997) provided comprehensive guidelines on the use of GLMs for

a range of applications in quality-improvement experiments. However, in high-

quality manufacturing processes, the observed defective counts would often con-

tain excessive zeros. When the number of zeros is greater than it can be predicted
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from a standard count distribution such as the Poisson or the Negative Binomial

distribution, the data are said to be zero-inflated. In this situation, the com-

monly used models such as Poisson regression can underestimate the probability

of zero and hence make it difficult to identify significant control factors’ effects

and lead to poor prediction. Zero-inflated (ZI) model and hurdle model for fit-

ting zero-inflated count data were proposed by Mullahy (1986), Lambert (1992)

and Greene (1994).

In this section, we first describe these two models in detail and explain the

suitability of the ZI model for modeling the ICs experiment observations in hand.

Then we reviewed ZI/hurdle model with random effects. Following that, estima-

tion methods for ZI/hurdle model with random effect were reviewed.

3.3.1 Zero-inflated regression model

Lambert (1992) examined defects in manufacturing, noting that one interpre-

tation for the excessive zeros is that changes of unobserved environment factors

may cause the process to shift randomly between a zero state in which defects

are nonexistent and a count state in which defects can occur according to a Pois-

son distribution. In the current problem, the formation of shorts are caused by

hillocks growing higher than the threshold between layers, see Figure 3.1. Specif-

ically, copper hillocks shorter than the spacing between upper and lower layer

(threshold height) are harmless as they do not cause shorts, and only hillocks

grown higher than the threshold cause a current short. Hence, if the height

density of the hillocks grown has a maximum height of less than the threshold

height, regardless of the number of hillocks grown, the process will be in a per-

fect zero defect state (no short). If however, the height density has a maximum

height larger than the threshold, then the process can be viewed as in a non-

perfect (defect) count state, with hillocks potentially causing shorts. Lambert’s

ZI model was used to model zero-inflated data in many applications (Böhning

et al., 1999; Cheung, 2002; Hasan and Sneddon, 2009).

The ZI model assumes that data are from a mixture of a point mass at zero
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distribution and a regular count distribution, such as the Poisson distribution

or the Negative Binomial distribution, etc. These two states are also called zero

state and count state. In this model, there are two sources of zeros: zeros from

the point mass at zero, and zeros resulting from the count distribution. To model

which state the independent observations yipi “ 1, ¨ ¨ ¨ , nq comes from, a state

indicator variable mi is used:

mi “

$

’

’

&

’

’

%

0 yi is from the zero state

1 yi is from the count state

(3.1)

When the count state is modeled by a count distribution gp¨|µiq with mean µi,

$

’

’

&

’

’

%

P pyi “ 0q “ 1´ pi ` gp0|µiq 0 ď pi ď 1

P pyi “ kq “ pigpk|µiq k “ 1, 2, . . .

(3.2)

With linear predictors Z 1i1 and Z 1i2 , pi and µi are typically modeled by

logit ppiq “ Z 1i1β and log pµq “ Z 1i2α (3.3)

where β and α are coefficients corresponding to the logit and log components

of the model respectively, and the predictors Z 1i1 and Z 1i2 are not necessarily the

same.

The likelihood function is

Lpβ,αq “
n
ź

i“1

r1´ pipβqs
1´mirpipβqgpyi;µipαqqs

mi (3.4)

To obtain the estimates, an EM algorithm was derived by Lambert (1992).

3.3.2 Hurdle models

The hurdle model, proposed by Arulampalam and Booth (1997) and Mullahy

(1986) uses a two-stage modeling strategy. The first stage models the binary out-

come of whether the response has a zero or a positive realization. If the realiza-
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tion is positive, the ‘hurdle’ is crossed. The second stage uses a truncated-at-zero

distribution to model the randomness in the positive observations. Applications

include a Mexico health care utilization study used a zero-truncated NB hurdle

model for predicting health care demand (Brown et al. (2005)).

For independent observations yipi “ 1, ¨ ¨ ¨ , nq, suppose the probability of yi

being positive is φi, and the positives yi|yi ą 0 follows a truncated-at-zero count

distribution, such as a truncated Poisson or truncated NB. For truncated Poisson

hurdle model, the distribution is:

$

’

’

&

’

’

%

P pyi “ 0q “ 1´ φi 0 ď φi ď 1

P pyi “ kq “ φi
e´λiλki {k!

1´e´λi
k “ 1, 2, . . .

(3.5)

Similar with ZI model, regression structure is also built into the model through:

logit pφiq “ Z 1i1β and log pλiq “ Z 1i2α (3.6)

where the covariates Z 11i and Z 12i appearing in the logistic and log components

are not necessarily the same.

The likelihood function is

Lpβ,αq “
n
ź

i“1

r1´ φipβqs
Ipyi“0qrφipβq

e´λipαqλipαq
yi{yi!

1´ e´λipαq
s1´Ipyi“0q (3.7)

where Ip¨q is the indicator function.

The log-likelihood can be write into two terms,

lpβ,αq “ l1pβq ` l2pαq (3.8)

where,

l1pβq “
ÿ

yi“0

rlog p1´ φipβqs `
ÿ

yią0

rlog φipβqs (3.9)
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is the log likelihood function for the binary part, and

l2pαq “
ÿ

yią0

r´λipαq ` yi logpλipαqq ´ logpyi!q ´ logp1´ e´λipαqqs (3.10)

is the log-likelihood function for the truncated model part.

For this hurdle mode, one can obtain maximum likelihood (ML) estimates by

separately maximizing these two parts. Compared with the ZI models, hurdle

models are easier to fit, as the two model components can be fitted separately.

3.3.3 ZI model with random effects

In semiconductor manufacturing, it has also been widely reported that there

are multi-sources of variability. For example, Stapper (1985) modeled the wafer

to wafer variation with a compound distribution that assumes the mean number

of defects per wafer behaves like another random variable with its probability

distribution P tN “ ku, where k “ 0, 1, 2, . . .. Albin and Friedman (1989) ap-

plied a Neyman distribution to model wafer defect data that exhibits clustering.

In our problem, we also observed that there are variations in the layer, wafer

and lot levels.

Another method to accommodate heterogeneity is incorporating random ef-

fect to the regression model. In the split-plot experiment, the block factor levels

are chosen at random from a larger population of possible levels, and there are

wishes to draw conclusions about the entire population of block levels, not just

those that have been collected. In this situation, the block factor is said to be

a random factor. In our experiment, the lot is the random factor because the

population of lot factor levels could be seen as infinite size because in the man-

ufacturing line, there would be large enough lots been processed.

Hall (2000) extended Lambert (1992)’s ZI model to a mixed effect model by

incorporating a normally distributed random effects into the log-linear parts of

the ZI model. They were motivated by an example from horticulture, where

count data with excess zeros were collected in an experiment with blocks. Simi-
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larly, hurdle model with random effects has also been developed in the context

of modeling the clustered observations occurs with longitudinal data, where the

different subjects are the source of random effects. Min and Agresti (2005) ex-

tend the hurdle model to include random effects by incorporating random effects

into both the logistic and the log-linear parts of the hurdle model, and assume

the random effects are multivariate normally distributed.

The ZI model with random effects can be described as follows: let yij be ob-

servation jpj “ 1, . . . , niq for block ipi “ 1, . . . ,mq. To account for this block/lot

level variation, the random effects term bi “ pb1i, b2iq is incorporated into the

linear predictors of the fixed effect ZI model Equation (3.3) as latent variables.

logit ppij |biq “ Z 11iβ ` b1i

log pµij |biq “ Z 12iα` b2i

(3.11)

Generalizations to multivariate random effects for the two components are straight-

forward.

Let ψ represent the unknown parameters, the marginal log likelihood for the

ZI random effect model is:

lpψq “
m
ÿ

i“1

logLipψq (3.12)

where

Lipψq “

ż

«

ni
ź

j“1

p1´ pijq
1´mij rpijgpyijqs

mij

ff

ϕpbiqdbi (3.13)

and ϕ denotes the joint density function for the random effects.

Since bi is hidden variable and hence difficult to detect the distribution of it.

Generally ϕ is assumed to be multivariate normal distribution. However, in the

current case, the lot random effect displays multi-modal and skewed distribution

features. We would relax the normality distribution in this thesis.

To estimate ψ, the MLEs can be obtained by maximizing Equation (3.13).

This is similar with the parameter estimation of the generalized linear mixed
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models (GLMMs). The fundamental difficulty in using GLMMs is that bi is

hidden variable and no closed analytical expression for the likelihood is avail-

able. Newton-Raphson (NR)-type methods and EM are widely used to evaluate

such problems. Although the NR-type methods have faster convergence rates

than the EM method, these benefits are at the expense of numerical stability

(i.e. these algorithms may not converge unless the model provides a reasonable

good fit to the data and good initial values are used) (Dempster et al. (1977) ).

The EM algorithm, on the other hand, is very stable albeit being slow. In this

problem, we would adopt the EM algorithm to ensure more stable estimations.

Meanwhile, no matter Newton-Raphson (NR)-type methods or EM is adopted

to maximizing Equation (3.13), one first need to obtain the marginal likeli-

hood by integrating out the random effects. These integrals are analytically

intractable, and hence numerical or approximation methods must be applied. A

variety of approaches have been proposed to circumvent this difficulty in fitting

GLMMs, including approximate likelihood approaches, such as penalized quasi-

likelihood (PQL) (Breslow and Clayton (1993)), numerical approaches, such as

Laplace approximations and Gauss-Hermite quadrature (GHQ), and approaches

based on the use of Monte Carlo methods, such as Markov Chain Monte Carlo

(MCMC) techniques (McCulloch (1994)). In the ZI or hurdle model literature,

both Hall (2000) and Min and Agresti (2005) adopted the GHQ method to ap-

proximate the integrals.

In current work, we would propose to represent the distribution of random ef-

fect variable by a more flexible distribution than the normal distribution. Hence

more efficient approximation method to integrate the random effect distribution

would be proposed.

3.4 Preliminary analysis

In this section, we first explain the generating process of the excessive zeros

by a random state shift process, then identify the state shift level in the multilevel

structure. Following that, we adopt the ZI model with normal random effects
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by Hall (2000) to fit the data and show the deficiency of this model.

To facilitate the analyses, we define the aggregated variables on wafer and

lot level as yilwd “
řS
s“1 yilwsd and yild “

řW
w“1

řS
s“1 yilwsd.

3.4.1 Zero inflated observations

The most distinct characteristic of the experiment observations yilwsd is that

approximately 96 percent of them are zeros. Additionally, when we examine the

lot level count variable yild, large jumps are observed among counts across the

design factors’ different settings d. For example, at a fixed length, when width

settings vary from -1.48, -1, -0.35, 0.94, we observe counts of 0, 56, 0, 178 for a

fixed lot and layer. This implies that the expectation of yild is likely correlated

with the design factors through a jump function Epyildq “ Jilpdq, instead of a

continuous one. Traditional count models, like the Poisson regression model,

however, fail to capture these large jumps. One interpretation for these jumps

was that slight, unobserved changes in the environment caused the process to

shift randomly between a state in which defects are impossible and a state in

which defects are possible but not inevitable. To capture this shift, the zero-

inflated (ZI) model (Lambert (1992)) is the natural model to be adopted.

3.4.2 Multilevel structure and random shift level

Besides zero inflation, the observations are also characterized by a multilevel

structure due to the nature of the IC manufacturing process. In the literature,

ZI model practitioners generally directly treat the count in hand as randomly

shifting from the two states for different designs d (for example, Moghimbeigi

et al. (2008)). However, in multi-level structure cases like the problem studied

here, the system state may be the same within the lower level (site or wafer level)

while independently shifting between the zero state and the count state at the

higher level (lot level). Hence, to build a practical multi-level ZI model, an im-

portant step is to decide at which level the random shift happens. For instance,
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if it happens at the wafer level, the state indicator variable m has independent

realization for each wafer w in a lot while the values within one wafer for the S

sites are the same; if however, the random shift happens at the lot level, then

the realizations of m for the W wafers in a lot take on the same values. To

determine the random state shift level, we first examine the site, wafer and lot

level observations to draw insights.

In the experiment, for each wafer, the test structures are placed on 11 sep-

arate sites and hence, the observations obtained at each site s, s “ 1, ..., 11 are

independent binary observations, with yilwsd „ Bernoullipeilwsdq, where eilwsd

is the probability of a short for design d at site s on wafer w in layer l of lot i.

To determine if these short observations are identical across sites on the same

wafer, a Kolmogorov-Smirnov approximation test was conducted.

The common Bernoulli success probability test cannot be directly employed

here because there is only one observation from each site and 96 percent of them

are zeros. Instead, we adopt the aggregated count of site location s over all de-

signs, layers, wafers, and lots (every site summed over the same conditions), as

the test statistic. This statistic is defined as ys “
řI
i“1

řL
l“1

řW
w“1

řD
d“1 yilwsd, s “

1, ¨ ¨ ¨ , S. These ys, s “ 1, ¨ ¨ ¨ , S are from the same distribution because the ex-

periment has a balanced design, where there are Ns “ I ˚L˚W ˚D observations

yilwsd for each site s.

According to Chen and Liu (1997), when Ns is large and all eilwsd are small

but not necessarily equal (in our case, eilwsd are different due the lot, layer, and

wafer level variations), the distribution of ys can be approximated by a Poisson

distribution with mean

λs “
I
ÿ

i“1

L
ÿ

l“1

W
ÿ

w“1

D
ÿ

d“1

eilwsd (3.14)

For these sites to be identical, within the same lot i, layer l, wafer w, and design

d, the site-level probability eilwsd, for s “ 1, ¨ ¨ ¨ , S, should be equal. As the

design is balanced at all sites, this would imply that λs are also equal to each

other. Hence ys, s “ 1, ¨ ¨ ¨ , S should come from the same Poisson distribution.
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We perform the following Kolmogorov-Smirnov test for every site s:

H0 : ys „ Possionpλ0q, s “ 1, ¨ ¨ ¨ , S, where λ0 “

řS
s“1 ys
S

(3.15)

The results indicate that all the hypotheses cannot be rejected at a 0.01 level

of significance, suggesting that the ys at all S sites follow a Poisson distribution

with the same mean λ0.

The results indicate that they are identically distributed with eilw1d “ ¨ ¨ ¨ “

eilwSd. We hereby drop the site index s and denote this probability as eilwd.

Hence, for all S “ 11 sites on the same wafer, if eilwd “ 0, then yilwsd “ 0

indicating that the system is in the zero state; and if eilwd ą 0, then yilwsd
iid
„

Bernoullipeilwdq, resulting in yilwd „ BinomialpS, eilwdq. This also leads us

to conclude that the random shift in the ZI model does not occur at the site

level. Following the i.i.d observations at the site level, further examination of

the data shows that, for fixed lot i, layer l and design d, observations yilwd for

wafer w “ 1, ¨ ¨ ¨ ,W are either all zeros or all positives. This suggests that the

short probability eilwd, for wafer w “ 1, ¨ ¨ ¨ ,W are either all zeros or all larger

than zero, indicating that the state indicator variable milwd are not independent

among different wafers in the same lot, but instead, they share the same value

for all wafers in the same lot. Hence this leads to a conclusion that the random

shift in ZI model does not happen at the wafer level. Finally, at the lot level,

as described in the subsection 3.4.1, we observe large jumps in yild, hence the

random shift occurs at the lot level.

To model this shift and at the same time ensure that the indicator variable

milwd has the same realization within a lot for the W different wafers, we treat

the lot level shorts count yild as the response variable. In the zero state, eilwd “ 0

and yilwd “ 0, w “ 1, ¨ ¨ ¨ ,W , hence yild has a point mass at zero distribution;

in the count state, eilwd ą 0, w “ 1, ¨ ¨ ¨ ,W and hence yild follows a count

distribution gp¨|µq.

Although there is no wafer variation on milwd, w “ 1, ¨ ¨ ¨ ,W , conditioned on

milwd ą 0, we allow for the probabilities eilwd, w “ 1, ¨ ¨ ¨ ,W within the same
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lot to be different, as we observed that the counts from different wafers (for the

same design and layer) can be quite different. This is similar to observations by

Stapper (1985) who noted that very seldom do all wafers have the same mean

number of defects on them due to the nature of ICs manufacturing lines, and

this should be properly accounted for in the model. We explain how to address

this in the model development section.

3.4.3 Initial model fit

In our split-plot experiment, lot is a block factor and should be modeled as

a random effect. Hall (2000) extended Lambert (1992)’s ZI model to a mixed

effect model by incorporating normally distributed random effects into the ZI

model. They were motivated by an example from horticulture, where count data

with excess zeros were collected in an experiment with blocks. Here, we initially

consider this model to describe the data in hand. Additionally, since in our

problem the design parameters are nested within four ICs layers, we would allow

the coefficients to vary among these layers. Speacially, let yild be observation

dpd “ 1, . . . , Dq for layer l “ 1, 2, 3, 4 and lot ipi “ 1, . . . , Iq. To account for this

lot level variation, the random effects term bi “ pb1i, b2iq is incorporated into the

linear predictors as latent variables:

logit ppild|biq “ Z 11ildβl ` b1i

log pµild|biq “ Z 12ildαl ` b2i, l “ 1, 2, 3, 4

(3.16)

Since b1i and b2i are hidden variables and it is difficult to detect their dis-

tributions, we adopt the normality assumption as Hall (2000), and assume

b1i „ NpM1, σ
2
1q, b2i „ NpM2, σ

2
2q.

To fit this model, Hall (2000) provided an EM algorithm with Gaussian

quadrature to approximate the E-step. We adopt this algorithm and fit the ZI

models with gp¨|µildq being Binomial, Poisson and Negative Binomial (NB) dis-
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tribution respectively. Based on BIC criteria, ZI NB model is preferred.

After fitting this model, we check the deviation between the fitted model and

the observations. Table 3.3 presents the observed and fitted frequencies for yild

from the ZI Nb model with normal random effects. We can see that this model

overestimate the frequency of zeros by more than 20 percent, meanwhile, under-

estimate the frequency of large count (yild ą 150) by 68 percent. This significant

deviation of the observed frequencies from those fitted frequencies reflects the

lack of fit of the current model.

This lot variation is often treated as a random factor in manufacturing pro-

Table 3.3: Observed and fitted frequencies for ZINB with normal random effects
yild 0 1 2 3 4 5 6 ą 6
Observed 1090 59 37 30 24 19 16 405
ZINB(norm) 1328.6 50.9 29.1 22.1 17.9 14.5 12.7 275.3

cesses, and is generally assumed to be normally distributed (Shang et al. (2013)).

This is typically for convenience as the random factor is a hidden variable and is

inherently difficult to detect the true distribution of it. As there are two sources

of zeros in the ZI model, the zero state and the count state, both Mild and

yx|Mild “ 1 are hidden values. To informally check the distribution shape of

the lot effect, we use the observable variable M ild “ Ipyx ą 0q as a substitute of

Mild. Then a simple logistic regression model is fitted: logit ppildq “ a0`a¨LOT ,

where P pM ild “ 1q “ pild. The lots are included into the regression model as

dummy variables and a are the corresponding coefficients. As the experiment

design is balanced within each lot, the design and layer effects are roughly sum-

marized in the parameter a0, and hence, the estimated â would reflect the rel-

ative lot effects. The kernel density estimate of the lot coefficients â is shown

in Figure 3.5. The multi-modality and right skewed characteristics of this lot

effect for M ild clearly indicates non-normality. Next, to informally check the

normality assumption on random effects, we plot the kernel densities for the

empirical estimates b̂1i and b̂2i, i “ 1, ¨ ¨ ¨ , I from the fitted model. Suppose the

normality assumption is valid, these densities should shape similar with normal
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Figure 3.5: Kernel density estimates for lot coefficients

distribution. However, from the plots in Figure 3.6, we can clearly see the bi-

modal shape. This indicate that the observed discrepancy is potentially due to

the improper of normal distribution for describing the random effects.

Then we check how non-normality of random effects could influence the

Figure 3.6: Estimated posterior modes of lot random effects

inference. One of our key modeling objectives is to calculate the optimum ICs

design setting which minimizes the predicted response:

ŷld “ p̂ld ˚ µ̂ld “
exppZ 11ldβ̂l ` M̂1 ` Z

1
2ldα̂l ` M̂2q

exppZ 11ldβ̂l ` M̂1q ` 1
l “ 1, 2, 3, 4 (3.17)

From this nonlinear prediction formula, we can see that in ZI random effects

model, the optimum point would be determined by both the fixed effects coef-
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ficients pβ̂l, α̂lq, and the random effects mean (M̂1, M̂2). Hence it is natural to

concern about the efficiency of inference on the optimum point to non-normality

of random effects. Thus, for ZI random effects model, relaxing the normality

assumption may provide the opportunity to reduce the deviation in prediction

and provide a better estimation of the optimum point.

3.5 Model development

In this section, through analyzing the features observed from the data, we

make inference about the underlying hillocks formation process and handle the

multilevel variations in three different ways. Variation among the four metal

layers is modeled by varying the coefficients, and wafer-to-wafer variation is han-

dled by assuming the mean number of hillocks per wafer behaves as a random

variable. As the lot-to-lot variation is observed to be the largest with bimodal

distribution features, we propose to model it as a random factor with a semi-

nonparametric (SNP) distribution. In the ZI model with SNP random effects

setting, the inference is complicated by the unbalanced data (excessive zeros)

and the need for integration over the SNP density. Explicit formulas and com-

putational algorithms are hence provided to estimate and evaluate the model

parameters.

