
ON CLASSICAL AND QUANTUM CONSTRAINT
SATISFACTION PROBLEMS IN THE TRIAL AND ERROR

MODEL

AARTHI SUNDARAM
(MSc. Mathematics and B.E. Computer Science)

A THESIS SUBMITTED
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

CENTRE FOR QUANTUM TECHNOLOGIES
NATIONAL UNIVERSITY OF SINGAPORE

2017

Supervisors:
Dr. Miklos Santha, Main Supervisor

Examiners:
Associate Professor Troy Lee, Centre for Quantum Technologies

Assistant Professor Xiaohui Bei, Nanyang Technological University
Dr. Ashely Montanaro, University of Bristol

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/132448763?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Declaration

I hereby declare that this thesis is my original work and it has been written by me
in its entirety. I have duly acknowledged all the sources of information which have
been used in the thesis.

This thesis has also not been submitted for any degree in any university previously.

Aarthi Sundaram
August 5, 2017

ii

Acknowledgments

As I take stock of the years spent in my PhD journey, I would like to acknowledge
the many people who have been instrumental to the success of this journey.

First and foremost, I am deeply grateful for the support, guidance, generosity and
encouragement of my adviser, Miklos Santha which has been indispensable to my
undertaking and completing this thesis. Thank you for agreeing to take me on as your
student and also for patiently and tirelessly striving to ensure I write proofs instead
of veering into prose! The wonderful example you have set as a mathematician,
researcher and mentor are lessons I will always carry with me.

I have had the privilege of interacting with different researchers during the course of
my doctoral studies, chief among them being my co-authors. Each of their unique
perspectives has helped deepen my own understanding. I would like to thank Itai
Arad, Shengyu Zhang, Gabor Ivanyos, Youming Qiao, Raghav Kulkarni, Adam
Bouland and Daniel Grier for their penetrating insight, constructive criticism, and
fresh ideas that have refined my own approach to tackling research problems. I would
also like to thank the members of my Thesis Advisory Committee, Rahul Jain and
Frank Stephan.

I was introduced to the world of quantum information by one of my undergraduate
professors, Dr. Radhika Vatsan, whose course offering ended up impacting the course
of my evolving research interests and the choice of my academic path. I would like to
thank her for encouraging me to actively explore this field of research by supporting
me to pursue reading courses under her guidance and be her teaching assistant for
later editions of her “Introduction to Quantum Computing” course.

My thanks to all the researchers (past and present) at the Centre for Quantum
Technologies (CQT), and especially the CQT CS group, for fostering an environment
where a free exchange of ideas (research related or not) is encouraged and where it
has been a pleasure to learn to spread my academic wings. Additionally, my thanks
to: my fellow PhD students and postdocs for the spirited discussions over coffee,
chocolates, tea and more; my erstwhile office mates Penghui Yao, Ved Prakash,
Attila Pereszlényi and Supartha Podder for the fun everyday banter; Jamie Sikora
for his ever-available pointers on surviving a PhD and more; Jamie’s better half
Caitlin Cooke for her friendship and the willingness to put up with the quirks of
all the quantum information scientists around her; Laura Mančinska, my go-to
conference roommate, for providing thoughtful advise whenever it has been sought,

iii

with the additional bonus of a feminine perspective; the growing numbers of CQT
board-gamers who always know how to show you a good time on a Thursday night;
and the Generation Q-Camp organisers who have allowed me to indulge in my love
of teaching and cryptography. I would also like to thank the administrators at CQT
for their efficiency and diligence in providing administrative support.

I believe these last few years would have been a far less enriching experience without
the presence of my cheering (up) squad. My thanks to: Sarvagya Upadhyay and
Neeti Kohli for effectively adopting me into the family; Nandhini Balaji and Saurabh
Menon for being great company with fun, mirth, delicious Onam/Vishu food and a
sprinkling of attacks on the squash court; my partners-in-crime these last few years
Karthika Ramanathan and Mann Stha; my favourite lunch-buddy and sometimes
only human contact during the last stages of my thesis-writing phase Chaitali Dighe;
and a multitude of others whose path intersected mine in passing either during work
or play. Thanks for always lending a ear anytime I wanted to get a load off my mind
and the fun escapades ranging from concert halls to island getaways.

A heartfelt gratitude goes to my parents for being the constant in my life. Thank you
Mom and Dad for always believing in me even if I didn’t and being my true-north as
I navigate the calm waters or stormy seas that life brings.

Finally, I would like to dedicate my thesis to my grandmother and the memory of
my grandfather who was diagnosed with cancer mere days before I enrolled for my
PhD and who passed away less than a year later. Grandma defied the norms to
become the most educated woman of her generation in our family. As the first college
graduate in our family, Grandpa placed immense value in providing an education
both for his sons and daughters. Their views instilled in me a love for knowledge
acquisition which, over time, blossomed into my desire to pursue a PhD and a career
in research.

iv

Summary

Following the introductory chapters (Chapters 1–3), the results in this thesis can be
divided into two distinct parts. The first part studies a specific quantum constraint
satisfaction problem – Quantum 2SAT (Q2SAT) – motivated by the desire to
understand the connection between the computational power of quantum physics
and the behaviour of physical systems.

• Chapter 4 presents a new linear time algorithm for Q2SAT designed in col-
laboration with Itai Arad, Miklos Santha and Shengyu Zhang [ASSZ16] which
improves on the previous quartic time dependence on input size and also matches
the best complexity of classical 2SAT. The techniques used hinge on extending
Boolean unit propagation to encompass high rank and entangled constraints.
This chapter also considers the behaviour of almost satisfiable Q2SAT instances
i.e. those that are slightly distorted from satisfiable instances. As part of the
same collaboration, in ongoing work [ASSZ17], we construct almost satisfiable
Q2SAT instances where it is NP-hard to approximate a satisfying assignment.

The latter part of the thesis investigates the behaviour of classical constraint sat-
isfaction problems (CSP) and quantum satisfiability (QSAT) in the trial and error
model. The principal component in this setting involves an oracle which accepts
assignments from the domain of the CSP as trials and reveals either that the trial is
a valid solution or some information about the error that caused the assignment to
fail.

• Chapter 5 provides a systematic framework, developed with Gabor Ivanyos,
Raghav Kulkarni, Yourming Qiao and Miklos Santha [IKQ+14], to analyze how
the complexity of a CSP with hidden inputs (H-CSPs) changes with respect to
the information revealed by the oracle. This is done using transfer theorems
that equate the complexity of a H-CSP to that of a potentially harder CSP
by borrowing techniques from the world of relational algebra with the aim of
classifying H-CSPs efficiently. The versatility of these transfer theorems is then
demonstrated with their wide-ranging applications.
• Chapter 6 considers the minimum amount of information required to effi-
ciently solve classical 1SAT and 2SAT when the input is unknown. Together
with Itai Arad, Adam Bouland, Daniel Grier, Miklos Santha and Shengyu
Zhang [ABG+16], we consider trials that are probability distributions over
assignments to the variables. The oracle then returns the index of the constraint

v

that is most likely to be violated by this distribution. The information obtained
this way is sufficient to solve 1SAT and 2SAT (without repeated clauses in
the formula) in polynomial time. Extending these techniques to the quantum
regime, we show that Q1SAT can be can be solved in polynomial time up
to constant precision Q2SAT can be learned polynomial time up to inverse
polynomial precision.
• Chapter 7 examines, with results from a manuscript [Sun17], the minimum
amount of information required to determine if an unknown n-vertex graph
has a monotone graph property. For this, the unknown graph is represented
as a H-CSP where the constraints represent an edge missing from the input
and the trials are certificates to the property in question. When the proposed
certificate contains edges missing from the input graph, the oracle in Ivanyos et
al. [IKQ+14] returned an arbitrary violated constraint index. Many properties
with efficient algorithms in the standard setting cannot be solved in polynomial
time with this oracle unless P = NP. To remedy this, the oracle is modified
to return the smallest violated constraint index and this setting gives rise to
polynomial time algorithms for a large class of monotone graph properties.
Adapting this algorithm to binary clauses gives an efficient algorithm for hidden
2SAT formulas resolving the unsolved case of 2SAT with repetitions posed Arad
et al. [ABG+16].

The results presented here utilise techniques from classical and quantum computa-
tional complexity, graph theory machine learning, relational algebra and first order
logic.

vi

Contents

List of Figures ix
List of Tables x
List of Algorithms xi

1 Introduction 1

2 Constraint Satisfaction Problems 18
2.0.1 Boolean Satisfiability 21
2.0.2 Graphs and Graph Properties 22

2.1 The Trial and Error Model 26
2.1.1 Monotone Graph Properties Framework 31

3 Quantum Satisfiability 32
3.1 Basics of Quantum Computation 33
3.2 Local Hamiltonian Problem 40
3.3 Quantum SAT 42

3.3.1 Q1SAT and Q2SAT 43
3.3.2 Energies and distances 43

4 A linear time quantum 2SAT algorithm 45
4.1 Algorithms for Boolean 2SAT 45

4.1.1 Krom’s Algorithm 45
4.1.2 Davis-Putnam Procedure 45

4.2 2-Local Hamiltonian and Quantum 2SAT 46
4.2.1 Bravyi’s Algorithm 47

4.3 Generalizing the Davis-Putnam Procedure 47
4.3.1 Simple ground states 47
4.3.2 The Constraint Graph 50
4.3.3 Assignments 52
4.3.4 Propagation 53

4.4 The main algorithm 58
4.4.1 Algorithm Sketch 58
4.4.2 Max rank removal 60
4.4.3 Parallel Propagation 61
4.4.4 Probe Propagation 63
4.4.5 Analysis of the algorithm 66

vii

4.5 Bit Complexity of Q2SATSolver 66
4.6 On approximate Quantum 2SAT 69

5 Trial and error for constraint satisfaction problems 77
5.1 CSP extensions 77
5.2 Transfer Theorems 79
5.3 Constraint index and variables revealing oracle 83
5.4 Constraint index and relation revealing oracle 86
5.5 Monotone Graph Properties 88
5.6 H-CSPs with a promise on instances 90

6 Probabilistic trials for hidden satisfiability problems 96
6.1 Probabilistic Trials, Quantum Trials 98

6.1.1 Probabilistic trials for H-SAT 98
6.1.2 Quantum Trials for H-QSAT 98

6.2 SAT with probabilistic trials 99
6.2.1 Hidden 1SAT 100
6.2.2 Hidden 2SAT 102

6.3 Quantum SAT in the trial and error model 105
6.3.1 Hidden Quantum 1SAT 105
6.3.2 Hidden Quantum 2SAT 108

7 Lex-first oracle in the trial error model 116
7.1 Structure of Lex-first algorithms 117
7.2 Graph Properties with the lex-first oracle 120

7.2.1 An example: Connectivity and spanning trees 121
7.2.2 The Algorithm 123
7.2.3 Applications 126

7.3 2SAT with the lex-first oracle 127
7.3.1 Algorithm Details 129

References 139

viii

List of Figures

2.1 An instance ϕ of a CSP S 20
2.2 The trial and error method 26
2.3 The trial and error method for H-CSPs with oracle and problem types 27
2.4 Checking if a hidden graph is connected using an OU oracle where the violated clause

picked by the oracle in the trials is Cj and Cj′ respectively. 31

3.1 The Bloch sphere representing |ψ〉 40

4.1 (a) The constraint graph for Hamiltonian H = Π12 + Π14 + Π23 + Π44 where
rank(Π44) = rank(Π23) = 1, rank(Π12) = 2 and rank(Π14) = 3 using its rank-1
decomposition (b) The adjacency list representation for the constraint graph G(H). 52

4.2 Single qubit Propagation 54
4.3 Multi-step Propagation 57
4.4 Parallel Propagation 62
4.5 Handling a contradicting cycle 63
4.6 Sliding 64
4.7 The flower gadget Gi for a qubit i. 73

6.1 Progress in the H-1QSAT Algorithm 108

7.1 Two disconnected graphs G1 and G2 117
7.2 Flow chart of Algorithm 7.4 130

ix

List of Tables

4.1 From MAX2SAT clauses to skewed Q2SAT Projectors 72

6.1 Violation of the clauses based on the fractional assignments of 1/4 and 3/4. 103

x

List of Algorithms

2.1 Breadth first Traversal of a graph G = (V,E) 23
2.2 Trial and error algorithm for H–SAT{C} 29

4.1 Propagation(s,Gs, i, |δ〉) 57
4.2 Q2SATSolver(G(H)) 60
4.3 MaxRankRemoval() 60
4.4 ParallelPropagation(i0, |α0〉, i1, |α1〉) 61
4.5 ProbePropagation(i) 65

7.1 A Lex-first Algorithm Template 119
7.2 The lex-first algorithm for connectivity 121
7.3 A lex-first algorithm for H–SPfirst 123
7.4 A H-2SAT lex-first algorithm outline 129

xi

Chapter 1
Introduction

“If at first you don’t succeed, try, try again” - an English proverb

Trial and Error - a historical perspective
This quote captures not just the essence of the process familiar to all researchers, but also the
essence of the trial and error approach to problem solving. Trial and error is a fundamental
heuristic problem solving method and the Merriam-Webster dictionary defines it as “a finding
out of the best way to reach a desired result or a correct solution by trying out one or more
ways or means and by noting and eliminating errors or causes of failure” [Dic17]. This highlights
both its intuitive appeal and also its inherent connection to learning theories.

Generally, given a problem, one proposes various candidate solutions called trials and observes
their validity. If the candidate satisfies the problem, the process aborts on having succeeded.
If not, the characteristic of the problem would reveal some error associated with the trial. By
repeating this process, one would like to minimise the number of trials used to reach a valid
solution to the problem at hand. The goal here is finding a solution as opposed to developing a
theory on why some particular solution works.

The term “trial and error” was first coined by 19th-century British psychologist C. Lloyd Morgan
as part of his studies to explain animal behaviour and animal cognition [Tho83]. One of the
first experiments with trial and error, which later pioneered the field of experimental analysis
of behaviour, was conducted by Throndike [Tho98] where a cat confined to a puzzle-box with
food on the outside, escaped the puzzle box by learning to solve the puzzle. The cat first
exhibited random movements (i.e., errors) before opening the puzzle box. However, as the
process was repeated, the cat gradually succeeded in opening the box with fewer errors and more
deliberate movements. A theory prevalent at that time was to attribute many of the seemingly
anthropomorphic behaviour of animals to trial and error learning. To this day, this method is
used to analyze the problem solving behaviour of various mammals and insects [CJ15, SCT00].
In fact, biological evolution can be thought of as using trial and error over immense scales in
terms of time or organisms involved. Over time, the trial and error learning theory has been the
starting point from which more detailed learning theories both for humans and animals have
been developed [HG96, SC03, MM14].

1

Beyond the field of comparative psychology, using trial and error to find real-world solutions to
problems has extensive applications in an increasingly unpredictable and complex world [Har11].
These range from the simplicity of solving a sudoku puzzle to the highly complicated world
of effective drug design. It is especially useful in cases where a lack of input information may
make it hard to apply other targeted algorithms to solve the problem at hand as the following
examples demonstrate:

(a) Puzzle Solving - Even without using the extensive literature in psychology to attest to,
personal experience solving any one of your favourite puzzles will provide sufficient evidence
for trial and error to be a significant tool in this process. This can be seen in the search
for that one piece of the jigsaw to fit in somewhere or in systematically eliminating the
possible choices when faced with a multiple choice question.

(b) Game Theory and the two-sided market place - Games modelling real world situations
usually come with a large dose of unknowns: which strategies are available to a player and
what are their payoffs exactly? Who are the other players and what actions are they taking?
Or how do the actions of other players affect one’s own payoff? Trading in the stock market
or matching candidate preferences in a workforce to employer preferences, optimizing
business strategy in a market with competing forces all fit this scenario. In recent times,
game theorists and economists are exploring decentralized or adaptive learning techniques
used by players to suitably modify their strategies and better their payoffs. One such
technique is by using interactive trial and error, to find an efficient Nash equilibrium for a
large class of games [You09, PY12, BCD+13].

(c) Policy Making and Product Development - S. Callander uses a novel technique of mapping
the process of learning through trial and error to the mathematics of Brownian Motion.
This has allowed for understanding when an agent tries a new trial as opposed to a
previously tested method, how much risk is assumed while generating a new trial, and what
is the efficacy of this method in solving hard problems with little or no information. This
has been studied for entrepreneurs optimizing a product’s innovative design throughout
its life cycle [Cal11a] and how well policy makers are able to identify good public policies
in a dynamic landscape [Cal11b]. At an organizational level, the pitfalls of singularly
risk-averse practices [CM16a] and those governed by bounded rationality and cognitive
maps [Nel08] are strongly tied to trial and error learning at the core.

(d) Drug Design - Classical pharmacology or phenotypic drug discovery has relied on using an
empirical trial and error approach to identify key compounds that have therapeutic benefits
by seeing their effects in cellular or animal disease models [LUM+12]. Only after this are
efforts made to discern the biological action of the compound and understand its mechanism
eventually leading to the creation of a new drug. This form of drug discovery still remains
part of the industry standard as it helps find drugs with novel mechanisms and specifically,
for diseases whose physiological mechanisms are not yet well understood [Kot12, ZTM13].
Recent advances also suggest combining both this more black box approach with other
target-specific techniques to improve the timeline for developing new drugs.

2

Related Work
Although used as a tool in a wide variety of fields, the effectiveness of the trial and error method
had not been analyzed from the computational perspective until it was recently formalized by
Bei, Chen and Zhang [BCZ13]. In this work, they considered some specific problems where the
input problem is hidden and accessed by what they term as a verification oracle V. One aims
to solve the problem at hand by proposing possible solutions as trials to V. The oracle either
informs that a solution has been successfully found or provides some information pertinent to
the structure of the problem on why the trial failed as the example below indicates.
Example 1.1 (Boolean Satisfiability). Let the hidden problem be an instance Boolean Satisfia-
bility (SAT) which is a Boolean formula φ =

∧m
j=1Cj on n variables given in conjunctive normal

form (CNF) i.e. an AND of ORs where each Cj is the OR function acting on a subset of the
variables. The verification oracle V accepts as trials an assignment to the n variables from the
set {0, 1}n. A proposed trial succeeds when the OR function of every clause in the instance
evaluates to true on it. When a trial fails, the oracle reveals the index j of some clause Cj such
that the OR function on the variables in Cj evaluates to false on the proposed trial.

The authors allow for the presence of a computational oracle C that can solve an instance of
the original (i.e., un-hidden) problem. In the case of Example 1.1, C will be an oracle which,
when queried with a Boolean CNF formula, will give an assignment such that all clauses of the
formula evaluate to true. This makes sense when the focus is to measure the extra difficulty
introduced by the lack of input information.

For their analysis, the authors of [BCZ13] considered several well-structured problems be-
yond Boolean Satisfiability (SAT) like Stable Matching [GS62], Sorting a list, Graph Isomor-
phism [GJ79] and Group Isomorphism [Her06]. They showed that while the difficulty of the first
three problems in the hidden setting remains the same as the general setting, the latter two
cases have their complexities magnified in the unknown input model. The common denominator
among these problems is that each of them is a constraint satisfaction problem.

Constraint satisfaction problems (CSPs) are mathematical decision problems which are a
cornerstone for research in theoretical computer science. Informally, they are a set of finite
objects whose state, picked from a predefined domain, has to satisfy some finite set of constraints
imposed on them. The uniformity of structure among CSPs allows them to describe a wide
range of problems and promotes their study in a plethora of contexts. Some prominent examples
include scheduling and asset allocation, circuit design, graph colouring and network flow related
problems, subset sum, etc. Hence, they make excellent candidates to help formalise the trial and
error model in different contexts.

One such context is that of determining the feasibility of a linear program,1 when the constraints
are unknown, as considered by Bei, Chen and Zhang in [BCZ15]. The verification oracle that

1A linear program is a mathematical optimization model whose constraints are given by linear functions over
the variables that are to be optimized.

3

reveals an arbitrary violated constraint (i.e., half plane) in the linear program is shown to be
inefficient – requiring exponentially many queries – to determine the feasibility of the program.
However, the slightly modified oracle which reveals the index of the worst violated constraint
(i.e., the half-plane that is furthest in Euclidean distance from the current trial), can determine
the feasibility in polynomial time when used in conjunction with a variant of the ellipsoid
method [LGS88].

Our Contributions
In most cases, bespoke methods give the best guarantees of solving a particular CSP but the
regularity in their formulation and interchangeability admit a common thread in problem solving
techniques for CSPs where domain specific knowledge of the problem is not a must. Among these
techniques are heuristic based backtracking search of the solution space and resolution based
constraint propagation. Sometimes, a CSP instance is accessed via an oracle and information
about the instance may be gleaned by performing queries to this oracle. Examples include
oracles with adjacency list queries or edge queries used to solve graph problems and decision
tree models to analyze the complexity of Boolean functions. The trial and error model discussed
in this thesis, recently formalized to the complexity framework, aims to combine attributes of
the oracle access and heuristic methods.

Following the notion of bespoke methods, the previous works dealt with specific constraint
satisfaction problems and discuss their behaviour in the trial and error model. What was lacking,
however, was a systematic framework that could analyze a wide variety of CSPs paired with
different verification oracles by taking advantage of the regularity in their formulation. This is
the starting point of our work in [IKQ+14], which is presented in Chapter 5. As a first step, we
adopt a more formal framework of CSPs which is detailed in Chapter 2. At this point, for the
discussion to proceed, it suffices to view an instance of a CSP S as being defined on a set of n
variables, V and a set of m constraints C involving those variables. Each constraint Cj ∈ C has
arity q i.e. Cj acts on at most q variables from V. Further, each constraint comes from a fixed
set of r relations, RS, that defines the type of the CSP S as explained in the example below.
Example 1.2 (Boolean Satisfiability (continued)). When S is a Boolean CNF formula of arity
at most 2, RS is the set of all possible OR functions on at most 2 variables, (say) a and b

RS = {(a ∨ b), (ā ∨ b), (a ∨ b̄), (ā ∨ b̄), (a), (ā)}

where ā denotes the negation of a. Now, any instance φ =
∧m
j=1Cj of S, is such that each

Cj ∈ RS(a, b) involves at most 2 of the n variables in φ with a, b ∈ V.

Considering an instance of a CSP S specified by the tuple (C,V,R) allows for the presence
of a larger variety of verification oracles. In the trial and error setting, the trials for this
instance are assignments to the variables in V form an appropriate domain. The errors would be
some information related to one of the constraints from C that is violated. As the purpose of
verification oracles is to reveal some information pertaining to a violated constraint, they are also

4

referred to as revealing oracles. The oracle considered in Example 1.1 is a C-revealing oracle as it
reveals the index of a violated constraint. In this spirit, it is possible to consider any U -revealing
oracle (also denoted as OU) for U ⊆ {C,R,V}. Suppose that one is interested in knowing the
index of a violated constraint as well as the variables involved in this constraint, the pertinent
oracle would be the {C,V}-revealing oracle. Or when one would like to know the index of a
violated constraint and the index of the relation this constraint possesses, the {C,R}-revealing
oracle will be used. Now, an instance of a hidden CSP (H–CSP) S where the constraints are
unknown is given by n = |V|, m = |C|, and a corresponding U-revealing oracle. To analyze the
worst case complexity of a problem in this setting, when more than one constraint evaluates to
false as in Example 1.1, V picks an index adversarially.