3.5.1 Multilevel zero-inflated model

We now go backward to the mechanism how the hillock-induced shorts hap-

pen and derive the count state distribution gpµq. This derivation allows us to

capture the wafer-to-wafer variation based on the underlying hillocks growth

process and provides us the opportunity to gain more insights on the impact of

design factors on the formation of copper hillocks.
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State shift and hillocks height

To understand the hidden factor causing the state shift in ZI model, we first

analyze how hillocks can cause shorts. As previously described, the growth of

hillocks is an inherent part of the manufacturing process, but these hillocks are

harmless unless their heights are higher than the separation distance T (thresh-

old) between layers (see Figure 3.2). In a testing site, if at least one hillock grows

higher than T , a short would be detected. Hence, factors affecting the number of

shorts are the hillock heights and the hillock numbers. As the number of hillocks

grown in the process is quite large (from physical knowledge of the process), it

can be assumed that the numbers are generated from a single non-zero process.

It is then believed that the shift from the zero state to the count state can be

largely explained instead by the existence of two different height densities for the

hillocks growth heights in the zero state and the count state. Specifically, for the

zero state height density, the maximum height of the density is always lower than

T (dotted line density function in Figure 3.7), and hence, the hillocks with height

from this density will never cause a short. For the count state height density, the

maximum height is higher than the threshold (solid line density in Figure 3.7),

and hillocks grown with height coming from this density can grow higher than

T (with probability ρ), which then causes a short. The random shift between

the two hillocks height densities for each design is caused by the uncontrollable

combination effect of environmental factors in the process. This shift model is

also supported by experimental results from Puttlitz et al. (1989) where they

conclude that with the same metal line dimensions of 0.75µm thickness, hillock

heights ď 1.3µm were observed for 325˝ C in the nitride deposition cycle, while

the hillock heights of ď 0.5µm were observed for temperature 275˝C.

Based on the previous observation that the state does not shift at the wafer

level, the hillock height densities for hillocks grown in the same lot across W

wafers (for fixed design and layer) can be reasonably assumed to be identical.

Hence, in the zero state, the height density for each hillock on any wafer within
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Figure 3.7: Zero and count state hillocks height density

lot i for layer l and design d can be described as:

fildph|Mild “ 0q, h P p0, T q, (3.18)

and in the count state,

fildph|Mild “ 1q, h P p0, T s, T ě T (3.19)

where h is the height of each individual hillock, and T ď T ă 8 (based on

the physical limits of the metal lines). Defining ρild to be the probability of an

individual hillock crossing the threshold T (see the shaded area in Figure 3.7),

it can be expressed as

ρild “

ż T

T
fildph|Mild “ 1qdh (3.20)

Derivation of the count state distribution function gpµq

To simplify notations, we denote the conditional count state variable y|m “ 1

as yc: ycilwsd, y
c
ilwd and ycild. Following, we first derive the site level short probabil-

ity eilwd (eilwd “ P rycilwsd “ 1s, eilwd ą 0) based on the fundamental distributions
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of the number hillocks grown at a site and the hillocks growth heights, and an-

alyze the origins of the wafer-to-wafer variation on eilwd. Following that, with

the wafer level variation accounted for, we derive the distribution of wafer level

count variable ycilwd. This is finally followed by the derivation of the distribution

for the lot level count variable ycild.

1. Decomposition of site level short probability eilwd:

In the count state, to observe a short at a site indicates that there is at least

one hillock at that site that has grown higher than T . We write the number

of hillocks with height h ą T at site s as the random variable Zilwsd. Condi-

tioned on the total number of hillocks grown at a site, Nilwsd, Zilwsd|Nilwsd „

BinomialpNilwsd, ρildq, with probability ρild given by Equation (3.20). Since

Nilwsd is an integer random variable, it is reasonable to assume it to be Pois-

son distributed. Hence, based on the site level i.i.d observation, we assume

Nilwsd „ Poissonpϑilwdq on the same wafer for all S sites. After integrating out

Nilwsd, the unconditional distribution of Zilwsd remains a Poisson distribution,

with mean ξilwd “ ρild ˚ ϑilwd. Combine with the fact that observing ycilwsd “ 1

is equivalent to observing zilwsd ě 1, the short probability eilwsd can then be

represented with parameters associated with hillocks height and number by:

eilwd “ P pycilwsd “ 1q “ 1´P pzilwsd “ 0q “ 1´e´ξilwd « ξilwd “ ρild¨ϑilwd (3.21)

The approximation holds for the zero-inflated case, as ξilwd is very small (Taylor

expansion near zero).

From the analysis in Section 3.4.2, we know that eilwd varies among wafers

in the same lot. From Equation (3.21), we can see that the parameter ρild asso-

ciated with hillocks height does not vary among wafers, hence the source of the

wafer variation on eilwd is the mean number of hillocks grown at a site, ϑilwd. In

the ICs manufacturing process, the sources of wafer variation on hillocks height

and number include thermal stresses and the pressure of the upper layers result-

ing in intrinsic stresses in the film. These stresses could be either compressive

or tensile in nature depending on the growth process conditions. In this work,
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the growth processes were consistent due to lot processes. Both these two en-

vironmental factors have relatively small variations among wafers: during the

thermal processes, 25 wafers within the same lot are loaded into a single col-

umn together for processing; and the pressure of the upper layers depends on

the thickness of the layers involved. As the thickness variation among wafers is

also well controlled in the process, it is believed that the small variations in the

environmental conditions do not cause a variation in hillocks height density but

instead lead only to a variation in the number of hillocks grown. This indicates

that the factor conditions initiating the growth of hillocks are more sensitive to

environmental changes. As such, from the manufacturing perspective, as long as

hillocks start to grow, it is important to ensure these hillocks do not reach the

threshold height.

2. The distribution of wafer level counts variable ycilwd:

Recall that ycilwd „ BinomialpS, eilwdq and since less than 4 percent of the

site observations are ones, eilwd here is a very small value. According to Chen

and Liu (1997), a Poisson approximate to the distribution of ycilwd can be made

as:

ycilwd „ Poissonpλilwdq, λilwd “ S ¨ eilwd « S ¨ ρild ¨ ϑilwd (3.22)

As ϑilwd varies among wafers, we model it as a random variable with a

Gamma distribution.This is similar to the approach taken by Stapper (1985).

Formally, we denote ϑilwd „ Gammapr, θildq, then λilwd “ S ¨ ρild ¨ ϑilwd would

also be Gamma distributed with λilwd „ Gammapr, S ¨ρild ¨θildq. Integrating out

λilwd in Equation (3.22), the unconditional distribution of ycilwd is then a Negative

binomial distribution (NB) with mean µild “ r ¨ S ¨ ρild ¨ θild and dispersion

parameter r.

3. The distribution for the lot level count variable ycild

Since the lot level count is the sum of the counts on the individual wafers,

ycild “
řW
w“1 y

c
ilwd, it will still follow a NB distribution with the same dispersion

parameter r and mean µild “ W ¨ µild “ W ¨ S ¨ ρild ¨ θild, with the distribution
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function:

P pycild “ yildq “
Γpyild ` rq

ΓprqΓpyild ` 1q

ˆ

µild
µild ` r

˙yild
ˆ

r

µild ` r

˙r

(3.23)

Through a detailed breakdown of how shorts are observed on the wafers, we

derive the count distribution gpµq of the ZI model in Equation (3.2) with both

hillocks height parameter ρild and hillock number parameter θild. The wafer to

wafer variation in the count state is also explained by the difference on the mean

number of hillocks grown on different wafers.

Multilevel ZI model with semi-nonparametric lot random effect

As observed from the data, the lot variation is dominant due to the processing

on different tools and conditions for different lots. To account for this lot level

variation, the random effects term bi “ pb1i, b2iq are incorporated into the linear

predictors of the ZI model as latent variables.

logit ppild|biq “ Z 11ildβl ` b1i

log pµild|biq “ Z 12ildαl ` b2i, l “ 1, 2, 3, 4

(3.24)

The random effect ZI distribution is then written as

Y |bi „

$

’

’

&

’

’

%

0 with probability 1´ pild

gpµildq with probability pild

(3.25)

where the distribution of gpµildq is the NB distribution with dispersion parameter

r given by Equation (3.23).

From the previous section we see that the distribution of lot random effects

bi is likely non-normal and as hidden variables, it is difficult to detect their

distribution. Here, we relax the normality assumption for bi, and assume only

that they come from a smooth class of densities, and represent it with the semi-
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nonparametric (SNP) representation proposed by Gallant and Nychka (1987).

This representation encompasses a wider class of densities, enabling skewed,

multi-modal and fat or thin-tailed densities and also the normal density to be

captured. It has been previously used to model random effects in linear and

generalized linear mixed models (Zhang and Davidian (2001); Chen et al. (2002)).

We adopt this representation as it enables a general and adaptive class of random

effects to be incorporated into the ZI model. Detailed studies on the performance

of SNP estimators can be found in Fenton and Gallant (1996).

To facilitate further development, we rescale the random effects bi by

bi “ Rzi ` τ (3.26)

where τ P Rq location-transformation parameter and R P Rqˆq is a scale-

transformation lower triangular matrix. zi is a pq ˆ 1q random vector, and

we assume it follows the SNP density:

hKpz;φq „ P 2
Kpz;φqΦqpzq “

$

&

%

K
ÿ

|k|“0

akz
k

,

.

-

2

Φqpzq (3.27)

for some fixed value K, where Φqp¨q is the standard q-variate normal distribu-

tion Nqp0, Iqq. Here, PKpz;φq is a multivariate polynomial of order K and

φ represent parameters in this form. For example, when q “ 2 and K “ 2,

z “ pz1, z2q
T pq “ 2q and PKpz;φq “ a00 ` a10z1 ` a20z

2
1 ` a11z1z2 ` a02z

2
2 .

The proportionality constant is given by 1{
ş

P 2
Kpx;φqΦqpxqdx, to ensure hKpzq

integrates to 1. With K “ 0, P 2
Kpz;φq ” 1, and hKpzq reduces to the standard

normal density. The order K acts as a tuning parameter controlling the degree

of flexibility of shape of the resulting density hKpz;φq.

In the fitting of the density, it has been suggested to treat K as a tuning

parameter, and to fit models for several values of K and then selecting K based

on an information criteria, like the BIC (Zhang and Davidian (2001); Chen et al.

(2002)). The numerical studies in these works also concluded that K ď 2 is suf-

ficient to capture many complicated density forms.
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Combining transformation in Equation (3.26) and the SNP representation in

Equation (3.27), the density of the ZI random effect bi can be rewritten as

ϕKpbi; δq “ PKrR
´1bi ´ τ ;φs ¨ ΦqrR

´1bi ´ τ s{|detpRq| (3.28)

where δ represent the parameters of random effects density, δ “ pφ, τ , Rq. De-

tailed studies on the performance of SNP estimators can be found in Fenton and

Gallant (1996).

3.5.2 Model estimation

Likelihood

In the multilevel structure, we have y “ py11., ¨ ¨ ¨ ,y
1
I.q
1, with yi. “ rpyi11, ¨ ¨ ¨ , yi1Dq

1, ¨ ¨ ¨ ,

pyiL1, ¨ ¨ ¨ , yiLDq
1s1, i “ 1 ¨ ¨ ¨ , I. Hence, we have fpyi.|bi;θq “

śL
l“1

śD
d“1 fpyild|bi;θlq,

where θl “ pβl,αlq and θ “ pθT1 ,θ
T
2 ,θ

T
3 ,θ

T
4 q

T . With the model developed in

Equation (3.11) , (3.25) and (3.28), the marginal log likelihood function of the

parameters ψ “ pθT , δT qT for a given K is then:

lpψ|yq “
I
ÿ

i“1

log

ż

fpyi.|bi;θqϕKpbi; δqdbi (3.29)

where the integration is taken over the space for the random effects bi “ pb1i, b2iq.

To estimate ψ, the MLEs can be obtained by maximizing Equation (3.29).

However, as the integral and the first derivative of lpψ|yq is intractable, nu-

merical methods have to be applied. Newton-Raphson (NR)-type methods and

EM are widely used to evaluate such problems. Although the NR-type methods

have faster convergence rates than the EM method, these benefits are at the

expense of numerical stability (i.e. these algorithms may not converge unless

the model provides a reasonable good fit to the data and good initial values are

used) (Dempster et al. (1977) ). The EM algorithm, on the other hand is very

stable albeit being generally slow. In this problem, we adopt the EM algorithm

to ensure more stable estimations. In the next subsection, we first propose a gen-

eral EM algorithm to estimate ψ and then develop an approximation algorithm
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to reduce the computational expense for the quadrature evaluation procedure

within the EM algorithm.

Computational details of the EM algorithm

The EM algorithm is generally well-suited for problems where there is in-

complete data, and especially when it is difficult to maximize the observed log

likelihood function directly, but much easier to maximize the loglikelihood func-

tion based on the complete data. In this ZI random effects model, the unobserved

random effects, b can be treated as missing data, with complete data given as

py, bq, The EM algorithm can then be adopted to fit this multilevel ZI random

effects models.

As an iterative method, the EM algorithm estimates the parameters ψ in

Equation (3.29) by iterating between the E-step and the M-step. Let ψt “

pθt, δtq denote the estimated maximizer at iteration t for t “ 0, 1, . . . . The two

steps in the EM algorithm are:

E-step: Given the current value ψt, calculate the following Q function

Qpψ|ψtq “
I
ÿ

i“1

ż

log fpyi., bi;ψqfpbi|yi.;ψ
tqdbi (3.30)

M-step: Maximize the computed Q function in Equation (3.30) with respect to

ψ and set the optimal values to ψt`1.

Return to the E step unless the stopping criterion is met. Here we adopt the

absolute convergence criterion to mandate stopping when |ψt`1 ´ ψt| ă 0.001.

Details about choosing stopping criteria for optimization problems like the EM

can be found in Givens and Hoeting (2012).

In iteration t of the EM algorithm, function Q in Equation (3.30) can be

expanded as

Qpψ|ψtq “

I
ÿ

i“1

ş

log tfpyi.|bi;θqϕKpbi; δqufpyi.|bi;θ
tqϕKpbi; δ

tqdbi
ş

fpyi.|bi;θtqϕKpbi; δtqdbi
(3.31)
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where

fpyi.|bi;θ
tq “

L
ź

l“1

t
ź

yild“0

r1´pild`pild ¨gpyild “ 0qs ¨
ź

yildą0

rpild ¨gpyildqsu (3.32)

Integration of Equation (3.31) is analytically intractable, and hence numer-

ical or approximation methods must be applied. However, in the case of the

ZI model with random effects, traditional methods are either too computational

intensive or inefficient. For example, with Monte Carlo methods, efficient sam-

pling from the conditional distribution fpbi|yi.,ψ
tq are needed. Although Chen

et al. (2002) proposed a ‘double’ rejection sampling method to generate a random

sample for the conditional SNP density, for the zero-inflated type distributions

the sampling would be inefficient due to the overwhelmingly high rejection rate.

Additionally, in the case of SNP density, as the standard symmetry does not

hold, the effectiveness of Laplace approximation methods would be poor. Sim-

ilarly, a large amount of quadrature points would be needed for the Gaussian

quadrature method.

To reduce the amount of quadrature points needed for a multi-modal density,

we adopt the method proposed by Pinheiro and Bates (1995), where the quadra-

ture points are centered at the mode of the integrand and scaled by inverse of the

negative Hessian matrix. Specifically, to get the quadrature points at iteration

t , we first obtain the empirical Bayes estimate of bi as bi,t and its covariance

matrix Hi,t “ covpbi,tq, given ψt “ pθt, δtq:

bi,t “arg maxbip
L
ÿ

l“1

D
ÿ

d“1

log fpyild|bi;θ
tq ` log ϕKpbi; δ

tqq (3.33)

“arg maxbit
L
ÿ

l“1

D
ÿ

d“1

log fpyild|bi;θ
tq (3.34)

` log ΦqrpR
tq´1bi ´ τ

ts ` log PKrpR
tq´1bi ´ τ

t;φtsu (3.35)
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Then in terms of mass points ζg with corresponding masses πg, the G quadra-

ture points bQi,t “ pb
Q
i1,t, . . . , b

Q
iG,tq can be obtained from

bQig,t “ bi,t `Hi,tζg , for g “ 1, . . . , G (3.36)

After getting the quadrature points, we can use them to approximate the Q

function in Equation (3.31) in iteration t ` 1. For the denominator of Equa-

tion (3.31), we have

fpyi.;ψq “

ż

fpyi.|bi;θqϕKpbi; δqdbi (3.37)

«

G
ÿ

g“1

|H
1
2
i,t|πgfpyi.|b

Q
ig,t;θqϕKpb

Q
ig,t; δqΦpζgq

´1 (3.38)

“: fGpyi.;ψq (3.39)

then the Q function in Equation (3.31) is

QGpψ|ψ
tq “

I
ÿ

i“1

G
ÿ

g“1

wtiglog t|H
1
2
i,t|πgfpyi.|b

Q
ig,t;θqϕKpb

Q
ig,t; δqΦpζgq

´1u

“

I
ÿ

i“1

G
ÿ

g“1

wtiglog fpyi.|b
Q
ig,t;θq

`

I
ÿ

i“1

G
ÿ

g“1

wtiglog t|H
1
2
i,t|πgϕKpb

Q
ig,t; δqΦpζgq

´1u (3.40)

where wtig “ |H
1
2
i,t|πgfpyi.|b

Q
ig,t;θ

tqϕKpb
Q
ig,t; δ

tq{fGpyi.;ψ
tq.

In Equation (3.40), the parameters θ and δ are separated; thus maximization

of Equation (3.40) at the M-step can be carried out in two steps, by optimizing

the first and then the second term in Equation (3.40) respectively. Note that

maximizing the second term in Equation (3.40), is a maximization of the SNP

density parameters, and this can be carried out using fast estimation methods

similar to those proposed in Zhang and Davidian (2001); Chen et al. (2002).
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Computational approximation to the algorithm: estimating quadra-

ture points

In the EM algorithm described, one would iterate between approximating the

Q function using the quadrature points (Equation (3.31) and Equation (3.36))

and optimizing the Q function until stopping criteria is met, and then updating

θ and δ. However, for complex random effect densities like the SNP, the op-

timization to get Bayes estimates (Equation (3.35)) can be unstable and time

consuming. For example, in the optimization of log PKrpR
tq´1bi ´ τ

t;φts, dif-

ferent starting points can result in significantly different local optimal points.

Heuristically, we would like to circumvent this problem by centering the quadra-

ture points close enough to the empirical estimates of bi. From the second line

of Equation (3.35), we see that when number of observations within each lot and

the number of lots are large (here in our case L and D), the sum of the first term

has ni “ L ¨ D terms which grows with these sample sizes. Moreover, the last

two terms of Equation (3.35) are Op1q (Wasserman (2013)), and hence, this first

sum will dominate. We can then approximate Equation (3.35) asymptotically by

this sum (and hence estimate bi,t by its MLE), but since the second term does

not pose a computational burden, we include it, and propose to approximate bi,t

in the iteration t by

b0
i,t “ arg maxbit

L
ÿ

l“1

D
ÿ

d“1

log fpyild|bi;θ
tq ` log ΦqrpR

tq´1bi ´ τ
tsu

H0
i,t “ covpb0

i,tq

(3.41)

Simulation studies in the next section also show that the approximation performs

well in practice.

Then the G quadrature points bQi,t “ pb
Q
i1,t, . . . , b

Q
iG,tq can be obtained by

bQig,t “ b
0
i,t `H

0
i,tζg, forg “ 1, . . . , G. (3.42)
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Proposed approximate adaptive Gaussian Quadrature EM (approxi-

mate AGQ-EM) algorithm

Overall, the proposed EM algorithm can be summarized as

1. Starting values: set values for K and starting values ψ0. Let t “ 0.

2. Quadrature points: at iteration pt` 1q, compute quadrature points bQi,t

from Equations (3.41) and (3.42).

3. E-step: approximate the Q function using bQi,t and Equations (3.39) and

(3.40).

4. M-step: obtain ψt`1 by maximizing the Q function.

5. Iterate: Return to 2 and set t “ t ` 1 until the stopping criterion has

been meet.

Good starting values of θ0 can be obtained similarly with Lambert (1992); Hall

(2000). In the ZI model, the zeros come from both the zero state and the

count state (while we do not know which are from the zero state). Pretend-

ing all zeros are from the zero state and all positives are from the count state

will allow us to fit the logistic and log regression in Equation (3.11) separately.

Specially, we first fit the logistic regression with normal random effects (K=0)

using mild “ Ipyild ą 0q as the response variable. Then we fit the Poisson/NB

regression with normal random effects using yild|yild ą 0 as the response vari-

able. These two regressions can be fitted separately using existing R package

(”glmmML”). We use the estimated coefficients as initial values θ0 “ pβ0,α0q.

Then we treat the estimated empirical estimates b1i0, and b2i0, i “ 1, ¨ ¨ ¨ , I as

samples from the underlying SNP random effects distributions and obtain the

initial value for random effects parameters δ0. This δ0 is a good starting value

because a similar argument with Equation (3.41), from which we know that the

empirical estimates of bi from assuming K “ 0 (normal) and K “ 1, 2 ¨ ¨ ¨ would

be different but not far from each other. The proposed EM algorithm converges

after around 20 iterations for the current problem with these initial values.
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Convergence of the EM algorithm for ZI model also follows from arguments

similar to those given by Lambert (1992); Hall (2000). Hall (2000) used Gaus-

sian quadrature for approximating the E step, instead we use approximate AGQ

which focuses on improving the approximation procedure. Intuitively, the Gaus-

sian quadrature rule can be viewed as a deterministic version of Monte Carlo

integration with samples ζg and weights πg fixed beforehand (Pinheiro and Bates

(1995)), while AGQ can be comparable to importance sampling, which increases

the number of samples on the area of interest (AGQ places a larger weight on

the mode of the integrand). In the random effects model, when the distribution

of random effects has a complicated form such as the SNP, we cannot easily

estimate the mode of the integrand (Bayes estimates of bi,t in Equation (3.35)).

Instead, the approximate AGQ put a larger weight on plausible values like b0
i,t

estimated by Equation (3.41). In the numerical runs we studied (results in Ap-

pendix), this approximation is reasonable, even for limited numbers of L ˆ D

for near symmetrical distributions of b, and moderate numbers of L ˆ D for

highly skewed distributions. The compromise proposed here means that when

computing the quadrature points, we do not account for the information in the

last term in Equation (3.35). Extensive simulation runs were also conducted

to evaluate the proposed algorithm in estimating both the design/fixed effects

and random effects parameters. Details of the simulation runs and results are

provided in the Appendix. Overall, the proposed AGQ-EM algorithm is able to

estimate both the fixed and random effects parameters with higher precision and

accuracy over a Gaussian quadrature EM approach. In addition, the flexibility

of the SNP random effects enables accurate capture of non-normal (asymmetri-

cal and skewed) random effects and the proposed AGQ-EM algorithm is able to

provide good parameter estimates of the model.

In cases where the count state is modeled by a NB distribution in the ZI

model, there is an extra dispersion parameter r to be estimated. The estimation

of θl and δ via the proposed approximate EM-AGQ algorithm assumes that r is

known. In practice, r is updated and estimated iteratively in accordance with
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the updated estimates of θl and δ by maximizing the loglikelihood function in

Equation (3.29). More details about estimating the NB dispersion parameter

can be found in Piegorsch (1990).

Standard errors of parameter estimates

To obtain the EM standard errors, bootrapping is commonly used. However,

for a complex multilevel ZI model, bootstrapping can be computationally pro-

hibitive. Here, we apply the Empirical Information method (Givens and Hoeting

(2012)) to compute the standard errors for the EM estimates. The appeal of it

is that all the terms of the empirical information (Givens and Hoeting (2012))

are by-products of the M-step in the EM algorithm and hence, no additional

computation is required.

We register ς “ pψ, rq and when there is no over-dispersion parameter, ς “ ψ.

Under the proper regularity assumptions, asymptotically as the number of ob-

servations nÑ8, the EM estimates ς̂ of ς is a consistent, efficient, and asymp-

totically normal estimator of the true value of ς. Its asymptotic variance is the

inverse of the Fisher information matrix

Hpy; ςq “ EpIpy; ςqq “ EpSpy; ςqST py; ςqq (3.43)

where Spy; ςq “ l1py; ςq is the score function and Ipy; ςq “ ´l2py; ςq is the

Fisher information. To be more general, we write the observed response as

y “ py1, . . . , yIq for I lots, and yi “ pyi1, . . . , yiniq as within lot observations.

On condition the data are i.i.d observations, the score function is the sum of

individual observation score:

Spy; ςq “
I
ÿ

i“1

ni
ÿ

j“1

Spyij ; ςq (3.44)

Since the Fisher information Hpy; ςq is defined to be the variance of Spy; ςq, this

suggests estimating Hpy; ςq using the sample variance of the individual scores

Spyij ; ςq, that is the empirical Fisher information Ĥpy; ς̂q (Givens and Hoeting
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(2012)), with

Ĥpy; ςq “
1

n

I
ÿ

i“1

ni
ÿ

j“1

Spyij ; ςqSpyij ; ςq
T ´

1

n2
Spy; ςqSpy; ςqT (3.45)

Here n is the total number of observations and n “
řm
i“1 ni. Note that in the

EM algorithm, ςt maximize Qpς|ςtq ´ lpς|yq with respect to ς in the tth step.

Therefore,

Q1pς|ςtq|ς“ςt “ Spy; ςq|ς“ςt (3.46)

Since in the M step of EM algorithm, we calculate Q1pς|ςtq|ς“ςt to get the opti-

mum value of the parameters, we get Spy; ςq|ς“ςt as by-products of the M step,

so no additional computation is required to get the individual terms in 3.45.

3.5.3 Modeling remarks

In our analysis, we derive the count state distribution gp¨q based on the knowl-

edge of hillocks growth process for generating the data. However, when such

knowledge is lacking, model selection techniques such as BIC criterion should

be used to decide the distribution gp¨q. Count distributions such as the Poisson,

binomial, negative binomial, and logarithmic series distributions could be used

for gp¨q depends on the data characteristics in hand.

In other semiconductor experiment, the state shift may happen at other lev-

els of the multilevel structure. For example, when it happens at the wafer level,

a two-level random effects ZI model with response variable yilwd could be built

as:

logit ppiwdq “ Z 11iwdβ` b1iw` b1i logpµiwdq “ Z 12iwdα` b2iw` b2i (3.47)

where pb1iw, b2iwq are the wafer level SNP random effects. However, if the shift

occurs at site level where the data is binary, there is no way that we can tell

which state an observed zero is generated from. Other methods such as a logistic
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regression model with sub-sampling (King and Zeng (2001)) need to be applied.

Otherwise, repeated measures at the site level would be required. If there are

additional levels of variability that need to be captured, higher dimension of the

random effects bipq ą 2q can be applied. Although we describe a single-level

random effect in our case study, the dimension of the integral in the proposed

approximate AGQ-EM algorithm can be large (see Schilling and Bock (2005),

who considered integration with AGQ up to 8 dimensions).

Although the above multilevel ZI model with SNP random effects is derived

based on our ICs experiment, certain aspects of it can be generalized and ap-

plied to other fields where multilevel ZI data is common, such as in sociology

and health care. Examples include high school dropout numbers, amounts of

insurance, decayed teeth of 12 years old. These data generally contain excessive

zeros and are measured within a hierarchical social structure such as households,

schools, provinces, etc (see examples from Tooze et al. (2002); Moghimbeigi et al.

(2008).

3.6 Simulation studies

To evaluate the performance of the proposed algorithm in estimating both

the design/fix effects and random effects parameters, we performed simulations

under 5 different distributions for random effects bi. We also compared the

algorithm with one that uses the Gauss-Hermite quadrature to approximate the

integrals in the EM algorithm (GH-EM). The computational advantage of this

approximation method is that it does not require the estimation of the empirical

Bayes estimate of bi at each iteration. We report on the logistic component of

the ZI regression model. To be more general, we drop the layer index l and

use j “ 1, ¨ ¨ ¨ , ni to represent observations within lot i. In each of 100 Monte

Carlo data sets, for each of i “ 1, . . . , I “ 200 lots, Mij , j “ 1, . . . , ni “ 15

observations were generated as conditionally independent samples according to
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Mij |bi „ Bernoullippijq where

logit ppildq “ log

ˆ

pij
1´ pij

˙

“Wijβ ` bi (3.48)

Wij include five design levels with Wij “ p´1,´0.5, 0, 0.5, 1q and β “ 0.3. For

each design level, three replicates were sampled.

We drew bi from several different distributions to evaluate the performance of

the proposed algorithm. These include the Normal distribution (skewness =0),

the Gamma distribution (skewness=1.633), the lognormal distribution (skew-

ness=2.260), a symmetrical mixture normal mixture (weight=0.5) and an asym-

metrical mixture normal mixture (weight=0.8). For these simulation scenarios,

pij is set at 0.2, which is consistent with the case study. For each data set,

Equation (3.48) was the first fit using the approximate AGQ-EM with the SNP

assumptions, for K “ 0, 1 and 2. The GH-EM was also applied for K “ 0, 1 and

2. In both the AGQ-EM and GH-EM, the BIC was used to select the best fit.

As previous studies indicate that K “ 2 is sufficient to describe a broad class

of densities (Chen et al. (2002)), larger K were not considered in the interest of

computation speed.

The estimation results are summarized in Table 3.4. As we can see from

the numerical studies, the fix effect parameter β is estimated with more preci-

sion than the elements associated with the random effects distribution for both

approximation methods. This is likely because the accuracy of estimates of β

is determined by the total number of observations, while the precision of esti-

mates of elements associated with random effect distribution is determined by

the total number of lots. As we can see, the efficiency in the estimation of Epbiq

and varpbiq under a misspecified normal random effects model (K=0) is com-

promised for both the AGQ-EM and GH-EM algorithms as compared to their

counterparts selected by BIC. The estimates in the BIC selected to model for

approximate AGQ-EM are nearly unbiased with relatively small standard errors,

and the models estimated by GH suffer a higher bias. The AGQ-EM rescales

and updates the quadrature points after each iteration. Hence, the algorithm
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is better able to evaluate the Q function (and obtain better estimates of the

parameters in the M step) as the parameters and distributions are updated after

every iteration. The GH-EM however, determines the quadrature points at the

start, which are then fixed throughout the EM iterations. The evaluations and

approximations can be poor if the initial estimates of the parameters are far

from the “true” parameters. These observations highlight the importance of a

proper assumption of the random effect distribution, as well as the usefulness of

an efficient approximation, especially when the total number of lots is not large.

Here, the significant gain in precision of using approximate AGQ is the center-

ing of the quadrature mass points to points near the modes of the integrand and

scaling it using the estimated Hessian at every iteration as the distribution gets

updated.

We also note that when the random effect has a distribution with large skew-

ness (log-normal with skewness=2.260), both the fix effect parameter β estimate

and the random effects mean Epbiq suffer from a slightly larger bias. This is likely

due to the poorer approximation to the integrand applied in the approximate

AGQ for highly skewed distributions. This is because the points are centered at

b0
i,t, may not approximate the true mode of the integrand bi,t very well, espe-

cially when the observations per lot are small, especially for skewed distributions

cannot be ignored). However, this situation is rare since the observations within

one lot are sufficient to make inference about the fixed effects. Additional runs

were conducted for this case where the observations per lot were increased to

ni=30, and the estimates improved, reducing both the standard derivation of β

and the bias of Epbiq by around 50 percent. In situations where observations are

limited, importance sampling can be used instead to approximate the integrand,

but this method will require much more computational effort.

For further comparison, we consider the case where the true random effects

density is normal. The estimates from both approximate AGQ-EM and GH-EM

are almost all unbiased. The BIC criteria selected the true model (K=0) 77% of

the time with the AGQ-EM, indicating that the SNP can detect the true random
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symmetrical mixture normal mixture weight=0.5
para(true) β (0.300) Epbiq (-0.475) varpbiq (0.630)

approx-AGQ (SE)
normal 0.300 (0.059) -0.470 (0.065) 0.661 (0.102)
SNP 0.300(0.059) -0.474 (0.065) 0.651 (0.107)

GH(SE)
normal 0.300 (0.059) -0.470 (0.064) 0.660 (0.107)
SNP 0.290 (0.065) -0.440 (0.082) 0.460 (0.164)

asymmetrical mixture normal mixture weight=0.8
para(true) β (0.300) Epbiq (-0.470) varpbiq (1.035)

approx-AGQ (SE)
normal 0.294 ( 0.068) -0.531(0.089) 1.103 (0.165)
SNP 0.300 (0.068) -0.457 ( 0.084) 1.055 (0.158)

GH (SE)
normal 0.307 (0.054) -0.515 (0.083) 1.146 (0.159)
SNP 0.282 (0.051) -0.429 (0.068) 0.588 (0.07)

Gamma distribution: skewness=1.633
para(true) β (0.300) Epbiq (-0.450) varpbiq (1.000)

approx-AGQ (SE)
normal 0.299 (0.068) -0.505 (.0.077) 0.871 (0.141)
SNP 0.300 (0.068) -0.46 (0.080) 0.900 (0.174)

GH(SE)
normal 0.300 (0.068) -0.505 (0.077) 0.879 (0.148)
SNP 0.284 (0.064) -0.430 (0.060) 0.541 (0.165)

lognormal distribution skewness=2.260
para(true) β (0.300) Epbiq (-0.450) varpbiq (1.000)

approx-AGQ (SE)
normal 0.303 (0.059) -0.519 (0.084) 0.939 (0.144)
SNP 0.303 (0.059) -0.466 (0.088) 0.996 (0.200)

GH(SE)
normal 0.304 (0.059) -0.520 (0.084) 0.951 (0.151)
SNP 0.288 (0.055) -0.474 (0.075) 0.646 (0.286)

Normal distribution: skewness=0
para(true) β (0.300) Epbiq (-0.450) varpbiq(1.000)

approx-AGQ (SE)
normal 0.300 (0.053) -0.450 (0.077) 0.979 (0.131)
SNP 0.300 (0.053) -0.453 (0.079) 0.988 (0.141)

GH(SE)
normal 0.300 (0.053) -0.449 (0.076) 0.994 (0.138)
SNP 0.300 (0.054) -0.453 (0.089) 0.883 (0.259)

Table 3.4: Simulation results for 100 datasets: Approx-AGQ(SE) are the average
of estimated values and the respective standard errors computed from approxi-
mate AGQ-EM, GH(SE) are those computed from GH-EM. SNP represents the
best model selected by the BIC criterion when using SNP representation
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Figure 3.8: Simulation results based on 100 datasets:true density (solid line)
compare with average estimated densities for 100 data sets fitted by approximate
AGQ-EM preferred by BIC (long dashed line), and fitted by GH-EM preferred
by BIC (dotted line)
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effects distribution effectively in this multilevel ZI model. Figure 3.8 shows the

Monte Carlo average of the estimated SNP densities selected by BIC over the

100 datasets computed from the approximate AGQ-EM algorithm, along with

that estimated from the GH-EM algorithm and the true density. The figure

shows that the SNP can capture relatively accurately the features of the random

effects bi, and the proposed approximate AGQ-EM provides good estimates of

the model. From Figure 3.8, we see that the SNP density (with K up to 2)

can approximate both the symmetrical mixture normal and the asymmetrical

mixture normal quite well. However, for skewed densities like the Gamma and

the lognormal distribution, the SNP approximations are poorer, especially at

the tails. This can be due to the limited samples and lots observed, especially

at the tails, and considerations of K up to only 2 for the SNP density. The

SNP density fit improves when the number of lots is increased, and K = 3 is

used (figure not shown here). It is noted however that the parameter estimates

of the model do not improve much, albeit much higher computational expense.

From Figure 3.8, it is also obvious that the SNP density estimated from GH-EM

deviates quite a bit from the true density. Because as the algorithm iterates,

the estimates of the mode of the random effect distribution change. Hence, ”GH

estimate” would potentially locate the highly weighted point in the wrong place,

leading to a poor approximation of the integrand in the E-step of Equation 3.30.

This also demonstrates the advantages of adopting the proposed approximate

AGQ procedure to approximate the integral involved in the EM algorithm.

3.7 Analysis and interpretation of the copper hillocks

problem

In this case study, we are interested in looking into the metal dimensions

and layer factors that cause harmful copper hillocks to facilitate a better under-

standing of the growth process phenomenon and recommend design settings to

minimize harmful hillock formation.
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3.7.1 Analysis of design factors’ effect on hillock growth

Based on the domain knowledge and experiment design presented in Table

3.1, we identify the potential regressors as Width, Width2 and Length. Adopting

the multilevel ZI negative binomial (ZI-NB) developed in the previous sections

with these predictors, we have:

logit ppildq “ β0l ` β1l ˚Width` β2l ˚Width2 ` β3l ˚ Length` b1i

log pµildq “ α0l ` α1l ˚Width` α2l ˚Width2 ` α3l ˚ Length` b2i

(3.49)

for layers l “ 1, . . . , L. We also assume lot random effects for the two compo-

nents are independent, with bi1 „ ϕKpbi1; δ1q and bi2 „ ϕKpbi2; δ2q, where ϕKp¨q

is the SNP density in Equation (3.27).

In order to determine the significant design factors that affect the hillocks

growth and shorts, the full model with all design factors in the four layers was

first estimated for K “ 0, 1, 2 of the SNP. The significant factors were then de-

termined, and the reduced model re-estimated, for each K. Based on the BIC

criterion, K “ 2 is preferred for both b1i and b2i, and Table 3.5 presents the

results of fit for K=2.

As a comparison, we also fitted the ZI model with gpµq as a Poisson and also

a Binomial for K “ 0, 1, 2. The BIC value for the best fitting ZI Binomial (ZIB),

ZI Poisson (ZIP) and ZI Negative Binomial (ZINB) are shown in Table 3.6. As

we can see, the BIC values of ZIB and the ZIP models are much larger than that

of ZINB. Hence, the ZINB model that was derived based on an understanding of

the mechanisms of the process gives a much better fit to the data. As the ZINB

model is able to capture the wafer variation through the extra over-dispersion

parameter, where the ZIP and ZIB models are unable, this result further con-

firms the existence of wafer variations that cannot be ignored.

Table 3.7 shows the comparison of the observed and fitted frequencies

from ZI NB with SNP random effects (ZI NB SNP) and normal random effects
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Logistic (pild) model (K=2)

Parameter Estimate (SE) t-value
Layer1 intercept (β10) 0.633 (0.207) 3.058
Layer1 width (β11) 0.363 (0.122) 2.975
Layer1 length (β13q 0.209 (0.117) 1.786
Layer2 length (β23) -0.292 (0.119) -2.453
Layer3 width (β31) 0.278 (0.124) 2.242
Layer4 intercept (β40q 0.174 (0.171) 1.018
mean(bi1) -0.924 (0.137) -6.744
sd(bi1) 1.172 (0.123) 9.528

NB mean (µild) model (K=2)

Parameter Estimate (SE) t-value
Layer2 width α21 0.223 (0.152) 1.467
Layer3 intercept α30 -0.518 (0.217) -2.387
Layer3 width α31 0.182 (0.151) 1.205
Layer4 intercept α40 -0.754 (0.397) -1.899
Layer4 width α41 0.640 (0.269) 2.379
Layer4 width2 α42 0.783 (0.316) 2.3791
Layer4 length α43 0.503 (0.229) 2.197
dispersion parameter r 0.270 (0.047) 5.744
mean(bi2) 3.051 (0.137) 22.270
sd(bi2) 0.984 ( 0.204) 4.823

Table 3.5: Parameter estimates and standard errors for multilevel ZI-NB model
with K=2

Model ZIB ZIP ZINB
BIC 31867 25427 6982

Table 3.6: BIC values for model selection
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(ZI NB Norm). From this table, we can clearly see that the problem of overes-

timating the zero events of ZI NB Norm is greatly reduced by ZI NB SNP, and

meanwhile, ZI NB SNP provides a better fit to the large count. This confirms

that the extra flexibility of SNP allows the model to fit the data much better

than the normal counterpart.

Table 3.7: Observed and fitted frequencies(rounded)
shorts/lot observed SNPpred SNPDev Normpred NormDev
0 1090 1112.3 22.3 1328.6 238.6
1 59 54.5 -4.5 50.9 -8.1
2 37 35.5 -1.5 29.1 -7.9
3 30 26.6 -3.4 22.1 -7.9
4 24 22.2 -1.8 17.9 -6.1
5 19 17.6 -1.4 14.5 -4.5
6 16 15 -1 12.7 -3.3
>6 405 351.1 -53.9 275.3 -129.7
>40 238 194.6 -43.4 179.7 -58.3
>150 13 7.1 -5.9 4.2 -8.8

3.7.2 Interpreting the growth features

Recall that pild is the probability of the hillocks’ height coming from the

count state density and the model determines the effect of the design factor on

the hillocks height. Specifically, a higher pild implies a higher chance of having

a height density with the maximum value larger than the threshold. The model

for the conditional mean number of shorts µild (conditioned that the process is

in the count state), determines the effect of the design factors on both hillocks

height and number.

First we examine the design factors’ effect on hillocks height through pild.

We see from Table 3.5 that the design factors have the most significant effects

on pild in layer 1, and with almost no effect on pild for layer 4. During processing,

the wafers undergo several chemical and physical processes, and the heating

cycles that occur in these processes is believed to affect the growth of hillocks.

As the metal/insulating layers are stacked one on top of another, earlier metal
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layers undergo more heat treatment as more layers are processed above it. During

heating, the metals and surrounding dielectric materials have different coefficient

of thermal expansion and will expand at different rates and subsequently cooled

down, and the cycle continues until four layers are build up. This creates cyclic

stress in the layers, and the results show that this will affect the growth of

hillocks. Since layer 1 goes through the most heating cycles, and layer 4 the

least, the effect of design factors on these two layers suggests that the height

distribution is directly linked to the heating cycles, making it more sensitive to

the values used in the design factors. This means that certain design settings

can result in a higher chance of shifting to a count state height density. Hence,

careful determination of the design settings for layer 1 (specifically the width

and length of the metal layer) can significantly reduce the chance of growing

high hillocks.

We also noticed that the design factors’ effect of layer 2 on pild has a different

direction (sign of β) from the other three layers. In the manufacturing process,

layer 2 goes through an additional procedure after its processing. Specifically,

after processing layer 2, the wafers are placed on hold for electrical testing (ET)

to determine the conformance of the wafer up to that stage. This causes a delay

in the wafer processing as the wafers spend additional time in this step waiting

for and going through the ET. During this waiting time, the copper can self-

anneal (Lagrange et al. (2000)), even at room temperature. We see that after

this self-annealing process, the larger length would reduce the chance of having

a count state hillocks density (harmful density), and this is different from the

length’s effect on other layers. This finding has led to the further investigation

on the self-annealing behavior of copper by the design engineers and has the

potential to change the design and manufacturing process of the ICs.

Next, we investigate the design factors’ effect on µild through both hillocks

height and number.

For layer 1 and layer 2, we note that the significant factors affecting pild

through hillocks height do not affect µild. Hence, we infer that these design
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factors’ affect on the number of hillocks grown more significantly. It is also

noted that in layer 4, the design factors affect µild most significantly. The process

feature in layer 4 is that it has the least number of layers capping above it. After

each metal layer is processed, it is capped with a layer of hard nitride dielectric

material to prevent copper diffusion. As more layers are stacked on top, the

pressure from the higher layers and the hardness of this nitride layer makes it

harder for the hillocks to grow upwards. So there is much less pressure/stress on

layer 4. Hence we can conclude that with less pressure, the number of hillocks

grown becomes more sensitive to the design settings. We also note that in this

layer, the squared term of width has a significant effect on µild. The larger the

width, the larger number of sites would be available for hillock growth (Puttlitz

et al. (1989)). However, this is balanced by an opposing effect. The larger the

width, there would be less thermal stress, and hence the mismatch between the

surrounding dielectric and the metal would be less. This reduces the impulse for

hillock formation and thus reduces the number of hillocks. Here we notice that

layer 4 is the only layer that has a significant width squared effect, and at the

same time is the layer undergoing the least number of thermal heating cycles.