The next step is to use this framework and classify the complexity of a H–CSP combined with
its revealing oracle. This is done by developing transfer theorems for each type of revealing
oracle. For each hidden CSP, the transfer theorem associates a more complicated CSP in the
un-hidden setting such that their difficulties are roughly the same. The more complicated CSP
is obtained by performing specific extension operations on the relation sets R of the H–CSP
that causes a blow up in their resulting size and complexity. This transfers the study of hidden
CSPs to the study of these extended CSPs in the well-studied un-hidden setting. It is possible
to view these transfer theorems as being in the spirit of structural classification theorems like
Schaefer’s Dichotomy Theorem [Sch78] for Boolean CSPs and Chen’s generalisations using
relational algebra [Che09]. The advantage of the transfer theorems is its suitability to study
any H–CSP that can be represented using the {C,R,V} framework which conceivably covers
every decision CSP. Our framework also works for hidden CSPs defined with some promise on
their inputs, for example, a Boolean satisfiability instance which is promised to be repetition
free i.e. where every clause in the instance is unique. An interesting class of problems that
can also be suitably expressed is those determining if a hidden graph possesses a monotone
graph property – graph properties preserved under the addition of edges. It bears mentioning
that the {C,V}-revealing and {C,R}-revealing oracles along with the results involving them are
considered for the first time in [IKQ+14] as [BCZ13] only considered the {C}-revealing oracle
in their setting. Additionally, the results for certain promise problems and monotone graph
properties are studied here for the first time too. A side benefit of these transfer theorems is
that, when applied to the examples considered in [BCZ13], they generally produces shorter and
easier proofs of their complexity.

The intuition behind these extensions and the transfer theorems comes from the necessity for
a methodical way to represent the information aggregated about the H–CSP instance after a
series of trials and revealed violations. To accomplish this while still maintaining a link to the
underlying structure of the instance, for every H–CSP instance H–S with m constraints, the
extended CSP also possesses m constraints. So, intuitively, every constraint C ′j of the extended
CSP, at any point, reflects the knowledge gained about the corresponding hidden constraint Cj .
For this to be most effective, it is imperative that the revealing oracle always reveal the index
of some violated constraint. Thereby, the revealing oracles that are of particular interest are

5

{C,U ′}-revealing oracles for U ′ ({R,V} where {C,R,V} is excluded as it can be shown to be
polynomially equivalent to the un-hidden setting. Informally, the CSP extensions considered for
some CSP S are: (a) closure by union (

⋃
S) whose relations could be an arbitrary union of the

relations in the original problem; (b) restricted union of arity extensions (E–S) whose relations
are unions of a relation in the original problem over different q-ary tuples of variable indices;
and (c) arbitrary union of arity extensions (

⋃
E–S) whose relations are arbitrary unions of the

relations from the previous extension. Using these, our first contribution can be stated below.

Result 1 (Transfer Theorems; cf. Section 5.2). Let S be a CSP whose parameters are
“reasonable” with relations such that any assignment satisfying a relation can be determined in
P. Then, the complexities of the following problems are polynomial time equivalent:
(a) H–S{C,V} and

⋃
S, (b) H–S{C,R} and E–S, (c) H–S{C} and

⋃
E–S.

What we observe is that the complexity of any hidden CSP is intimately connected with the
complexity of the revealing oracle used. In the case of Boolean satisfiability or some simple
monotone graph properties, among others, the {C,V}-revealing oracle allows the hidden instance
of a CSP to be learned efficiently when an accompanying computational oracle C to solve
the original CSP is provided. This reduces the complexity of the hidden CSP to that of the
original CSP. Hence, this oracle may not blow up the complexity of the problem. The oracle
that provides the least amount of information and heavily restricts access to the input is the
{C}-revealing oracle. Using this oracle, a problem’s complexity in the hidden setting can be
magnified to become NP-hard while the un-hidden version of the problem can be solved in
polynomial time. For instance, 2SAT, which is the Boolean Satisfiability problem of arity 2, has
a linear time algorithm [APT79, EIS76]. However, the hidden 2SAT problem (H–2SAT) with
the {C}-revealing oracle cannot be solved in polynomial time unless P = NP. Here P, NP refer
to the polynomial time and nondeterministic polynomial time complexity classes respectively
and H–2SAT{C} is said to be NP-hard in shorthand. The same behaviour in the hidden setting is
also reflected for many monotone graph properties like connectivity, bipartite perfect matching,
etc., which have efficient algorithms in the un-hidden setting [Die12, Edm67, Tut54]. Some of
the examples where transfer theorems were applied are summarised in Result 2.

With the {C,V}-revealing oracle being too powerful by allowing an instance to be learned
completely and the {C}-revealing oracle being extremely restrictive, as in the case of H–2SAT,
it is natural to ask if there is some oracle of intermediate power that would allow one to solve a
hidden instance without necessarily being able to completely learn an instance. A problem in the
hidden setting only becomes more difficult to solve leading the focus to be on problems that can
be solved efficiently when the input is completely known. As trials are proposed, the information
gleaned from each violation could help one narrow down not just a satisfying assignment but
also what the hidden instance could be as the example below shows.

Example 1.3 (Boolean Satisfiability (continued)). Let the SAT formula φ on n variables be
hidden by a {C}-revealing oracle as in Example 1.1. Let the assignment 0n fail on φ with the

6

Result 2 (Applications of Transfer Theorems; cf. Sections 5.3, 5.4, 5.5, 5.6). Given revealing
oracles O{C},O{C,V},O{C,R}, the following hold:
(a) Boolean Satisfiability: H–1SAT{C},H–2SAT{C},H–2SATRF

{C} are NP-hard but
H–1SATRF

{C} ∈ P where RF refers to the promise that an instance is repetition
free.

(b) Unique Games (for definition cf. Section 5.3): H–UG[2]{C,V} ∈ P but H–UG[k]{C,V} is
NP-hard for k ≥ 3 where UG[k] denotes a unique game on an alphabet of size k.

(c) Monotone graph properties: Given a hidden graph G accessed using an O{C} oracle, it
is NP-hard to determine if G has: (1) a spanning tree, (2) a perfect matching (if G is
bipartite), (3) a cycle cover, (4) a path between two marked vertices s and t.

(d) Group Isomorphism (for definition cf. Section 5.6): Given a multiplication table H
which is hidden by an O{C,V} oracle, and a family of groups, G whose multiplication
table structure is known. It is NP-hard, in the trial and error setting to determine if H
is equal to a multiplication table from the family G.

oracle returning the index j. The all-0 assignment would have set any negated variable in Cj to
true in which case it could not have caused a violation. So, it is possible to conclude that the
clause Cj does not contain any negated variable. Similarly, if the all-1 assignment 1n fails on φ,
one can conclude that φ contains at least one clause made of only negated variables.

So, the question on finding an oracle of intermediate power to solve a CSP S can be rephrased
as: What is the minimum amount of information required to solve a CSP S efficiently?. This
question is fielded in Chapter 6 (where the CSP is 2SAT) and Chapter 7 (where the problems
are various monotone graph properties).

As evidenced by the discussion so far, a recurring CSP candidate throughout this work is Boolean
Satisfiability (SAT). One reason for this is its simple structure as a Boolean formula in the form
of a conjunction of clauses, where each clause is a disjunction of literals (variables or negated
variables). This simple structure is still capable of expressing problems related to scheduling,
circuit design, operations research and bioinformatics to name a few. The other reason is due to
its pivotal position in theoretical computer science with the advent of the Cook-Levin Theorem
[Coo71, Lev73] proving its NP-completeness. Moreover, it continues to be studied under various
specialized models such as random-SAT and building efficient SAT-solvers for real-life scenarios.
In the complexity theoretic setting, we know that while 3SAT is NP-complete [Coo71, Lev73],
2SAT can be solved in linear time [Kro67, EIS76, APT79]. kSAT indicates that each clause
contains at most k literals.

Starting with the hidden versions of 1SAT and 2SAT, H–1SAT and H–2SAT respectively, our
work in [ABG+16], presented in Chapter 6 aims to find a revealing oracle that can solve the
problems without entirely learning them. As randomization sometimes provides speedups
in query complexity and other models, the trial and error model considered here introduces
randomization in form of probabilistic assignments. This means that a variable, instead of taking

7

Boolean assignments, is assigned a value in the interval [0, 1] which signifies its probability of
being true (or equivalently, 1).By assuming a product distribution over all the variables, it is
possible to generate trials which are a probability distribution over Boolean assignments.

A probability distribution over assignments translates to the clauses too by signifying the
probability with which they can be violated instead of a true or false value. It also induces
a natural order on the extent to which a clause is violated. For instance, if Pr[a = 0] =
0.9,Pr[b = 0] = 0.9 for variables a, b, then for a clause C = (a ∨ b) that will be violated by
00, Pr[C(a, b) = 0] = 0.92 = 0.81 and for a clause C ′ = (a ∨ b̄) that will be violated by by 01,
Pr[C ′(a, b) = 0] = 0.9× 0.1 = 0.09 where Pr[·] denotes the probability of an event happening.
To take advantage of these probabilistic violations, the oracle, denoted Omax, returns the index
of the clause that has the highest probability of being violated by the current trial. This mirrors
the worst violated constraint oracle used in [BCZ15] to efficiently solve linear programs with
unknown constraints.

Using the Omax oracle, we obtain an algorithm to solve H–1SAT in polynomial time by using
the trials to construct partial assignments which are then extended to full assignments. Any
partial assignment that extends to a satisfying assignment is called good; otherwise, it is bad. At
each point it is possible to separate the trials proposed into buckets which are labelled by the
violated index Omax returns. The key idea is that all trials in a bucket are either good or all
trials are bad. Now, one proceeds by picking one representative from each bucket to extend to a
satisfying assignment. By ensuring that at least one bucket has good assignments, the algorithm
guarantees a solution if the hidden instance is satisfiable.

We find that extending the same concept to H–2SAT poses a problem as the buckets are unable
to separate the good and bad partial assignments. This can be understood by observing the
nature of 1SAT and 2SAT formulas. In the former’s case, a partial assignment on the first i
variables is good if it satisfies all the clauses involving the first i variables. For instance, when
φ = x1∧x2∧x3∧x4, the partial assignment x1x2 = 11 is a good assignment. Any bad assignment
here will not be placed in the same bucket as it would violate either the first or second clause by a
maximum violation of 1. Consider now a 2SAT formula φ′ = (x1∨x2)∧ (x2∨x3)∧ (x3). The two
probabilistic assignments x1 = 1, x2 = 1, x3 = 0.5 and x1 = 1, x2 = 0, x3 = 0.5 both satisfy the
first clause in φ′. They both also violate the third clause by 0.5 and could be placed in the same
bucket during the algorithm. However, the partial assignment x1x2 = 11 is bad while x1x2 = 10
is good. This prompts a different approach for H–2SAT. We show that when a H–2SAT instance
φ′ is repetition-free, i.e., it is promised not to contain any repeated clauses, it is possible to find
a 2SAT formula φ̄ such that φ′ and φ̄ have the same set of satisfying assignments. Then solving
φ̄ for a satisfying assignment, will provide us with a solution for φ′ giving the following results.

It seems unlikely that the repetition-free condition for H–2SAT can be bypassed when the Omax
oracle is involved2. On the other hand, a positive consequence of the probabilistic trials is that it

2A slightly different approach to remove the repetition-free condition is considered in Chapter 7.

8

acts as a stepping stone to deal with quantum satisfiability (QSAT) in the trial and error setting.

Quantum Satisfiability [Bra11] is a special case of the Local Hamiltonian problem [KSV02] and
they are formally introduced in Chapter 3 along with some necessary quantum information
concepts. The point to be made here is that the Local Hamiltonian problem, and by relation
QSAT, is arguably as pivotal to studies in condensed matter physics and quantum complexity
theory as SAT is to classical computational complexity. This makes QSAT a suitable candidate
amongst quantum constraint satisfaction problems to be considered for any quantization of the
trial and error model. A QSAT instance shares some structural resemblance to classical SAT.
For example, QSAT would act on a system of n qubits with m quantum constraints. The space
of n-qubit quantum states is the space of assignments for QSAT. Similar to kSAT, a QkSAT
instance is such that each constraint acts on at most k qubits. The satisfying assignment of a
k-qubit constraint is a k-qubit ground state and a ground state of the instance is also a ground
state of each constraint in the instance.

One main difference in the quantum case is the structure of the constraints which also translates
to the structure of the ground states. Each k-qubit QSAT constraint is a Hermitian operator
with 0, 1 eigenvalues on the space of k-qubits and a ground state for such a constraint is its
0-eigenvector. The other major difference is their continuous nature. Unlike a Boolean constraint
which takes {0, 1} values, a quantum constraint takes values in the interval [0, 1] where 0 signifies
that the constraint is completely satisfied and other values signify the degree to which a constraint
is violated. Another consequence of the continuous nature is that the algorithms considered in
Chapter 6 aim to find a state that is, in a suitably chosen metric, ε-far from a ground state.
Here, ε could be bound by a function, 1/f(n), dependent on the number of qubits, n, where
f(n) is either a constant, polynomially bounded or an exponentially bounded function.

It is known that Q1SAT and Q2SAT can be solved in polynomial time [Bra11] with deterministic
classical algorithms leading us to ask what the minimum information required to solve these
problems may be. We use the Omax oracle in the trial and error setting to answer this question.
The trials in this case are density matrices which can be viewed as a quantum equivalent of a
probability distribution over quantum states. We show that given a H–Q1SAT instance and
a precision ε, there is an algorithm requiring poly(nlog 1

ε) time to output a state that is ε-far
from the ground state in some suitably chosen metric. The algorithm generalises the algorithm
used for H–1SAT and the exponential dependence on log ε arises from the exponential blowup
in the number of buckets required in the algorithm to pin down a suitable state for each qubit.
When ε is a constant, this still gives us a polynomial time algorithm but inverse polynomial
precision requires super-polynomial time. As in the classical case, the constraints themselves are
not learned and remain hidden and the finite precision adds a further layer of obfuscation on
the constraints present in the hidden instance.

The H–Q2SAT instance generalises the H–2SAT algorithm in that it attempts to find a Q2SAT
instance that approximates the hidden instance. Specifically, given a H–Q2SAT instance H
and a precision ε, the algorithm, in poly(n) time, finds a Q2SAT instance H ′ such that each

9

constraint in H ′ is ε-far from the corresponding constraint in H in a suitably chosen metric.
H ′ can be said to have the constraints of H perturbed by a factor of ε. At this juncture, it
is suitable to highlight the crucial difference between the algorithm used for the classical and
quantum settings. Essentially, in the classical case, the satisfiability of the H–2SAT formula φ
is preserved in the equivalent 2SAT formula φ′ learned by the algorithm. If φ is unsatisfiable,
then so is φ′ and vice-versa. However, this cannot be guaranteed for H and H ′. It is possible
that H is satisfiable (i.e., possesses a 0-eigenvector) but the perturbations in H ′ make the
latter un-satisfiable or vice-versa. This means that running a Q2SAT algorithm on H ′ would
not provide a reliable answer on the satisfiability of H unless the Q2SAT algorithm is robust
to ε perturbations. This leads to an interesting set of questions on the robustness of Q2SAT
algorithms in general3. Existing Q2SAT algorithms are robust when ε is exponentially small
i.e. bounded by 1

exp(n) but not in the inverse polynomial regime. The question of whether
there exists any polynomial time algorithm to approximate the ground state in the inverse
polynomial regime is left for future work. Hence, our H–Q2SAT algorithm presents an efficient
way to learn a 1

poly(n) -perturbed instance H ′ and the question of whether this also solves the
H–Q2SAT instance is left open-ended. Now, it is possible to compare and contrast the classical
and quantum behaviours with the Omax oracle.

Result 3 (SAT and QSAT with the Omax oracle; cf. Chapter 6).
(a) Given a H–SAT formula Φ on n variables and m clauses, accessed using the Omax oracle

and probabilistic trials, it is possible to find a satisfying assignment for Φ in poly(n,m)
time if Φ is (1) a 1SAT formula or (2) a 2SATRF formula which is repetition free.

(b) Given a H–QSAT instance H on n qubits with m projectors and ε > 0, it is possible to
(i) solve H to a precision ε in time O(nlog 1

ε) if H is a Q1SAT instance or
(ii) learn each projector of H to a precision ε in time poly

(
n, log 1

ε

)
if H is a Q2SAT

instance and there is no qubit, i, which is common to all the projectors in H.

Another recurring set of problems in this work are monotone graph properties. A graph property,
P , is the property of a graph that is invariant under the renaming of vertices. The monotonicity
comes into place when a graph property that is preserved under the addition of edges and some
examples include the connectivity of a graph, a bipartite graph possessing a perfect matching
between the vertices on each side of the bipartition and the s− t connectivity for two marked
vertices s, t in a given graph. A certificate for a monotone graph property is a smallest subgraph
of the given graph that posses the property in question. In the case of connectivity, this would
be a spanning tree of the given graph and the shortest path between the marked vertices s, t
would certify the s− t connectivity of the graph. A monotone graph property P on an n-vertex
graph can be expressed as a monotone Boolean function, and thereby a Boolean CSP, on

(n
2
)

variables where each variable is an edge in the n-vertex graph. This Boolean function on a
graph will evaluates to 1 if the graph possesses a certificate for the property P. With this view,
the monotone graph properties framework in the trial and error model introduced in [IKQ+14]

3This is discussed in Chapter 4 which presents the result on a new linear time Q2SAT algorithm

10

aims to find if a hidden graph possesses a property P by providing its certificates as trials. For
instance, there are n! possible spanning trees on n-vertices. These would be the trials made to
find if a hidden graph is connected. The oracle used either informs us that the certificate is a
subgraph of the input graph or reveals some information indicating why the input graph does
not possess that certificate.

Characterizing graphs based on their properties has been the goal of algorithmic graph the-
ory [BT97]. Ever since Euler first posed the question on the bridges of Königsberg in 1736, there
have been numerous algorithms [Die12] to characterize when a given graph possesses a particular
property [Edm67, Tut54] or test if a graph is close to possessing a property rather than far from
it [AS08, GKNR09]. In a similar vein, Chapter 7 characterizes the monotone graph properties
for which a certificate can be found efficiently in the trial and error setting. As the discussion
previously indicates, this has to be achieved with an oracle of intermediate power between the
{C}-revealing and {C,V}-revealing oracles. In this model, the oracle, denoted Ofirst, returns
the index of the lexicographically first constraint that is violated i.e., min1≤j≤m{j|Cj is violated}
where the CSP has m constraints C1, . . . , Cm. Effectively, the oracle returns the first error
encountered when the constraints are checked for violation in the ascending order of their index.

Using the lex-first oracle Ofirst on a hidden graph, as part of ongoing work [Sun17], we show
that a certificate for property P can be found in polynomial time if an associated problem P∩

can be solved in polynomial time. Informally, P∩ refers to the problem of finding a certificate for
P that additionally contains at least one edge from a given set of edges. This raises an interesting
question on which properties have polynomial time algorithms to solve their P∩ problem. First
glance may suggest an equivalence between the certificates for P and P∩ problems. However,
finding an odd-length cycle in a directed graph provides a counter-example to the suggestion.
Note that, so far, we are unaware of any property on an undirected graph that would be a
suitable counter-example. One consequence of finding a counter example would be to elicit a
finer structure amongst polynomial time solvable monotone graph properties. The properties
used to illustrate the working of the lex-first oracle seem to be expressible through matroids
and matroid intersection [Tut59]. Matroids are structures in combinatorics that abstract and
generalize the notion of linear independence in vector spaces [Oxl06]. Hence, there may be a
connection between graph matroids and the P∩ problem but exploring this conjecture is left for
future work.

The lex-first oracle, when applied to the case of H–2SAT removes the restriction of repetition-
freeness that is present with the Omax oracle. Any instance of the H–2SAT problem oracle can
be solved in polynomial time with the Ofirst. One reason for this is that the lex-first nature
implies that when a repeated clause is violated, only the first occurrence of the repeated clause
will ever be returned by Ofirst as a violation. Breaking ties between repeated clauses is, by
itself, insufficient to to make H–2SAT tractable in this setting. The other characteristic of the
lex-first oracle is that it is able to identify the precise change of assignments that causes the

11

status of a particular clause to transition from being violated to being satisfied or vice-versa4.
This cannot be guaranteed by the C-revealing oracle which is assumed to be adversarial in nature.
Consider the case when two successive assignments return the indices j1 < j2 respectively. With
the lex-first oracle, it is possible to conclude that as j2 is now the smallest clause index to be
violated, the second assignment satisfied Cj1 and it is the difference between the two assignments
that satisfied Cj1 . In the case of H–2SAT, the difference is the list of variables that do no
have the same value across both assignments. The same conclusions cannot be made with the
C-revealing oracle. Incidentally, the above process of examining two successive trials and their
violations j1, j2 to draw conclusions about what satisfied or violated the clause Cj1 is termed
candidate elimination. This name is justified when one views the algorithm as maintaining a
list of candidates for the literals that could be present in a clause of the hidden instance. The
elimination helps rule out some of the candidates and move closer to the actual literals involved
in the clause.

The polynomial time algorithms considered in Chapter 7 with the lex-first oracle are all made
up of the same building blocks. Every lex-first algorithm can be broken up into phases which
in turn is a repeated sequence of the following procedures: (1) the process of constructing the
next trial T2 from the current trial T1, (2) getting a violation j2 from proposing T2 to Ofirst
and (3) using T1,T2, j1, j2 to perform candidate elimination. This sequence ends when some
previously unknown non-trivial information about a clause is eventually learned as a result of
the candidate elimination. For any CSP, this information would amount to revealing the identity
of one of the literals that is present in Cj1 or Cj2 . The next phase then proceeds by picking
trials that satisfy the current knowledge the algorithm has about the hidden instance in an
attempt to find a satisfying assignment. While the sequence of steps in a phase arguably shares
similarities with H–SAT{C} given in [BCZ13] (cf. Algorithm 2.2), there are some key differences
in implementation. For one thing, in [BCZ13], an arbitrary next trial is generated by using the
assignment returned by querying a SAT oracle. For the examples using the lex-first algorithm, an
explicit process to generate the next trial in polynomial time is described. The second difference
is in the candidate elimination where the lex-first algorithm uses the difference between two
successive trials and the two violations to determine which candidates to remove and which are
to be kept. In contrast, the H–SAT{C} algorithm eliminates candidates solely on the basis of
the current trial and violation. These differences necessitate the need for more involved data
structures and book-keeping procedures to effectively minimize the number of trials used and the
running time of the algorithms. The results with the lex-first oracle are summarised in Result 4.

The trial and error model is clearly not alone in dealing with unknown inputs through black
box oracles. There are numerous such models studied in computational complexity. When
determining the query complexity of a Boolean function, given an input Boolean string, the

4These conditions are also met by lex-last oracle – one that reveals the largest index among violated constraints
making it capable to solve H–2SAT efficiently. The same does not hold for a lex-kth oracle revealing the index of
the kth smallest violated constraint.

12

Result 4 (Graph properties and 2SAT with the Ofirst oracle; cf. Chapter 7).
(a) Given an unknown graph G on n vertices accessed using the lex-first oracle Ofirst,

it is possible in poly(n) time to determine if G has: (1) a spanning tree; (2) a perfect
matching (when G is bipartite); (3) a cycle cover; (4) a path between marked vertices s, t.

(b) Given a H–2SAT formula Φ on n variables and m clauses, accessed using the Ofirst
oracle with Boolean assignments as trials, it is possible to find a satisfying assignment
for Φ in poly(n,m) time if it exists or output unsat.

decision tree model [BDW02] queries the bit at position i in the string. For the quantum query
complexity, these queries are made in superposition. When testing if a graph has some property
P or is far from having the property, the algorithms usually query if there is an edge between
two vertices u, v or ask for the ith neighbour of some vertex v [Gol11]. The common thread in
these models is that it is the input that is queried in different forms. On the other hand, the
trial and error model uses more general queries, in the form of assignments, as trials. Also, at
no point does any trial query a constraint Cj in the hidden instance directly. It is the series of
trials and violations observed that are used to accumulate information about which assignments
may satisfy each constraint in the instance.

It is possible to view the candidate elimination used in the lex-first algorithms as being inspired
from its namesake in concept learning with version spaces [Mit82]. This leads to questions about
the relationship between existing machine learning techniques and the trial and error setting
which has also been discussed by Bei, Chen and Zhang [BCZ13]. The main difference comes
back to the fact that the goal in the model discussed here is, expressly, to find a solution for
the problem at hand. The focus is not on explaining why that solution works or learning the
details of the problem at hand in its entirety. For instance, one can compare concept learning
with the trial and error setting. Suppose that the problem at hand is to identify a bird. Concept
learning would proceed to learn all the characteristics that identify birds, say {has feathers, lays
eggs, warm-blooded}. In the trial and error model, a series of animals could be proposed as
trials and the first bird, say a penguin, in that list is accepted without any information revealed
on whether the problem wanted an animal that laid eggs, lives in the cold or is a bird. In the
probably approximately correct learning (PAC learning) framework [Val84], with sufficiently
high probability, maybe the concept learned is {lays eggs, is warm-blooded}. Then, with some
low probability, a duck-billed platypus could be termed as satisfying the concept by the PAC
learner. In this case, the PAC learner has a non-zero probability of labelling an unsatisfying
assignment as being a solution a scenario that will not occur with the trial and error oracles. So,
while there is a chance for techniques from machine learning to get appropriated for use in the
trial and error setting, algorithms in both models exhibit distinct goals.

Lastly, presented in Chapter 4 of this thesis, is the result that is independent of the trial and
error model but pertains to quantum CSPs, namely Quantum Satisfiability. We show a classical,
deterministic linear time algorithm to find the ground state for Q2SAT [ASSZ16] that improves
on the previous best of an O(n4) time algorithm provided by Bravyi [Bra11] where the input

13

acts on n qubits. Our algorithm can be viewed as a quantum generalisation of the refined
Davis-Putnam procedure [DP60, DLL62] used for 2SAT which relies on unit propagation and
is a backtracking based search of the solution space. Unit Propagation acts on unary clauses,
i.e., clauses with a single variable, and resolves the assignment to the variable so that the unary
clause is satisfied. This is particularly useful for Boolean variables when there is only one possible
assignment that can satisfy a unary clause. Backtracking involves building partial assignments or
candidate solutions which are abandoned (by going back to a different assignment) as soon as it
is determined that the candidate cannot be extended to a valid solution. This procedure, in the
worst case, can take exponential time to find a solution for a general SAT instance but consumes
quadratic time on a 2SAT formula. A tweak suggested by Even, Itai and Shamir [EIS76] for the
Davis-Putnam procedure improves its running to a linear time on the input of a 2SAT formula.
In the 50+ years since its inception, the Davis-Putnam procedure remains an integral part of
modern SAT-solvers.

Given a 2SAT formula containing only two variable clauses, the Davis-Putnam algorithm does
the following. It picks an unassigned variable, say x, and gives it an arbitrary assignment.
The formula is then simplified by removing clauses that are already satisfied and resolving
any remaining unary clauses generated during the course of the simplification. If no clause
was violated in this process, we are left with a formula containing a smaller number of two
variable clauses and the process can be repeated. If not, the violation occurs due to the current
assignment given to x and the procedure backtracks to the point where x was assigned. This
assignment is flipped to the other possibility and unit propagation is repeated. If this also leads
to a contradiction, the input formula is unsatisfiable. If not, a partial assignment is built in a
step-wise fashion. Generalizing this to deal with quantum states requires an efficient notion of
unit propagation and showing that Q2SAT also requires only limited backtracking. Our result
states the following.

Result 5 (Linear time Q2SAT algorithm; cf. Chapter 4). There exists a deterministic
algorithm for Q2SAT whose running time is O(n+m) where n is the number of qubits, m
is the number of local terms in the instance and it is assumed that arithmetic operations on
complex numbers consume unit time.

The existence of classical algorithms for a quantum problem such as Q2SAT is possible due to
the fact that every satisfiable Q2SAT instance has a ground state that with a polynomial sized
classical description as shown through our product state theorem. The next consideration is
expanding the notion of unit propagation involving quantum states and quantum constraints.
The latter, as Hermitian operators, can be of rank 1, 2 or 3. Further, the rank-1 constraints
come in two distinct forms: product constraints and entangled constraints. While the former
bear a semblance to Boolean clauses except on a larger domain, the latter are intrinsically
quantum in nature. Our definition of propagation deals with each of these cases such that for a
constraint involving two qubits u, v, where qubit u is assigned some initial state, we can find

14

the unique state5 that will be propagated across the constraint to qubit v with O(1) operations
on complex numbers. This can then be extended to show multi-step propagation across a series
of constraints.

The Q2SAT algorithm can now be broken up into three distinct phases that acts on the input
given as a constraint graph where a qubit pair share an edge if a constraint involves the pair:
(a) Resolve rank-3 constraints; (b) resolve rank-1 product constraints and (c) resolve rank-1
entangled constraints. Each of these phases makes extensive use of propagation. While the
first two phases bear a resemblance to the Boolean case adjusted to the larger domain size, the
last step is solely created for the quantum instance. It borrows the idea of sliding a constraint
across another from [JWZ11]. Limited backtracking is shown separately for each phase. Rank-
3 constraints have unique satisfying assignment and cannot be backtracked. The satisfying
assignment for rank-1 product constraints has one of two forms and so an assignment to them
can be backtracked once before both the forms are tried for satisfaction. Repeated sliding in the
last phase would produce a rank-2 constraint on some qubit pair. This is handled by showing
that there exists a rank-1 product constraint in every rank-2 constraint’s space and reduces to
the problem of satisfying this rank-1 constraint which can be backtracked once.

A combination of factors lead to our algorithm having a linear time bound. One is that there
is no global manipulation of the algorithm as is done by Bravyi’s approach. Instead, parts
of the instance are analyzed at any given time with local operations manipulating the partial
assignments generated. Moreover, once a partial assignment has been found successfully, it can
be decoupled from the rest of the system leaving a successively smaller instance that needs
to be solved. Each propagation and sliding operation manipulates a constant sized matrix
thereby requiring O(1) operations on complex numbers. Additionally, repeated propagation and
sliding act on the constraint graph using breath first traversals which can be executed in linear
time [CLRS09]. Amortised over each phase, every edge occurs only in a constant number of
breadth first traversals which justifies the bound. An underlying assumption used here is that
operations over complex numbers consumes unit time i.e. we work in the algebraic computing
model. For the sake of completeness, we can also consider the bit complexity of the algorithm
– the complexity of the bitwise operations performed over the course of the algorithm. When
M(n) is the bitwise cost of multiplying two n-bit numbers, the algorithm has a bit complexity
O((m+ n)M(n)) where the input acts on n qubits and has m constraints. Independently, albeit
simultaneously, de Beaudrap and Gharibian [dBG16] also presented a linear time algorithm
for Q2SAT which largely differs in the way rank-1 entangled constraints are handled. Their
algorithm can be considered a quantum analogue of Apsvall, Plass and Tarjan’s algorithm for
2SAT [APT79] and matches the complexity of our algorithm in both the algebraic computing
and bit complexity regimes.

Chapter 4 also presents as yet unpublished results that are part of ongoing work [ASSZ17]

5Up to some global phase and scaling factors.

15

related to the behaviour of specific distorted instances of Q2SAT. For some ε > 0 and some
Q2SAT instance H, these distortions generate an instance H ′ such that each local term of H ′ is
ε-close to the corresponding local term of H. When ε = 1

poly(n) for an instance on n qubits, and
H is satisfiable H ′ is termed an almost frustration free Q2SAT instance. While this instance
bears a striking resemblance to the Hamiltonian learned at the end of the H–Q2SAT algorithm,
it is interesting in its own right. It provides a setting to understand if the behaviour of frustrated
Q2SAT is similar to that of a frustrated version of 2SAT i.e. the MAX2SAT problem.

The MAX2SAT problem which tries to find an assignment that maximizes the number of satisfied
clauses is known to be NP-hard due to which simple propagation techniques do not work for
it. The decision version of MAX2SAT asks, given a 2SAT formula and a constant k, if there
exists an assignment that violates at most k clauses or if for all assignments at leasts c · k
clauses are violated for a constant c. The quantum analogue of this would be, given a 2-local
Hamiltonian on n qubits and a threshold a = 1

poly(n) , decide if there exists an assignment (i.e., a
tensor product state) that has energy less than a or all assignments have energy at least c′ · a
for some constant c′. When the Hamiltonian is, projector-wise, close to a satisfiable Q2SAT
instance, in the yes case, the hope is for this low energy state to approximate the ground state
of the satisfiable instance. Hence, this problem is also termed Approx − Q2SAT. It is known that
there are particular regimes (say, c = 1.0005 [Kar01]) where it is NP-hard to decided between
the two cases of the MAX2SAT problem. We show that for a similar regime of parameters,
the decision version of Approx − Q2SAT is also NP-hard to decide using a reduction from an
NP-hard MAX2SAT instance. A complete understanding of this case is still unresolved as there
do exist regimes where it is possible to approximate the optimal assignment to a MAX2SAT
instance in polynomial time. Specifically, MAX2SAT has a robust semidefinite programming and
rounding procedure that, in a particular regime, provides an assignment that satisfies almost
all clauses [CMM09]. In this spirit, there may exist a similar rounding procedure which will
make the Approx − Q2SAT problem easy to decide. This would, in a sense, make Q2SAT mirror
2SAT to a greater extent. If the negative is shown, a divergence in behaviour between 2SAT and
Q2SAT will have been demonstrated. As part of ongoing work, this is left as an open question
at the moment.

Organisation
The next chapter provides the notation used throughout this thesis pertaining to constraint
satisfaction problems and the trial and error model. This is followed by a primer on some of the
quantum information concepts essential to understanding the technicalities in this thesis and
sets the notation related to quantum satisfiability and quantum constraint satisfaction problems.

The first result presented in Chapter 4 is the linear time algorithm for Quantum 2-SAT which is
not connected the trial and error model. The trial and error results are presented in the remaining
chapters starting with proving the various transfer theorems and showing their applications in
Chapter 5. Following this, the power probabilistic of trials with the worst violated constraint
oracle in the context of classical and quantum SAT is presented in Chapter 6. Lastly, the

16

construction of algorithms using the lex-first oracle for various monotone graph properties and
2-SAT is detailed in Chapter 7. At the beginning of each chapter that presents the various
results is a question that captures the theme of the chapter and states the over-arching question
the chapter hopes to answer.

17

Chapter 2
Constraint Satisfaction Problems

The study of constraint satisfaction problems (CSPs) is central to theoretical computer science.
CSPs can express a wide and varied array of problems spanning graph theory, game theory
and economics, set theory, cryptography, propositional logic, mathematical programming for
optimzation problems and the construction of approximation algorithms, just to name a few. As
mentioned previously, they are a set of constraints defined on a finite set of objects or variables
which can take values from a pre-determined domain. A solution or assignment gives values to
the variables in such a way that every constraint in the system is satisfied. This had lead to the
development of increasingly efficient algorithms that can find a solution for various CSPs. These
algorithms generally take advantage of the structure of the specific CSP they want to tackle and
so, in many cases, the algorithms cannot be generalized to other CSPs. For the hard CSPs i.e.
those presently without efficient algorithms, the attention shifts to analyzing their complexity.
An example of this is their involvement in the study of NP-complete problems. At the core of the
theory of NP-completeness is the design of various reductions which show that some candidate
CSP A is NP-hard by reducing and instance of A to a known NP-complete problem B. In a
sense, this shows some equivalence between different CSPs and highlights a regularity in their
structure. This allows for CSPs to be denoted by a general framework and aids the development
of theories on the behaviour of various problems by identifying their structural attributes in
this framework. An example is Schaefer’s Dichotomy Theorem[Sch78] used to classify Boolean
formulas or the ongoing works in graph theory to classify hereditary graph properties1 and the
like [BT97].

A combination of both these aspects, namely, creating efficient custom-made algorithms for
specific examples and developing more general tools of classification can be seen in the works
covered in this thesis. The linear time algorithm for quantum 2SAT in Chapter 4 or the algorithms
for the hidden versions of classical and quantum satisfiability with the probabilistic trials in
Chapter 6 depict the first of these aspects. The latter can be seen in the transfer theorems of
Chapter 5 and the lex-first algorithm for monotone graph properties in Chapter 7.

The framework used in this thesis to formally denote CSPs both in the hidden input case and

1A hereditary property of a graph is one which holds for all the induced subgraphs of the graph. An induced
subgraph is a subset of vertices of a graph along with all the edges both of whose endpoints lies in this subset.

18

otherwise, follows standard notations for the most part. Any notable deviations are with the
view of fitting better into the mould of the trial and error setting and will be suitably explained.
For a positive integer k, the set of the first k numbers is given by [k] := {1, . . . , k}, and an
alphabet of size k is indexed with JkK := {0, 1, . . . , k − 1}.A constraint satisfaction problem, S,
is specified by its set of parameters and its type both of which are defined for every positive
integer n.

The parameters. The parameters are functions of n for every n ∈ N where N is the set of
natural numbers.

(a) the alphabet size w(n) which enumerates the size of the domain from which the variables can
take values. For instance, any Boolean CSP has w(n) = 2 and the problem of k-colouring a
graph will have w(n) = k;

(b) the assignment length `(n) which will be also be the length of the trials. Typically, the
length of the trials would be n but the case of monotone graph properties presents a
prominent exception to this rule where the length of the assignment is the possible number
of edges in the graph which sets `(n) =

(n
2
)
.

(c) the arity q(n) which bounds the number of variables involved in each constraint. For the
case of kSAT, the arity will be a constant independent of n with q(n) = k;

(d) the number of relations s(n) which enumerates the different relations from which each
constraint of the instance is picked. When S is a 2SAT formula, from Example 1.2,
s(n) = |RS| = 6;

(e) and the set of (admissible) assignments W (n) ⊆ Jw(n)K`(n) which defines the set from which
a suitable trial is picked each time. This allows for more specificity in denoting trials which
may need to satisfy certain additional conditions. This may exclude some of the strings
from the set Jw(n)K`(n). In the example of spanning trees as trials, not every v − 1 sized
subgraph can be a suitable trial. A spanning tree poses the additional requirement that
every vertex is covered by some edge and that there are no cycles in the subgraph.

The parameters, as functions of n, are assumed to be computable in time polynomial in n. For
ease of notation, they will be generally denoted as w, `,W, q and s with the dependence on n
being implicit. The set of admissible assignments is a departure from standard notation but does
play an interesting role in the context of the graph properties framework that will be detailed
below.

The type. For a sequence J = (j1, . . . , jq) of q distinct indices WJ is the projection of W
to the coordinates in J : WJ = {(v1, . . . , vq) ∈ JwKq : ∃(w1, . . . , w`) ∈ W with wji = vi}. WJ is
considered to be independent of the choice of J depending only on the number of indices in J
i.e. for every J consisting of q distinct indices, WJ = Wq := {u ∈ JwKq : uv ∈W for some v ∈
JwK`−q}. This condition holds trivially for most cases, and for other cases (e.g. CSPs related
to graphs), it holds due to the presence of certain symmetry conditions (e.g. graph properties
are invariant for isomorphic graphs). Now, any q-ary relation is a set R such that R ⊆Wq. For

19

b in Wq, b ∈ R is sometimes written as R(b) = T where T denotes true and b /∈ R is written
as R(b) = F and F denotes false. The type of S is a set of q-ary relations R = {R1, . . . , Rs},
where Rk ⊆Wq, for every k ∈ [s]. To put this in context, RS in Example 1.2 gives the type of
2SAT with a slight modification. The two unary relations are extended to binary relations by
modifying (a) 7→ (a ∨ F) and (ā) 7→ (ā ∨ F) and W2 = {00, 01, 10, 11}.

While allowing w, q and s to be functions of s is not standard and may look inconvenient, it
does help to express certain examples within this framework like systems of linear equations over
finite fields (where q(n) and s(n) are non-constant) and hyperplane non-cover (with non constant
alphabet size). It can also lead to problems if there is no constraint posed on such functions. The
first assumption towards this is to ensure that the functions can be computed in time polynomial
in n. Next, the ability to efficiently represent and operate on the alphabet set and relation set
forms the basis of any complexity consideration. Hence, these sets are assumed to be such that
every letter and relation can be encoded by strings over {0, 1} of length polynomial in n and
given such a string, their validity can be decided in time polynomial in n. This translates to
the existence of Turing machines that can, on being given n, or words b ∈ JwKq, v ∈ JwK` and
k ∈ [s], can decide whether v ∈W , b ∈Wq and compute Rk(b) if b ∈Wq in poly(n) time. For a
relation R, comp(R) is the time complexity of deciding the membership of a tuple in R, and for
a set of relations R, comp(R) := maxR∈R comp(R). The dimension of R, denoted as dim(R),
is defined as the length of the longest chain of relations (for inclusion) in R. For instance, in the
case of 2SAT in Example 1.2, taking a union of any two relations in RS results in a relation that
is already in RS resulting in dim(R(S)) = 2. Lastly, to avoid complications, it is also required
that the membership in the set of admissible assignments W can be computed efficiently. All
the CSP examples discussed in this section satisfy these conditions.

Figure 2.1: An instance ϕ of a CSP S

The instances. Let [`](q) denote the set of dis-
tinct q-tuples from [`]. An instance of S is given
by a set of m constraints C = {C1, . . . , Cm} over a
sequence x = (x1, . . . , x`) of variables, where the
constraint Cj is Rkj (xj1 , . . . , xjq) for some kj ∈ [s]
and (j1, . . . , jq) ∈ [`](q) as illustrated in Figure 2.1.
An assignment a = (a1, . . . , a`) ∈ W denotes
that the value assigned to variable xi is given
by ai. The assignment a satisfies a constraint
Cj = Rkj (xj1 , . . . , xjq) if Rkj (aj1 , . . . , ajq) = T. An assignment satisfies C if it satisfies all
its constraints. Note that the terms clause and constraint will be interchangeably used through-
out this thesis.

The size of an instance is n+m(log s+q log `)+` logw which includes the length of the description
of C and the length of the assignments. A solution for C is any satisfying assignment if one exists
or no otherwise. For all applications considered, the size of the instance will be poly(n). Note
that the size of an instance does not count the descriptions of the relations and the admissible

20

assignments. This is in keeping with the latter information being the meta data of a CSP, which
will be known to the algorithm.

Following this rigorous setup, recurring examples of CSPs that are used throughout the extent
of this thesis are presented. Boolean Satisfiability formulas and Monotone Graph Properties are
of particular importance.

2.0.1 Boolean Satisfiability
The Boolean satisfiability problem, generally denoted as SAT, asks if there exists an assignment
to the variables of a given Boolean formula such that the formula evaluates to T (i.e., true).
Formally, it is a constraint satisfaction problem on n variables x = {x1, . . . , xn} with m

constraints or clauses and each clause is a disjunction of literals (variables xj or their negations
xj). Given a formula ϕ, the goal is to find an assignment a = a1 . . . an ∈ {0, 1}n where ∀i, the
literal xi takes the value T (resp. F, i.e. false) if ai is 1 (resp. 0) such that each clause of
ϕ evaluates to T. Whenever a literal ` = T, its negation ¯̀ = F and vice-versa. Note that, in
accordance with the standard mapping of Boolean values to truth values, 0 7→ F and 1 7→ T. If
each clause involves at most k literals, then this problem is classified as kSAT. The parameters
for kSAT are w = 2,W = {0, 1}n, ` = n and q = k. It is known that while 2SAT can be solved
in linear time [EIS76, Kro67, APT79], kSAT for k ≥ 3 is NP-complete [Coo71, Kar72, Lev73].

Given a kSAT instance, a useful notion is that of a clause tag which is defined as the un-
ordered set of literals present in the clause. Specifically, the clause tag for Cj = (xa ∨
xb ∨ xc) is denoted by T (Cj) = {xa, xb, xc}. So, all possible clause tags for 2SAT would be
{{xa, xb}, {xa, xb}, {xa, xb}, {xa, xb}, {xa}, {xa} | a, b ∈ [n] and a 6= b} where the last two tags
will be used for clauses with only one literals. From this definition, it is clear that 2SAT has
O(n2) clause tags and similarly, kSAT would have

(2n
k

)
= O(nk) clause tags. A SAT formula

φ is equivalent to a SAT formula φ′ if for all assignments a ∈ {0, 1}n, a satisfies φ if and only
if it satisfies φ′. For any formula φ, let sat(φ) := {a ∈ {0, 1}n | φ(a) = 1} implying that for
equivalent formulas φ and φ′, sat(φ) = sat(φ′). A partial assignment p ∈ {0, 1}i to x1 . . . xi is
considered to be good if there exists an assignment p′ ∈ {0, 1}(n−i) to the variables xi+1 . . . xn

such that the assignment pp′ satisfies Φ. Correspondingly, call p bad if it cannot be extended to
a satisfying assignment of Φ.

Below is an example of a 1SAT instance which is just a disjunction of literals and is one of the
simplest Boolean formulas.
Example 2.1 (Boolean SAT (continued)). For 1SAT, w = 2, q = 1, and R1SAT = {Id,Neg},
where Id = {1} is the identity relation, and Neg = {0} is its complement. Thus a constraint is a
literal xi or x̄i, and an instance is just a collection of literals. In case of 2SAT, the parameters
are w = 2, q = 2 and |R2SAT| = 6 from Example 1.2. In the case of 3SAT the parameters are
w = 2, q = 3 and |R3SAT| = 14 as it contains all the OR functions on at most 3 variables

R3SAT ={(a ∨ b ∨ c), (a ∨ b ∨ c̄), (a ∨ b̄ ∨ c̄), (ā ∨ b ∨ c),

21

(ā ∨ b ∨ c̄), (ā ∨ b̄ ∨ c), (ā ∨ b̄ ∨ c̄)} ∪ R2SAT.

A problem related to finding the satisfying assignment to a Boolean formula is to find an
assignment which maximises the number of clauses satisfied when the underlying formula is
unsatisfiable.
Definition 2.1 (Max-SAT (MAXSAT)). Given a SAT formula ϕ with m clauses on n variables
x1, . . . , xn, find the maximum number clauses that are made true by assigning boolean values to
the variables. If the maximum number of clauses is m, then ϕ has a satisfying assignment.

It is known that MAX2SAT (where each clause has at most 2 literals) is NP-complete due to a
reduction from 3SAT [GJS76]. The following version of MAX2SAT is a decision problem.
Definition 2.2 (MAX2SAT decision problem). Given an integer k and a 2-CNF Boolean formula
ϕ with m clauses on n variables x1, . . . , xn, distinguish between the two cases

• (yes instance) ∃ Boolean assignment on the n variables such that unsat ≤ k;
• (no instance) ∀ Boolean assignments on the n variables unsat ≥ k + 1;

where unsat is the number of unsatisfied clauses.

2.0.2 Graphs and Graph Properties
Graphs are fundamental mathematical objects used in representing pairwise relations (as arcs
or edges) between objects (as nodes or vertices) as shown in Figure 2.4. Their presence is
ubiquitous in modern life whether it is through the mundane use of the maps that help our
navigation on a daily basis or through their ability to model complex molecules making them an
efficient visualisation tool in biochemistry and condensed matter physics. The study of these
objects through graph theory has a rich history in mathematics and computer science being
studied using combinatorial, algebraic, geometric and algorithmic approaches each of which now
supports its own field of research.