This observation could imply that only under certain low amounts of thermal

heating, the hillock growth number is sensitive to the mismatch effect caused by

thermal heating.

3.7.3 Optimum design setting and ICs design recommendations

With the estimated model, we now calculate the optimum design setting

which minimizes the number of shorts. We register the optimum setting as

doptim =(widthoptim, lengthoptimq, and restrict the rescaled width value between

-1.48 and 0.94, and rescaled length value between -1.83 and 0.68 according to

the experiment design range. Table 3.8 presents the calculated doptim for each

layer l “ 1, 2, 3, 4 and the corresponding optimum value. As a comparison, we

also present the minimum shorts value predicted by the design settings used in

the current fabrication. We can see that layer 1 and layer 4 have the potential
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to be better designed to achieve higher reliability.

From the optimal design setting, we can observe that the first three layers

widthoptim lengthoptim predictionoptim predictionbest
Layer1 -1.48 -1.83 7.032 10.267
Layer2 -1.48 0.68 5.607 5.607
Layer3 -1.48 [0.68, -1.83]* 3.288 3.288
Layer4 -0.42 -1.83 2.080 6.124

Table 3.8: Optimal design settings: * any value between the range is optimal
since length effect is not significant; predictionbest are predictions for the exper-
iment settings which produce the least shorts (current best design)

favor having a smaller width. Thus, in design rules, we should strive to minimize

the width of metal lines on these layers. If however, bigger metal lines are

required (for electrical circuitry purposes) in these layers, to achieve this, the

designers may need to ensure that the layer directly above is clear of metal

lines to minimize the probability of inter-layer shorts. On layer four however,

the optimal width is slightly increased to -0.42. This result indicates to the

design engineers that they might be able to relax the design rules for the top

layers (layer 4 in this case). Currently from experience, design engineers put in

increasing layered thickness on both the metal and dielectric layers for highly

complicated multilayered designs. For example, the Intel Broadwell chip has 13

layers with the topmost layer 15 times thicker than the first four layers (which

have a constant thickness). Our findings provide more engineering insights to

the current practice.

It was also observed that in most layers that -1.831 was the optimal length

for metal lines. While certain customer requirements can make it infeasible to

limit all metal lines to -1.831, there are methods that can be employed to achieve

this. The first is to design the metal lines with turns every -1.831 if the space on

the chip allows the turns. Another feasible scheme is to insert slots within the

metal lines which do not cut off the metal lines completely. These can be thought

of as holes within the metal lines to allow space for expansion and reduce stress.

Layer 2 shows that we can have much longer metal lines. This is suspected

to be related to the E-test done at layer two which allows the metal to have time
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to self-anneal and in a limited way, relieving the pressure. However, regarding

design specifications, more experiments are needed to before we can safely change

the design rules to allow for longer metal lines.

In summary, the key findings and design insights are:

1. More heating cycles make the hillocks height distribution more sensitive

to the design factors’ values, where certain design settings can result in a

higher chance of shifting to a count state height density. Hence, careful

determination of the design settings for layer 1 can significantly reduce the

chance of having harmful hillocks.

2. For the designs on layer 2, larger length, will reduce the chance of having

a count state hillocks density (harmful density), and this is very differ-

ent from the length’s effect on other layers. As the wafers are placed

through an additional electrical testing step after processing layer 2, the

additional time on hold for the test provides the opportunity for the copper

to self-anneal. This finding has led to the further investigation on the self-

annealing behavior of copper by the design engineers and has the potential

to change the design and manufacturing process of the ICs.

3. With less pressure (on higher layers), the number of hillocks grown becomes

more sensitive to the design settings.

4. Under certain low amounts of thermal heating, the hillock growth number

can become sensitive to the mismatch effect caused by thermal heating,

for example, the case in layer 4.

5. In design rules, we should strive to minimize the width of metal lines on

the first three layers. If bigger metal lines are required on these layers, the

designers may need to ensure that the layer directly above is clear of metal

lines to minimize the probability of inter-layer shorts. More relaxed design

rules can be applied to layer 4 and possibly on the layers above it.

6. In most layers, -1.831 is the optimal length for metal lines. While certain
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customer requirement makes it infeasible to limit all metal lines to -1.831,

there are still few methods can be employed to achieve this. The first is to

design the metal lines with turns every -1.831 as long as the space on the

chip allows to. Another feasible scheme is to insert slots within the metal

lines which do not cut off the metal lines completely.

3.8 Conclusion

In this chapter, we develop a multilevel zero-inflated model to analyze the

zero-inflated data arising from a multilevel ICs manufacturing line. The model

is derived based on the characteristics of the data (zero-inflation and multilevel

variations) and the physical understanding of the manufacturing process. We

analyzed the mechanisms causing the excessive zeros and derived the model’s

count distribution based on the number of hillocks grown and the individual

hillock heights.

Although the model was derived specifically for capturing the uncertainties

and modeling the experiment result of the ICs manufacturing process, the pro-

posed multilevel ZI model can be extended to model other zero inflated data

with multilevel structures with non normal random effects distributions. The

proposed approximate AGQ-EM algorithm can also be applied to estimate the

parameters from these model structures and is especially useful in cases where

the random effects are not normal and estimated with a SNP distribution.

From practical point, the built model enabled us to draw a better understand-

ing of the uncertainties in hillock growth process. The model and results have

provided the designers with new insights on the copper wire layer designs that

can improve the yield of the process and reliability of the chips. Additionally,

through this analysis, it was discovered that an increased waiting time between

processes (specifically waiting time to undergo electrical testing) could reverse

the effects of some design factors, and this has prompted further investigations

into the self-annealing properties of copper during this waiting time.
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CHAPTER 4

BAYESIAN EXPERIMENTAL DESIGNS FOR

ESTIMATING THE OPTIMUM POINT WITH

GENERALIZED LINEAR MODELS

The purpose of engineering optimization is to choose a set of settings for the

design variables of the system such that the system performance is optimized. In

some cases, the estimated optimum setting can suffer from large uncertainties,

especially where the data used for estimating the optimum setting is limited and

noisy. In such cases, the design engineer may allocate additional runs to conduct

a follow-up experiment to reduce the uncertainty associated with the estimator

of optimum setting. In this chapter, we proposed a Bayesian experimental de-

sign framework for collecting data to reduce the estimation uncertainty of the

optimum point with generalized linear models.

4.1 Introduction

When the initial understanding of a system, a process, or a new product

is poor, a preliminary experiment is usually conducted first to learn the shape

of the response surface. This preliminary experiment may be designed using a

simple screening experiment or an optimal design such as the D-optimal design.

Based on the knowledge obtained from the preliminary experiment, a follow-up
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design may then be chosen to collect data for more specific objectives. Among

the various objectives of planned experiments, an important and realistic one is

to find the optimum point (design factors’ setting) yielding the best system per-

formance over a certain region of interest (Box and Wilson (1951); Gontard et al.

(1992); Soltani and Soltani (2016)). For example, an auto manufacturer may first

adopt a simple screening design to identify which of eight or nine factors have the

greatest effect on the drying time of the paint on a new car product. Once the

most important two or three factors have been identified, the manufacturer can

design a more specific follow-up experiment to estimate the optimum point for

those important factors. Other applications in which estimating the optimum

point are of particular interest include the investigation of an Integrated Circuit

back-end design, an industrial chemical, or a new compound (Li et al. (2015);

Tye (2004)).

As computational power has evolved over the decades, the development of

Bayesian experimental design is facilitating more complex design problems to be

solved. The Bayesian framework provides a unified approach for incorporating

prior information regarding the statistical model, with a utility function describ-

ing the experimental objectives.

Currently, most of the research on batch experimental design has been focus-

ing on a globally well-estimated model or the model parameter vector as a whole.

For example, the well-known D-optimality criterion (Chaloner and Verdinelli

(1995); Dror and Steinberg (2008); Gotwalt et al. (2009); Russell et al. (2009))

seeks to maximize the determinant of the information matrix of the parameter

vector θ. This criterion puts equal attention to all elements of θ, regardless

of their influence on the quantity of interest. However, the optimal designs fo-

cusing on the estimation of θ may not still be the ‘best’ with regards to the

estimation of the optimum point. In this chapter, we develop the methods of

finding the batch optimal design for efficient estimation of the optimum point

with generalized linear models(GLMs), allowing the optimum point to locate at

either boundary points or stationary points.
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To develop an efficient experimental design framework for GLMs, the depen-

dence problem (Khuri et al. (2006)) has to be considered. Khuri et al. (2006)

reviewed design issues for GLMs and pointed that efficient designs for GLMs

is dependent on the unknown parameter values of the model. In such cases,

traditional way of conducting the optimal design is to choose the experiment

based on a best guess of the parameter values, which leads to locally optimal de-

signs (Russell et al. (2009); Wang et al. (2006)). A more coherent way is to use

a Bayesian formulation to capture the uncertainty in the parameters(Chaloner

and Verdinelli (1995)). Moreover, specific information is usually available prior

to the experimentation. For example, the posterior distribution of parameter

estimates from the preliminary experiment can serve as a prior distribution for

the follow-up design. Therefore, in this work we adopt a Bayesian formulation

to build the optimal design framework for estimating the optimum point.

One of the most commonly used formation of utility function for Bayesian

design criteria is the mutual information (Lindley et al. (1972)). From a Bayesian

point of view, Lindley et al. (1972) suggested that an efficient way of experimen-

tal design is to specify a utility function reflecting the value of the experiment,

regard the design choice as a decision problem, and select a design that maxi-

mizes the utility.

Specifically, the Bayesian optimal design e˚, maximizes the expected utility

function Upeq over the experimental design space XE with respect to the future

observations ye P Y and model parameter θ P Rp:

e˚ “ argmaxePXEEtUpe,θ,yequ

“ argmaxePXE

ż

Y

ż

Rp

Upe,θ,yeqppθ|e,yeqppye|eqdyedθ
(4.1)

For example, the well-known Bayesian D-optimality criterion (Chaloner and

Verdinelli (1995); Dror and Steinberg (2008); Cook et al. (2008); Lewi et al.

(2009); Drovandi et al. (2013); Huan and Marzouk (2013); Ryan et al. (2014))

seeks to maximize the mutual information between the observations and the pa-

rameter vector. It is of great importance that the utility function incorporates
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the specific experimental objectives and is specific to the application of interest.

For example, the utility function for efficient estimation of parameter may not

perform well when the design objective is to reduce the prediction uncertainty.

Therefore, other utility functions such as utilities for model discrimination (Box

and Hill (1967); Ng and Chick (2004); Cavagnaro et al. (2010); McGree et al.

(2012)) and utilities for prediction of future observations (Zidek et al. (2000);

Solonen et al. (2012); Liepe et al. (2013) have been proposed to incorporate spe-

cific design objectives.

Nevertheless, the literature on Bayesian optimal designs for estimating op-

timum points is scarce despite the fact that many engineering problems have

estimation of optimum settings as their ultimate goal.

Although many published articles are available on finding the optimum point

in a sequential experiment (Box and Wilson (1951); Chatterjee and Mandal

(1981); Liyana-Pathirana and Shahidi (2005)), these algorithms can not be used

when the experiment is not sequential in nature, as dictated by practical con-

straints. Box and Wilson (1951) initiated the research on sequentially attaining

optimum point by estimating the first derivatives of the response surface and

moving toward the optimum with the path of steepest ascent defined by previ-

ous estimates. However, this sequential search method would not be applicable

to many manufacturing and clinical experiments where measurements are carried

out simultaneously in a batch (for example, see Millette et al. (1995); Ruiz et al.

(2013)). In such cases, all the design points have to be chosen without feedback

information. On the other hand, research on batch experimental design for this

topic has been limited to assuming the optimum point being a stationary point

(Chaloner (1989); Mandal and Heiligers (1992); Pronzato and Walter (1993); Fe-

dorov and Müller (1997)). For example, Chaloner (1989); Mandal and Heiligers

(1992) studied the problem with linear regression models, and assumed that the

optimum point was a stationary point and can be written as a closed form func-

tion of the model parameters. However, in many practical instances, the design

region and hence the optimum point is limited within a constrained region of in-
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terest. In such cases, the optimum point can be located at the boundaries when

the stationary point is a saddle point or be located outside the region of interest.

Currently there are no design criteria that relax the restrictive stationary point

assumption on the optimum point.

The reason that Bayesian optimal design has been limited to simple utility

functions mainly because of the computational burden to perform the integra-

tion and maximization of equation 4.1. To evaluate the Bayesian utility function,

one must estimate the posterior distribution ppθ|e,yeq. Generally, thousands of

these posterior distributions must be calculated for each potential future exper-

imental observations ye, which is drawn from the prior predictive distribution

ppye|e,θqppθq. To evaluate these posterior distributions, many computational

strategies have been proposed. These include Laplace approximation Chaloner

and Verdinelli (1995); Long et al. (2013); smoothing of Monte Carlo simulations

(Müller (2005)), Markov Chain Monte Carlo (MCMC) (Ryan (2003); Müller

(2005)); and sequential Monte Carlo methods (Amzal et al. (2006)).

In the case where the utility function represents the information gain on the

optimum point, the posterior distributions of the optimum point are required to

be calculated. Since we allow the optimum point to be the boundary point, the

conditions for normal approximation are no longer satisfied, the Chaloner and

Verdinelli (1995)’s method can not be directly followed. On the other hand, it

can be too computationally intensive to perform Monte Carlo to estimate the

posterior distribution of optimum point for each of the thousands of iterations

required in the optimal search algorithms.

In this work, we propose an alternative approximation method to the pro-

posed criterion based on decomposing the criterion into the utility measure for

D-optimal criterion and a ‘missing information’ term which can be estimated

using Monte Carlo without the nested structure. This approximation greatly re-

duces the computational burden of a pure MCMC algorithm and makes searching

for the optimal design feasible.

The remainder of this chapter is organized as follows: Section 2 introduces
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the motivating example from a semiconductor experiment. Section 3 reviews

other Bayesian optimality criteria for GLMs and the criterion evaluation meth-

ods. In Section 4, we develop the optimality criterion for estimating the optimum

point and provide an approximation procedure for the evaluation the developed

criterion. In Section 5, we provide an optimization procedure based on genetic

algorithms (GAs) to optimize the developed criterion and search for the optimal

design. In Section 6, we return to the motivating example to illustrate the effec-

tiveness of the developed framework in practical problems. A brief summary is

included as Section 7.

4.2 A motivating example

Semiconductor wafers usually undergo many microfabrication process steps,

one of which is plasma etching. This step involves a high-speed stream of plasma

(an appropriate gas mixture) being shot at a sample, in which the RF power

(RF) and factors pressure are among those design factors that can be controlled.

Sometimes, the anode-cathode gap and gas species are investigated as well, but

those factors were fixed in this experiment. Suppose the design objective is to

find the optimum setting of these control factors such that the wafer surface

defects is minimized.

On the manufacturing line, these operational control factors are bounded

by physical conditions of the process, and so a bounded design space typically

applies. Moreover, the design factors like the RF power and factors pressure

can only be controlled up to a precision of certain decimal places. In practice,

when little is known about the response function, a preliminary experiment is

first conducted to estimate the functional relationship and determine the signif-

icant factors. This preliminary experiment usually takes the form of a factorial

or a space filling design, and are constrained by the operating / manufactur-

ing conditions. With the preliminary experimental results, a regression form

is then determined and the coefficients of this model estimated through meth-

ods like the maximum likelihood approach. With the estimated coefficients, the
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expected number of defects per wafer can be predicted for any setting of the

design factors. The optimum setting (of the design factors) can then be deter-

mined through minimizing this estimated response surface. Often, however, as

the preliminary experiments are conducted only at a few fixed design points, the

optimum setting can be inadequately estimated (suffering from large variances).

When this is observed, additional budgets for conducting follow-up experiments

can be allocated to improve this estimate to better control the manufacturing

process. In such cases, as prior information has been obtained from the initial

experiment, it is natural to adopt a Bayesian approach to incorporate the prior

information into the follow-up experiment. In this work, we adopt the prior

distribution and regression form reported by Johnson and Montgomery (2009)

in a similar plasma etching experiment. With this initial prior distribution and

model form, we study the problem of designing a follow-up batch experiment

with 15 runs to better estimate the optimum setting. Based on the prelimi-

nary experiment result, Johnson and Montgomery (2009) reported the following

second-order Poisson regression model

logpdefectsq “ θ0 ˚ intercept` θ1 ˚RF ` θ2 ˚ pressure` θ11 ˚RF
2

` θ22 ˚ pressure
2 ` θ12 ˚ RF ˆ pressure (4.2)

And a bounded normal prior with means and ˘2σpσ “ pσ1, σ2, σ3, σ4, σ5qq

ranges on the coefficient parameters are specified as follows:

1 ď θ0 ď 4, 0.22 ď θ1 ď 0.8, ´1.5 ď θ2 ď 0.5,

0.25 ď θ11 ď 0.75, 0.25 ď θ22 ď 0.75, 0.25 ď θ12 ď 0.75 (4.3)
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4.3 A review of Bayesian experimental designs for

GLMs

Here we review the existing Bayesian experimental designs for GLMs. We be-

gin with the construction and evaluation of the expected utility for the Bayesian

D-optimality criterion, then review other utility functions for alternative design

objectives.

From a Bayesian point of view, Lindley et al. (1972) suggested that an ef-

ficient way of experimental design is to specify a utility function reflecting the

value of the experiment, regard the design choice as a decision problem, and se-

lect a design that maximizes the utility. Following Lindley (1956)’s suggestion,

several authors (Stone (1959); DeGroot (1962); Bernardo (1979)) considered the

expected gain in Shannon information (Shannon (1948)) given by an experiment

as a utility function. Suppose an E run experimental design e “ pe1, ¨ ¨ ¨ , eEq

must be chosen from XE , and response ye “ py1, ¨ ¨ ¨ , yEq will be observed.

The density function of ye is indexed by coefficients θ P Rp and represented

by ppye|θq. To better estimate θ, these authors (Stone (1959); DeGroot (1962);

Bernardo (1979)) proposed choosing an experimental design that maximizes the

expected gain in Shannon information on θ:

UDpeq “

ż ż

log
ppye,θq

ppyeqppθq
ppye,θqdθdye (4.4)

“

ż ż

ppye,θq log ppye|θqdyedθ ´

ż

ppyeq log ppyeqdye (4.5)

“

ż ż

ppye,θq log ppθ|yeqdθdye ´

ż

ppθq log ppθqdθ (4.6)

When the model is not linear, for example, a Poisson regression model, the ex-

pected utility above is often a complicated integral and approximations must

typically be used. Most analytical approximations to UDpeq involve using a nor-

mal approximation to the posterior distribution ppθ|yeq. A well-known estimator
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provided by Chaloner and Verdinelli (1995) is:

xUDpeq “ ´
p

2
logp2πq ´

p

2
`

1

2

ż

log dettIpθ, eq `Ruppθqdθ

´

ż

logrppθqsppθqdθ (4.7)

where Ipθ, eq denote the expected Fisher information matrix for a model with

unknown parameters θ and a design e. R is the matrix of negative second

derivatives of the logarithm of the prior density function, or the precision matrix

of the prior distribution. Since the prior distribution ppθq does not depend on

the design e, the experiment maximizing the estimator Equation (4.7) is the one

that maximizes:

φDpeq “

ż

log dettIpθ, eq `Ruppθqdθ (4.8)

which is referred as the Bayesian D-optimality criterion (Chaloner and Verdinelli

(1995)).

Note that when designing follow-up experiments, the posterior distribution of

the first stage experiment can serve as the prior distribution of the follow-up ones.

In such cases, the prior precision matrix R represent for the information obtained

from the first stage experiment, which is identical to the augmentation of a

previous design in the non-Bayesian design literature (Chaloner and Verdinelli

(1995)).

Another approach to approximating UDpeq is to evaluate Equation (4.5) by

an MC estimator (Ryan (2003)):

1

N

N
ÿ

i“1

tlogrppyie|θ
iqs ´ logrp̂pyieqsu (4.9)

where pyie,θ
iq for i “ 1, ¨ ¨ ¨ , N is a sample of size N from joint distribution

ppye,θq and p̂pyieq is a suitable estimate for ppyieq. To obtain a (dependent) pair

pyie,θ
iq from ppye,θq, they suggested to first draw θi from distribution ppθq,

then yie from distribution ppye|θ
iq. To estimate p̂pyieq, they also provide a MC
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estimator as

p̂pyieq “
1

N2

N2
ÿ

j“1

ppyie|θ
ijq (4.10)

where θij (i “ 1, ¨ ¨ ¨ , N , j “ 1, ¨ ¨ ¨ , N2) are N samples of size N2 from ppθq

obtained independently of the N pairs pyie,θ
iq used in estimator Equation (4.9).

Although straightforward, enormous computational resources are required to

evaluate this estimator since there is a nested structure when evaluating ppyieq:

for each i “ 1, ¨ ¨ ¨ , N , a sample of size M from ppθq needs to be generated and

the likelihood ppye|θq would be evaluated NpN2 ` 1q times.

The D-optimal criterion Equation (4.5) is effective when the experiment ob-

jective is to obtain a globally well-estimated model. Other than this objective,

there are also situations where predictions are of interest. In these cases, the

expected Shannon information gain on a future observation y0 is used rather

than that on θ. For example, Verdinelli et al. (1993) used the following expected

utility for predictions in accelerated life-testing:

ż

log
ppye, y0q

ppy0qppyeq
ppye, y0qdyedy0 (4.11)

In addition to the interest to the predictions, estimating the optimum point

is also a very important objective of many practical design problems. However,

there is currently no procedure for constructing Bayesian optimal designs for

estimating the optimum point with GLMs. This gap is mainly due to two dif-

ficulties. First, in most cases, the optimum point is not a closed form function

of the model parameters, which leads to many difficulties in defining the design

criterion. Second, as can be seen from the MC estimator in Equation (4.9),

evaluating the integrals in the expected utility requires enormous computational

efforts. In the following section, we provide a solution to this problem through

a Shannon information utility measure and reduce the computational burden by

a decomposition of the proposed utility measure.
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4.4 Bayesian design formulation for estimating opti-

mum point

The motivating application presented in Section 4.2 is a special case of a

much more general problem in optimal design. In this section, we begin by for-

mally defining the problem of optimal design for estimating optimum setting in

GLMs and then derive the expected utility for the Bayesian design criterion,

followed by proposing an evaluation algorithm to the expected utility.