In this thesis, graphs show up in two different contexts. The first is in the efficient representing
a Q2SAT instance as input to the linear time algorithm in Chapter 4 which uses the capacity of
the graph to effectively depict the relational structure between objects. This can be done either
using directed or undirected graphs as defined below.
Definition 2.3 (Graph). A graph is given by an ordered pair of sets G = (V,E) where V is
the set of vertices or objects and E is the set of edges in the graph. An undirected edge is an
unordered pair of vertices e = {u, v} such that the endpoints of the edge are the vertices u and
v. When e is a directed edge from u to v, e is given by the ordered pair (u, v). Now, G is an
undirected (resp. directed) graph if E is a set of undirected (resp. directed) edges.

To use a graph in algorithms, it is necessary to consider the data structures that will be used to
store the graph data. While the vertices can be represented as an array or a list, the edges are
commonly given as an adjacency list or adjacency matrix as defined below. Two vertices u, v are

22

said to be adjacent or neighbours if there is an edge (u, v) ∈ E. The list structure is defined
here as it directly relates to the applications considered.
Definition 2.4 (Adjacency List). The adjacency list of a graph G = (V,E) is a set of |V | linked
lists where each list describes the set of neighbours of a vertex in the graph.

Another necessary aspect is the efficient manipulation of the graph structure in any algorithm
that uses a graph as the underlying input. The one method relevant to the work covered here is
the breadth first traversal of a graph. Starting from an arbitrary vertex , say v, this method
traverses the graph by first exploring all the neighbours of v before exploring their neighbours
in turn and so on till every vertex has been visited. Essentially, this traversal, starting from v

covers the neighbours of v, followed by all vertices connected to v by a path of length 2, moving
next to vertices at a distance of 3 edges from v and so on justifying the breadth first nature. For
completeness, a pseudocode of this procedure is given in Algorithm 2.1 and it is possible to find
numerous implementations in the programming language of one’s choice. The complexity of the
procedure is O(|V |+ |E|) as every edge in the graph may be explored in the worst case [CLRS09].
Note that, when the graph is given as an adjacency list, this process executes in time which is
linear in the size of the input graph .

Algorithm 2.1: Breadth first Traversal of a graph G = (V,E)

1 Let all vertices in G be unmarked.
2 Pick a starting vertex u and mark u.
3 Add u to a list L and create a tree T whose root is set to u.
4 while L 6= ∅ do
5 Pick the vertex v from the top of the list L.
6 Visit v. . Add further processing here depending on what the traversal is used for.
7 for each unmarked neighbour w of v do
8 Mark w and add it to the end of list L
9 Add w and the edge {v, w} to the tree T .

The second context in which graphs appear in this work is through the monotone graph framework
for the trial and error setting in Chapters 5 and 7. A graph property P is a family of graphs that
is closed under isomorphism. In fact a graph property focuses only on the underlying structure
of the graph largely ignoring the issue of how the graph itself is represented. Some terminology
associated to various properties of graphs is formally defined below.
Definition 2.5 (Bipartite Graph). A graph G = (V,E) is a bipartite graph if the vertex set is
partitioned as V = A ∪B with A ∩B = ∅ and E = {(u, v) | u ∈ A, v ∈ B or u ∈ B, v ∈ A}. In
other words, there is no edge with both endpoints in A or both endpoints in B.
Definition 2.6 (Paths and Cycles). A path in a graph G = (V,E) is a sequence of k vertices
(v1, v2, . . . , vk) where there is an edge between successive vertices in the sequence, i.e., for

23

1 ≤ i < k, (vi, vi+1) ∈ E. A cycle is a closed path where v1 = vk.
Definition 2.7 (Trees and Spanning Trees). A tree T = (V,E) is an undirected graph that does
not contain any cycles. A spanning tree T of a graph G = (V,E) is an undirected subgraph that
is a tree which is includes every vertex of G and uses the minimum possible number of edges.
Definition 2.8 (Matching). A matching of a graph G = (V,E) is a subset of the edges without
any common vertices in the endpoints of the edges. A maximum matching refers to a matching
that involves each vertex of the graph in exactly one of the edges in the matching.
Definition 2.9 (Hamiltonian Paths and Cycles). A Hamiltonian Path in an n vertex graph
G = (V,E) is an n-length path in an undirected or directed graph such that every vertex in the
graph visited exactly once. A Hamiltonian cycle in G is a closed Hamiltonian path which starts
and ends at the same vertex and the remaining n− 1 vertices are visited exactly once.
Definition 2.10 (k-Clique). A clique is a subset of vertices V ′ in a graph G = (V,E) such that
every vertex in V ′ is adjacent to all other vertices in V ′. If |V ′| = k, then this subset of vertices
forms a k-clique. The problem of determining if a given graph has a k-clique is denoted as the
kCLQ problem.
Definition 2.11 (k-Colouring). Given a graph G = (V,E) and a set of labels JkK, G has a
k-colouring if it is possible to assign labels αv ∈ JkK for every vertex v ∈ V such that for every
e = {u, v} ∈ E, αu 6= αv.

The problem of determining if a given graph has a k-colouring is denoted as kCOL. It is known
that kCOL is NP-complete for k ≥ 3 with a reduction from 3SAT [Kar72] and 2COL is in P as it
is equivalent to determining if a graph is bipartite which can be determined with a breadth first
traversal.

A monotonic graph property is defined below.
Definition 2.12. A monotone graph property of an n-vertex graph is a graph property P that is
preserved under the addition of edges (also called monotone increasing property). Correspondingly,
monotone decreasing properties are those which are preserved under the deletion of edges.

Some of the monotone graph properties that will be considered in detail are defined below along
with their notations.

Connectivity A graph G is said to be connected if there exists a path from a vertex to every
other vertex in the graph. Also, G is connected if and only if G has a spanning tree. It is
possible to find a spanning tree in a graph in linear time using breadth first search. Hence,
it is also possible to determine if a graph is connected in linear time provided the vertex
and edge set are known. For a directed graph, the goal is to find a spanning tree where
every edge is directed towards from a root vertex. The problem is denoted as ST and its
directed counterpart is DST.

Bipartite perfect matching A perfect matching of a bipartite graph G = (V,E) with V =
A ∪B is maximum matching for G where each vertex from A is matched to exactly one
vertex in B. Clearly, in this case, |A| = |B|. It is possible to find a maximum matching
for a bipartite graph using the Ford-Fulkerson algorithm in O(V E) time which is still

24

polynomial in the size of the input [FF56]. The problem is denoted as BPM.
Cycle covers A disjoint cycle cover of a graph G is a set of cycles which are subgraphs of G,

contains all the vertices of G and each cycle in the cover has no vertex in common with
any other cycle in the cover. It is possible to find a disjoint cycle cover in polynomial
time by reducing it to finding a bipartite perfect matching in a larger graph [Tut54]. In
a directed graph, the cycle is such that the edges are all oriented in the same direction
giving a cycle that has either a clockwise or anticlockwise orientation. The problem is
denoted as UCC and its directed counterpart is DCC.

s− t connectivity A graph G = (V,E) with two marked vertices s, t is s− t-connected if there
exists a path between vertices s and t. Performing a breadth first search from s till the
marked vertex t is discovered will provide a suitable path in linear time [Imm12]. In a
directed graph, one aims to find a directed path where each edge is oriented away from s

and towards t in a natural manner. The problem is denoted as UPATH and the directed
version is DPATH.

To fit the setting of a CSP, a monotone graph property on an n-vertex graph can be expressed as
a monotone Boolean function P on

(n
2
)
variables where each variable is an edge in the n-vertex

graph indexed by {(i, j), 1 ≤ i < j ≤ n}. Now, given a graph G = (V,E), the constraint
satisfaction problem associated with P, SP , on this instance consists of m unary clauses of the
form (e) for each edge e /∈ E i.e. m =

(n
2
)
− |E|. Note that it differs from a standard 1SAT

instance in that the set of possible assignments is not {0, 1}(
n
2) but the set WP = {T | T is

a graph with minimal number of edges satisfying P}. The goal is to decide, given a graph
G = (V,E), whether there exists a T ∈WP such that T is a subgraph of G. Formally, the CSP
SP associated with P has parameters w = 2, q = 1, ` =

(n
2
)
, WP consisting of the minimal (for

inclusion) graphs2, satisfying P , and R = {Neg}, where Neg is the negation function. Notice that
the hidden instance can be constructed as a CSP irrespective of the property under consideration.
In fact, specific part of this model related to the graph property is fully left to the specification
of the set WP of admissible assignments.

Following the jargon of Boolean functions, the graphs in WP function as witnesses that certify
the property P on some n-vertex graph just as a Boolean string that certifies the value of a
Boolean function in the decision tree model. Consider the case when P refers to the connectivity
of a graph. Then, T is appropriately a spanning tree and WP is the set of all possible spanning
trees in an n-vertex graph. Clearly, if the input graph G has more than one spanning tree,
like the complete graph3, more than one certificate exists to certify its connectivity. All of the
examples considered above have certificates in the form of spanning trees, perfect matchings,
cycle covers or shortest paths between two marked vertices. These are attributes of graphs
which are well studied in their own right irrespective of this CSP framework [BT97]. However,
well-studied or not, the notion of a certificate for any monotone increasing property still holds

2The graphs are given as the characteristic vector of the set of edges present in it
3The complete graph on n-vertices has nn−2 different spanning trees each of which is also present in WP .

25

as this condition ensures that either G is the only certificate or some subgraph of G satisfies the
property and hence becomes the certificate.

This framework naturally extends to directed graphs by having a variable for each directed edge.
This only increases the assignment length to 2

(n
2
)
while all other parameters remain unchanged.

Similarly, monotone decreasing properties (preserved under deletion of edges) can be treated by
changing the clauses to reflect the edges present in G instead of those absent in it and suitably
modifying the idea of certificates.

Other examples of constraint satisfaction problems considered in this thesis are defined, for the
sake of continuity, as and when required.

2.1 The Trial and Error Model

Figure 2.2: The trial and error method

Figure 2.2 captures the essence of the trial and error approach to problem solving. Clearly, this
method is useful only when input information is missing as otherwise, any bespoke method to
solve the problem at hand can be used. However, there is some way to interact with the input
and check if an assignment works or not. This is considered as equivalent to having some oracle
access to the problem. With such limited access, the only possibility is to propose trials and
receive some information about an unsuccessful trial. Since blindly trying trials is not going to be
helpful, one would like to harness all the information received from the violations to adaptively
propose the next trial.

From the computational perspective, this approach was applied by Bei, Chen and Zhang [BCZ13]
to the scenario of solving constraint satisfaction problems in the “unknown input” setting.
Specifically, the CSPs with hidden inputs (H-CSPs) are accessed by an oracle to which one
proposes candidate solutions for the CSP i.e. trials. If the trial is not satisfying, then the
oracle reveals some information about the cause of failure i.e. errors. In this case, it would
be the index of some violated constraint. For example, if the CSP instance is a SAT formula,
on proposing a satisfying assignment to the formula, the oracle would return yes. After an
unsuccessful trial, the oracle reveals that “clause 5 is violated” and nothing more. If there are

26

several violated clauses, to analyze worst case complexity, it is assumed that the oracle picks
one clause adversarially.

Figure 2.3: The trial and error method for H-CSPs with oracle and problem types

However, as seen before, a CSP’s constraint (or clause) is made up of three key parts: a constraint
index, the relation the constraint refers to and the set of variables it acts on. For our purposes,
the violation information can be some combination of these parts as shown in Figure 2.3 leading
to a larger variety of oracles dependent on the violation information they reveal. As mentioned
in Chapter 1, to effectively use the information revealed by the oracle to create the next trial, it
is necessary that, at the very least, the constraint index be revealed by the oracles.
Definition 2.13 (U -revealing oracles). Let C refer to the constraint set, V the variables set and
R the set of relations of a hidden instance of some CSP S. Then, a U-revealing oracle, denoted
OU , for U ⊆ {C,R,V} on encountering a violated clause Cj = Rkj (xj1 , . . . xjq) of parity q reveals
the following information:

• the constraint index j if C ∈ U
• the relation Rkj if R ∈ U
• the tuple of variables (xj1 , . . . xjq) if V ∈ U

When U = {C,R,V}, the violated clause is totally revealed i.e. this oracle is T -revealing.

Analogously, for every CSP S, and for every U ⊆ {C,R,V}, we define the hidden constraint
satisfaction problem (H–CSP) with the U-revealing oracle, H–SU .
Definition 2.14 (Hidden CSPs with U-revealing oracles). Consider a CSP S defined on n

variables from the set V, with a relation set R, and an instance of S with constraints C =
{C1, . . . , Cm}. If the input instance of S is unknown and can be accessible only by a revealing

27

oracle OU , the corresponding problem is denoted H–SU . In this setting, the parameters and type
of S namely, R, n,m and V are considered to be part of the problem input (i.e. known) and it is
only the constraints C1, . . . , Cm that are hidden by the U-revealing oracle.

Now, consider the behaviour of the revealing oracles in the context of a 1SAT formula.
Example 2.2 (Hidden-SAT). Let us suppose that we present an assignment a ∈ {0, 1}` for an
instance of the hidden version H–1SATU of 1SAT to the U-revealing oracle. If U = {C,V} and
the oracle reveals j and i respectively for the violated constraint and the variable in it, then we
learn Cj = (xi) if ai = 0, and Cj = (x̄i) otherwise. If U = {C,R} and say the oracle reveals j
and Id then we learn that Cj is a positive literal. If U = {C} and the oracle reveals j then we
only learn that Cj is either a positive literal corresponding to one of the indices where a is 0, or
a negative literal corresponding to an index where a is 1.

An algorithm solves the problem H–SU if for all n,m, and for every instance C for S, specified
by any U-revealing oracle for C, it outputs a satisfying assignment if there exists any, and no
otherwise. The complexity of an algorithm for H–SU is the number of steps in the worst case
over all inputs and all U-revealing oracles, where a query to the oracle is counted as one step.
The trial and error model is characterized by the immediacy of finding a solution as opposed
to developing a full fledged notion of why a solution works compounded by incomplete input
information for the problem one wants to solve. So, any algorithm in this setting aims to
effectively use the errors to minimize the number of trials needed to find a solution while also
keeping in mind the cost of proposing a trial.

Sometimes, setting aside the cost of proposing each new trial, one would prefer to analyze just
the number of trials needed to find a solution (i.e., query complexity). This can be useful in
different ways. While in the complexity setting we attribute the cost of a trial to be constant,
in many scenarios, like drug testing or adopting new management strategies and observing
their effects, the trials themselves can be very costly. For such scenarios, the main goal would
be to optimize the query complexity irrespective of the cost of making generating a new trial.
Beyond these, query complexity plays a prominent role in cases where the original problem is
already hard, say NP-complete like SAT. In this case, it is possible to allow for the presence
of a computational oracle C that can solve this hard problem in the un-hidden setting. The
complexity of the computational oracle is the bottleneck for the cost of proposing the trial and
the algorithm is then constructed to focus on minimising the query complexity with respect to
the revealing oracle. When the question at hand is only the extra difficulty introduced to the
problem due to a lack of input information, this is a reasonable assumption to use. For instance,
there is an algorithm [BCZ13] with query complexity polynomial in the number of variable in
a SAT formula to solve H–SAT. However, the algorithm requires access to a computational
SAT oracle implying that each trial reveals enough information to solve the hidden instance
but decoding this information is costly and requires access to a SAT oracle. To provide a clear
picture on how an algorithm in the trial and error setting proceeds, the algorithm for H–SAT as
described in [BCZ13] is given below.

28

Algorithm 2.2: Trial and error algorithm for H–SAT{C}

1 Input: A H–SAT formula φ on n variables with m clauses.
2 Oracles: A computational oracle SAT, a verification oracle O{C}.
3 Initialize Ĉ1 = Ĉ2 = . . . = Ĉm = {x1, x1, . . . xn, xn}.
4 repeat
5 Let Φ =

∧m
j=1(∨`∈Ĉj`), propose φ to the SAT oracle and get back a.

6 if a = unsat then output unsat.
7 else
8 Propose a to O{C} and get back j. . As a is a satisfying assignment for Φ.
9 if j = yes then output a.

10 else
11 j is a violated constraint index
12 Update Ĉj ← Ĉj ∩ {xi|ai = 0} ∪ {xi|ai = 1}
13 . the literals in Ĉj are those which are falsified by a.
14 until

⋃m
j=1 Ĉj = ∅

15 output unsat.

The intuition behind Algorithm 2.2 is a standard candidate elimination approach used in learning
theories [Mit82]. The formula Φ represents the current knowledge consistent with the trials
proposed and violations received so far. The current trial a is generated by using the SAT
oracle to get a satisfying assignment for Φ if one exists (Line 5). The candidates, for each
clause Cj , refers to the 2n possible literals initially present in Ĉj and the elimination results in
progressively removing all literals that cannot be present in Cj . The candidates to be eliminated
are determined by the current trial a which generates a violation j from O{C}. Specifically,
the literals in Cj are set to F by the current assignment and Ĉj is updated to reflect this fact
(Line 12). A key fact used to show the correctness of the algorithm is that if φ is satisfiable,
then so is Φ and conversely, if Φ is unsatisfiable then so is φ. The complexity of the algorithm is
shown to be O(nm) by showing that 2mn repetitions are sufficient to either find a satisfying
assignment or make some Ĉj empty so that Φ is unsatisfiable. This results in O(mn) calls to the
SAT oracle and O(mn) trials proposed to the {C}-revealing oracle. At this point, it is imperative
to point out the difference between learning the underlying instance and finding a solution for it.
The above algorithm only determines if the hidden instance is unsatisfiable or finds a satisfying
assignment for it. The goal is not to learn what the hidden formula φ is. In fact, [BCZ13] show
the existence of instances4 that cannot be learned even when allowed an exponential number of
trials. The lex-first algorithms presented in Chapter 7 bear some resemblance to this algorithm
in that they also use (a) candidate elimination and (b) clause lists Ĉjs and Φ to represent the

4There are unsatisfiable formulas where the arity of each clause is O(n)

29

current knowledge about the clauses of the hidden instance.

The other oracle types considered in this work besides the U-revealing oracles include the
max-violation oracle Omax and the lex-first oracle Ofirst.
Definition 2.15 (Max-violation oracle Omax). Let H–S be a H–CSP whose input instance
is accessed by the max-violation oracle Omax and let a ∈W be an admissible assignment for
S. Consider a function viol : (C,a) → [0, 1] that calculates the violation of a constraint C on
an assignment. When a is proposed to Omax, it returns yes if the instance is satisfied by a
or returns an index j = arg maxj viol(Cj ,a) i.e. Cj has the maximum violation amongst all
the clauses with respect to the assignment a. If more than one clause has the same maximum
violation, the tie is broken adversarially. The corresponding problem is denoted as H–Smax.

Note that the violation function is entirely dependent on the problem S and its corresponding
assignments. The max-violation oracle was first considered in [BCZ15] as the authors tried
to use the trial and error setting to determine the feasibility of a linear program when the
constraints are unknown. In this case, a natural violation function emerged in the form of the
Euclidean distance a proposed solution has to the half-planes represented by the constraints.
Then, the maximum violation is given by the maximum distance. Clearly, the continuous nature
of linear programming helps in this case as opposed to the binary valued SAT. Here, the violation
function would map only to 0 or 1 as a clause is either fully violated (violation 1) or fully satisfied
(violation 0) by an assignment. As every violated constraint is then treated equally to break ties,
the H–SAT problem with Omax is identical to the problem with OC providing no advantage.
In order to change this, in Chapter 6, the set of admissible assignments is changed to accept
a probability distribution over assignments so that the violation function could represent the
probability with which a clause can be violated.
Example 2.3 (H–1SAT and the Omax oracle). Consider the H–1SAT formula ϕ = x1∧x2∧x3∧
x4 ∧ x3. Let the first trial be the probabilistic assignment a = (a1, a2, a3, a4) = (0.3, 0.7, 0.9, 0.3)
where ∀i, Pr[xi = 1] = ai. The violations for a clause Cj is given by 1− Pr[Cj(a) = 1] resulting
in the clause wise violations (0.7, 0.3, 0.1, 0.3, 0.1). Clearly, C1 has the maximum violation in this
case and Omax would return j = 1. Suppose the assignment a′ = (0.8, 0.7, 0.9, 0.3) is proposed,
the clause wise violations would be (0.2, 0.3, 0.1, 0.3, 0.1). As the maximum violation is 0.3, the
oracle will adversarially pick either C2 or C4 to send as a violation.

Finally, the last oracle type, the lex-first oracle is defined below.
Definition 2.16 (Lex-first oracle Ofirst). Let H–S be a H–CSP whose input instance is
accessed by the lex-first oracle Ofirst and let a ∈W be an admissible assignment for S. If a
satisfies the hidden instance, then the oracle returns yes. Otherwise, Ofirst returns the index
of the lexicographically first violated clause, i.e., min{j|Cj(a) is a violation}. The corresponding
problem is denoted as H–Sfirst.
Example 2.4 (H–1SAT and the Ofirst oracle). Consider again the H–1SAT formula ϕ =
x1 ∧ x2 ∧ x3 ∧ x4 ∧ x3. Let the trial be a = 1011. Clearly, C2 and C4 are violated by this
assignment but the lex-first oracle, in keeping with its definition, returns j = 2 as the violation.

30

For a CSP S, any algorithm for the H–Smax and H–Sfirst is in P if it can, in polynomial
time find a satisfying assignment for the hidden instance or output unsat otherwise. A natural
way to do this is to partially determine the clauses in the hidden instance consistent with the
series of violations observed.

2.1.1 Monotone Graph Properties Framework

Figure 2.4: Checking if a hidden graph is connected using an OU oracle where the violated
clause picked by the oracle in the trials is Cj and Cj′ respectively.

Figure 2.4 depicts how an algorithm in the trial and error model interacts with the oracles
to determine if the hidden graph is connected. The spanning trees in a 5-vertex graph form
the set of admissible assignments WP for this instance. Each trial T ∈WP is represented as a
set of edges that make up the certificate. If T is a valid certificate for the hidden graph, the
oracle returns yes. Otherwise, the error returned by the oracle when T is not a certificate is
the information of a clause (ē) such that e ∈ T but e /∈ E. In the figure, we have Cj = (ē1,2)
and Cj′ = (ē4,5), where eu,v is the undirected edge {u, v}, but this information is hidden by the
oracle. For an OU oracle,

• If U = {C,V}, then the information returned for the two trials respectively would be
(j, e1,2) and (j′, e4,5). By revealing a missing edge, it is possible to effectively learn all the
edges absent from the graph.
• If U = {C}, then the information returned is only j and j′ respectively which does not

provide much insight into which clause refers to which edge of the graph.
• If U = first, then information returned is still only j and j′ respectively except the
additional conclusion is that the edges in the first spanning tree do not intersect the
clauses C1, . . . , Cj−1 and the second spanning tree’s edges does not intersect the clauses
C1, . . . , Cj′−1.

This covers all the requisite notations involving classical CSPs and the trial and error model.
The next chapter introduces the basics of quantum computing.

31

Chapter 3
Quantum Satisfiability

Chapter 1 introduced classical constraint satisfaction problems and a central problem in classical
complexity theory – the Boolean SAT problem. Continuing on this theme, one would hope that
a quantum generalization of SAT would play a central role in Quantum Complexity Theory.
This is definitively the case as quantum SAT (QSAT) is known to be a restriction of the Local
Hamiltonian Problem which is itself a principal object in condensed matter physics. Informally,
a k-local Hamiltonian on n qubits can be viewed as a set of constraints each of which affects at
most k qubits thereby being local constraints. Then, given an instance of a k-local Hamiltonian
and two thresholds a, b such that b− a ≥ 1

poly(n) , the goal is to determine if the expected number
of violated constraints is below a or at least b. In fact, this is more in keeping with the spirit of
the MAXkSAT problem.