To set the stage, let yx be a response variable whose expectation µpx,θq

depends on d controllable factors x “ px1, ¨ ¨ ¨ , xdq
1 and p parameters θ “

pθ1, ¨ ¨ ¨ , θpq. Suppose θ P Rp and has prior density ppθq. In most of the practical

applications, x can only be controlled up to a certain precision or decimal points

and should be limited to be inside of a constrained region of interest. Hence we

assume the design space X is a closed discrete set, and to be concrete, we also

assume that the actual factors have been scaled such that X “ r´1, 1sd. The

response yx follows an exponential family with

Eyx|θryxs “ µpx,θq, and µpx,θq “ grzpxqTθs (4.12)

where g is a monotonic link function for the model and zpxqTθ is the linear

predictor. When the initial understanding of a system is poor and the func-

tional form of µpx,θq is unknown, some preliminary experiments using a simple

screening experiment could be used. Based on the knowledge obtained from the

preliminary experiments, a follow-up design may then be chosen to collect data

for more specific objectives such as estimating the optimum point. Consideration

of bias due to misspecification of µpx,θq is beyond the scope of this work.

4.4.1 Optimum point

Suppose the experimenter is interested in attaining the optimum setting x˚ P

X which yields the optimum system value. Here attaining x˚ includes first

estimate θ by θ̂ and predicting the deterministic part of yx, µpx, θ̂q, for any
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admissible value of x P X , and then finding the optimum setting x˚ such that

x˚ :“ argmin
xPX

µpx, θ̂q (4.13)

For every possible value of θ P Rp, we have an optimum setting solution set

Ψpθq :“ argmin
xPX

µpx,θq (4.14)

We now consider the problem of determining the batch experimental design

e “ te1, ¨ ¨ ¨ , eEu, from design space XE , which is optimal for estimating x˚. In

this context, a globally well-estimated model or the model coefficients vector as

a whole is not the main interest. Instead, the experimental design should collect

data in the most ‘efficient’ way regarding the inference of x˚.

Assuming µpx,θq is quadratic and strictly convex, Mandal and Heiligers

(1992) wrote x˚ as a close form function of θ and proposed minimax designs

for estimating x˚. Similarly, Pronzato and Walter (1993) provided various op-

timality criterion by assuming x˚ as a stationary point. However, as pointed

by Peterson et al. (2002), these assumptions are often not well aligned with the

practical needs to calculate x˚ within a bounded region. In some cases, the

stationary point is a saddle point rather than an optimum in the experimental

region. For example, suppose logpµpx,θqq “ θ0 ` θ1 ˚ x ` θ2 ˚ x
2, x P r´1, 1s.

When θ1 “ 1, θ2 “ ´1, the stationary point ´ θ1
2θ2

“ ´0.5 is a saddle point and

x˚ “ ´1;when θ1 “ 4, θ2 “ 1, the stationary point ´ θ1
2θ2

“ ´2 locates outside

the feasible set and x˚ “ ´1. In this work, we relax the assumptions of x˚ being

a stationary point, and only assume that x˚ comes from a finite set of points,

e.g., a bounded discrete set G “ tx1, ¨ ¨ ¨ ,xmu. This is reasonable and practical

since the optimum setting can only be controlled up to certain precision in a real

application. Moreover, to make the problem well defined, the x˚ needs to be

guaranteed to be unique with probability one. Here, we prove that x˚ is unique

with probability one under the assumption x˚ P G by the following theorem.

Theorem 1 Let X P Rp be the compact experiment region and G “ tx1, ¨ ¨ ¨ ,xmu

84



be a finite set of points (e.g., grid points). Let grθT zpxqs be the objective function,

where θ P Rp, z : Rd Ñ Rp, and g : R Ñ R is strictly monotonic link function.

Suppose x˚ P G is a point such that grθT zpx˚qs “ min tgrθT zpx1qs, ¨ ¨ ¨ , grθT zpxmqqsu.

Then, x˚ is unique with probability one if the following two conditions hold:

1. θ is a random vector with a density function on Rp.

2. zpxiq ´ zpxjq ‰ 0, @pxi,xjq P X ˆ X ,xi ‰ xj.

Proof:

Note that trθ P Rp : rθTa “ 0u,a ‰ 0 defines a hyperplane in Rp, which

have Lebesgue measure zero (Page 232 of Aliprantis and Tourky (2007)). Since

conditions 1 and 2 above imply that P tθT zpxiq “ θT zpxjqu “ P tθT rzpxiq ´

zpxjqs “ 0s “ 0 if i ‰ j, we have P rθT zpxiq “ θT zpxjq for some i ‰ j, 1 ď

i ď j ď ms ď
ř

1ďiďjďm P rθ
T zpxiq “ θT zpxjqs “ 0. Since g is strictly

monotonic, grθT zpxiqs “ grθT zpxjqs if and only if θT zpxiq “ θT zpxjq. Thus,

P tgrθT zpxiqs “ grθT zpxjqs for some i ‰ j, 1 ď i ď j ď mu “ 0. This implies

that the minimum point x˚ must be unique with probability one.

Remark 1: Suppose d “ 2, gp¨q “ expp¨q, and θT zpxq “ θ0 ` θ1x1 ` θ2x2 `

θ3x1x2`θ4x
2
1`θ5x

2
2, then Theorem 1 holds since zpxiq´zpxjq “ p0, xi1´x

j
1, x

i
2´

xj2, x
i
1x
i
2 ´ x

j
1x
j
2, px

i
1q

2 ´ pxj1q
2, pxi2q

2 ´ pxj2q
2q ‰ 0 @xi,xj P r´1, 1s2,xi ‰ xj .

Remark 2: There exist a subset Λ such that x˚ is not unique and P pθ P Λq “ 0,

while when θ P RpzΛ, x˚ is unique and P pθ P RpzΛq “ 1. When x˚ is unique,

x˚ would be a function of θ,

θ ÞÑ x˚pθq P Ψpθq, θ P RpzΛ (4.15)

4.4.2 Bayesian design criterion for estimating the optimum point

Now we construct the Bayesian design criterion for estimating the optimum

setting. In a similar spirit with Lindley (1956), we can define the expected utility

for estimating x˚ based on expected Shannon information gain on x˚ from an

experiment. For a prior distribution ppx˚q, the Shannon information (Shannon
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(1948)) is defined to be

Hpx˚q “ ´

ż

ppx˚q log ppx˚qdx˚ (4.16)

whenever the integral exists. For any x˚ for which ppx˚q “ 0, define ppx˚q log ppx˚q

to be zero.

After the experiment has been performed and the response yie observed, the

posterior distribution of x˚ is ppx˚|yieq “ ppyie|x
˚qppx˚q{ppyieq, and the corre-

sponding Shannon information is

Hpx˚|ye “ y
i
eq “ ´

ż

log ppx˚|yieqppx
˚|yieqdx

˚ (4.17)

(If ppx˚|yieq “ 0, define the integrand to be zero.)

Definition 1 The amount of information (uncertainty) reduced by the experi-

ment e, with prior knowledge ppx˚q and observation yie, is

H∆px
˚|yieq “ Hpx˚q ´Hpx˚|yieq (4.18)

In the experimental design problem, however, e must be selected before yie is

observed. Hence, H∆px
˚|yieq need to be averaged with respect to the marginal

distribution of ye. Hence, we have

Definition 2 The average amount of information reduced by the experiment e,

with prior knowledge ppx˚q is

EyerHpx
˚q ´Hpx˚|ye “ y

i
eqs “ Hpx˚q ´Hpx˚|yeq (4.19)

where Hpx˚|yeq :“ EyerHpx
˚|ye “ y

i
eqs.

This measure is also defined as the mutual information between x˚ and ye:

Ipx˚;yeq :“ Hpx˚q ´ Hpx˚|yeq, and satisfies Ipx˚;yeq ě 0 (MacKay (2003)).

Intuitively, the mutual information reflects the dependency of two random vari-

ables, it is a measure of the ‘amount of information’ obtained about one random
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variable, through observations of the other random variable. Using this infor-

mation measure to define the expected utility, we have

Upeq “

ż ż

logr
ppye,x

˚q

ppyeqppx˚q
sppye,x

˚qdx˚dye

“

ż ż

logrppye|x
˚qsppx˚,yeqdx

˚dye ´

ż

logrppyeqsppyeqye (4.20)

The optimal design problem is then to find the experiment e˚ P XE such that

Upe˚q “ max
ePXE

Upeq. We call this criterion for estimating the optimum setting as

the Bayesian OP optimality criterion.

4.4.3 An algorithm to evaluate the proposed criterion

When the model belongs to the class of GLMs, the utility function, Equa-

tion (4.20) is often a complicated integral and approximations must typically be

used. In the optimization procedure of searching for the optimal design, for each

searched candidate design, the expected utility associated with this design needs

to be recalculated. This requires substantial computation. As we reviewed in

Section 4.3, for Bayesian D-optimality criterion, Chaloner (1989) provided an

asymptotic normal approximation to the posterior distribution of θ, while Ryan

(2003) suggested a MCMC estimator. The approximation proposed by Chaloner

and Verdinelli (1995) reduces the computational burden by using a normal ap-

proximation to the posterior distribution ppθ|yeq. However, when calculating

x˚ from minimizing µpx,θq over the bounded region r´1, 1sd, some of the pos-

terior value of θ P Rp can lead to the same value of x˚ located at the boundary

points. This violates the conditions to approximate ppx˚|yeq by normal distribu-

tion(the value of the first derivative of the posterior ppx˚|yeq may no longer be

zero at the posterior mode). Hence, we can not directly resemble Chaloner and

Verdinelli (1995)’s method to approximate the expected utility, Equation (4.20).

The alternative MC estimator Equation (4.9) provided by Ryan (2003) requires

enormous computational effort, making it infeasible to be applied for optimizing

the expected utility and searching for an optimal design. This observation is
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also made by the authors of this MC estimator for their case study in Ryan

(2003) . In this subsection, we propose an algorithm to evaluate the expected

utility, Equation (4.20) based on (1) an approximation to the expected utility

for D-optimality criterion UDpeq provided by Chaloner and Verdinelli (1995);

(2) the data processing inequality (Cover and Thomas (2012)) to decompose the

expected utility Equation (4.20) into two separate terms, where the first term

equals to UDpeq and the second term can be estimated by the N sample pairs

pyie,θ
iq, as used in Equation (4.9). This avoids the nested MC structure for es-

timating
ş

logrppyeqsppyeqye required by the MC estimator in Equation (4.10).

Recall that the expected utility defines the information gain on x˚ through

observing ye; in other words, the mutual information between x˚ and ye. We

have the explicit relationship between θ and ye from Eyx|θryxs “ µpx,θq, but

not for x˚ and ye. As mentioned, to attain the value of x˚, first we need

to estimate θ by θ̂ from observations of ye, then calculate x˚ from Equa-

tion (4.13). When we calculating x˚ from various estimates of θ, some dif-

ferent values of θ̂ may map to the same value of x˚. For example, suppose

θ̂|y1
e “ θ1 and θ̂|y2

e “ θ2, but θ1 and θ2 lead to the same value of x˚ such

that: px˚q1 “ argmin
xPX

µpx,θ1q, px
˚q1 “ argmin

xPX
µpx,θ2q. In such cases, know-

ing x˚ “ px˚q1 would no longer provide the explicit information on whether

we observe y1
e or y2

e; on the contrary, measuring two samples y1
e and y2

e would

be equivalent to measuring one sample y1
e with respect to gaining knowledge

on x˚. This argument is described by the Data processing inequality theorem

(Cover and Thomas (2012)) from information theory. In the following, we will

introduce this theorem and use this theorem to decompose the mutual infor-

mation between x˚ and ye into mutual information between θ and ye and the

’information loss’.

Definition 3 (Markov Chain) (Cover and Thomas (2012)) Given three ran-

dom variables X, Y , Z, they form a Markov chain denoted as X Ñ Y Ñ Z iff X

and Z are conditionally independent given Y . I.e., ppz, x|yq “ ppz|yqppx|yq,@x, y, z

.
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Proposition 1 For θ P RpzΛ, ye, θ and x˚ form a Markov chain: ye Ñ θ Ñ

x˚.

Proof: From Equation (4.15), we have: ppye|θ,x
˚q “ ppye|θ, x

˚pθqq “ ppye|θq,θ P

RpzΛ. Thus,

ppye,x
˚|θq “

ppye|x
˚,θqppx˚,θq

ppθq

“
ppye|θqppx

˚,θq

ppθq
“ ppye|θqppx

˚|θq,θ P RpzΛ

and ye Ñ θ Ñ x˚,θ P RpzΛ.

Theorem (2.8.1 of Cover and Thomas (2012)) (Data-processing inequality)

If X Ñ Y Ñ Z, then IpX;Y q ě IpX;Zq.

From Equation 2.121 of the proof of this theorem, we also have: IpX;Y q “

IpX;Zq ` IpX;Y |Zq, where

IpX;Y |Zq “ Eppx,y,zq log
ppX,Y |Zq

ppX|ZqppY |Zq
(4.21)

is the expected value of the mutual information of X and Y given the value of

Z.

Proposition 2 For θ P RpzΛ, we have Ipye,θq ě Ipye,x
˚q and Ipye;θq “

Ipye;x
˚q ` Ipye;θ|x

˚q, where

Ipye;θ|x
˚q “ Eppye,θ,x˚q log

ppye,θ|x
˚q

ppye|x˚qppθ|x˚q
(4.22)

Proof: According to Proposition 1, ye Ñ θ Ñ x˚,θ P RpzΛ forms a Markov

chain.

Based on the above Proposition, instead of directly approximating the expected

utility in Equation (4.5), we decompose it to

Upeq “ Ipye;x
˚q “ Ipye;θq ´ Ipye;θ|x

˚q

“ UDpeq ´ Eppye,θ,x˚q log
ppye,θ|x

˚q

ppye|x˚qppθ|x˚q
(4.23)
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where the first term in the right side of the equation equals to the utility UDpeq

for the D-optimality criterion and measures the information gain on the overall

regression model; while the second term measures the information loss when

transmitting the information through θ to x˚ by function x˚pθq. For UDpeq,

we directly adopt the approximation used for Bayesian D-optimality criterion

by Chaloner and Verdinelli (1995) in Equation (4.7). Specifically, for GLMs, we

have

xUDpeq “ ´
p

2
logp2πq ´

p

2
`

1

2

ż

log dettZ 1QZ `Ruppθqdθ

´

ż

logrppθqsppθqdθ (4.24)

where Z “ pzpxq1, ¨ ¨ ¨ , zpxqEq
1 is the experiment covariate matrix, Q “ diagtweu

E
e“1,

and we “ 1{tvarpyi|µiqrh
1pµiqs

2u are weights associated with the eth observation,

e “ 1, ¨ ¨ ¨ , E. The first element in the weights is the variance of the ith observa-

tions condition on its expectation, and the second term is the first derivative of

the inverse link function, hp¨q “ g´1p¨q. We can see that the information matrix

depends on the unknown parameter values through the weights.

As there is no analytical form for Ipye;θ|x
˚q, we proposed a MC procedure to

approximate it. To obtain a computationally efficient estimator, we first rewrite

Equation (4.22) as

Ipye;θ|x
˚q “ Eppye,θ,x˚q log

ppye,θ|x
˚q

ppye|x˚qppθ|x˚q
(4.25)

“ Eppye,θ,x˚q log
ppye|θq

ppye|x˚q
(4.26)

“ Eppx˚qrEppye,θ|x˚q log
ppye|θq

ppye|x˚q
s,θ P RpzΛ (4.27)

where the second equation holds as ppye,θ|x
˚q “ ppye|θqppθ|x

˚q,θ P RpzΛ

(from Proposition 1). Note that as x˚ is a random variable with discrete sample
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space G, this suggests a MC estimator as

ÿ

px˚qiPG
p̂rpx˚qis

1

mi

mi
ÿ

j“1

log
ppy

pi,jq
e |θpi,jqq

p̂ry
pi,jq
e |px˚qis

(4.28)

where p̂rpx˚qis is a suitable estimate for prpx˚qiqs, py
pi,jq
e ,θpi,jqq for j “ 1, ¨ ¨ ¨ ,mi

is a sample of size mi from prye,θ|px
˚qis and p̂ry

pi,jq
e |px˚qis is a suitable estimate

for pry
pi,jq
e |px˚qis.

First we look into the distribution ppx˚q. Although x˚ can be uniquely

decided with probability one for each value of θ “ θk, analytically deducing the

distribution of x˚ is generally infeasible. Instead, using the MC procedure, we

can obtain a large sample of x˚, and use the empirical probability to approximate

ppx˚q. Specifically, we first simulate θ1, ¨ ¨ ¨ ,θN from ppθq, and these samples will

be distinct with probability one. Then for each θk, we can compute px˚qk P G.

Here, since G is a finite set of points, different θk may result in same value of

x˚. Suppose pG “ tpx˚q1, ¨ ¨ ¨ , px˚qMu are the distinct values of x˚ and px˚qi is

obtained from tθpi,1q, ¨ ¨ ¨ ,θpi,miqu, where
řM
i“1mi “ N . Then we can estimate

prpx˚qis with its empirical probability p̂rpx˚qis “ mi{N .

Then, to generate random sample pairs from prye,θ|x
˚ “ px˚qis, we draw yke

from ppye|θ
kq for k “ 1, ¨ ¨ ¨ , N , ppye|θq is known and is given in Equation (4.12).

pyke,θ
kq is hereby a sample pair from ppye,θq. Condition on x˚ “ px˚qi, the

sample pairs tpy
pi,1q
e ,θpi,1qq, ¨ ¨ ¨ , py

pi,miq
e ,θpi,miqqu would be independent samples

from prye,θ|px
˚qis. To approximate prye|px

˚qis, we use the MC estimator

p̂rye|px
˚qis “

mi
ÿ

t“1

prye|θ
pi,tqsprθpi,tq|px˚qis “

mi
ÿ

t“1

prye|θ
pi,tqs{mi (4.29)

When mi “ 1, the above estimator equals to p̂rye|px
˚qis “ prye|θ

pi,1qs.

Hence, the MC estimator, Equation (4.28) can be written as:

M
ÿ

i

mi

N
t

1

mi

mi
ÿ

j“1

log
pry

pi,jq
e |θpi,jqs

p̂ry
pi,jq
e |px˚qis

u “
1

N

M
ÿ

i

mi
ÿ

j“1

log
pry

pi,jq
e |θpi,jqs

p̂ry
pi,jq
e |px˚qis

u
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where p̂ry
pi,jq
e |px˚qis “

řmi
t“1 pry

pi,jq
e |θpi,tqs{mi. Note that when mi “ 1,

log
pry

pi,jq
e |θpi,jqs

řmi
t“1 pry

pi,jq
e |θpi,tqs{mi

“ log
pry

pi,1q
e |θpi,1qs

pry
pi,1q
e |θpi,1qs

“ 0 (4.30)

this simplifies the computation.

Overall, the proposed estimation procedure can be summarized as

Simulation procedure for estimating Ipye;θ|x
˚q

Step 1. Sample θ1, ¨ ¨ ¨ ,θN from ppθq.

Step 2: For each θk, compute px˚qk P G. Let pG “ tpx˚q1, ¨ ¨ ¨ , px˚qMu

be the distinct values of x˚ and suppose that px˚qi is obtained from

Θi “ tθ
pi,1q, ¨ ¨ ¨ ,θpi,miqu in Step 1.

Step 3: Sample y
pi,jq
e from ppye|θ

pi,jqq for θpi,jq P Θi.

Then, approximate Ipye;θ|x
˚q with

1

N

M
ÿ

i

mi
ÿ

j“1

log
pry

pi,jq
e |θpi,jqs

p̂ry
pi,jq
e |px˚qis

where p̂ry
pi,jq
e |px˚qis “

řmi
t“1 pry

pi,jq
e |θpi,tqs{mi.

Remark: when mi “ 1, log pry
pi,jq
e |θpi,jqs

p̂ry
pi,jq
e |px˚qis

“ 0, this simplifies the compu-

tation.

Combining with the estimator in Equation (4.24) for the regression information

term, we obtain the overall MC estimator as

zUpeq “ ´
p

2
logp2πq ´

p

2
`

1

2

N
ÿ

k“1

1

2N
log dettrZ 1QkZ `Rsu

`

ż

logrppθqsppθqdθ ´
1

N

M
ÿ

i

mi
ÿ

j“1

log
pry

pi,jq
e |θpi,jqs

p̂ry
pi,jq
e |px˚qis

(4.31)

where Z “ pzpxq1, ¨ ¨ ¨ , zpxqEq
1 is the experiment covariate matrix,

Qk “ diagtexprzpxq1eθ
ksuEe“1, and p̂ry

pi,jq
e |px˚qis “

řmi
t“1 pry

pi,jq
e |θpi,tqs{mi. Note

that because the integration in Equation (4.24) is generally intractable, the same

N samples of θ is also used to approximate this integration.

Since the prior distribution ppθq does not depend on the design e, so the
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experiment maximizing the estimator, Equation (4.31) for OP optimal design

criterion is the one that maximizes:

pφpeq “
1

2

N
ÿ

k“1

1

2N
log dettrZ 1QkZ `Rsu ´

1

N

M
ÿ

i

mi
ÿ

j“1

log
pry

pi,jq
e |θpi,jqs

p̂ry
pi,jq
e |px˚qis

(4.32)

And the experiment maximizing the D-optimal design criterion in Equation (4.8)

is the one that maximizes:

xφDpeq “
1

2

N
ÿ

k“1

1

2N
log dettrZ 1QkZ `Rsu (4.33)

In the case where comparing two different designs e1 and e2 is the objective,

one should use the same N samples for the θk, for that positive correlation

between pφpe1q and pφpe2q would reduce the estimation variance of their difference

(see Ryan (2003)). Remark: The proposed two components approximation

algorithm decomposes the original criterion and deterministically approximates

the component involving the evaluation of
ş

logrppyeqsppyeqye in Equation 4.5

and 4.20. This avoids the nested structure to estimate logrppyeqs with NpN2`1q

samples in Equation 4.9. Compared to a pure Monte Carlo simulation, the

computational burden is reduced.

4.5 A genetic algorithm for searching optimal design

To search the optimal design for the proposed Bayesian OP optimality crite-

ria, we apply the Genetic Algorithms (GAs) (Mitchell (1998)). GAs are evolu-

tionary based algorithms that are suitable for searching irregular, poorly char-

acterized constrained/unconstrained spaces. More importantly, GAs can also

be parallelized quite easily (Cantú-Paz (1998)), making the search for a near-

optimal design for various design criteria feasible. For these reasons, GAs have

become quite effective in searching of optimal designs (Broudiscou et al. (1996);

Hamada et al. (2001)).

In GAs, a population of candidate solutions (individuals) is evolved toward
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solutions with higher fitness values. These individuals are made of units (genes)

which can be mutated and exchanged. The fitness of each individual is evaluated

and only the individuals with superior fitness values are selected to pass their

genetic information to offsprings. When optimizing an optimal design criterion,

each individual is a candidate design e, and the length of it is the product of

the number of control factors d and the number of runs E. For example, a can-

didate individual could be rp1,´1q, p1, 1q, p´1, 1q, p1, 1qs for a batch experiment

with two control factors and four runs, where p1,´1q is a unit. For more details

in applying GAs to the search of optimal designs, see Hamada et al. (2001).

Upon the efficient use of GAs for searching optimal designs, there are several

optimization algorithm inputs that need to be specified by the user: the pop-

ulation size popSize, the mutation probability pmu, the elitism rate Elit and

the maximum number of generations to run (evolve) before the search is halted

maxiter. Our simulation studies show that the convergence of GAs exhibit simi-

lar behavior for optimizing the Bayesian D-optimal and the OP optimal criterion.

This is probably because these two criteria share the same search space and that

xφDpeq in Equation (4.33) accounts for a large part of pφpeq in Equation (4.32).

Since a single optimization procedure using GAs to optimize xφDpeq can be done

in a much shorter time than to optimize pφpeq, one can progressively tune the

GAs inputs for optimizing xφDpeq until obtaining a relatively fast and satisfac-

tory convergence behavior. Thereafter, the obtained GAs inputs can be used

for optimizing pφpeq. More details of the setting of these algorithm inputs are

provided in Section 4.6.2.

4.6 Examples

4.6.1 A simple numerical example

Here we use a simplified one-dimensional problem to study the characteristics

of the OP optimal design and compare them with the traditional Bayesian D

optimal design. We assume that the response variable yx follows a Poisson
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distribution with mean µpx,θq where the design variable x P r´1, 1s can only be

controlled precisely up to two decimal place. And

logpµpx,θqq “ θ0 ` θ1 ˚ x` θ2 ˚ x
2 ` θ3 ˚ x

3 (4.34)

A bounded normal prior with means and ˘2σ ranges on the coefficient param-

eters are specified as follows:

3.04 ď θ0 ď 3.56, ´2.68 ď θ1 ď ´1.32,

´ 0.6 ď θ2 ď 0.2, 1.2 ď θ11 ď 2.8 (4.35)

The response function with the mode of the prior parameter is plotted in Figure

4.1. As can be seen from this figure, the minimum point of the response surface

is highly possible to be located in the range of r0, 1s based on the prior informa-

tion. Intuitively, in order to collect more informative about the location of the

minimum point, more points should be put close to 0.6. Here, we run the GAs

to search for a 9-run OP optimal design and a 9-run D-optimal design.

The D-optimal criterion estimator in Equation (4.33) can be write as

Figure 4.1: Prior response function of toy example

xφDpeq “
N
ÿ

k“1

1

2N
log dettrZ 1QkZ `Rsu (4.36)
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where Z “ rzpxq1, ¨ ¨ ¨ , zpxqEs
1 is the experiment covariate matrix with zpxq “

p1, x, x2, x3q and the prior precision matrix R “ diagp1{σ2q. The weight matrix

Qk “ diagtexprzpxq1eθ
ksuEe“1, where θk “ pθk0 , θ

k
1 , θ

k
2 , θ

k
3q is a random sample from

the prior distribution. And the OP optimal criterion estimator Equation (4.32) is

pφpeq “
N
ÿ

k“1

1

2N
log dettrZ 1QkZ `Rsu ´

1

N

M
ÿ

i

mi
ÿ

j“1

log
pry

pi,jq
e |θpi,jqs

ppry
pi,jq
e |px˚qis

(4.37)

In this application, a sample size of N “ 1e5 is chosen for a trade-off be-

tween computability and estimation error. A bootstrap procedure shows that

the estimation standard derivation of pφpeq in Equation (4.42) for N “ 1e5 is

1.2e´3 for this application. Thereafter, we adopt a real-valued GA procedure

to optimize pφpeq and xφDpeq and the optimum design points are rounded to

two decimal places. The GAs inputs for optimizing both pφpeq and xφDpeq are

popSize “ 20, pmu “ 0.2, Elit “ 2 and maxiter “ 400.

Figure 4.2 and 4.3 plot how the fitness (xφDpeq or pφpeq) increases over the

Figure 4.2: Toy example: evolution process of GAs for D-optimal

400 generations during the optimization process of the GAs for searching the

D-optimal and OP-optimal design points. As can be seen from the plot, the

best fitness value of the 20 individual population almost stays the same after

300 generations for both xφDpeq and pφpeq, hence we deem the GAs convergence
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Figure 4.3: Toy example: evolution process of GAs for OP-optimal design

after 400 generations.

The obtained D-optimal points are

x “ ´0.99,´0.98,´0.98,´0.53,´0.53,´0.52, 0.97, 0.98, 1.00 (4.38)

and OP optimal points are

x “ ´0.97,´0.44,´0.31, 0.10, 0.98, 0.99, 0.99, 0.99, 1.00 (4.39)

In this example, we see that the D-optimal design puts more points in the

range of r´1,´0.5s because the shape of the function changes the most sharply

in this area. On the other hand, the OP optimal design places most of the

points in the upper bound of the design space near x “ 1. This is because with

its initial fit with the prior information, the minimum point is estimated to be

near 0.6.

To compare the design efficiency in respect to estimating the optimum point,

the design efficiency measure is also calculated with :

effpeq “
pφpeq

pφpe˚q
“

1.137

1.695
“ 0.67 (4.40)
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This result implies that if the Bayesian D-optimal design eD (9 run) is used for

the Poisson regression model in Equation (4.34) with prior described in Equa-

tion (4.35), the (asymptotic) variance of estimating x˚ is 33 percent larger than

the variance, which can be obtained from the OP optimal design e˚.

4.6.2 Bayesian OP optimal design for the motivating experiment

The objective of the motivating problem is to find a batch experiment leading

to an efficient estimation of the optimum point. To make the notation simple,

we denote pRF, pressureq “ px1, x2q, hence x˚ “ pRF ˚, pressure˚q “ px˚1 , x
˚
2q.

Since the value of x˚ can only be controlled precisely up to two decimal place, x˚

falls in a discrete set G Ă r´1, 1s2. For the Poisson regression in Equation (4.2)

with prior distribution described in Equation (4.3), the D-optimal criterion es-

timator in Equation (4.33) can be write as

xφDpeq “
N
ÿ

k“1

1

2N
log dettrZ 1QkZ `Rsu (4.41)

where Z “ rzpxq1, ¨ ¨ ¨ , zpxqEs
1 is the experiment covariate matrix with zpxq “

p1, x1, x2, x
2
1, x

2
2, x1x2q and the prior precision matrix R “ diagp1{σ2q. The

weight matrix Qk “ diagtexprzpxq1eθ
ksuEe“1, where θk “ pθk0 , θ

k
1 , θ

k
2 , θ

k
11, θ

k
22, θ

k
12q

is a random sample from the prior distribution. And the OP optimal criterion

estimator Equation (4.32) is

pφpeq “
N
ÿ

k“1

1

2N
log dettrZ 1QkZ `Rsu ´

1

N

M
ÿ

i

mi
ÿ

j“1

log
pry

pi,jq
e |θpi,jqs

ppry
pi,jq
e |px˚qis

(4.42)

In this application, a sample size of N “ 1e5 is chosen for a trade-off between

computability and estimation error. A bootstrap procedure shows that the es-

timation standard derivation of pφpeq in Equation (4.42) for N “ 1e5 is 3.16e´3

for this application. Thereafter, we adopt a real-valued GA procedure to opti-

mize pφpeq and the optimum design points are rounded to two decimal places.

As a comparison, the D-optimal design is also obtained by optimizing xφDpeq in
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Equation (4.41) using the same real-valued GA procedure. The GAs inputs for

optimizing both pφpeq and xφDpeq are popSize “ 20, pmu “ 0.2, Elit “ 2 and

maxiter “ 500.

Figure 4.4 and 4.5 plot how the fitness (xφDpeq or pφpeq) increases over the

500 generations during the optimization process of the GAs for searching the

D-optimal and OP-optimal design points. As can be seen from the plot, the

best fitness value of the 20 individual population almost stays the same after

450 generations for both xφDpeq and pφpeq, hence we deem the GAs convergence

after 500 generations.

The obtained 15-run OP-optimal and D-optimal design points are shown in

Figure 4.4: Evolution process of GAs for D-optimal design

Table 4.1. To gain more insight on how the OP-optimal design points are differ-

ent from the D-optimal design points, we also calculate the results for a 12-run

experiment. The obtained OP-optimal and D-optimal design points are plotted

for both the 12-run experiment (Figure 4.6 ) and 15-run experiment (Figure 4.7

). As can be seen from the plot, the OP optimal design of both the 12-run and

15-run experiment move one point of D-optimal design from the lower level of x2

to the middle level of x2 (e.g. from -1 to 0). This implies that the observations in
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Figure 4.5: Evolution process of GAs for OP-optimal design

Table 4.1: The D-optimal and OP-optimal design points
D-optimal OP optimal

run x1 x2 run x1 x2

1 0.96 -0.9 1 0.97 -0.05
2 -0.95 1 2 0.95 -0.98
3 0.92 -0.02 3 0.24 0.95
4 0.98 0.98 4 0.98 0.99
5 -0.97 -0.97 5 -0.97 -0.97
6 0.94 0.1 6 -0.99 0.94
7 0.9 0.97 7 0.99 -0.99
8 0.05 0.96 8 -0.01 -0.97
9 -1 -0.96 9 -0.94 0.96
10 0.05 -0.94 10 0.09 -0.02
11 0.98 -0.98 11 0.96 0.03
12 0.11 -0.97 12 0.09 -0.96
13 -0.94 -0.9 13 -0.96 -0.96
14 -0.96 0.89 14 -0.94 0.04
15 0.16 -0.2 15 0.88 0.96
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Figure 4.6: The D-optimal and OP-optimal design points (12 run)
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Figure 4.7: The D-optimal and OP-optimal design points (15 run)
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the middle level of x2 is more informative than the observations in the lower level

of x2 to obtain an efficient estimator of x˚. To intuitively understand this, we

fix the x1 value as x1 “Ďx1 and plot the defect response function µpĎx1, x2, pθmleq

with its dependence on x2, conditioning on the coefficients θ equal to the prior

mode pθmle. In Figure 4.8, we plot three functions of µpĎx1, x2, pθmleq by setting

Ďx1 “ ´1, 0, 1 respectively. In this three functions, for Ďx1 “ ´1, 0, 1, the cor-

responding ξ˚2 equals to 1, 0.5, 0. This means that for fixed x1 P r´1, 1s, the

‘prior mode’ of x˚2 locates in the range r0, 1s. In other words, based on prior

information, x˚2 would have higher chance to belong to r0, 1s. Therefore, obser-

vations in the range r0, 1s would be more informative with respect to estimating

the posterior value of x˚2 than observations in the range r´1, 0s. This explains

why both the 12-run and the 15-run OP-optimal design move one point of the

D-optimal design from the lower level x2 « ´1 to the middle level x2 « 0.

Now we check the efficiency of the obtained OP optimal design and D opti-

Figure 4.8: Response functions for fixed x1

mal design in respect of estimating the optimum point x˚. Let e˚ denotes the

obtained OP-optimal design and eD denotes the D-optimal design. From the

estimator in Equation (4.42), we obtained the expected utility value these two
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designs are pφpe˚q “ 4.638 and pφpeDq “ 4.098 respectively. These optimal values

mean that the maximum information one can gain on x˚ from conducting a 15-

run experiment is 4.657 and the information gain on x˚ from conducting a 15-run

D-optimal design is 4.098. To compare the efficiency of a design e P XE with

the optimal design e˚ for the OP optimality criterion φp¨q, we use the following

measure similar with Dette et al. (2008)

effpeq “
pφpeq

pφpe˚q
(4.43)

And in this example, this efficiency measure effpeDq “ 0.880. This result implies

that if the Bayesian D-optimal design eD (15 run) is used for for the Poisson

regression model in Equation (4.2) with prior described in Equation (4.3), the

(asymptotic) variance of estimating x˚ is 12 percent larger than the variance,

which can be obtained from the OP optimal design e˚.

4.7 Conclusion

In this chapter, a Bayesian optimal design framework is built for estimat-

ing the optimum point. A Bayesian OP optimality criterion is derived based

on expected Shannon information gain (uncertainty reduction) on the optimum

point. To evaluate the proposed criterion, we derive an estimator based on de-

composing the criterion into two separate terms, where the first term equals

to the D-optimal criterion and the second term can be estimated with Monte

Carlo without a nested structure. The proposed approximation greatly reduces

the computational burden of a pure MC algorithm and makes searching for the

near-optimal design more feasible. Moreover, the proposed framework employs

a general treatment of the regression model and could be used to obtain optimal

designs for any kind of regression function in the regressor.
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CHAPTER 5

METAMODEL-BASED OPTIMIZATION OF

STOCHASTIC COMPUTER MODELS UNDER

UNCERTAIN OBJECTIVE FUNCTION

In this chapter, we focus on the quantification of the parameter uncertainty

in the objective function through computationally efficient tools.

5.1 Introduction

With the constantly upgraded computing power, stochastic computer models

are becoming important tools for understanding and optimizing engineering sys-

tems that are analytically intractable and subject to random fluctuations. Typ-

ically, a stochastic computer model is constructed based on technical knowledge

of how the engineering system operates. The purpose of engineering optimization

is to choose a set of settings for the design variables of the system such that the

system performance is optimized. These tools have been recently successfully

applied to many engineering optimization applications including the integrated

photonic filters design in electrical engineering (Weng et al. (2017)), aerospike

nozzle design in aerospace engineering(Stevens and Branam (2015)), continuous

stirred-tank (CSTR) reactor design in chemical engineering (Ding et al. (2010)),

etc.

105



An ideal case would be such that the design engineer or the investigator

has complete knowledge for determining the objective functions for optimizing

the system performance. However, this may not always be true especially when

analyzing complex engineering systems. In many areas of applications, there

are multiple objectives or difficult-to-evaluate parameters in the objective func-

tions (for example Ristow et al. (2005); Pant et al. (2011); Bozsak et al. (2015)).

When multiple objectives need to be optimized simultaneously, the most popular

method is to form a composite objective function through weighted sum (Marler

and Arora (2010)) or desirability functions (Wu (2004); Park and Kim (2005)),

where a weight or scale parameter proportional to the user preference is as-

signed to a particular objective. However, the determination of these preference

parameters is usually highly subjective and not straightforward. It requires an

investigation of the qualitative and experience-driven information to determine

the quantitative preference parameter values. Without the possible trade-off

optimal solutions in hand, this is an even more challenging task. Besides these

uncertain preference parameters, the uncertainty in an objective function may

also come from the difficult-to-evaluate parameters. For example, when design-

ing a nuclear power plant building, the cost incurred by varying rates of leakage

of radioactive material can be hard to quantify (Korsakissok et al. (2013)). And

a change in the potential cost will possibly result in a totally different optimal

solution. This objective function uncertainty problem appears in various areas

of application and brings many challenges in both concept and computation.

When dealing with this uncertainty problem, the current development of

stochastic computer models mainly focuses on replacing the uncertain parame-

ters by some estimates and assuming the objective function is precisely deter-

mined, for example, see Humphrey and Wilson (2000); Cao et al. (2004); Ristow

et al. (2005); Kleijnen (2014); Weng et al. (2017). By such a choice, the uncer-

tainty is pushed out of sight through approximating the uncertain parameters

by some particular estimates, such as decision maker’s preference information,

expert judgment, historical records, or a sample mean. Meanwhile, the inferen-
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tial procedure for other choices of the uncertain parameters is simply ignored.

However, unless a reliable preference or accurate estimate is available, the opti-

mal solution obtained by such methods would be highly subjective to the specific

investigator or largely sensitive to the choice of the estimates(Wurl and Albin

(1999)).

In the optimization literature, an ideal procedure for a multi-objective prob-

lem is the posteriori approach (Burke and Kendall (2013)), in which a set of dif-

ferent trade-off optimal solutions is first obtained and then a multiple-criterion

decision-making technique (such as using high-level information) (Deb and Sun-

dar (2006)) is used to analyze the solutions to choose a most preferred solution.

This is because any two different optimal solutions (such as Pareto-points) rep-

resent different trade-offs among the objectives, and the decision maker would

be in a better position to balance risk when such choices are presented. Like-

wise, when the objective function contains some difficult-to-evaluate parameters,

a rational procedure is to conduct sensitivity analysis (post-optimality analysis)

(Wallace (2000)). For example, when the cost of failure is uncertain, it is impor-

tant for the investigator to know how profit would be affected by a change in the

potential failure cost. The results of sensitivity analysis provide how sensitive

the optimal solution is to the change in the uncertain parameters and establish

the upper and lower bounds for the uncertain parameters within which they can

vary without causing violent changes in the current optimal solution.

As pointed by Burke and Kendall (2013), the classical methods use a different

philosophy such that the objective function uncertainty is artificially forced out of

sight, mainly due to a lack of suitable optimization tools to obtain many optimal

solutions efficiently. To properly capture this uncertainty, the most straightfor-

ward method should be to optimize the system many times with various settings

of the uncertain parameters. However, for a time-consuming stochastic com-

puter model, this would usually incur extensive computational burden. In the

context of multi-objective optimization, an alternative solution is the interac-

tive approach (Deb et al. (2010); Boyle and Shin (1996)), in which the decision
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maker’s responses to specific questions were used iteratively to guide the solution

towards the preferred part of the Pareto-optimal region. Although this method

reduces the computational burden of optimizing the system repeatedly for many

different uncertain parameter choices, it requires a lot of cognitive efforts of the

decision maker. Moreover, when the modeler and the decision maker is not the

same person, this method can be infeasible or very inefficient.

In short, it is important to capture the uncertainty in the objective function

to offer the decision maker desired flexibility in making a more informed and

rational decision. However, capturing this uncertainty means the investigator

has to optimize the computer model repeatedly for many different choices of the

uncertain parameters, which is very time-consuming. In this work, we proposed

a computationally efficient solution to this problem from an experimental de-

sign and metamodeling point of view. This solution first constructs a Cartesian

product design over the space of both design variables and uncertain parame-

ters. Thereafter, a radial basis function metamodel is used to provide a smooth

prediction surface of the objective value over the design variables and uncertain

parameters spaces. In addition, based on the Cartesian product design structure,

a fast fitting algorithm is also derived for fitting the metamodel. To illustrate

the effectiveness of the proposed method for solving practical problems, we use

the optimization of drug release from a polymer matrix (Schiesser (2012)) as a

test example, where the developed tools are used to facilitate a robust selection

of the scale parameters in the desirability function.

The remainder of this chapter is organized as follows: Section 3.2 introduces

some examples of uncertainty parameters in general classes of objective functions

and stresses its importance in practical applications. Section 3.3 first introduces

the interpolation of an objective function estimate with fixed objective function

parameters with an RBF metamodel, and then proposes design and modeling

techniques for conveniently capturing the uncertainty in the objective function.

In Section 3.4, the developed tools are used to solve a practical problem and

demonstrate how a more informed and rational decision can be made. Finally,
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Section 3.5 concludes the chapter.

5.2 Objective functions with uncertain parameters

In this section, to demonstrate the practical scenarios where the proposed

framework is helpful, we present some of the major cases where there are un-

certain parameters in the objective functions. Following each specific case, the

corresponding post-optimal decision-making tools are also discussed. Most of

these tools require optimizing the objective function under many different choices

of the uncertain parameters, which motivates the development of computation-

ally efficient tools for conducting such post-optimal analysis for time-consuming

stochastic computer models.

5.2.1 Uncertain failure cost in structural design

In structural design, stochastic computer models are usually used to predict

the degree of deformation or the probability of damage (see Papadrakakis and

Lagaros (2002); Deng et al. (2003)). Using the cost-benefit analysis tools (Kanda

and Shah (1997)), the optimal structural design is determined, where the ‘cost’

is the price of increasing safety and the ‘benefit’ is the reduced risk in terms of

expected failure cost. An example of the total cost CT defined by Kanda and

Shah (1997) is

CT “ CI ` CF

ż 1

0

η ´ η0

1´ η0
P pηqdη (5.1)

where CI is the initial cost, η P r0, 1s is the damage level, η0 is the initial damage

level, and CF is the failure cost at ultimate limit state η “ 1. The quantity ppηq

is the probability for different damage levels to happen which is the output of

the computer model. In this objective function, the ultimate limit state failure

cost CF is an uncertain parameter which varies from building to building and

contains some difficult-to-evaluate parts such as casualties caused by the collapse

of buildings or serious failure of nuclear power plants. Note that in this example,
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although the stochastic computer model may have captured the random fluctu-

ations in loads and structural resistance, the failure cost parameter CF is not

part of the stochastic computer model and do not affect the computer model

output P pηq. Instead, it is an uncertain parameter in the objective function.