Physically, the local constraints model the local interactions between quantum spins and the
expected number of violated constraints is intimately linked to the low temperature physics of the
system, such as quantum phase transitions and collective quantum phenomena [Sac07, VLRK03].
This expected number of violated constraints is commonly referred to as the ground energy
and the states which achieve this expectation form the set of ground states of the given k-local
Hamiltonian. The intensive research in quantum complexity theory and quantum information
theory over the last two decades or so has also revealed connections between the complexity of
finding the ground state and its entanglement structure. While the notion of entanglement is
formally defined later, it can be thought of as correlations exhibited by two or more qubits that are
governed by quantum mechanics and cannot be reproduced by classical probability distributions.
Entanglement is viewed as a key quantum resource in quantum communication and cryptographic
protocols [BS16, LS09], in defining quantum strategies for nonlocal games [CHTW04], and in
harnessing speedups using quantum algorithms [Mon16]. In recent years, the efforts to better
understand entanglement structure has revealed intricate behaviours such as area laws [ECP10]
and topological order [Kit03]. The former shows that a certain measure of entanglement grows
proportional to the area of a region of interest defying the expectation that it would scale like
the volume of the region. The latter has implications in the construction of toric codes – a fault
tolerant quantum error correction code.

32

3.1 Basics of Quantum Computation

Before formally defining the QSAT problem, it is useful to delve into some of the objects and
basic concepts commonly used in the quantum realm and relevant to the results discussed here1

The fundamental unit of computation in a classical computer is a bit which takes Boolean values.
The analogous fundamental unit in the quantum world is a two dimensional quantum system
called a qubit. The values of interest are the state of this qubit which can take a value comprised
by two basic states denoted as the zero and one states. Physically, this could correspond to the
up-spin or down-spin of a quantum particle or some other physical parameter. What makes the
qubit state different from the classical value possessed by any bit is that the two states only
form a basis of the possible states a qubit could be it. The whole range of possible states for
a qubit includes any arbitrary linear combination (with complex coefficients) of the two basis
states. Formally, using Dirac’s bra-ket notation, a single qubit state is described as follows
Definition 3.1 (Single Qubit State). A qubit has a state |α〉 = α0|0〉+ α1|1〉 depicted as a unit
vector in the complex Hilbert space C2 where {|0〉, |1〉} is the standard computational basis with

|0〉 =

 1

0

 and |1〉 =

 0

1

 and |α〉 =

 α0

α1

 .

For i = 0, 1 the coefficients αi are termed the amplitudes of the state with respect to this
chosen basis. Physically, this is interpreted as: the probability for the qubit to be in state |i〉 is
|αi|2, where | · | gives the absolute value. Now, since the amplitudes are linked to a probability
distribution, it follows that |α0|2 + |α1|2 = 1 thereby making the requirement for a unit vector
clear. As the qubit lives in a Hilbert space, there is an inner product between states that has
to be defined. To enable that, the dual for a state |α〉 = α0|0〉+ α1|1〉 is given by its adjoint
〈α| := (|α〉)† = α∗0〈0|+ α∗1〈1| = [α∗0 α∗1] where the ∗ denotes the complex conjugate. The inner
product between any two states |α〉 and |β〉 is just the dot product of |α〉 with the dual of |β〉.
Definition 3.2 (Inner Product). The inner product of two states |α〉 = α0|0〉 + α1|1〉 and
|β〉 = β0|0〉+ β1|1〉 is given by 〈β|α〉 = 〈α|β〉 = 〈β| · |α〉 = β∗0α0 + β∗1α1.

The inner product induces the norm ‖|α〉‖2 = 〈α|α〉 which is clearly 1 for each state. Every
single-qubit state |α〉 has a corresponding orthogonal state |α⊥〉 with which it has inner product
0 and it has a succinct expression |α⊥〉 := α1|0〉 − α0|1〉. Adding a global phase eiθ (θ ∈ R) to
|α〉 leaves it computationally invariant. Hence, all notations will be considered equivalent up to
a global phase. The following example illustrates the fact that the amplitudes of a state depend
on the chosen basis.
Example 3.1 (Basis dependency of amplitudes). Consider the state |α〉 = α0|0〉+ α1|1〉 given
in the standard computational basis and consider a different basis {|+〉, |−〉} where |+〉 = |0〉+|1〉√

2

1For more information, please refer to any of the introductory textbooks on Quantum Information and Quantum
Computing [KSV02, NC00].

33

and |−〉 = |0〉−|1〉√
2 . Then, the state can also be written as |α〉 = α′0|+〉+ α′1|−〉 since {|+〉, |−〉} is

also a 2-dimensional orthonormal basis. Then,

|α〉 = α′0|+〉 + α′1|−〉 = α′0

(|0〉+ |1〉√
2

)
+ α′1

(|0〉 − |1〉√
2

)
=
(
α′0 + α′1√

2

)
|0〉+

(
α′0 − α′1√

2

)
|1〉.

⇒ α′0 + α′1√
2

= α0 and α′0 − α′1√
2

= α1

⇒ α′0 = α0 + α1√
2

and α′1 = α0 − α1√
2

.

Definition 3.3 (Multi-qubit states). An n-qubit state |φ〉 is a unit vector in the Hilbert space
H = H1 ⊗H2 ⊗ · · · ⊗ Hn, where Hi = C2 is the space of the ith qubit.

Denoting that the single qubit state |α〉 lives in Hi is explicitly done as |α〉i and correspondingly
|ψ〉ij signifies that the 2-qubit state |ψ〉 lives in Hi ⊗Hj . The standard computational basis be-
comes {|0〉, |1〉}⊗n = {|i〉 | i ∈ {0, 1}n}. Then it is possible to represent |φ〉 as |φ〉 =

∑
i∈{0,1}n αi|i〉

where ∀i, αi ∈ C and
∑
i∈{0,1}n |αi|2 = 1 in keeping with the probabilities. Viewing |φ〉 as a

complex, unit vector of dimension 2n, it is clear that the inner product and norm extend to
the n-qubit setting too. Given another n-qubit state |ψ〉 =

∑
i∈{0,1}n βi|i〉, the inner product is

given by 〈φ|ψ〉 =
∑
i∈{0,1}n α

∗
i βi.

The qubit states discussed so far are called pure states. The simplest kind of multi-qubit pure
states to think of would be ones which can be represented as a tensor product of their individual
components. For example, a 2-qubit state |ψ〉ij = |ψ1〉i⊗|ψ2〉j is the tensor product of the single
qubit states |ψ1〉 on qubit i and |ψ2〉j on qubit j. These kinds of states are called product states.
Definition 3.4 (Product State). An n-qubit state |φ〉 is called a product state if it can be
expressed as a tensor product of its individual components as

|φ〉 = |ψ1〉1 ⊗ |ψ2〉2 ⊗ . . .⊗ |ψn〉n where ∀i ∈ [n], |ψi〉 ∈ C2

By the principle of superposition, it is true that any linear combination of pure states can be
normalized to represent a pure state. Normalization just refers to the operation of writing out
the resulting state in some basis and having all the probabilities summing to 1. However, not all
these linear combinations remain product in nature. Such states i.e. non-product pure states
are what are known as entangled states. Physically, this implies that the state of each particle in
the system cannot be described independently of the other particles but can only be expressed
as a whole. Moreover, this holds even if the particles are spatially separated.
Example 3.2 (Entangled state). The 2-qubit state |Ψ−〉 = 1√

2 |0〉 ⊗ |1〉 −
1√
2 |1〉 ⊗ |0〉 is an

entangled state as it cannot be written as |ψ1〉 ⊗ |ψ2〉 for any choice of single qubit states
|ψ1〉, |ψ2〉.

Given an entangled state that is known to be bipartite i.e. exists in the space HA ⊗HB, the
Schmidt decomposition gives a useful way to represent this state as a sum of terms each of which
is orthonormal to other terms. In fact, it helps to characterize the entanglement structure for

34

such bipartite systems.
Theorem 3.1 (Schmidt Decomposition). Consider the state of a bipartite system |Ψ〉AB ∈ HA⊗
HB, where the dim(HA) = n and dim(HB) = m. There exist orthonormal basis {|α1〉, . . . , |αn〉}
of HA and {|β1〉 . . . , |βm〉} of HB such that |Ψ〉 can be written as

|Ψ〉 =
d=min{m,n}∑

k=1
ck|αk〉 ⊗ |βk〉.

Moreover, the Schmidt coefficients, ck, can be chosen to be real, non-negative with c1 ≥ . . . ≥
cd ≥ 0 and uniquely determine the state.

The number of Schmidt coefficients, d, is called the Schmidt rank of the state. From this, one
can conclude that a pure bipartite state is entangled if and only if the Schmidt rank of the
state is > 1. To find the Schmidt decomposition of a state, rewrite the state vector as a matrix
and find the singular value decomposition of this matrix. The singular values give the Schmidt
coefficients and the singular vectors provide the Schmidt basis vectors. Going beyond bipartite
systems, multi-partite systems could exhibit varying kinds of entanglement. The first is to
possess a bipartite subsystem that is entangled but the rest of the system is in product form as
in |Ψ〉AB|1〉C |0〉D. At the other end of the spectrum is a genuinely entangled state.
Definition 3.5 (Genuinely entangled states). A state |ψ〉 over n qubits is genuinely entangled
if for any bi-partition of the qubits into two subsets A,B, it cannot be written as a product state
|ψ〉 = |ψA〉 ⊗ |ψB〉, where |ψA〉, |ψB〉 are defined on the qubits of A and B respectively.

So, a genuinely entangled state is a pure state on n-qubits that is not product with respect to
any bi-partition of the system. In fact, it is not possible to factor out any qubit’s state in the
system. Genuine multi-partite entanglement is understood to a lesser degree as most of the
tools from understanding bipartite entanglement cannot be extended to multi-partite settings.
For instance, generalizing the Schmidt decomposition to N > 2 systems poses difficulties as it
becomes a formidable task to write any state as the sum of terms each of which is the product
of states from N -orthogonal bases.

While one way to consider a composite system is to consider a larger state space, another way is
to consider possessing a statistical ensemble of quantum states i.e. a large number of copies of
the same system which, when considered all at once, exhibits the probability distribution of the
states that the system could be in. In other words, it is a mixture of all the possible states the
system could be in. The state of this mixture is called a mixed state and is not represented in
vector form but by a density matrix.
Definition 3.6 (Density Matrices). A density matrix ρ on an n-qubit system is a positive
semidefinite matrix of the form

ρ =
∑
i

pi|φi〉〈φi| where
∑
i

pi = 1 and ∀i, φi ∈ C⊗n

with pi being interpreted as the fraction of the ensemble that is in the state |ψi〉.

35

Note that the pis in the density matrix are not amplitudes but probabilities which are generated
classically unlike quantum superpositions. |φ〉〈φ| is the projection onto the subspace spanned
by |φ〉. A physical way to prepare a mixed state would go as follows. Think of a source that is
capable of producing particles which could be in state |φ1〉, |φ2〉 and so on but the exact state of
the particle is not known. However, it is known that the source produces a particle in |φ1〉 with
p1 probability, in |φ2〉 with p2 probability and so on. Then, the density matrix defined above
completely captures this scenario.

A density matrix ρ represents a pure state if and only if Tr(ρ2) = 1 and if Tr(ρ2) < 1, it
represents a mixed state. Here Tr is the trace operator acting on a matrix. In the former case,
the density matrix also uniquely determines the pure state but this doesn’t hold for a mixed
state as there could be infinitely many ways to decompose a density matrix as a probabilistic
mixture of pure states. For instance, the density matrix given by 1

2I can be decomposed as

1
2I = 1

2 |0〉〈0|+
1
2 |1〉〈1| = 1

2 |α〉〈α|+
1
2 |α
⊥〉〈α⊥| ∀ |α〉 ∈ C2

which can be verified with a little calculation. A more non-trivial example is the following
Example 3.3 (Ensembles of pure states). Consider an ensemble that is made up of the state
|0〉 with probability 1/2 and the state |+〉 = (|0〉+ |1〉)/2 with probability 1/2. The density matrix
for this in the standard basis is given by

ρ = 1
2 |0〉〈0|+

1
2 |+〉〈+|

= 1
2

1 0

0 0

+ 1
2

1/2 1/2

1/2 1/2

 =

3/4 1/4

1/4 1/4



However, the eigenvalues of ρ are

λ+ = 1/2 +
√

2/2 and λ− = 1/2−
√

2/2

with the corresponding eigenvectors

|φ+〉 =
√
λ+|0〉 −

√
1− λ+|1〉 and |φ−〉 =

√
λ−|0〉+

√
1− λ−|1〉.

Then, it is also possible to view ρ as an ensemble of mixture of the states |φ±〉 with probability λ±
respectively. This shows that any mixed state density matrix could have multiple decompositions
as an ensemble of pure states.

This property also makes the identification of a density matrix as being entangled or not a more
complicated task. The equivalent of a product state in the density matrix setting is called a
separable state.
Definition 3.7 (Separable State). Given two sub-systems A, B and a density matrix ρAB

36

defined on the joint system HA ⊗HB. ρAB describes a separable state if it can be written as

ρAB =
∑
i

ciσ
A
i ⊗ τBi with ci ≥ 0 for each i,

where each σAi is a density matrix in HA, each τBi is a density matrix in HB and
∑
i ci = 1.

Since the same density matrix represents different mixtures of states, it is enough that one
mixture of product states exists for a density matrix to be separable. A density matrix which
is not separable is then called entangled. More specifically, an entangled state was required to
produce the mixture. While in the case of pure states it is easy to determine if a given state
is product or not, it is considered to be a hard problem even in the case of certain bipartite
systems [Gha10]. For the simple case of the 2-qubit state, the Peres-Horodecki condition of
having [Per96, HHH96] a Partial Positive Transpose is both necessary and sufficient. However,
this criterion becomes inconclusive for larger systems. Hence, the problem of finding if a generic
density matrix is entangled remains a hard problem.

The main goal in quantum computation is to manipulate quantum states by performing operations
on them. For this, one uses objects from linear algebra namely, linear operators.
Definition 3.8 (Linear Operators). A linear operator on a vector space H is a linear transfor-
mation T : H → H that maps vectors in H to vectors in H.

One of the simplest examples of an operator is the outer product of two states |α〉, |β〉 given by
|α〉〈β|. Clearly, applying this operator to any state |ψ〉 results in

|α〉〈β||ψ〉 = |α〉〈β|ψ〉 = (〈β|ψ〉)|α〉

which could be considered an un-normalized state. Recall that in this sense, the orthogonal
projection |α〉〈α| is an operator that projects the state it is applied to the 1-dimensional space
spanned by |α〉. Any convex combination of the projectors would not affect the linearity of the
transformation. Hence, the density matrix can also be viewed as an operator which is termed
the density operator.

There is an efficient way to express the action of every linear operator in terms of how it acts on
the basis states of the Hilbert space it acts on.
Theorem 3.2. Given an orthonormal basis for a Hilbert space H, B = {|bi〉}, every linear
operator T on H can be written as

T =
∑

bi,bj∈B
Ti,j |bi〉〈bj | where Ti,j = 〈bi|T |bj〉

Now the action of T on a state |φ〉 is expressed as

T |φ〉 =

 ∑
bi,bj∈B

Ti,j |bi〉〈bj |

 |φ〉 =
∑

bi,bj∈B
〈bj |φ〉|bi〉.

37

Example 3.4. Consider the classical bit flip operation X. Consider it’s action on the basis
states {|0〉, |1〉}

|0〉 → |1〉 and |1〉 → |0〉

allowing the operator X to be written as

X = |0〉〈1|+ |1〉〈0| =

0 1

1 0



Since operators are matrices, they can also be classified as being self-adjoint, unitary or Hermitian
as seen with this sequence of definitions
Definition 3.9. For any operator T on H, its adjoint operator T † is defined as an operator
satisfying the condition

(〈α|T †|β〉)∗ = 〈β|T |α〉 ∀|α〉, |β〉 ∈ H

Note that this satisfies the condition that the matrix form of T † is just the complex conjugate
transpose of the matrix representation of T .
Definition 3.10. An operator U is called unitary if U † = U−1 where U−1 is the matrix inverse
of U .

Unitary operators help to represent the consistent evolution of quantum systems i.e. one where
the sum of probabilities of all events remains 1. This class of operators also encompass quantum
logic gates which are building blocks for quantum circuits and quantum algorithms. They
preserve the inner product and the norm between vectors.
Claim 3.1. Given two states |ψ〉 and |φ〉, any unitary operator U preserves the inner product
between (|ψ〉, |φ〉) and (U |ψ〉, U |φ〉).

Proof. Using the fact that U †U = I and (AB)† = B†A†,

(U |ψ〉)†U |φ〉 = 〈ψ|U †U |φ〉

= 〈ψ|I|φ〉 = 〈ψ|φ〉

Another important set of operators is the set of Hermitian operators which also correspond to
observables – operators that can be used to measure some property of a quantum system i.e. a
measurement. An operator T is called Hermitian (or self-adjoint) if T † = T . A useful property
of Hermitian operators is that they have real eigenvalues. In the case of observables, these
eigenvalues correspond to the possible outcomes of a measurement. Given such an observable
M , and an n-qubit state |ψ〉, the expectation value of M with respect to |ψ〉 is given by the
expression 〈ψ|M |ψ〉. An expectation corresponds not to a single measurement performed on one

38

copy of the state but an average of the measurement performed over may copies of the state
|ψ〉 while collecting the statistics of each measurement. Considering each measurement as an
independent operation, one can use Chernoff bounds to determine that, using poly(n) copies
to measure will allow for the approximation of the expectation to within an additive error of

1
poly(n) . This can also be generalized to using any density matrix in the place of the pure state
|ψ〉 except that in this case, the expectation value is given by Tr(Mρ).

A special type of observable is the projector defined as
Definition 3.11 (Projector). A linear operator P acting on a Hilbert space H is a projector if
it satisfies the condition that P 2 = P . A projector is considered an orthogonal projector if it is
self-adjoint i.e. P † = P .

Clearly, the previously mentioned projectors Pψ = |ψ〉〈ψ| satisfy the above definition and are
in fact orthogonal projectors. While the trace of an operator T is the same as the trace of its
matrix form, it can be defined with respect to an orthonormal basis {|bi〉} of the corresponding
Hilbert space as

Tr(T) =
∑
bi

〈bi|T |bi〉.

While the trace is a scalar-value function, the partial trace is an operator-valued function defined
on a bipartite quantum system existing in HA ⊗HB. The partial trace is used to “trace out”
one of the systems (say, B) and generate a reduced density matrix to describe the residual state
of the remaining system (in this case, A). This operation is termed as taking a partial trace
with respect to B, TrB or as tracing out B. It can be symmetrically defined with respect A
using TrA too. Formally,
Definition 3.12 (Partial Trace). Given a bipartite quantum state ρAB ∈ D(HA ⊗HB) where
D(·) is the set of density operators in the given Hilbert space, the partial trace with respect to B,
TrB : D(HA ⊗HB)→ D(HA) generates a reduced density matrix ρA given by

ρA = TrB(ρAB) =
∑
bi

〈bi|ρAB|bi〉 where {|bi〉} is an orthonormal basis for HB.

Bloch Sphere
The Bloch sphere is a geometrical representation of the state space of a single qubit and as the
name suggests is a sphere [NC00]. The antipodal points of the Bloch sphere corresponds to
orthogonal states and in general, the north and south poles are usually indexed as |0〉 and |1〉
respectively as shown in Figure (3.1). The points on the surface of the sphere correspond to pure
states and the interior of the sphere corresponds to mixed states – probabilistic mixtures of pure
states. The center of the sphere is the completely mixed state (I/2) which can be interpreted as
an equal parts mixture of any state and its orthogonal state.

The exact correspondence between a single qubit state and the Bloch Sphere can be understood

39

ẑ
|0〉

|1〉

x̂

ŷ

|ψ〉

θ

ϕ

Figure 3.1: The Bloch sphere representing |ψ〉

with the following relations. Let the Cartesian coordinates of any point on the surface of the
sphere correspond to (x, y, z). In the polar coordinate form this is equivalent to

(x, y, z) = (sin θ cosϕ, sin θ sinϕ, cos θ)

and the (θ, ϕ) couple maps to single qubit states as

|ψ〉 = cos
(
θ

2

)
|0〉+ eiϕ sin

(
θ

2

)
|1〉.

This can be verified easily since |0〉 has θ = 0, ϕ = 0, |1〉 has θ = π, ϕ = 0 and for |−〉 = (|0〉−|1〉)√
2

one finds that θ = π
2 , ϕ = π.

3.2 Local Hamiltonian Problem

The Hamiltonian of a system is an operator that captures the total energy of the system in
terms of the interactions between the particles in the system and their kinetic and potential
energies. Mathematically, Hamiltonians are expressed as a Hermitian operator (or a sum of
Hermitian operators) in the Hilbert space defined by the system of particles. The eigenvectors
of this operator define an orthonormal basis for this space and the eigenvalues, being real, also
correspond to the energy levels occupied by the system. One of the goals to accomplish using a
Hamiltonian is to understand the minimum energy that a system of particles and interactions
could possess and also, find the state that possess this minimum energy.
Definition 3.13 (Ground energy and ground states). The minimum eigenvalue of a given
Hamiltonian H is called its ground energy. The corresponding eigenvector is called the ground
state of the Hamiltonian. If more than one ground state exists, then the space formed by the
span of all the ground states is called the ground space of the Hamiltonian.

A more structured Hamiltonian is the k-Local Hamiltonian which is a sum of Hermitian operators
each of which acts non-trivially on at most k qubits in the system. For instance, each term in the

40

Local Hamiltonian could quantify the interactions between at most k qubits in the system. Using
this structure, it is possible to formally define the k-Local Hamiltonian problem as introduced
by Kitaev [KSV02].
Definition 3.14 (k-Local Hamiltonian Problem). Given a k-Local Hamiltonian H =

∑m
j=1H(j)

defined on n qubits with m = poly(n) and a constant k. Let each H(j) have a bounded operator
norm ‖H(j)‖ ≤ poly(n) with entries specified by poly(n) bits. Additionally, given two constants
0 ≤ a < b such that b− a > 1

poly(n) , the aim is to distinguish between the following cases

yes: The ground energy of H is at most a;
no: The ground energy of H is at least b.

Since each term H(j) in the Hamiltonian is also an observable, given a quantum state |ψ〉, it is
natural to consider the expectation of the Hamiltonian: 〈ψ|H|ψ〉 =

∑
j〈ψ|H(j)|ψ〉. Here, finding

the ground energy of H is equivalent to finding the state |Γ〉 that minimizes the expectation
value for H. In this respect, given any state |ψ〉, its expectation value with an observable H(j)

can be considered as a measure of how much the state violates the observable H(j). This analogy
would naturally extend to considering each local term in the Hamiltonian as a constraint on
k-qubits where the goal now is to minimize some global objective function. Clearly, this gives
the k-Local Hamiltonian problem the flavour of being quantum constraint satisfaction problem.
In fact, it is fair to argue that it is a quantum extension of the MAXkCSP problem which, given
a CSP instance with k-ary constraints, asks which assignment satisfies the largest number of
constraints.

Many examples of the MAXkCSP problem turn out to be NP-complete, like MAXkSAT which
is NP-complete for k ≥ 2. Correspondingly, Kitaev [KSV02], resolved the question of the
complexity of the k-Local Hamiltonian problem by showing that the 5-Local Hamiltonian
problem is QMA-complete. QMA (Quantum Merlin-Arthur) is considered to be a quantum
analogue of the NP class and is defined here for completeness.
Definition 3.15 (Quantum Merlin-Arthur (QMA)). A language L is said to be in QMA(c, s) if
there exists polynomial time quantum verifier V and polynomials p, p′ such that for all inputs x,

x ∈ L⇒ there exists a state |ψ〉 such that V accepts (x, |ψ〉) with probability at least c;
x /∈ L⇒ for all states |ψ〉, V accepts (x, |ψ〉) with probability at most s

where |ψ〉 is a quantum state on at most p(|x|) qubits. Further, QMA(c, s) is in QMA when
c− s ≥ 1

p′(|x|) .