The simplest solution is to choose CF based on subjective judgments or his-

torical records. However, the optimal solution could be very sensitive to the

choice of CF and hence result in very unreliable and subjective decisions. A

more rational decision can be made if the structural designer can conduct a sen-

sitivity analysis (post-optimality analysis) (Wallace (2000)) of the optimal design

solution with respect to the uncertainty in CF . This involves re-optimizing the

system under alternative choices of CF to decide how sensitive the optimal so-

lution is to the change in the CF . If significant changes of the optimal solution

are identified and associated with the changes in CF , more attention and effort

should, therefore, be made to select the value of CF in order to increase the

robustness of the decision.

When there are difficult-to-evaluate parameters in the objective function,

conducting sensitivity analysis can also enhance the communication from mod-

eler to decision makers (e.g. by making recommendations more informative,

credible or understandable). For example, the result of sensitivity analysis would

provide information to the manager on how profit would be affected by a change

in the potential failure cost. If the results are insensitive to changes in uncer-

tain parameters, the manager can be quite confident that the decision made is

good. Note that to efficiently conduct sensitivity analysis for time-consuming

stochastic computer models, a procedure for optimizing the system with a low

computing budget is desired.

5.2.2 Pareto-optimal front

Suppose there are S objective functions, denoted as Jspxq, s “ 1, ¨ ¨ ¨ , S. For

multi-objective optimization problems, an ideal procedure is first to find multiple

trade-off solutions with a wide range of values(Pareto-optimal front), and then
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a multiple-criteria decision-making technique (such as using high-level informa-

tion) (Deb and Sundar (2006)) is used to analyze the solutions to choose a most

preferred solution. Specifically, the Pareto-optimal front consists of solutions

with the property that none of the objective values can be improved without

degrading some of the other objective values. The simplest way to obtain the

Pareto-optimal front is the weighted sum method, where the solution x˚ optimiz-

ing the objective Jpxq “
řS
s“1wsJspxq is Pareto-optimal if ws ą 0, s “ 1, ¨ ¨ ¨ , S

and
řS
s“1ws “ 1. Under some assumptions, every different choice of the weight

parameters under the constraints ws ą 0, s “ 1, ¨ ¨ ¨ , S and
řS
s“1ws “ 1 would

produce different points in the Pareto-optimal front (Miettinen (2012)). In this

case, the weights ws ą 0, s “ 1, ¨ ¨ ¨ , S are uncertain parameters in the objective

function Jpxq, and a procedure allowing convenient optimization of Jpxq under

different weight values would save considerable computational effort.

5.2.3 Desirability function

The desirability function (Harrington (1965); Derringer (1980)) is one of the

most widely used methods for the optimization of multiple responses or multi-

ple objective engineering systems. This approach first transforms the different

objectives into a common scale r0, 1s and then combines them into an overall

objective using the geometric mean. Suppose there are S objective functions,

denoted as Jspxq, s “ 1, ¨ ¨ ¨ , S. For each of the S functions, a corresponding

desirability score function is constructed which is high when Jspxq is at a de-

sirable level (such as minimum, maximum, or target) and low when Jspxq is at

an undesirable level. For example, for minimization of Jspxq, Derringer (1980)

construct the desirability function as

Dmin
s px; θsq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0 if Jspxq ą B

r
Jspxq´B
A´B sθs if A ď Jspxq ď B

1 Jspxq ă A

(5.2)

111



where A,B, and the scale parameters θs are chosen by the investigator. For

target-the-best situations, the desirability function is

Dtarget
s px; θsq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

r
Jspxq´A
T0´A

sθs1 if A ď Jspxq ď T0

r
Jspxq´B
T0´B

sθs2 if T0 ă Jspxq ď B

0 otherwise

(5.3)

where θs “ pθs1, θs2q and T0 is the target value chosen by the investigator. And

for maximization, the desirability function is given in Wu (2004).

Given that the S desirability functionsD1, ¨ ¨ ¨ , DS are on the same scale(r0, 1s),

they can be combined to produce an overall desirability function through the ge-

ometric mean:

Dpx;θq “ r
S
ź

s“1

Dspx; θsqs
1{S (5.4)

where θ “ pθ1, ¨ ¨ ¨ , θSq. In this overall objective function Dpx;θq, the scale

parameters θ have to be chosen such that the desirability measure is easier or

harder to satisfy. For example, choosing θs1 ą 1 in Equation (5.3) would place

more rewards on being close to the target value, and choosing 0 ă θs1 ă 1 would

make this less important.

This desirability-based method is easy to understand and is available in many

data analysis software packages. It has been extensively used in optimization

of industrial problems, such as Elsayed and Lacor (2013); Zhang et al. (2009);

Yalcınkaya and Bayhan (2009). However, to use this method, the investigator

needs to choose values of the shape parameters to represent the trade-off prefer-

ences. This is not a trivial task and the choices may possibly be made without

awareness of the fact that different values of these scale parameters would pos-

sibly produce very different optimal solutions. Other than specifying these scale

parameters subjectively, Jeong and Kim (2009) proposed an interactive approach

to select the values for these parameters. They proposed to first initialize the

scale parameter and obtain an initial optimal solution, then interact with the
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decision maker to find his reaction to this solution and thereafter adjust the

scale parameter value until some stopping criterion is satisfied. Although this

method reduced the computational burden of optimizing the system repeatedly

for many different scale parameter settings, it requires a lot of cognitive efforts

of the decision maker.

An alternative solution to this uncertain scale parameter problem is to select

the most ‘robust’ choice of the scale parameter. Specifically, for a particular

choice of the scale parameter, one would obtain the corresponding optimal solu-

tion depending on θ as x˚pθq :“ argmaxxDpx;θq. To select the most ‘robust’ θ

from the many choices, or equivalently, to choose the most ‘robust’ correspond-

ing x˚pθq, a reasonable criterion is to measure how x˚pθq would perform under

all the other possible choices of the scale parameter ϑ P Θ. Suppose the ‘true’

scale parameter value is ϑ, the maximum desirability score would be achieved at

point x “ x˚pϑq with value Drx˚pϑq;ϑs; while the desirability score of setting

x “ x˚pθq would be Drx˚pθq;ϑs. Hence, Drx˚pθq;ϑs
Drx˚pϑq;ϑs could be used to represent

the efficiency of setting x “ x˚pθq when the ‘true’ scale parameter value is ϑ.

By integrating this efficiency over all the possible values of ϑ P Θ, one can obtain

the overall efficiency score of setting x “ x˚pθq. Hence, we propose the following

definition to select the robust scale parameter value for a desirability function.

Definition 4 (robust scale parameter value of desirability function) For

the maximization of a desirability function Dpx;θq with design variable x P X

and uncertain scale parameter θ P Θ, denote the optimal solution for a specific

choice of θ as x˚pθq :“ argmaxxDpx;θq. A scale parameter choice θ˚ is called

the robust scale parameter value of desirability function Dpx;θq, if it is the global

maximum solution of the following problem:

Maximize

ż

ϑPΘ

Drx˚pθq;ϑs

Drx˚pϑq;ϑs
dϑ

subject to θ P Θ

And the corresponding solution x˚pθ˚q is called a robust optimal solution.

113



By using this robustness definition, one can select a scale parameter and obtain

the corresponding robust optimal solution without depending on subjective and

qualitative information. Nonetheless, to obtain the robust choice of the scale

parameter value, we need to optimize the computer model under every scale

parameter choice θ P Θ. In such cases, an integrated and efficient solution to

optimizing the time-consuming computer model repeatedly with many different

scale parameter settings would be very helpful. Such a solution would make

the desirability function method more appealing to the practitioners who have

trouble selecting the scale parameter value based on qualitative information.

5.3 Methodology

In this section, we first formally define the computer model based engineer-

ing optimization optimization problem with uncertain parameters in the objec-

tive function. Thereafter, we introduce a metamodeling method for optimizing

stochastic computer models when the uncertain parameters in the objective func-

tion are fixed. However, this method would require one to refit the metamodel

every time the values of the uncertain parameters are changed, which is time-

consuming and unstable. Following that, we propose an alternative solution

that provides a smooth prediction of the objective function surface over both

the design variables and uncertain parameters spaces.

5.3.1 Engineering optimization under uncertain objective func-

tion

In engineering optimization problems, stochastic computer models are of-

ten constructed based on technical knowledge of how the engineering system

operates. We consider a stochastic computer model that accepts a fixed design

variable vector x “ px1, ¨ ¨ ¨ , xkq
T P X Ă Rk, a random system fluctuation vector

ξ, and returns a random output vector Y px, ξq P Rp. For optimization purpose,
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the objective function with uncertain parameter θ can be defined as

Rpx;θq “ EY tJrY px, ξq,x;θsu (5.5)

where θ P Θ Ă Rq, J : Rp ˆ X ˆ Θ Ñ R is a real valued objective function,

which measures the system performance and EY is the expectation operator

with respect to the randomness in Y px, ξq (induced by randomness in ξ). The

optimization problem(for simplicity, minimization is taken to be the standard)

depending on θ is then

minimize Rpx;θq over all x P X (5.6)

When dealing with this uncertainty problem, the current development of

stochastic computer models mainly focuses on pushing the uncertainty out of

sight through replacing the uncertain parameter θ by some particular estimate

θ̂, and solving a single optimization problem

minimize Rpx; θ̂q over all x P X (5.7)

By doing this, the inferential procedure for other choices of θ P Θ is simply

disregarded.

As argued in Section 5.2, capturing the uncertainty in θ is of great importance

to make a rational and reliable decision. Therefore, in this work we would regard

this as a family of problems where for each different θ P Θ, it yields an optimal

value

x˚pθq :“ argminxRpx;θq (5.8)

which needs to be analyzed in its dependence on θ.
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5.3.2 Metamodel-based optimization under a fixed objective func-

tion

Frequently, computer codes of simulating an engineering system are very

time-consuming to run. Consequently, a practically appealing approach is to ap-

proximate the computer model by a more computationally efficient metamodel.

A metamodel-based optimization strategy requires one to first identify a meta-

model form, then design an experiment to collect data by running the expen-

sive computer code, and finally fit and optimize the metamodel (Barton and

Meckesheimer (2006)). Metamodels can be built using many regression models

with a variety of prediction power. For example, simple linear regression is easy

to built and has been used widely. Although simple, this model lacks the ability

to model complicated surfaces. By using more sophisticated methods such as

Gaussian Process models or radial basis function (RBF) models, one can achieve

better prediction. RBF models using simple spline functions can be fit efficiently.

They are also applicable to problems with high dimensional design variable space

since generally few restrictions are imposed on the location of sample points. In

this section, we focus on using the RBF metamodel to predict and optimize the

stochastic computer model under a fixed objective function.

Suppose an experiment with n design points D “ tx1, ¨ ¨ ¨ ,xnu is chosen,

and M independent replicates have been obtained from running the computer

model at each design point. Denote the data from the experiment by Sn “

tyi “ ry1pxi, ξq, ¨ ¨ ¨ ,yM pxi, ξqs
1uni“1. A standard approach to optimizing the

objective function Rpxi,θq Equation (5.5) for predetermined θ is to first es-

timate Rpxi,θq with output observations yi using some estimator rRpxi,θq “

gpyiq, then fit an RBF regression model with the control-response data pairs

tpx1, rR1q, ¨ ¨ ¨ , pxn, rRnqu. Thereafter, the fitted RBF metamodel can be used to

predict Rpx,θq for all x P X for a predetermined θ, and the problem of opti-

mizing the computer model is transformed to optimizing the RBF metamodel.
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A straightforward estimator of Rpxi,θq would be

rRpxi,θq “
M
ÿ

j“1

Jryjpxi, ξq,xi,θs{M (5.9)

For simplicity of notation, we use rRpxi,θq and rRi interchangeably. Although

averaging over the replicated observations yjpxi, ξq reduces the random error in

rRpxi,θq, it is still a noisy version of the true value of Rpxi,θq. Therefore, we

include a nugget parameter in the RBF metamodel to mitigate overfitting. An

advantage of such a treatment is that the regression form is not restricted to

situations where random errors associated with rRi, i “ 1, ¨ ¨ ¨ , n are independent

and identically distributed.

Now we introduce the RBF metamodel form which was extensively studied

by Buhmann (2003). This RBF model approximates the unknown function with

a linear combination of positive definite kernels and takes the forms of

R̂px,θq “ µ`
n
ÿ

i“1

βiφpx´ xiq (5.10)

where R̂px,θq is the predicted objective value for any x P X and φp¨q is a ker-

nel basis function. Many choices of φp¨q are available, and examples include

multiquadrics, thin plate splines, cubic splines, Gaussian, and inverse multi-

quadrics. A difficulty with the widely used Gaussian basis function is that the

kernel/correlation matrix can often be close to singular, which induces a lot of

computational problems. Hence, in this article, we adopt

φpx´ zq “
k
ź

j“1

expr´|xj ´ zj |{γjsp|xj ´ zj |{γj ` 1q (5.11)

which is a member of the class of Matern correlation functions(Santner et al.

(2013)). Note that some authors (Fasshauer and McCourt (2015), page 41) re-

serve the term RBF for basis functions φ that depend on px´ zq only through

||x ´ z||, and use the term kernel for more general bases that depend on the

translates px´zq. However, we follow the convention of Buhmann (2003) (page
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4) and call Equation (5.11) a radial basis function as well. This basis function

avoids numerical difficulties commonly encountered with the Gaussian RBF. It

is twice continuously differentiable, but not three times continuously differen-

tiable. Define β “ pβ1, ¨ ¨ ¨ , βnq
1, γ “ pγ1, ¨ ¨ ¨ , γkq

1, pBqij “ φpxi ´ xjq, and

rR “ p rR1, ¨ ¨ ¨ , rRnq
1. Then, given µ,γ, and the nugget λ ą 0 , the vector β is

determined by solving the linear equations

pB ` λIqβ “ rR´ µ1 (5.12)

where I is a nˆ n identity matrix.

This RBF model is mathematically equivalent to the posterior mean of a

Gaussian Process (GP) with correlation function Equation p5.11q. Therefore,

the correlation length parameters γ determine the degree of influence of each

observation on the prediction R̂px,θq: with short correlation length, the predic-

tion at x depends more strongly on nearby observations and weakly on far away

observations. And the above system of equations Equation (5.12) for determin-

ing β with a nugget parameter is similar in spirit with the GP with independent

and identically distributed normal errors with unknown variance. Note that if

λ “ 0, the coefficients β given by Equation (5.12) will make Equation (5.10)

interpolate the data tpx1, rR1q, ¨ ¨ ¨ , pxn, rRnqu. .

To determine µ, λ,γ, a common way is to set µ “
řn
i“1

rRi{n and choose γ, λ

using leave-one-out (LOO) crossed validation. Specifically, let

rR´i “ p rR1, ¨ ¨ ¨ , rRi´1, rRi`1, ¨ ¨ ¨ , rRnq
1 (5.13)

Then, the predicted value of the response variable at xi using the LOO data rR´i

is R̂pxi,θq| rR´i, with prediction error ei “ rRi´ R̂pxi,θq| rR´i. Then the optimal

value of λ and γ can be obtained by minimizing the mean square prediction

error:

ELOO “
n
ÿ

i“1

e2
i {n (5.14)
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The advantage of LOO for linear models such as RBF regression is that the

error vector e “ pe1, ¨ ¨ ¨ , enq
1 can be calculated analytically as (see Tan (2015)

for proof)

e “ diagtpB ` λIq´1u´1pB ` λIq´1p rR´ µ1q (5.15)

This shortcut formula saves substantial computation time over a brute force ap-

proach to compute the error vector e.

As mentioned, the decision made by using only one predetermined estimate of

θ would result in unforeseeable risk, hence solving the optimization problem un-

der a set of candidate values θ1, ¨ ¨ ¨ ,θK would be desired. In such cases, one has

to refit the RBF metamodel Equation (5.10) K times. The calculation of pB `

λIq´1 in Equation (5.15) would take Opn3q arithmetic operations (see O’Leary

(2009) Page 70), and hence the fitting of each R̂p¨,θiq would take Opn3q arith-

metic operations. Thus, fitting/estimation of all R̂p¨,θ1q, ¨ ¨ ¨ , R̂p¨,θKq would

take OpKn3q arithmetic operations. For purposes such as calculating the Pareto

front, conducting sensitivity analysis or obtaining the robust scale parameter

using Definition 4, the required RBF model fitting times could be quite large

because K can be very large. Moreover, even if the investigator has the required

computational budgets to fit the K RBF models, the predicted value of R̂px̄,θq

at a fixed design point x̄ could possibly be discontinuous over θ. One reason

is the existence of many possible local optimizers of function Equation (5.14)

when estimating λ and γ, which is an inevitable problem for fitting RBF and

GP model with the current development of these models.

5.3.3 Metamodel-based optimization under uncertain objective

function

To capture the uncertainty in θ in a more efficient way, we now propose a fast

fitting solution based on the unique model structure of RBF. The fact that the

RBF metamodel is linear in the vector of response data allows us to use the short-

cut formula Equation (5.15) to calculate the leave-one-out crossed validation
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error. Furthermore, the model form of RBF metamodel is characterized by

separability : the RBF is a product of functions that each depends on an input

variable. This separability structure enables the use of a fast matrix inversion

formula for calculating pB ` λIq´1 if the design space is a Cartesian product.

This fact motivates us to collect data using a Cartesian product design in the

px,θq space: Ω “ tpx1,θ1q, ¨ ¨ ¨ , pxN ,θN qu Ă X ˆ Θ. The obtained data can

then be used to fit an RBF model for predicting the objective function value over

both the space of x and the space of θ. In this way, we can not only reduce the

computational burden of fitting the RBF model many times, but also provide a

smooth prediction surface of R̂px̄,θq over the space of θ for a fixed design point

x̄.

Now we describe the design and model fitting strategies in detail. Suppose

we use a Cartesian product design

rD “ tx1, ¨ ¨ ¨ ,xnu ˆ tθ1, ¨ ¨ ¨ ,θmu

“ tpx1,θ1q, ¨ ¨ ¨ , px1,θmq, ¨ ¨ ¨ , pxn,θ1q, ¨ ¨ ¨ , pxn,θmqu

:“ td1, ¨ ¨ ¨ ,dNu

(5.16)

with d “ px,θq “ px1, ¨ ¨ ¨ , xk, θ1, ¨ ¨ ¨ , θqq “ pd1, ¨ ¨ ¨ , dk`qq and N “ nˆm. As-

suming that computer model output data Sn “ ty “ ry1pxv, ξq, ¨ ¨ ¨ ,yM pxv, ξqs
1unv“1

is collected from running the stochastic simulator, we can obtain estimates of

Rpdiq for all di P rD, i “ 1, ¨ ¨ ¨ , N using

rRpdiq “ rRpxv,θlq “
M
ÿ

j“1

Jryjpxv, ξq,xv,θls{M (5.17)

for v “ 1, ¨ ¨ ¨ , n, l “ 1, ¨ ¨ ¨ ,m. We emphasize that this estimator is based on

the same data as the estimator in Equation (5.9), i.e., no additional computer

model runs are needed to estimate the objective function as its parameter vector
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θ varies. Then, the RBF model

R̂px,θq “ R̂pdq “ µ`
N
ÿ

i“1

βi

k`q
ź

e“1

expr´|de ´ die|{γesp|de ´ die|{γe ` 1q

“ µ`
N
ÿ

i“1

βi

k
ź

v“1

expr´|xv ´ xiv|{γvsp|xv ´ xiv|{γv ` 1q

ˆ

q
ź

l“1

expr´|θl ´ θil|{γk`lsp|θl ´ θil|{γk`l ` 1q (5.18)

is used to construct a predictor of Rpx,θq for all px,θq P X ˆΘ, , where xiv is

the vth component of xi and θil is the lth component of θi.

Since rD in Equation (5.16) is of a Cartesian product design, an algorithm re-

ducing the number of arithmetic operations to fit the RBF model Equation (5.18)

can be obtained. Specifically, for design Equation (5.16), it is easy to verify that

B ` λIN “ B1 bB2 ` λIN (5.19)

where IN is N ˆ N identity matrix, pBqij “ φpdi ´ djq, pB1qij “ φpxi ´ xjq,

and pB2qij “ φpθi ´ θjq.

Based on Equation (5.19), we derive a computationally convenient formula

for pB ` λIN q
´1 used in Equation (5.12) and Equation (5.15) when fitting the

RBF model. Since B1 and B2 are positive semi-definite matrices, their eigen-

decompositions can be denoted by E1L1E
T
1 and E2L2E

T
2 respectively, where

E´1
1 “ ET

1 and E´1
2 “ ET

2 . Here, E1,E2 are the matrices of orthogonal eigen-

vectors and L1,L2 are the diagonal matrices of the corresponding eigenvalues.

Note that

B1 bB2 ` λIN “ pE1L1E
T
1 q b pE2L2E

T
2 q ` λE1E

T
1 bE2E

T
2

“ pE1 bE2qpL1 bL2qpE
T
1 bE

T
2 q ` λpE1 bE2qpE

T
1 bE

T
2 q

“ pE1 bE2qpL1 bL2 ` λIN qpE
T
1 bE

T
2 q

(5.20)
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Since pE1 b E2q
´1 “ pET

1 b E
T
2 q, it is seen that pB ` λIN q

´1 is given by the

formula

pB ` λIN q
´1 “ pE1 bE2qpL1 bL2 ` λIN q

´1pET
1 bE

T
2 q (5.21)

Denote L1 “ diagtL11, ¨ ¨ ¨ , L1nu and L2 “ diagtL21, ¨ ¨ ¨ , L2mu. Then note that

pL1 bL2 ` λIN q
´1 “ diagtpλ` L11L21q

´1, ¨ ¨ ¨ , pλ` L1nL2mq
´1u (5.22)

Thus, if the number of arithmetic operations to obtain the eigendecompo-

sitions of B1 and B2 are Opn3q and Opm3q respectively (see O’Leary (2009)

Page 70), by using the derived formula Equation (5.21), we can compute pB `

λIN q
´1p rR ´ µ1q with Opn3 `m3 ` n2m2q arithmetic operations. On the con-

trary, we would need OpN3q “ Opn3m3q arithmetic operations to compute

pB ` λIN q
´1p rR´ µ1q directly.

As a summary, we list the fitting procedures of RBF models in the following

Algorithm

Fast fitting of RBF models

Input: rRpdiq, i “ 1, ¨ ¨ ¨ , N

Procedure:

Step 1. Setting µ “
řn
i“1

rRi{N .

Step 2. Choose γ, λ by minimizing the mean square LOO pre-

diction error in Equation (5.14), with the error vector calculated by

Equation (5.15) and Equation (5.21).

Step 3. Calculate β from β “ pB ` λIq´1p rR´ µ1q, where calcula-

tion of pB ` λIq´1 follows Equation (5.21).

After fitting the RBF model, predictions of Rpx,θq for all px,θq P X ˆΘ can be

made through equation Equation (5.18). And based on the predictions R̂px,θq,
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the optimal solution x˚pθq optimizing

R̂px;θq over all x P X for any θ P Θ (5.23)

can be obtained through equation Equation (5.8).

Denote the scalar statistics of interest as Υ̂ (for example, R̂px,θq in Equa-

tion (5.18) or the components of x˚pθq in equation Equation (5.8)). To measure

the uncertainty associated with Υ̂ , approximate confidence intervals can be con-

structed via the following bootstrap procedure

Constructing confidence intervals via Bootstrap

Input: Sn “ ty “ ry1pxiq, ¨ ¨ ¨ ,yM pxiqs
1uni“1

Procedure:

Step 1. Estimate Υ̂ based on Sn.

Step 2. Generate an empirical bootstrap sample, by taking

random samples with replacement from Sn as : S˚n “ ty˚r “

ry˚1 pxi, ξq, ¨ ¨ ¨ ,y
˚
M pxi, ξqs

1uni“1

Step 3. Estimate Υ based on S˚n, and denote the estimator as Υ̂ ˚.

Repeat Step 2 and Step 3 B˚ times.

Step 4. Compute the bootstrap differences δ˚ “ Υ̂ ˚´ Υ̂ . Put these

B˚ values in order and pick out the 0.975 and 0.025 critical values. Set

these values as δ˚.975 and δ˚.025.

Step 5. The estimated 95% bootstrap confidence interval for Υ̂ is:

rΥ̂ ` δ˚.025, Υ̂ ` δ
˚
.975s

5.4 Illustration example: design of drug delivery sys-

tem

5.4.1 A computer model of drug release from polymer matrix

devices

With the constantly upgraded computing power, computer models have re-

cently been used extensively to understand the drug release process from poly-
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meric devices or Drug-Eluting Stents, see Pant et al. (2011); Ferreira et al. (2012);

Groh et al. (2014); Bozsak et al. (2015). Optimizing the drug release process

generally involves many conflicting goals: maximizing the drug therapy effect,

minimizing the side effect and minimizing the cost of the drug, etc. For example,

Pant et al. (2011); Bozsak et al. (2015) reported their pioneering attempts at

including multiple design objectives for optimizing the design of Drug-eluting

stents, where a sufficiently high drug concentrations in smooth muscle cells and

low drug concentration at the endothelial cell surface are to be achieved simul-

taneously.

To demonstrate the application of our approach, we use the design and

Figure 5.1: Diagram of a drug diffusion system

modeling of drug release from a polymer matrix (Schiesser (2012) page 340) as

a test example. The schematic of the drug release stochastic computer model

is represented in Figure Equation (5.1) as a polymer matrix (PM), where the

PM radius is r0 (cm), and PM length is zL (cm). A certain amount of drug

is initially administered in the PM, the modeling problem is then to determine

how fast the drug will leave the PM and enter the surrounding tissue treated

by the drug. Within the PM, the movement of the drug is modeled by diffusion

equations, and the transfer rate to the surrounding tissue is described by a mass

transfer coefficient. The partial differential equation describing the diffusion in
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cylindrical coordinates pr, z, ϕq is given by

Bu

Bt
“ Dup

B2u

Br2
`

1

r

Bu

Br
`

1

r2

B2u

Bϕ2
`
B2u

Bz2
q (5.24)

Here, u “ upr, z, ϕ, tq is the drug concentration at location pr, z, ϕq after a release

time of t, and Du is the drug diffusivity which is a specified constant.

Assuming a uniform external drug concentration, the system in Equation (5.24)

is symmetric in ϕ, so the angular term in Equation (5.24) is dropped. This gives

u “ upr, z, tq and

Bu

Bt
“ Dup

B2u

Br2
`

1

r

Bu

Br
`
B2u

Bz2
q (5.25)

Equation Equation (5.25) is first order in t and second order in r and z. Thus,

one initial condition (IC) in t and two boundary conditions (BCs) in r and z are

required. The IC is:

upr, z, t “ 0q “ u0 (5.26)

where u0 is specified constant and represents the initial values of u.

The homogeneous Neumann BC (Schiesser (2012) page 113) for equation

Equation (5.25) at r “ 0 is used to specify symmetry in r:

Bupr “ 0, z, tq

Br
“ 0 (5.27)

and the BC at the exterior surface r “ r0 is based on mass transfer coefficients

ku:

Du
Bupr “ r0, z, tq

Br
“ kupue ´ upr “ r0, z, tqq (5.28)

where ue is the external concentration of drug subject to random fluctuation.

This equation equate the mass fluxes at the polymer surface r “ r0 to the fluxes

due to concentration differences at r “ r0. Similarly, the BC reflect symmetry
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in z and the BC at z “ zL specify the fluxes in the bottom of the polymer:

Du
Bupr, z “ zL{2, tq

Bz
“ 0

Du
Bupr, z “ zL, tq

Bz
“ kupue ´ upr, z “ zL, tqq

(5.29)

Equations Equation (5.25) to Equation (5.29) constitute equations of the com-

puter model in the system of Figure Equation (5.1). These partial differential

equations(PDEs) are solved by the method of lines (MOL), which proceeds by

first discretizing the spatial derivatives and leaving the time variable continu-

ous. This leads to a system of ordinary differential equations (ODEs) to which

a numerical method can be applied. In this problem, the PDEs are solved by

discretizing r to 11 grid points over the value 0 ď r ď r0 and z to 11 grid points

over the value 0 ď z ď zL. In other words, a system of 11 ˆ 11 ODEs that ap-

proximates the PDE are used. More detailed description of the computer model

can be found in Schiesser (2012) page 340.

To conclude the description of this stochastic computer model, we sum-

Table 5.1: Summary of the variables and parameters of the drug release stochas-
tic computer model

Variable, parameter Interpretation

upr, z, tq P r0, 1s drug concentration at time t and location pr, zq
r0 P r0.5, 1.5s PM radius (cm)
ue „ unif p0, 0.5q exterior drug concentration value (normalized)
zL “ 2 PM length (cm)
u0 “ 1 initial drug concentration value (normalized)
Du “ 1.0e´ 06 diffusivity (cm2{ s)
ku “ 1.0e´ 01 mass transfer coefficient (cm/s)

marize the model design variable, output variable, random fluctuation variable,

and the constants in Table Equation (5.1). The value of these variables and

parameters are specified following Schiesser (2012) page 340. Note that for con-

centrations, normalized values 0 ď upr, z, tq, u0, ue ď 1 are used to facilitates

their interpretation (e.g., their departure from one). The variable ue is the exte-

rior drug concentration value which represents the remaining drug concentration
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from the previously administered dose. It is set to be random due to differences

in individual patient metabolism.

5.4.2 Objective function for drug design

In this example, we focus on minimizing the cost of drug while keeping the

effect of drug therapy close to the desired effect. This joint consideration is

typical in drug design (see Lu et al. (1998)). First, the cost of drug is measured by

the amount of drug initially administered to the system with J1pr0q “ πr2
0zLu0.

Second, the effect of drug therapy is measured by the difference between the

desired (target) drug release profile and the actual release profile after t “ 24

and t “ 48 hours of the initial drug administration, where the actual total

amount of the drug that has released from the PM at t is (see Schiesser (2012)

page 340).

Qtpr0q “ πr2
0zLu0 ´ 2 ˚ 2π

ż zL

zL{2

ż r0

0
upr, z, tqrdrdz (5.30)

Translating these goals to desirability functions, a smaller-the-better function

Equation (5.2) is used for the cost measure with values A “ 0.1 and B “ 15

dmin1 pr0q “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0 if J1pr0q ą 15

r
J1pr0q´15

0.1´15 sθ if 0.1 ď J1pr0q ď 15

1 J1pr0q ă 0.1

(5.31)

for the cost J1pr0q.

Next, target oriented desirability function Equation (5.3) is used for Q24pr0q

with A “ 1, T0 “ 3.5, B “ 12, and Q48pr0q with A “ 1.2, T0 “ 9.45, B “ 13 as

dtarget2 pr0q “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

r
Q24pr0q´1

3.5´1 sθ21 if 1 ď Q24pr0q ď 3.5

r
Q24pr0q´12

3.5´12 sθ22 if 3.5 ď Q24pr0q ď 12

0 otherwise

(5.32)
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dtarget3 pr0q “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

r
Q48pr0q´1.2

9.45´1.2 sθ31 if 1.2 ď Q48pr0q ď 9.45

r
Q48pr0q´13

9.45´13 sθ32 if 9.45 ď Q48pr0q ď 13

0 otherwise

(5.33)

we can write the overall objective function as

Jpr0; θ, θ21, θ22, θ31, θ32q “ rd
min
1 pr0q ˚ d

target
2 pr0q ˚ d

target
3 pr0qs

1{3 (5.34)

The scale parameters θ, θ21, θ22, θ31, θ32 are typically uncertain in the above ob-

jective function.

5.4.3 Optimization results and discussion

In this section, we describe the computer model and design optimization

based on RBF metamodel in detail. The control variable x is the PM radius

r0(cm) in a design space r0.5, 1.5s, the model random fluctuation variable ξ is

the normalized exterior drug concentration value ue, which is assumed to be

uniformly distributed in r0, 0.2s. The model output is the drug concentration

upr, z, 24q and upr, z, 48q at time t “ 24, 48h and at position pr, zq. For the objec-

tive function described in Equation (5.34), we fix θ21 “ 2, θ22 “ 1, θ31 “ 2, θ32 “

1 and only treat θ as an uncertain parameter to be adjusted for illustrative pur-

pose. Suppose a 6ˆ 6 points Cartesian product design is used over the space of

model control variable r0 and the uncertain parameter θ as

rD “ t0.5, 0.7, 0.9, 1.1, 1.3, 1.5u ˆ t0, 0.6, 1.2, 1.8, 2.4, 3u (5.35)

At each design point of rv0 P t0.5, 0.7, 0.9, 1.1, 1.3, 1.5u, M “ 30 computer model

replications are conducted and the outputs

yjpr
v
0q “ pujpr, z, 24q, ujpr, z, 48qq|rv0 , j “ 1, ¨ ¨ ¨ ,M (5.36)
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are obtained for each replication. The sample average of the objective value from

the replicates is then computed for each design point prv0 , θ
lq P rD as rRprv0 , θ

lq “

řM
j“1 Jpyjpr

v
0q, r

v
0 , θ

lq{M Using the RBF regression in Equation (5.18) to inter-

polate the surface of rRpr0, θq, we obtain the prediction of rRpr0, θq at all values

of r0 P r0.5, 1.5s and θ P r0, 3s.

To check the model fitting efficiency, we compare the model predictions in a

larger test design set with the ”true value”. Specifically, we estimate the ”true

value” accurately by using the average of M “ 100 replicates. Figure Equa-

tion (5.2) plots the predicted desirability values and the ‘true value’ versus the

grid point number for a 21 ˆ 21 grid point Cartesian product design over the

design space r0.5, 1.5s ˆ r0, 3s. As we can see, the curve of predicted and true

value of the desirability is very close to each other, suggesting that the RBF

regression model has very good prediction ability.

Then we plot the predicted desirability value surface in Figure Equa-

Figure 5.2: RBF predicted versus true desirability value

tion (5.3). As can be seen from this plot, using the proposed Cartesian product

design and the RBF metamodel, we can predict the smooth surface of the de-

sirability function score in its dependency on both the control variable r0 and

the uncertain scale parameter θ. Based on this prediction, we can conveniently

obtain r˚0 pθq for any choice of θ P r0, 3s through 5.8, while avoiding the burden of
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refitting the RBF metamodel every time θ changes. In Figure Equation (5.4), we

plot r˚0 pθq for different choices of θ P r0, 3s, where the black curve is a smoothly

changed optimal value curve under different settings of the scale parameter θ.

In this plot, the optimal setting r˚0 changes significantly with different values of

θ, which supports the argument that it is necessary to analyze the optimal so-

lutions in their dependence on the uncertain objective parameters. In this drug

delivery example, θ determines the impact of the cost of the drug on the overall

desirability. When multiple optimal solutions are available for different values

of θ, high-level information can be used to choose from one of the optimal solu-

tions. For example, if the drug is expensive, the investigator may want to choose

a large value for θ to heavily punish high amounts of initial drug J1pr0q. The

calculation shows that all the optimal solution r˚0 fall into the range r0.99, 1.27s.

If based on experience, r0 values in the range r0.9, 1.3s are generally acceptable,

one can comfortably select a large value of θ without worrying about the poten-

tial unsatisfactory treatment effect.

In cases where the qualitative/higher-level information may not be ap-

Figure 5.3: Desirability surface

proachable to the investigator, an attractive method is to select the scale pa-

rameters using a quantitative procedure. In Definition 4, we proposed such a
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Figure 5.4: Optimal points

Figure 5.5: Robust measure plot for different r˚0
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solution to select the most ”robust” optimal setting r˚0 . Now we illustrate the

usefulness of this solution in this practical problem. In figure 5.5, we plot the ro-

bust measure
ş

ϑPΘ
Drx˚pθq;ϑs
Drx˚pϑq;ϑsdϑ for each optimal setting r˚0 pθq. The robustness

of r˚0 pθq reaches its peak at r˚0 pθ
˚q “ 1.1200 with θ˚ “ 1.52. Therefore, choosing

θ˚ “ 1.52 as the scale parameter value would produce a robust optimal solution

that performs well under other choices of θ. This robust optimal solution can

also serve as a compromised solution when there are many different decision

makers/patients, and different scale parameter should be used to represent their

specific trade-off preference.

5.5 Discussion

In this chapter, we look into metamodel-based optimization of stochastic

computer models where the objective functions are uncertain. We presented

typical scenarios where the objective function is uncertain and provided the cor-

responding uncertainty quantification techniques. We leverage on the flexible

and efficient radial basis function metamodel, and a novel experimental design

approach to model the objective function as a function of both the design fac-

tors and the uncertain objective function parameters. By using a design that

is a Cartesian product of points in the design variable space and the uncertain

parameter space, we developed a fast fitting algorithm to construct the RBF

metamodel. These tools provide the system designers more flexibility in making

an informed and rational decision than the traditional choice of replacing the

uncertain parameter by some estimates.

Although the developed RBF focused on the case where one overall objective

function with uncertain parameters is of interest, it can be easily extended for

fitting multiple objective functions. For example, in a multi-objective optimiza-

tion problem, if the manager needs the individual objective function values to

guide decision-making, independent metamodels can be used to predict each of

the objective functions.
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CHAPTER 6

CONCLUSION

This thesis contributes to the modeling of the uncertainties in the engineer-

ing optimization problem through regression analysis and experimental design.

The main focus of this thesis is the modeling of the inherent uncertainty and the

parameter uncertainty in objective function, whereas the modeling uncertainty

and parameter uncertainty in inputs of mathematical models are beyond the

scope of this thesis.

In this thesis, a multilevel zero-inflated model is first proposed to model

the inherent uncertainties in multilevel high-quality manufacturing processes.

Thereafter, a Bayesian experiential design framework for reducing the estima-

tion uncertainty of the optimum setting for engineering optimization is proposed.

The first two works focus on modeling and reducing the inherent uncertainty in

engineering optimization problems. The third work develops a framework for

capturing the parameter uncertainty in the objective function of computer mod-

els. These three developed methodologies together contribute to the modeling

of uncertainties in engineering optimization and robust design decision making.
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6.1 Main findings

In the first work, we develop a multilevel zero-inflated model to build the

functional relationship between the design factors and the wafer defects with

data collected from a multilevel high-quality manufacturing. In this work, the

identification of proper distributions for random variables and the estimation

of the parameters in these distributions are very important component in the

inherent uncertainty analysis. In this model, the excessive zeros are modeled

by a random shift between a zero state in which defects are nonexistent and a

count state in which defects can occur according to a count distribution. The

count state distribution is derived based on the number of hillocks grown and

the individual hillock heights. This helps to identify the sources of the inherent

uncertainty and provide insights on reducing it. In addition, the wafer level

variation is modeled by assuming the mean number of defects for each wafter is

itself a random variable with Gamma distribution. The lot level variation is the

largest one and shows multi-mode and right-skewed characteristics, hence it is

modeled by a semi-nonparametric distribution. Although the count model was

derived specifically for capturing the uncertainties and modeling the experiment

result of the ICs manufacturing process, the proposed multilevel ZI model can

be extended to model other zero inflated data with multilevel structures with

non normal random effects distributions. The proposed approximate AGQ-EM

algorithm can also be applied to estimate the parameters from these model struc-

tures and is especially useful in cases where the random effects are not normal

and estimated with a SNP distribution. The identification of proper distribu-

tions for random variables in the system and the estimation of the parameters

in these distributions are important components in improving the uncertainty

analysis of high quality manufacturing processes.

In the second work, a Bayesian optimal design framework is built for col-

lecting data informative on reducing the estimation uncertainty of the optimum

point. A Bayesian OP optimality criterion is derived based on expected Shannon

information gain (uncertainty reduction) on the optimum point. To evaluate the
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proposed criterion, we derive an estimator based on decomposing the criterion

into two separate terms, where the first term equals to the D-optimal criterion

and the second term can be estimated with Monte Carlo without a nested struc-

ture. The proposed approximation greatly reduces the computational burden

of a pure MC algorithm and makes searching for the near-optimal design more

feasible. Moreover, the proposed framework is not limited to GLMs, it can be

easily extended for any kind of non-linear regression models. The developed cri-

terion and estimation approach is an important step towards assisting designers

to develop more efficient data collection procedures to improve and optimize the

systems under study.

In the third work , we explored metamodel-based optimization of stochastic

computer models subject to an objective function with uncertain parameters.

We presented typical scenarios where the objective function is uncertain and

provided the corresponding uncertainty quantification techniques. We developed

an RBF metamodel based optimization method through predicting the objective

function as a function of both the design variables and the objective function

uncertain parameters. By using a design that is a Cartesian product of points in

the design variable space and the uncertain parameter space, we developed a fast

fitting algorithm to construct the RBF metamodel. These tools provide the sys-

tem designers more flexibility in making an informed and rational decision than

the traditional choice of replacing the uncertain parameter by some estimates.

Although the developed RBF focused on the case where one overall objective

function with uncertain parameters is of interest, it can be easily extended for

fitting multiple objective functions. For example, in a multi-objective optimiza-

tion problem, if the manager needs the individual objective function values to

guide decision-making, independent metamodels can be used to predict each of

the objective functions.
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6.2 Future works

There are several topics worth further investigation.

• Chapter 3 deals with zero-inflated count data with multilevel variations.

In some cases, the observed data are continuous data but could still char-

acterized by excessive zeros and multilevel variations. For example, in an

integrated circuits current leakage experiment, other than the number of

short circuits, the value of the leakage current could also be treated as

the response variable. In this case, due to the measurement accuracy, cur-

rent values smaller than a certain precision value can not be accurately

measured and hence are labeled as zeros. To model this kind of response

variable, a multilevel modeling technique for capturing the inherent uncer-

tainties in continuous ‘zero-heavy’ data is desirable. To solve this problem,

a truncated continuous distribution could potentially be used. The corre-

sponding multilevel randomness modeling method could be developed.

• For the evaluation of the expected utility measure in Chapter 4, the cur-

rent method is to use a combination of analytical approximation and Monte

Carlo (MC) approximation. Although this method has greatly reduced the

computational burden from the original pure MC approximation, it still

requires a lot of computational resources. Instead, an analytical approxi-

mation may release the computational burden of searching for the Bayesian

OP optimal design. A potential method could be the Poissonization and

depoissonization analytical technique for approximating infinite progres-

sion. This would further popularize the developed framework. In a recent

work, Saleh and Pan (2016) developed an generalized coordinate exchange

algorithm for searching D-optimal experimental designs for GLMs. Using

simulation study, they showed that this algorithm performs better than

GAs in some specific scenarios. This suggests that exchange algorithm for

searching OP optimal designs would also be a potential research area.

• Chapter 5 focus on the quantification of the uncertainties in the objective
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function of a stochastic computer model. This work assumes that the in-

put parameters of the computer model are all known without uncertainty.

However, when using computer models to conduct engineering optimiza-

tion, the exact values of the computer model inputs may often be uncertain

to the investigator. These inputs may be quantities that are uncertain due

to lack of information or limited data. For example, the various material

properties in a finite element analysis for engineering may be difficult to

obtain. One possible future research is to take into account the computer

model inputs uncertainty.
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