Kempe and Regev [KR03] reduced the locality to show that even 3-Local Hamiltonian is
QMA-complete and this was equivalently shown with a different construction by Mozes and
Nagaj [NM07]. Since the 1-Local Hamiltonian problem is in P, the remaining question of
the 2-Local Hamiltonian was resolved by Kempe, Kitaev and Regev [KKR06] by showing its
QMA-completeness. One sub-class of the Local Hamiltonian problem considered here is that of
frustration-free Local Hamiltonians.

41

Definition 3.16. A frustration free Local Hamiltonian H =
∑
j H

(j) is a Hamiltonian whose
global groundstate is also a groundstate of each of its local terms H(j).

This class does encompass many interesting commuting Hamiltonians like the toric code which is
useful for topological quantum computing [Kit03], general quantum error correcting codes [Got97],
as well as non-commuting Hamiltonians like the AKLT model [AKLT87] which are used in
numerical techniques to approximate the ground state of various Hamiltonians.

3.3 Quantum SAT

With the k-local Hamiltonian problem extending MAXkCSPs, the candidate for an extension of
MAXkSAT would be QkSAT. As expected, it is restriction of the k-local Hamiltonian, specifically
to the frustration free case with each local term being a k-local projector.
Definition 3.17 (Local Projector). Given an n-qubit system and a constant k that signifies
the locality, a k-local projector is an n-qubit projector of the form Π = ΠJ ⊗ Irest where
J = (j1, . . . , jk) is a tuple of k qubits and ΠJ is a projector that works in the 2k-dimensional
Hilbert space Hj1 ⊗ . . .⊗Hjk and Irest is the identity operator on the rest of the system.
Example 3.5. Given an n qubit system, Πij = (|00〉〈00|+ |11〉〈11|)ij⊗Irest is a 2-local projector
acting on qubits (i, j) with the identity acting on the remaining n− 2 qubits. Similarly, a 1-local
projector on qubit i would be written as Πi = |ψ〉〈ψ|i ⊗ Irest where |ψ〉 is some single qubit state.

In general, the rank of a k-local projector Π = ΠJ ⊗ Irest is given by the rank of its non-trivial
part i.e. the rank of ΠJ and in a slight abuse of notation, this would be denoted as rank(Π).
A k-local projector Π with rank(Π) = 2k − 1 is said to have maximal rank and is said to be
unsatisfiable if it has full rank i.e. rank(Π) = 2k. Projectors being non-negative operators, their
minimum eigenvalue is 0 implying that the ground state of every local projector has energy 0.
Now given a set of these projectors as a QkSAT instance, it is possible that the ground energy
of the sum of these projectors is also 0. In that case, the ground state achieving 0 energy also
has 0 energy with each local projector. Equivalently, the QkSAT instance in frustration-free and
this also extends the classical notion of perfectly satisfying a given formula. Then, the QkSAT
problem can be stated as the problem of deciding if an instance is frustration free or not.
Definition 3.18. Given a k-local Hamiltonian defined on n qubits as a sum of m k-local
projectors H =

∑m
i=1 Π(i) with k = O(1) and a constant b > 1/nc for some constant c, decide

which of the following cases holds

yes: The ground energy of H is 0;
no: The ground energy of H is at least b.

Since the yes case can be determined without error, it follows that QkSAT can be considered
as belonging to the class QMA1 – the one sided error version of QMA. Bravyi [Bra11] showed
that QkSAT is QMA1-complete for k ≥ 4 along with the interesting result that Q2SAT has a
polynomial time algorithm to decide it. It was recently shown by Gosset and Nagaj [GN13] that

42

even Q3SAT is QMA1-complete.

3.3.1 Q1SAT and Q2SAT
As the focus would be more on the tractable parts of the QSAT landscape – Q1SAT and Q2SAT,
they are explicitly discussed here. Q1SAT like its classical counterpart, 1SAT can be treated as
a read-once formula which contributes to it being in P. Then, any Q1SAT instance is satisfiable
if each qubit is constrained to be orthogonal to at most one single qubit state as the maximal
rank is 21 − 1 = 1. Formally,
Definition 3.19. A Q1SAT Hamiltonian on n qubits is Hermitian operator H =

∑
{i∈I}Πi for

some I ⊆ [n] where Πi = |ψi〉〈ψi|i ⊗ I[n]\{i} for some |ψi〉 ∈ Hi.

In the case of Q2SAT, the 2-local projector Π could have 1 ≤ rank(Π) ≤ 3 in a frustration free
instance with the maximal rank being 22 − 1 = 3. Of course, a rank-4 2-local projector being
full rank cannot have 0 ground energy. Formally
Definition 3.20. A Q2SAT Hamiltonian on n qubits with m local terms is a Hermitian operator
H =

∑
{e∈I}Πe for some I ⊆ {(i, j) ∈ [n]× [n] : 1 ≤ i ≤ j ≤ n} where for i < j, Πij = Π̂ij⊗ Irest

with Π̂ij defined on Hi ⊗Hj. If i = j, Πii = Π̂i ⊗ Irest with Π̂i defined on Hi.

It will be a common practice to use Πij instead of Π̂ij to refer to the action of the 2-local
projector on Hi ⊗Hj . A rank-1 projector on 2 qubits Πij = |ψ〉〈ψ| is referred to as entangled if
|ψ〉 is an entangled state and product when |ψ〉 is a product state.

A Q2SAT Hamiltonian H is said to have a Star-like configuration if there exists a pair of qubits
u, v with Πu,v 6= 0 such that all projectors involve either u or v. Finally, we say that H has no
repetitions if there does not exist any pair of different projectors Πe,Πe′ which act non-trivially
on the same set of qubits.

3.3.2 Energies and distances
Clearly, a crucial part of dealing with Local Hamiltonians involves finding energies of states with
respect to a given Hamiltonian. To denote those energies more in terms of constraint satisfaction
terminology, energies are mapped to the extent to which a state satisfies or violates a local term.
For any projector Π and a state |ψ〉, |ψ〉 is said to satisfy Π up to ε if Eψ(Π) := 〈ψ|Π|ψ〉 ≤ ε2.
The energy Eψ(Π) is the violation energy of |ψ〉 with respect to the projector Π. When the state
of the system is described by a density matrix, ρ, its violation energy with respect to Π is given
by Eρ := Tr(ρΠ).

Another metric useful in understanding the precision of a solution is a distance measure between
quantum states. It complements the use of violation energies and it is possible to switch between
the distances of 2-qubit states and their violation energies quite easily. Their relation is described
below.

Given a projector Πψ = |ψ〉〈ψ| and a state ρα := |α〉〈α|, the violation energy is given by

43

Tr(Πψρα) = |〈α|ψ〉|2. On the other hand, the norm or Frobenius distance between the states |α〉
and |ψ〉 is defined as

‖α− ψ‖ :=
√

Tr[(|α〉〈α| − |ψ〉〈ψ|)(|α〉〈α| − |ψ〉〈ψ|)†].

It now follows that ‖α− ψ‖2 = 2− 2|〈α|ψ〉|2 = 2− 2 Tr(Πψρα). Therefore, the violation energy
is related to the Frobenius distance as

Tr(Πψρα) = 1− 1
2‖α− ψ‖

2 . (3.1)

This completes the discussion on all the preliminaries required for the results that will be
presented in the following chapters.

44

Chapter 4
A linear time quantum 2SAT algorithm

Question: Can quantum 2SAT be solved in linear time, similar to its classical counterpart?

This chapter has results on a linear time algorithm for the quantum-2SAT problem, its robustness
to frustration-freeness and dealing with almost frustration free 2-Local Hamiltonian problems.
While these results can be appreciated independently of the trial and error model, the robustness
and notion of almost-free 2-Local Hamiltonians has a direct bearing on solving the unknown
input version of quantum 2SAT in the trial and error model.

4.1 Algorithms for Boolean 2SAT

A first step to understanding both Bravyi’s algorithm and the linear time algorithm for Q2SAT
is understanding the classical algorithms that served as a basis for them – Krom’s algorithm
and the Davis-Putnam procedure respectively.

4.1.1 Krom’s Algorithm
Krom’s algorithm [Kro67] proceeds by finding the transitive closure of the clauses in the given
2SAT formula. For any triple of variables {a, b, c}, if the formula contains the clauses (a∨ b) and
(b ∨ c), they can be viewed as the implications a⇒ b and b⇒ c. Then, by transitivity of the
implications, the implication a⇒ c can be inferred which translates to adding the clause (a ∨ c)
to the formula. After repeating this process till no more implications can be added, the formula
is considered consistent if both (z ∨ z) and (z ∨ z) are not generated simultaneously. Moreover,
a formula is satisfiable if and only if it is consistent. The transitive closure procedure would
consume O(n3) time to check for every triple but would only be able to check if the formula is
consistent or not. To extract a satisfying assignment requires running O(n) consistency checks –
one for each variable in the formula and so requires O(n4) time to run in total.

4.1.2 Davis-Putnam Procedure
The Davis-Putnam Procedure [DP60, DLL62] based on unit propagation and resolution was
conceived to check the validity of any first-order logic formula. While the generic procedure also

45

dealt with quantifiers, the version sketched here focuses on a quantifier free 2SAT formula. In the
worst case, it could have exponential complexity on general SAT formulas but has a polynomial
complexity for 2SAT formulas.

It can be assumed without loss of generality that the formula contains only two literal clauses
since there is only one way to satisfy a single literal clause and so, simplify the formula. The
procedure does the following. Pick a variable that is currently unassigned, say x, set it to true

and simplify the formula: Any clause of the form (x ∨ y) is also set to true and can be removed
from the formula. Any clause of the (x∨ z) will be simplified to the single literal clause (z) since
x is false. This forcibly sets z to true to satisfy the formula and this value could propagate
to other clauses that contain z and so on. The latter step defines the unit propagation that
could cascade throughout the formula until no more variables are forcibly assigned values. If no
contradiction arose up to this point, then the simplified formula now contains only two literal
clauses and the whole process is repeated. If not, the contradiction can be traced to setting
x to true as all other variables assigned after that were set forcibly. So, set x to false and
propagate again. If a contradiction is faced again, then it can be concluded that there is no valid
assignment for x and hence, the formula is unsatisfiable.

There are instances where the above procedure can take Ω(n2) time to execute. A simplification
suggested by Even, Itai and Shamir [EIS76] was to propagate the two values for x in parallel and
accepting the assignment of the first branch that stops without facing a contradiction thereby
consuming only O(n+m) time.

4.2 2-Local Hamiltonian and Quantum 2SAT

To put the result presented in this chapter into context, it helps to recall what is known about
the 2-local Hamiltonian. Wocjana and Beth [WB03] initially showed that NP-complete problems
like finding a max-cut in a graph or finding the largest independent set in a graph can be
formulated as a 2-local Hamiltonian implying that the complexity of the 2-local Hamiltonian
is NP-hard at the very least. Bravyi and Vyalyi [BV05] considered the special case where the
local terms of the Hamiltonian commute putting the 2-local Hamiltonian with commuting terms
firmly in NP. However, the general case was resolved by Kempe, Kitaev and Regev [KKR06]
when they showed the QMA-completeness of the 2-local Hamiltonian. A full classification of
2-local qubit Hamiltonians was undertaken by Cubitt and Montanaro [CM16b] in the spirit of
Schaefer’s classification of Boolean CSPs [Sch78]. Depending on the fixed set S from which the
local terms of the Hamiltonian are picked, the corresponding 2-local qubit S-Hamiltonian is
either in P, NP-complete, QMA-complete or falls in a class which lies between MA and AM.
Here MA and AM refer to the private coin and public coin interactive proof systems respectively
and the former is also viewed as a probabilistic analogue of NP. Our result zeros in on the case
where the 2-local qubit Hamiltonian is in P, specifically, when S is the set of 2-local projectors.
Additionally, as the goal is to find a ground state when these Hamiltonians are frustration free,

46

our result focuses on the Quantum 2SAT problem. The first algorithm for this problem, proposed
by Bravyi, had a running time of O(n4) when arithmetic operations on complex numbers were
assumed to take unit time.

4.2.1 Bravyi’s Algorithm
Bravyi’s algorithm [Bra11] could be viewed as analogous to Krom’s transitive closure algorithm
and showed that the frustration freeness of a Q2SAT instance could be decided by a deterministic
algorithm in O(n3) time by checking if the instance had a complete, equivalently consistent, set
of constraints. Moreover, the algorithm by running O(n) consistency checks could extract a
ground state having a polynomial sized classical description.

The quantum constraints being projectors on a 4-dimensional system could have rank ≥ 1 and
the first part of the algorithm performs rank reduction to modify the instance to an equivalent
one with just rank 1 constraints. A rank 4 constraint would render the instance unsatisfiable
and a rank 3 constraint has only one possible satisfying assignment thereby reducing the size
of the instance. A rank 2 constraint on Πab on qubits (a, b) can be viewed as an isometry
V : C −→ C⊗ C where Πab = I− (V V †). The isometry can be used to merge qubits (a, b) into
a single qubit c. Once the instance possesses only rank 1 constraints, the algorithm proceeds
as in the classical case. Each triple is examined to add a constraint on qubits (a, c) if there
exists constraints on qubits (a, b) and (a, c). Any increase in rank of the constraints is reduced
again until no more changes can be made. Of course, generating the transitive closure and the
assignment is not as straightforward as in the classical case and requires viewing the constraints
as tensors and performing operations on them.

4.3 Generalizing the Davis-Putnam Procedure

The linear time algorithm in this chapter can be viewed as a suitable modification of the Davis-
Putnam procedure so as to be able to handle (a) high entanglement structure in the ground state
(b) projectors of rank ≥ 1 and (c) the increase in domain size for a qubit from Boolean values to
an arbitrary quantum state. Moreover, all this has to be handled while still maintaining the
deterministic classical properties of the algorithm. At this juncture, to get a clear picture of the
techniques used, it is helpful to consider that the algorithm works in the algebraic complexity
scenario where it is assumed that arithmetic operations on complex numbers consume unit time.

4.3.1 Simple ground states
A ground state with high entanglement structure cannot be described with a polynomial sized
classical description and so poses the biggest threat to the classical nature of the algorithm.
While the idea of propagating assignments in a bigger domain is still reasonable, propagating an
entangled state naively becomes an unclear concept. Indeed, it is also not possible to escape

47

from the possibility that the qubits may be entangled if a rank 3 constraint forces them to be in
an entangled state. The product state theorem helps to curb the amount of entanglement in the
ground state. It effectively states that every frustration free Q2SAT instance has a ground state
made up of a tensor product of 1-qubit and 2-qubit states with the 2-qubit states occurring only
in the support of certain rank 3 constraints. This structural theorem enables the algorithm to
pick an arbitrary qubit assignment and perform operations akin to the unit propagation over
Boolean constraints. Additionally, in the case of a contradiction, it indicates two candidate
assignments – |ψi〉 to qubit i or |ψj〉 to qubit j – such that at least one of them will propagate
successfully in a frustration free instance.

A slightly weaker claim has already appeared in Theorem 2 of [CCD+11]. The main difference is
that here the 2-qubit states are specifically attributed to rank-3 projectors. Just as in [CCD+11],
our derivation relies on the notion of a genuinely entangled state using which Theorem 1
of [CCD+11] is restated below.
Proposition 4.1. Any 2-local frustration-free Hamiltonian on n ≥ 3 qubits that has a genuinely
entangled ground state also has another ground state, which is a product of one-qubit and
two-qubits states.

Along with that, the following fact about 2-dimensional subspaces in C2 ⊗ C2 is also required.
Proposition 4.2. Any 2-dimensional subspace V of the 2-qubit space C2 ⊗ C2 contains at least
one product state, which can be found in constant time.

Proof. Take a basis {|ψ〉, |φ〉} of the two-dimensional subspace V ⊥, the orthogonal complement
of V where |ψ〉 and |φ〉 are 2-qubit states. The goal is to find a product state |α〉 ⊗ |β〉 such that
〈ψ|(|α〉 ⊗ |β〉) = 〈φ|(|α〉 ⊗ |β〉) = 0. First, express all the states in the standard computational
basis as

|ψ〉 =
∑

ij∈{0,1}2
ψij |ij〉 and |φ〉 =

∑
ij∈{0,1}2

φij |ij〉; |α〉 =
∑

i∈{0,1}
αi|i〉 and |β〉 =

∑
i∈{0,1}

βi|i〉

⇒ |α〉 ⊗ |β〉 =
∑

ij∈{0,1}2
αiβj |ij〉

The orthogonality conditions translate to

〈ψ|(|α〉 ⊗ |β〉) = 0 ⇒
∑
ij

ψ∗ijαiβj = 0 and 〈φ|(|α〉 ⊗ |β〉) = 0 ⇒
∑
ij

φ∗ijαiβj = 0

and now the goal is to find the complex coefficients αi’s and βj ’s that satisfy these conditions.
Grouping the coefficients into 2× 2 matrices and 2× 1 vectors as

Ψ =

ψ∗00 ψ∗01

ψ∗10 ψ∗11

 , Φ =

φ∗00 φ∗01

φ∗10 φ∗11

 , vα =

α0

α1

 , and vβ =

β0

β1


48

the idea is to find vectors vα, vβ such that

vTαΨvβ = vTαΦvβ = 0 . (4.1)

If there was a vβ such that Ψvβ ∝ Φvβ, then one could easily pick a single appropriate vα to
satisfy Equation (4.1). In the case that Φ is a singular matrix, it is possible to choose vβ that
is in the null space of Φ. Then, correspondingly it is possible to pick a vα that is in the null
space of Ψ. On the other hand, when Φ is not a singular matrix, choose vβ such that it is an
eigenvector of Φ−1Ψ so that Φ−1Ψvβ = cvβ for some eigenvalue c. This satisfies Ψvβ ∝ Φvβ and
an appropriate vα can now be chosen.

Note that, as the proof is constructive, it also shows that the product state can be found in
constant time. The product state theorem is stated as follows.
Theorem 4.1. Any frustration-free Q2SAT instance has a ground state which is a tensor product
of one qubit and two-qubit states, where two-qubit states only appear in the support of rank-3
projectors.

Proof. Consider a frustration-free Q2SAT instance H and let |Γ〉 be its ground state. Much like
any number that can be decomposed as a product of prime numbers, an n-qubit state can be
written as the tensor product of one or more genuinely entangled states. Generally, |Γ〉 can be
written as the tensor product

|Γ〉 = |α(1)〉 ⊗ |α(2)〉 ⊗ · · · ⊗ |α(r)〉 ,

where each |α(i)〉 is a genuinely entangled state defined on a subset S(i) of qubits. Note that the
S(i)s form a partition of the set of n qubits. If Πjk = I − |ψ〉〈ψ|jk is a rank-3 projector then,
the only way to satisfy Πjk is to set qubits (j, k) to |ψ〉jk. Hence,every ground state of H will
contain |ψ〉jk as a tensor product with the rest of the system. Now, if |ψ〉jk is an entangled state,
there would necessarily be a subset S(i) = {j, k} in the above decomposition where |α(i)〉 = |ψ〉jk.
On the other hand, if |ψ〉jk is a product state, then there would be two subsets S(i1) = {j}, and
S(i2) = {k}. Therefore, when a rank-3 projector is involved in some partition, |S(i)| ≤ 2 for that
partition.

Let H(i) be the Hamiltonian that is the sum of all the projectors whose support is in S(i).
By definition, |α(i)〉 is also a ground state of H(i). As discussed above, any subset S(i) with
exactly 2 qubits either corresponds to the support of a rank-3 projector or corresponds to an
H(i) consisting of rank-1 and rank-2 projectors only. Finally, the remaining case of subsets S(i)

with more than 2 qubits, corresponds to H(i) consisting only of rank-1 and rank-2 projectors.
Using Proposition 4.2, in conjunction with Proposition 4.1, it is known that any H(i) involving
multiple qubits but containing no rank-3 projectors has a ground state |β(i)〉 which is a product

49

state of one qubit states:

|β(i)〉 = |β(i)
1 〉 ⊗ |β

(i)
2 〉 ⊗ · · · (4.2)

For the cases when the S(i) correspond either to one qubit subsets, or to 2-qubits subsets of
entangled rank-3 projectors, set |β(i)〉 = |α(i)〉.

Now the claim is that the product of one-qubit and two-qubit states, |β〉 = |β(1)〉 ⊗ · · · ⊗ |β(r)〉,
is a ground state of H. This would hold if |β〉 were in the ground space of each projector Πe. If
the support of Πe is inside one of the Si subsets, then by definition Πe|β(i)〉 = 0⇒ Πe|β〉 = 0.
Assume then that Πe is supported on a qubit from S(i) and a qubit from S(j) with i 6= j.
Consider the 3 cases:

1. |S(i)| = |S(j)| = 1: Then, Πe|β(i)〉 ⊗ |β(j)〉 = Πe|α(i)〉 ⊗ |α(j)〉 = 0.
2. |S(i)| = 1 and |S(j)| ≥ 2: Then, expand |α(j)〉 = λ0|0〉u⊗ |y0〉S(j)\{u}+ λ1|1〉u⊗ |y1〉S(j)\{u}.

Here u is the qubit in S(j) which is in the support of Πe. The vectors λ0|y0〉, λ1|y1〉 are, by
assumption, linearly independent since |αj〉 is assumed to be genuinely entangled. Now,
the condition

Πe|α(i)〉 ⊗ |α(j)〉 = 0

⇒ λ0|y0〉 ⊗
(
Πe|α(i)〉 ⊗ |0〉

)
+ λ1|y1〉 ⊗

(
Πe|α(i)〉 ⊗ |1〉

)
= 0

⇒ Πe|α(i)〉 ⊗ |0〉 = Πe|α(i)〉 ⊗ |1〉 = 0 (By the linear independence of |y0〉, |y1〉).

Therefore, Πe is orthogonal to the subspace |α(i)〉 ⊗ C2 of the two qubits that it acts on,
and in particular it’s also orthogonal to |β(i)〉 ⊗ |β(j)〉 since |β(i)〉 = |α(i)〉.

3. |S(i)|, |S(j)| ≥ 2: This case does not occur as can be shown by contradiction. By writing
both |α(i)〉, |α(j)〉 in their respective Schmidt decompositions, and using a similar argument
as above, it can be concluded that Πe must be orthogonal to 4 independent vectors. It
therefore cannot be a rank-1 or a rank-2 projector.

4.3.2 The Constraint Graph
For a classical 2SAT instance, the notion of a constraint graph is straight forward: considering
each variable as a vertex, add an edge between vertices (u, v) if there is a 2SAT clause containing
a literal of u and v; each edge is labeled by the clause it refers to and hence the constraint
graph is a multigraph. Each clause is like a rank-1 projector in the standard computational
basis making the representation simple. For Q2SAT, the need to deal with projectors of rank
≥ 1 arises. So, for an efficient representation of the instance, rank-2 projectors are decomposed
into a sum of their constituent rank-1 projectors. This is called the rank-1 decomposition of the
instance.
Definition 4.1 (Rank-1 Decomposition). Let H be a Q2SAT Hamiltonian. Consider every
(i, j) ∈ I such that rank(Πij) = 2 and decompose Πij as sum of rank-1 components as Πij =

50

Πij,1 + Πij,2. Then, the rank-1 decomposition of H is given by

H =
∑

rank(Πij)6=2
Πij +

∑
rank(Πij)=2

(Πij,1 + Πij,2) ,

Corresponding to this decomposition, it is possible to associate a constraint graph where each
qubit is a vertex and each projector term corresponds to a specific directed edge in the graph.
Note that if there is a single qubit projector, then it maps to a self loop in the graph. Rank-1
and rank-3 projectors are treated equivalently and there is a directed edge between the 2-qubits
involved in the projector. In fact, if qubits (u, v) have a rank-1 projector, there is an edge both
from u to v and from v to u. For rank-2 projectors, the qubit pair shares 2 parallel edges in
each direction – one for each rank-1 component.

To distinguish between the parallel edges of this multigraph, it is necessary to label them uniquely.
For every u < v with Πuv 6= 0, labelling the edge from u to v with Πuv works well. However,
since the same projector also induces an edge from v to u, an appropriate label for these reverse
edges is needed. To overcome this, the reverse projector is defined as
Definition 4.2 (Reverse Projector). For a projector Π acting on two qubits, its reverse projector
Πrev is given by Πrev|α〉|β〉 = Π|β〉|α〉, and for i ≤ j and b ∈ [2], Πji = Πrev

ij and Πji,b = Πrev
ij,b.

Now, each edge (u, v) is labeled by Πuv and each edge (u, v, b) is labeled with Πuv,b. Using these
concepts, the constraint graph is defined as
Definition 4.3 (Constraint Graph). Let H be a Q2SAT given in its rank-1 decomposition.
The constraint graph of H is a directed, labeled, graph with self loops G(H) = (V,E, `) where
V = {i ∈ [n] : ∃j ∈ [n] such that (i, j) ∈ I or (j, i) ∈ I}. The edge set E = E1 ∪ E2 where

E1 = {(i, j) ∈ [n]× [n] : (i, j) ∈ I and rank(Πij) ∈ {1, 3}, or (j, i) ∈ I and rank(Πji) ∈ {1, 3}};

E2 = {(i, j, b) ∈ [n]× [n]× [2] : (i, j) ∈ I and rank(Πij) = 2, or (j, i) ∈ I and rank(Πji) = 2}.

An edge e is said to go from u to v if e ∈ {(u, v), (u, v, 1), (u, v, 2)}. Correspondingly, erev is the
reverse edge of e where (i, j)rev = (j, i), (i, j, 1)rev = (j, i, 1) and (i, j, 2)rev = (j, i, 2) respectively.
The input to the algorithm is the constraint graph G(H), given in the standard adjacency list
representation of weighted graphs. It is suitably modified to deal with parallel edges as shown in
Figure (4.1).

The doubly linked list of size at most n has an element for each qubit in the system. The ith

element in this list points to a doubly linked list containing the edges that leave vertex i with
an element for each (i, j) or (i, j, b). Each element (i, j) stores j, b (if it is an (i, j, b) edge), the
label Πij (or Πij,b) and a pointer to the next and previous edges in the list. For the ease of
performing quick updates during the course of the algorithm, there is also a double link between
the elements representing e and erev for each edge e. In a slight abuse of notation, for a graph
G = (V,E), given a subset of vertices U ⊆ V , G(U) refers to the subgraph induced by U . This

51

Π12,1 2

1

4

3

Π23

Π32

Π14
Π41

Π44

Π12,2

Π21,1 Π21,2

(a)

1

2

3

4 4 Π44 1 Π41 ⊥

2 Π32

3 Π23 ⊥1 Π21,1 1 Π21,2

2 Π12,1 2 Π12,2 ⊥

⊥

4 Π14

⊥

(b)

Figure 4.1: (a) The constraint graph for Hamiltonian H = Π12 + Π14 + Π23 + Π44 where
rank(Π44) = rank(Π23) = 1, rank(Π12) = 2 and rank(Π14) = 3 using its rank-1 decomposition
(b) The adjacency list representation for the constraint graph G(H).

is not to be confused with the constraint graph notation G(H) for a Hamiltonian H and the
context would be clear from usage.

4.3.3 Assignments
Following the classical Davis-Putnam procedure, the ground state is built up in a step-wise
manner using partial assignments that are extended one qubit at a time, or simply assignments
in short.
Definition 4.4. A partial assignment, or simply assignment, s is a mapping from [n] to 1-qubit
or 2-qubit states. For every i ∈ [n], the value s(i) is one of the following: (a) a 1-qubit state
|α〉i, (b) a 2-qubit entangled state |γ〉ij for some j 6= i and the entangled state is shared with j
or (c) a symbol � which is used to signify an unassigned variable.

It is common practice to consider normalized quantum states, that is, states |α〉 such that
〈α|α〉 = 1. However, this algorithm will deal with and assign un-normalized states to the
variables. This does not affect the accuracy of the algorithm but can result in an un-normalized
ground state as the output. It is possible to additionally normalize the ground state without
affecting the running time of the algorithm. A partial assignment has various properties which
are listed below:

• The support of s is the set of qubits that have been assigned values in the partial assignment
and is given by supp(s) = {i ∈ [n] : s(i) 6= �}. The assignment s is empty if supp(s) = ∅. For
clarity, the empty assignment is denoted as s�.
• A natural ordering can be imposed on assignments. For 2 assignments s and s′, s′ is an
extension of s, if for every i, such that s(i) 6= �, s′(i) = s(i).
• An assignment is total if s(i) 6= �, for all i.

52

• Every assignment defines a product of 1-qubit and 2-qubit states on the support of s denoted
as |s〉.
• An assignment s satisfies a projector Πe (or the edge e) if for any total extension s′ of s,

Πe|s′〉 = 0.
• For a Hamiltonian H in its rank-1 decomposition and an assignment s, the reduced Hamiltonian
Hs of s is

Hs = H −
∑

s satisfies e
Πe.

The constraint graph G(Hs) of the reduced Hamiltonian Hs is Gs = (Vs, Es).
• An assignment s is a pre-solution if it has a total extension s′ satisfying every constraint in H.
s is a solution if s itself satisfies every constraint in H. Obviously, an assignment is a solution
if and only if Gs is the empty graph.
• An assignment s is closed if supp(s) ∩ Vs = ∅.

4.3.4 Propagation
Recalling the original Davis-Putnam Procedure (DP-Procedure), the building block that allows
one to determine the assignment for a cluster of variables is the unit propagation process.
Essentially, this process involves unit clauses i.e. clauses containing just one literal. The only
way to satisfy a unit clause containing a literal ` is to set ` to true. This assignment propagates
to other clauses in two ways. Any clause which also contains ` is automatically satisfied and
can be simplified. In any clause where ` occurs, this literal is deleted reducing the size of the
clause. This leads to a simplified instance which is still equivalent to the previous set of clauses.
In the case of 2SAT this means that once one of the literals in the clause is set to false, a unit
clause is obtained which can be satisfied according to the rules of unit propagation. Repeated
applications of this propagation helps to decide the assignment of a sequence of propagated
literals.

Here, the idea is to extend this notion of propagation to the case of Q2SAT by propagating
quantum states across rank-1 constraints in the Hamiltonian. A related notion of using transfer
matrices can be traced back to Bravyi’s algorithm [Bra11] and Laumann et al. [LMSS10] studying
the satisfiability of random instances of QkSAT. Since the product state theorem guarantees a
product state solution over rank-1 constraints, propagation should help achieve the following:
Given a rank-1 constraint Π12 = |ψ〉〈ψ|, find a state |α〉1 ⊗ |β〉2 such that

(〈α| ⊗ 〈β|)Π12(|α〉 ⊗ |β〉) = 0⇒ 〈α| ⊗ 〈β| · |ψ〉 = 0.

Definition 4.5 (Propagation). Let Πe = |ψ〉〈ψ| be a rank-1 projector acting on variables i, j,
and let |α〉 be either a 1-qubit state assigned to variable i, or a 2-qubit entangled state assigned
to variables k, i for some k 6= j. We say that Πe propagates |α〉 if, up to an arbitrary complex
phase, there exists a unique 1-qubit state |β〉 such that Πe|α〉 ⊗ |β〉j = 0. In such case we say

53

that |α〉 is propagated to |β〉 along Πe, or that Πe propagated |α〉 to |β〉.

When qubit 1 is already assigned the state |α〉, then analogous to unit propagation, two cases
are possible: (a) |α〉 satisfies Π12 and so, any |β〉 suffices or (b) There exists a unique |β〉 that
can satisfy the constraint Π12. More specifically, when |ψ〉 is a product state, any one of the two
cases could occur but if |ψ〉 is an entangled state then only the second case occurs as illustrated
in Figure (4.2) and proved with Lemma 4.1 below.

|α〉

i j|γδ〉〈γδ|

|β〉

6= |γ⊥〉 ⇒ = |δ⊥〉

= |γ⊥〉 6⇒ No propagation

(a) Product State Constraint

i j|Ψ−〉〈Ψ−|

|α〉 |β〉

= |0〉 ⇒ = |0〉

= |α〉 = |α〉⇒
for all α ∈ C2

(b) Entangled State Constraint

Figure 4.2: Propagation for Quantum 2SAT when |ψ〉 is a product state or is entangled.

Lemma 4.1. Consider the rank-1 projector Πe = |ψ〉〈ψ|, defined on qubits i, j. If |ψ〉 is
entangled, it propagates every 1-qubit state |α〉i to a state |β(α)〉j such that if |α〉i 6= |α′〉i then
|β(α)〉j 6= |β(α′)〉j. This propagation can be calculated in constant time. When |ψ〉 is a product
state |ψ〉 = |x〉i ⊗ |y〉j, the projector Πe does not propagate states that are proportional to |x⊥〉i,
while all other states are propagated to |y⊥〉j.

Proof. Let |ψ〉 be entangled and consider the state |α〉. Expanding |ψ〉, |α〉, |β〉 in the standard
computational basis,

|ψ〉 =
∑
i,j

ψij |i〉 ⊗ |j〉; |α〉 =
∑
i

αi|i〉; |β〉 =
∑
j

βj |j〉. (4.3)

Then, Πe(|α〉 ⊗ |β〉) = 0⇒
∑
i,j

ψ∗ijαiβj = 0. (4.4)

Since |ψ〉 is entangled, the 2 × 2 matrix Ψ = [ψ∗ij] is non-singular. Then, ([α∗0 α∗1]Ψ)T is a
2-dimensional complex vector. Now, using the fact that in a 2-dimensional space, every vector
has a unique orthogonal vector (up to scaling factors), it is possible to find |β〉 orthogonal to
this vector that would satisfy Equation (4.3). Moreover, this can be found in constant time and
a different |α〉 necessarily maps to a different |β〉.

When |ψ〉 is a product state, the reasoning is straightforward and follows the same reasoning
as the classical case. That is, either the assignment to qubit i is already orthogonal to the
constraint’s state on qubit i and this single-handedly satisfies the constraint. In this case, there is
no propagation as qubit j can be assigned any state and the constraint is still satisfied. However,
if qubit i’s assignment isn’t sufficient, the only other possibility is to satisfy the constraint from
qubit j’s assignment thereby propagating that assignment across the edge (i, j).

54

Propagation will be used, as in the Davis-Putnam procedure, to generate some partial assignment
as a tensor product of 1 and 2-qubit states or to find out if the system is unsatisfiable. The
following two lemmas highlight this capacity of the propagation sub-routine.
Lemma 4.2 (Single qubit propagation). Consider a frustration-free Q2SAT system H =∑
e∈I Πe with a rank-1 projector Πe = |ψ〉〈ψ| between qubits i, j, and assume that H has a

ground state of the form |Γ〉 = |α〉i ⊗ |rest〉[n]\{i}. If Πe propagates |α〉i to |β〉j then necessarily
|rest〉[n]\{i} = |β〉j ⊗ |rest′〉[n]\{i,j}.

Proof. For the first claim assume that Πe propagates |α〉i to |β〉j . Without loss of generality,

|rest〉[n]\{i} = |β〉j ⊗ |rest1〉+ |β⊥〉j ⊗ |rest2〉 ,

where the states |rest1〉, |rest2〉 are defined on all the qubits of the system except for (i, j), and
are not necessarily normalized. Plugging this expansion into the condition Πe|Γ〉 = 0 provides
the equation

(Πe|α〉i|β〉j)⊗ |rest1〉+ (Πe|α〉i|β⊥〉j)⊗ |rest2〉 = 0 .

Since Πe propagates |α〉i to |β〉j , one finds that Πe|α〉i|β〉j = 0 and Πe|α〉i|β⊥〉j 6= 0. Therefore,
the above equation implies that |rest2〉 = 0 and |rest′〉 = |rest1〉.

Lemma 4.3 (Entangled 2-qubits propagation). Consider a frustration-free Q2SAT system H

with a rank-1 projector Πe = |ψ〉〈ψ| between qubits i, j. Assume that H has a ground state of the
form |Γ〉 = |φ〉ik ⊗ |rest〉[n]\{i,k}, where |φ〉 is an entangled state on qubits i, k with k 6= j. The
following facts hold:

1. |ψ〉 is a product state |ψ〉 = |x〉i|y〉j.
2. Πe propagates |φ〉 to |y⊥〉 and necessarily |rest〉[n]\{i,k} = |y⊥〉j ⊗ |rest′〉[n]\{i,j,k}.

Proof. Write |φ〉ik in its Schmidt decomposition |φ〉 = λ1|α〉 ⊗ |β〉 + λ2|α⊥〉 ⊗ |β⊥〉, and note
that both λ1, λ2 6= 0, since |φ〉 is entangled. Plugging this into the condition Πe|Γ〉 = 0,

Πe|Γ〉 = λ1|β〉k ⊗Πe
(
|α〉i ⊗ |rest〉

)
+ λ2|β⊥〉k ⊗Πe

(
|α⊥〉i ⊗ |rest〉

)
= 0 .

Since |β〉 is linearly independent of |β⊥〉, each term above has to independently be 0 i.e.
Πe
(
|α〉i ⊗ |rest〉

)
= Πe

(
|α⊥〉i ⊗ |rest〉

)
= 0.

For the first claim, assume that |ψ〉 is entangled. Then by Lemma 4.1, Πe propagates |α〉 and
|α⊥〉 to two different states, say, |γ1〉 6= |γ2〉. But then by Lemma 4.2, it follows that |rest〉 must
be both in the form |γ1〉j ⊗ |rest′〉 and |γ2〉j ⊗ |rest′〉 and this leads to a contradiction.

For the second claim, assume that |ψ〉 = |x〉 ⊗ |y〉 is a product state. Since Πe
(
|α〉i ⊗ |rest〉

)
=

Πe
(
|α⊥〉i ⊗ |rest〉

)
= 0, both states |α〉i ⊗ |rest〉, |α⊥〉i ⊗ |rest〉 are ground states of the single

projector Hamiltonian H̃ = Πe. Using Lemma 4.1 and Lemma 4.2, together with the fact

55

that at least one of the states |α〉, |α⊥〉 is different from |x⊥〉, the conclusion is that |rest〉 =
|y⊥〉j ⊗ |rest′〉.

The Propagation Procedure

Since propagation is a crucial sub-routine that would be called multiple times in the main
algorithm, it would help to understand how it is executed. To that end, some notation to help
understand the pseudocode is introduced. Given a Q2SAT instance H consider an assignment
s where the graph Gs = (Vs, Es) is the graph of the reduced Hamiltonian Hs. The goal is to
describe the result of a multi-step propagation in the graph Gs until no further propagation
is possible. Assume that this propagation starts from some qubit i and can get started when
s(i) = � for which i is started with an assignment |α〉 ∈ C2. The other scenario is when qubit i
is already assigned some 1 or 2-qubit state in s i.e. s(i) = |δ〉 for |δ〉 ∈ {|α〉i, |γ〉ij}.

Let s, i and |δ〉 be such that s(i) ∈ {�, |δ〉}. An edge e ∈ Es from i to j propagates |δ〉 if Πe

propagates it, and prop(s, e, |δ〉) denotes the state |δ〉 is propagated to. Since one is interested
in multi-step propagation, the notion is now extended to one over multiple connected edges,
specifically, paths. Let i0 = i, i1, . . . ik = j be vertices in Vs, and let er be an edge from ir to ir+1,
for r = 0, . . . , k − 1. Set set |α0〉 = |δ〉 and let |α1〉, . . . , |αk〉 be states such that the propagation
of |αr〉 along er is |αj+1〉, for r = 0, . . . , k − 1. Then, the path p = (e0, . . . , ek−1) from i0 to ik
propagates |δ〉, and we set prop(s, p, |δ〉) = |αk〉. A vertex j ∈ Vs is accessible by propagating |δ〉
from i if either j = i or there is a path from i to j that propagates |δ〉. V prop

s (i, |δ〉) denotes the
set of such vertices, and by extprop

s (i, |δ〉) the extension of s by the values given to the vertices in
V prop
s (i, |δ〉) by iterated propagation.

The set V prop
s (i, |δ〉) divides the edges Es into three disjoint subsets: the edges E1 of the induced

subgraph G(V prop
s (i, |δ〉)), the edges E2 between the induced subgraphs G(V prop

s (i, |δ〉)) and
G(Vs \ V prop

s (i, |δ〉)), and the edges E3 of the induced subgraph G(Vs \ V prop
s (i, |δ〉)). While the

edges in E1∪E2 are satisfied by s′, none of the edges in E3 are satisfied. Therefore Gs′ is nothing
but G(Vs \ V prop

s (i, |δ〉)) without the isolated vertices, and it can be constructed by the following
process. Given s and i, the edges in E1 ∪E2 can be traversed via a breadth first search rooted at
i. The levels of the tree are decided dynamically: at any level the next level is composed of those
vertices whose value is propagated from the current level. The leaves of the tree are vertices
in Vs \ V prop

s (i, |δ〉). The sub-routine Propagation uses a temporary queue Q to implement this
process as shown in Algorithm 4.1 and illustrated in Figure (4.3).
Lemma 4.4 (Propagation Lemma). Let Propagation(s,Gs, i, |δ〉) be called when Hs does not
have rank-3 constraints, and s(i) ∈ {�, |δ〉}. Let s′ and G′ = (V ′, E′) be the outcome of the
procedure. The following hold true:

1. If Propagation(s,Gs, i, |δ〉) doesn’t return “unsuccessful” then s′ = extprop
s (i, |δ〉) and G′ =

Gs′. Moreover, if s is a pre-solution then s′ is a pre-solution, and if s is closed then s′ is
also closed.

56

i

j

|δ〉

(a)

i

j

|δ〉
|ψ1〉

(b)

i

j

|δ〉
|ψ1〉 |ψ2〉

(c)

i

j

|δ〉
|ψ1〉 |ψ2〉

(d)

i

j

|δ〉
|ψ1〉

p1

|ψ2〉

p2

|ψj1〉 6= |ψj2〉

(e)

Figure 4.3: Multi-step Propagation. (a) The propagation starts from i with |δ〉; (b)
Propagate across any edge going from i; (c) Propagate across all edges going out from i; (d)
Propagate to all vertices at a distance of 2 from i in a BFS fashion; (e) j receives two assignments
along two different path p1 and p2 giving a contradiction if they aren’t equal.

Algorithm 4.1: Propagation(s,Gs, i, |δ〉)

1 s(i) := |δ〉
2 create queue Q, and put i into Q
3 while Q is not empty do
4 remove the head j of Q
5 foreach edge e from j to k do
6 if e propagates s(j) then
7 if s(k) /∈ {�, prop(s, e, s(j))} then abort and return “unsuccessful”
8 if s(k) = � then s(k) := prop(s, e, s(j))
9 enqueue k

10 remove e and erev from Es

11 if the list pointed to by k is empty then remove k from Vs

12 remove j from Vs

2. If Propagation(s,Gs, i) returns “unsuccessful” then there is no solution z of which is an
extension of s and for which z(i) = |δ〉.

3. The complexity of the procedure is O (|Es| − |Es′ |) .

57

Proof. The assignments made during the breadth first search correspond exactly to the paths
that propagate |δ〉 from i. Therefore the extension of s created by the process is indeed
s′ = extprop

s (i, |δ〉). The while loop removes the edges between vertices in V prop
s (i, |δ〉) and the

edges which go from V prop
s (i, |δ〉) to Vs \V prop

s (i, |δ〉), as well as the vertices in V prop
s (i, |δ〉). Then

the edges from Vs \ V prop
s (i, |δ〉) to V prop

s (i, |δ〉) are removed, as well as the remaining vertices
without outgoing (and incoming) edges. resulting in G′ = Gs′ .

Suppose that s is a pre-solution, and let z be an extension of s which is a solution and which
is a product state on the vertices in Vs. By Theorem 4.1 there exists such a solution since Hs

doesn’t have rank-3 constraints. Define the assignment z′ by

z′(j) =

s
′(j) if j ∈ supp(s′)

z(j) otherwise.

Then z′ is a solution which is an extension of s′, and therefore s′ is a pre-solution. If s is closed
then so is s′ since only the vertices in V prop

s (i, |δ〉) get assigned during the process, and they are
not included into Vs′ .

Suppose that the procedure returns “unsuccessful”. Then there is a vertex k ∈ V prop
s (i, |δ〉), and

two paths p and p′ in Gs from i to k such that prop(s, p, |δ〉) = |β〉, prop(s, p′, |δ〉) = |β′〉 and
|β〉 6= |β′〉. Suppose also that there exists a solution z which is an extension of s and for which
z(i) = |δ〉. Then by the repeated use of Lemma 4.2, and also by using Lemma 4.3 when |δ〉 is
a 2-qubit entangled state, one concludes that z(k) is simultaneously equal to |β〉 and to |β′〉,
which is a contradiction.

Finally Statement 3 follows since every step of the procedure can be naturally charged to an
edge in Es \ Es′ , and every edge is charge only a constant number of times.

4.4 The main algorithm

Having discussed the precise nature of the input and output of the problem the goal of the
Q2SAT problem can be formally stated as

Q2SAT
Input: The constraint graphG(H) of a 2-local HamiltonianH, given in the adjacency
list representation.

Output: A product state solution if H is frustration free, or “H is unsatisfiable” if
it is not.

4.4.1 Algorithm Sketch
An overview of the algorithm can be obtained by understanding the Q2SATSolver procedure.
The algorithm can be divided into four phases, each made up of multiple stages and each stage

58

can be seen as corresponding to a single Propagation sub-routine. The algorithm also identifies
an unsatisfiable instance and stops at some point in its execution. This could either happen
when the rank-3 constraints in the instance cannot be satisfied or it is found that a contradiction
cannot be avoided. Here, contradiction refers to a single qubit being simultaneously assigned
multiple non-empty values through the course of the algorithm. The global variables used are
two assignments s0 and s1 both initialized to s� and two corresponding constraint graphs G0

and G1, in the adjacency list representation both initialized to G(H).

While running on a frustration free instance, the following invariants are maintained at the end
of each stage: s0 = s1 and G0 = G1 = Gs0 . In the first two phases, modifications are only made
to s0 and G0 and are synchronized with s1 and G1 respectively. In the latter two stages, s0 and
s1 (along with the corresponding graphs) develop independently. However, at the end of each
stage, the state of only one of the two i.e. (s0, G0) or (s1, G1) is retained and synchronized with
the other. This reflects the notion of parallel propagation suggested in the improvements for the
Davis Putnam procedure and is essential for complexity considerations ensuring that the useless
work done is proportional to the useful work.

The first thing to do is to deal with maximal rank or rank-3 constraints since there is only one
assignment to satisfy them which is what the first phase MaxRankRemoval does. The second
phase checks if these assignments already lead to any contradictions by propagation them. If not,
one is left with a closed coherent assignment s and a reduced instance Hs made up of just rank-1
constraints. The next phase tries to satisfy product constraints and propagate them. There
are two possible ways to satisfy a product state and each of these choices is efficiently tried in
ParallelPropagation. This leaves a constraint graph containing only rank-1 entangled constraints
and these are dealt with one by one. Trying an arbitrary value on a qubit and propagating it
would reveal a contradiction if any. However, this also provides a simple way to find a product
state implied by the entangled constraints. This is used as in the previous phase to satisfy and
propagate assignments. A successful run of the solver returns a satisfying assignment and an
empty constraint graph. A crucial reason for the effectiveness of this algorithm is the fact that
once an edge is checked for a potential successful propagation, then irrespective of whether
propagation actually happens across the edge or not, it can be removed from the instance without
changing its satisfiability.
Theorem 4.2. Let G(H) = (V,E) be the constraint graph of a 2-local Hamiltonian. Then:

1. If H is frustration-free, the algorithm Q2SATSolver(G(H)) outputs a ground state |s〉.
2. If H is not frustration-free, the algorithm Q2SATSolver(G(H)) outputs “H is unsatisfiable”.
3. The running time of the algorithm is O(|V |+ |E|).

To prove Theorem 4.2, the subroutines used are discussed before the main solver analyzed.

59

Algorithm 4.2: Q2SATSolver(G(H))

1 s0 = s1 := �, G0 = G1 := G(H) . Initialize global variables
2 MaxRankRemoval() . Phase 1: Remove maximal rank constraints
3 while ∃ i ∈ V0 such that s(i) 6= � do
4 Propagation (s0, G0, i, s0(i)) . Phase 2: Propagate all assigned values
5 if the propagation returns “unsuccessful” then output “H is unsatisfiable”
6 s1 := s0, G1 := G0

7 while ∃ a product constraint Πi0i1 = |α⊥0 〉〈α⊥0 |i0 ⊗ |α⊥1 〉〈α⊥1 |i1 do
8 ParallelPropagation(i0, |α0〉, i1, |α1〉) . Phase 3: Remove product constraints
9 while G0 is not empty do

10 ProbePropagation(i) for some vertex i . Phase 4: Remove entangled constraints
11 output |s〉 for any total extension s of s0.

4.4.2 Max rank removal
As every maximal rank constraint has a unique solution (up to a global phase), MaxRankRemoval
uses this assignment for each of these constraints and checks for globally consistency.

Algorithm 4.3: MaxRankRemoval()

1 foreach i ∈ V0 such that rank(Πii) = 1 and |φ〉 uniquely satisfies Πii do
2 s0(i) := |φ〉
3 foreach i ∈ V0, ∀ e ∈ E0 from i to j such that rank(Πe) = 3 do
4 let |γ〉 be the unique state satisfying Πe

5 if |γ〉 = |α〉i|β〉j is a product state then
6 if s0(i) /∈ {�, |α〉} then output “H is unsatisfiable”
7 if s0(i) = � then s0(i) := |α〉

8 else if |γ〉 an entangled state then
9 if s0(i) /∈ {�, |γ〉} then output “H is unsatisfiable”

10 if s0(i) = � then s0(i) := |γ〉

11 remove from E0 every edge e such that Πe is satisfied by s0.

12 remove every isolated vertex from G0

13 s1 := s0, G1 := G0

Lemma 4.5. Let s0, G0, s1, G1 be the outcome of MaxRankRemoval. It holds that:

1. If MaxRankRemoval does not output “H is unsatisfiable” then s0 satisfies every maximal
rank constraint, G0 = G(Hs0) and s0 = s1, G0 = G1. Moreover, if H is satisfiable then s0

60

is a pre-solution.
2. If MaxRankRemoval outputs “H is unsatisfiable” then H is unsatisfiable.
3. The complexity of the procedure is O(|V |+ |E|)|.

Proof. If the procedure doesn’t output “H is unsatisfiable” then indeed s0 satisfies all maximal
rank constraints. The removal of the necessary edges and vertices insures that G0 = G(Hs0),
and obviously s0 = s1, G0 = G1. If H is satisfiable, then it has a ground state for some total
assignment s. This s is an extension of s0 because there is a unique way to satisfy the maximal
rank constraints.

Maximal rank projectors are such that there is a unique assignment for their qubits which satisfies
them. The first part of the procedure creates the assignment which assigns these necessary
values. If this assignments is not coherent then H is unsatisfiable. Similarly, if s0 assigns an
entangled 2-qubit state between variables i and k, and there is an entangled rank-1 constraint
between i and j, then by Lemma 4.3 it is impossible to extend s0 into a satisfying assignment,
and therefore H is unsatisfiable. This proves the second statement.

The procedure can be executed by a constant number of vertex and edge traversals for s0, and
similarly for s1 thereby satisfying the complexity of the third statement.

4.4.3 Parallel Propagation
The procedure ParallelPropagation is called when s0 is a closed assignment, Gs0 contains only
rank-1 constraints and there also exists an edge with a product constraint on some qubits
(i, j) as Πij = |α⊥〉〈α⊥|i ⊗ |β⊥〉〈β⊥|j . The possible satisfying satisfying assignments for this
constraint either assign |α〉 to i or |β〉 to j. These are tried in parallel where one copy progresses
with (s0, Gs0) and the other with (s1, Gs1). The propagation proceeds in parallel by traversing
one edge in each copy at a time. The propagation that is the first to terminate successfully
determines the progress made as illustrated in Figure (4.4)

Algorithm 4.4: ParallelPropagation(i0, |α0〉, i1, |α1〉)

1 Run in parallel Propagation (s0, i0, |α0〉) and Propagation (s1, i1, |α1〉)
2 until one of them terminates successfully or both terminate unsuccessfully

3 if both propagations terminate unsuccessfully then output “H is unsatisfiable”
4 else
5 let Propagation (s0, G0, i0, |α0〉) terminate first . The other case is symmetric
6 undo Propagation(s1, G1, i1, |α1〉)
7 s1 := s0, G1 := G0

Lemma 4.6. Let ParallelPropagation be called when s0 is closed, Hs0 doesn’t have rank-3
constraints, G0 = Gs0 , there exists a product edge in G0 from i0 to i1 with Πi0i1 = |α⊥0 〉〈α⊥0 |i0 ⊗

61

i j

k

`

m

Πij

Πik

Πj`

Π`m
G0

i j

k

`

m

Πij

Πik

Πj`

Π`m
G1

(a)

i j

k

`

m

Πij

Πik

Πj`

Π`m
G0

|α〉
i j

k

`

m

Πij

Πik

Πj`

Π`m
G1

|β〉

(b)

i j

k

`

m

Πik

Πj`

Π`m
G0

|α〉
i j

k

`

m

Πik

Πj`

Π`m
G1

|β〉

(c)

i j

k

`

m

Πj`

Π`m
G0

|α〉

|ψk〉

i j

k

`

m

Πij

Πik

Πj`

Π`m
G1

(d)

Figure 4.4: Parallel Propagation. (a) Copy G0 into G1; (b) Assign s0(i) = |α〉 and
s1(j) = |β〉; (c) Propagate across 1 edge in G0 and G1; (d) G0’s propagation terminates
successfully and G1’s propagation is undone.

|α⊥1 〉〈α⊥1 |i1, and s1 = s0, G1 = G0. Let s′0, s′1, G′0, G′1 be the outcome of the procedure. The
following hold true:

1. If ParallelPropagation does not output “H is unsatisfiable” then s′0 is a proper closed
extension of s0, G′0 = Gs′0 , and s

′
1 = s′0, G′1 = G′0. Moreover, if s is a pre-solution then s′0

is a pre-solution.
2. If ParallelPropagation outputs “H is unsatisfiable” then H is unsatisfiable.
3. The complexity of the procedure is O(|Es0 | − |Es′0 |).

Proof. If the procedure does not output “H is unsatisfiable”, then there was at least one
propagation that terminated successfully, say Propagation(s0, G0, i0, |α0〉). Then, s′0 is a proper
extension of s0 since s0 was a closed assignment with s(i0) = �. All other claims of the first
statement are straightforward and follow from Lemma 4.4.

As Hs0 does not contain any rank-3 constraints, its ground state is will be a product of 1-qubit
states in case it is satisfiable. Since Hs0 contains a product state constraint Πi0i1 = |ψ〉〈ψ| where
|ψ〉 = |α⊥0 〉i0 ⊗ |α⊥1 〉i1 , the two possible product state assignments that would satisfy Πi0i1 would
either have |α0〉 assigned to i0 or |α1〉 to i1. With both of the propagations failing, Lemma 4.4
implies that there is no way to satisfy Πi0i1 and by translation, Hs0 and H. Hence, H is not
frustration free.

For the complexity analysis, in the case of a successful propagation run, the unterminated or
unsuccessful run performs at most the same amount of work as the successful run. Undoing the
propagation can be done in time proportional to the number of edges along which propagation
has occurred so far possibly by tracking removed edges in temporary lists. The complexity of a
successful propagation run follows from Lemma 4.4.

62

4.4.4 Probe Propagation
The most interesting case of the algorithm happens when the instance has only rank-1 entangled
constraints. For one thing, this is not a case that occurs classically in any form and so requires
some inherently quantum arguments to solve. For any form of propagation to occur, one
needs an initial state. One way to proceed is to start with an arbitrary state (say, |0〉) on an
unassigned qubit i. The next obvious step is to propagate this assignment to see if it terminates
successfully. If so, another unassigned qubit can be picked and the same process repeated, If
not, a contradiction arises: ∃j ∈ Vs such that two propagating paths reaching j assign different
values to it. To deal with this contradiction, observations of the “Sliding Lemma” which initially
appeared in Ji, Wei, Zeng [JWZ11] are essential. If the propagating path containing rank-1
entangled constraints is of the form i⇒ i1 ⇒ . . .⇒ j, then, the Sliding Lemma states that the
ground space of the Hamiltonian Πii1 + Πi1i2 + . . .+ Πik−1j is equivalent to the ground space
of the Hamiltonian Πij + Πi1i2 + . . . + Πik−1j where Πij is a new projector defined on qubits
(i, j) that is replacing Πii1 . The reason it is called sliding arises from the fact that it can be
graphically viewed as sliding the constraint Πi0i1 along the edges of the path i1 ⇒ . . .⇒ ik as
shown in Figure (4.5).

Figure 4.5: Handling a contradicting cycle: we slide edges that touch i along the two paths to
j until we get a double edge with a ‘tail’. We then use a structure lemma to deduce that at least
one of these edges can be written as a product projector.

Now, if there are two paths such from i to j, then one ends up with 2 projectors between
qubits (i, j). For a contradiction to arise, it is obvious that the two projectors are different.
Proposition 4.2 then implies that this two dimensional space spanned by the two projectors
contains a product state which can be used as the basis of a call to ParallelPropagation.
Lemma 4.7 (Sliding Lemma). Consider a system on 3 qubits i, j and k. Suppose that we have
two rank-1 constraints Π1 = |ψ1〉〈ψ1|ij on qubits (i, j) and Π2 = |ψ2〉〈ψ2|jk on qubits (j, k). If
|ψ2〉 is entangled, then there is another rank-1 constraint Π3 = |ψ3〉〈ψ3|ik on qubits (i, k) such
that the ground space of Π1 + Π2 is identical to the ground space of Π2 + Π3. In addition, if a
single qubit state |α〉i is propagated by Π1 + Π2 to |β〉k, then it is also propagated to |β〉k directly
via Π3.

Proof. Expand |ψ2〉jk in terms of the standard basis on k as |ψ2〉jk = |x〉j |0〉k+|y〉j |1〉k, where the
states |x〉 and |y〉 are neither necessarily normalized nor orthogonal but are linearly independent
of each other as |ψ2〉 is entangled. Consequently, using a Gaussian elimination, one can find

63

a unique non-singular transformation T on qubit j such that T |x〉 = |1〉 and T |y〉 = −|0〉.
Then, T |ψ2〉jk = |1〉j |0〉k − |0〉j |1〉k is the anti-symmetric state. Let |ψ̃1〉ij = T |ψ1〉ij and
|ψ̃2〉jk = T |ψ2〉jk respectively and use them to define the rank-1 projectors Π̃1 = |ψ̃1〉〈ψ̃1|ij , Π̃2 =
|ψ̃2〉〈ψ̃2|jk. As Π̃2 projects into the anti-symmetric subspace, any state in the ground space of
Π̃1 + Π̃2 must be invariant under a swapping of qubits j, k. Therefore, defining |ψ3〉ik = |ψ̃1〉ik,
and Π3 = |ψ3〉〈ψ3|ik, the ground space of Π̃1 + Π̃2 is identical to the ground space of Π3 + Π̃2.
Now, applying the inverse transformation T−1 on qubit j, the projector Π̃2 returns to Π2, while
Π3 remains unchanged. Since both T, T−1 are non-singular, it follows that ground space of
Π1 + Π2 is identical to the ground space to Π2 + Π3.

For the second claim, assume by way of contradiction that Π3 does not propagate |α〉i to |β〉k.
Then there is a 1-qubit state |γ〉 6= |β〉, such that Π3(|α〉i|γ〉k) = 0. Since Π2 is a rank-1
entangled projector, by Lemma 4.1, it propagates |γ〉k to some state |δ〉j , and therefore the state
|α〉i|δ〉j |γ〉k is a ground state of Π2 + Π3, as well as of Π1 + Π2. However, this contradicts the
assumption that latter propagates |α〉i to |β〉k.

k

i j
|ψ1〉〈ψ1|

Π2

Tj

(a)

k

i j
|ψ′1〉〈ψ′1|

Π2

(b)

k

i j
|ψ′1〉〈ψ′1|

Π2

(c)

k

i j
|ψ′1〉〈ψ′1|

Π2

T−1
j

(d)

k

i j
|ψ1〉〈ψ1|

Π3

(e)

Figure 4.6: Sliding. (a) Apply the non-singular transformation Tj to qubit j; (b) |ψ′1〉 =
Tj |ψ1〉 = |y1〉|y2〉 − |y2〉|y1〉 for |y1〉 6= |y2〉; (c) Slide Π2 along |ψ′1〉〈ψ′1| as it projects onto the
symmetric subspace; (d) Apply the inverse transformation to qubit j; (e) Constraint Πik changes
to Π3 on applying the transformation.

Applying Lemma 4.7 iteratively along a path p := i0 → i1 → . . .→ ik made of entangled rank-1
projectors Πi0i1 , . . . ,Πik−1ik , it is possible to transform Πi0i1 to the projector Πi0i2 and so on
till Πi0ik is obtained as illustrated in Figure (4.5). Let the underlying 2-qubit state in Πi0ik be
denoted as |slide(p)〉 thereby setting Πi0ik = |slide(p)〉〈slide(p)|. Then, the following corollary
arises.
Corollary 4.1. Given a path p := i0 → i1 → . . . → ik of entangled rank-1 projectors
Πi0i1 , . . . ,Πik−1ik , apply the sliding lemma iteratively to obtain |slide(p)〉i0ik . Then the ground
space of Πi0i1 + Πi1i2 + . . . + Πik−1ik is equal to the ground space of Πi1i2 + . . . + Πik−1ik +
|slide(p)〉〈slide(p)|. Moreover, if |α〉i0 is propagated to |β〉ik along p, then it is also propagated
directly by |slide(p)〉〈slide(p)|.

64

The ProbePropagation procedure can now be stated and analyzed.

Algorithm 4.5: ProbePropagation(i)

1 Propagation (s0, G0, i, |0〉)
2 if the propagation is successful then s1 := s0, G1 := G0

3 else
4 Pick a j such that |s0(j) > 1|
5 find two paths p1, p2 in G0 from i to j such that prop(s0, p1, |0〉) 6= prop(s0, p2, |0〉)
6 find a state |α⊥〉i ⊗ |β⊥〉j in the 2-dimensional subspace: span{slide(p1), slide(p2)}
7 undo Propagation (s0, G0, i, |0〉)
8 ParallelPropagation(i, |α〉, j, |β〉)

Lemma 4.8. Let ProbePropagation be called when s0 is closed, Hs0 has only rank-1 entangled
constraints, G0 = Gs0 , and s1 = s0, G1 = G0. Let s′0, s′1, G′0, G′1 be the outcome of the procedure.
Then the following holds:

1. If ProbePropagation does not output “H is unsatisfiable” then s′0 is a proper closed extension
of s0, G′0 = Gs′0, and s

′
1 = s′0, G′1 = G′0. Moreover, if s is a pre-solution then s′0 is a

pre-solution.
2. If ParallelPropagation outputs “H is unsatisfiable” then H is unsatisfiable.
3. The complexity of the procedure is O(|Es0 | − |Es′0 |).

Proof. If the procedure does not output “H is unsatisfiable” then either Propagation(s0, G0, i, |0〉)
or one of the parallel propagations (say Propagation(s0, G0, i, |α〉)) terminates successfully. Then
s′0 is a proper extension of s0 since s0 is closed and therefore s0(i0) = �. Obviously s′1 = s′0 and
G′1 = G′0, and all other claims follow from the Propagation Lemma.

Suppose that all three propagations are unsuccessful. By Corollary 4.1, any solution for Hs0

also satisfies the system obtained after sliding the constraints from i along paths p1 and p2, with
the new constraints |slide(p1)〉〈slide(p1)|ij and |slide(p2)〉〈slide(p2)|ij . Using Proposition 4.2, as
|α⊥〉i⊗ |β⊥〉j lies in span

{
|slide(p1)〉, |slide(p2)〉

}
, any state orthogonal to the latter subspace will

also be orthogonal to the former. Hence, any solution for Hs0 should also satisfy the product
constraint |α⊥〉〈α⊥|i ⊗ |β⊥〉〈β⊥|j . Then, Lemma 4.6 implies that Hs0 , and by extension H is
unsatisfiable if the call to ParallelPropagation, made to satisfy |α⊥〉〈α⊥|i ⊗ |β⊥〉〈β⊥|j , fails.

For the complexity analysis the interesting case is when the first propagation, that we call
Propfailure, is unsuccessful but one of the two parallel propagations is successful. Let’s call
the successful one Propsuccess. The main observation here is that every propagating edge in
Propfailure will also be propagating in Propsuccess, since by Lemma 4.1 entangled edges always
propagate. The paths p1 and p2 can be found in time proportional to the size of the subgraph
visited by Propfailure. Indeed, observe that the edges of the two paths, except the last edge of

65

one of the two, are edges in the BFS tree underlying Propfailure. The way from a vertex to the
root of the tree can be then found, for example, by maintaining for each vertex in the tree,
a pointer towards its parent. The product state |α〉 ⊗ |β〉 can be found in constant time by
Proposition 4.2. Therefore, by Lemma 4.6, the complexity is indeed O(|Es0 | − |Es′0 |).

4.4.5 Analysis of the algorithm
Proof of Theorem 4.2. If H is frustration free then by Lemma 4.5 MaxRankRemoval outputs a
pre-solution s0 that satisfies every maximal rank constraint. By the Propagation Lemma, at the
end of Phase 2, s0 is additionally a closed solution. By Lemma 4.6 ParallelPropagation outputs
s0 such that in addition in Hs there are only entangled constraints. By Lemma 4.8 at the end of
the algorithm in addition Hs is empty, and therefore s is a solution.

If the algorithm doesn’t output “H is unsatisfiable” then by Lemma 4.5, by the Propagation
Lemma, and by Lemmas 4.6 and 4.8 it outputs a coherent assignment s such that Gs is the
empty graph, and therefore s is a solution.

The complexity of MaxRankRemoval by Lemma 4.5 is O(|E|). After the second phase, the
propagation of the assigned values during MaxRankRemoval, the copying of s0 and G0 into s1

and G1 respectively can be done by executing the same propagation steps this time with s1 and
G1. The complexity of the rest of the algorithm by the Propagation Lemma, and Lemmas 4.6
and 4.8 is a telescopic sum which sums up to also O(|E|). Observe that the constants hidden
in the big-O notation in the terms of this sum are all the same, they are equal to the absolute
constant in the complexity analysis of the algorithm Propagation referenced in the Propagation
Lemma. Therefore the telescopic sum evaluates to O(|E|), and the overall complexity of the
algorithm is O(|E|).

4.5 Bit Complexity of Q2SATSolver

As mentioned at the beginning of this chapter, the algorithm Q2SATSolver has been analyzed
in the algebraic model of computation, where arithmetic operations on complex numbers are
assumed to consume unit time. This was done mainly in order to simplify the presentation.
However, in order to assess the running time of the algorithm in any realistic scenario, we must
also take into account the actual cost of the arithmetic operations. This is not a completely
trivial task: one hand, the continuous nature of a Q2SAT Hamiltonian implies that it should be
represented using complex numbers with an exponentially high accuracy. But on the other hand,
we also want the representation to be as efficient as possible, in order not to degrade the running
time of the algorithm too much. One way to approach this problem is to consider the input in
the framework of bounded algebraic numbers and analyze the complexity of the algorithm in this
setting. Essentially, this would require calculating the bit-wise cost of representing the input in
this framework and performing the arithmetic operations of the algorithm on it. In other words,

66

we need to calculate the bit complexity of the algorithm. The techniques used in this section are
based on standard methods in algebraic computational complexity, and further details can be
found in [Coh93].

Representing the input and the output
As we would like to work in the framework of algebraic numbers, it helps to first list the kinds of
number fields that will be used to represent the input and output. The simplest field to consider
is that of rational numbers, Q. To bound the size of the entries from Q, a kQ-number, for some
integer k > 0, is defined below.
Definition 4.6 (kQ-number). A rational number u is a kQ-number if there exists integers u1

and u2 of at most k-bits such that u = u1
u2
.

A kQ-number u1
u2

will be represented as the tuple (u1, u2) requiring 2k bits. As quantum projectors
and states use complex entries, we also require numbers from Q(i), the extension field of Q with
i =
√
−1. This leads to the following definition of a kQ(i)-number :

Definition 4.7 (kQ(i)-number). A complex number a + bi ∈ Q(i) is a kQ(i)-number if its
coefficients a and b are kQ-numbers.

A kQ(i)-number a+ bi will be represented as the tuple (a, b) for kQ-numbers a and b, thereby
requiring 4k bits in total. When the square root,

√
r, of a square-free integer t (that is, an

integer with a non-integer square root) is generated during the course of the algorithm, we shall
consider the field extension Q(i,

√
t) of Q(i) and the corresponding kQ(i,

√
t)-numbers, defined

below.
Definition 4.8 (kQ(i,

√
t)-number). The number a1 +a2

√
t+a3i+a4

√
ti ∈ Q(i,

√
t) is a kQ(i,

√
t)-

number if its coefficients, a1, a2, a3 and a4, are kQ-numbers.

Clearly, when the integer t can be represented as a k′-bit integer, a kQ(i,
√
t)-number can be

represented using 8k + k′ bits by the tuple (a1, a2, a3, a4, t) for kQ-numbers a1, a2, a3, a4.

The input Hamiltonian is a set of m different 2-qubit projectors whose non-trivial parts are
4× 4 complex matrices. As mentioned in Section 3.3.1, for a 2-qubit projector Π = Π̂⊗ Irest,
the input specifies the non-trivial part Π̂ which is uniquely determined by its image subspace,
img(Π̂). We consider each projector is given as a kQ(i)-projector which is defined below for some
constant k > 0.
Definition 4.9 (kQ(i)-projector). Consider a 2-qubit projector Π̂ of rank-r to be specified by
r independent, but not necessarily orthogonal, 4 × 1 vectors {v1, . . . , vr} such that img(Π̂) =
span {v1, . . . , vr}. Π̂ is a kQ(i)-projector if v1, v2, . . . , vr are given in the standard basis with
kQ(i)-number coefficients.

Then, the Hamiltonian can be represented by m different kQ(i)-projectors, leading to a total
space consumption of at most m× 4× 4× 1× 4k = 64mk bits. The ground state output will be
a tensor product of single qubit and 2-qubit states which are length 2 and 4 complex vectors,
respectively. Each entry of these vectors could belong to Q,Q(i) or Q(i,

√
t), for different square

67

free integers t. We will show below that there can be at most n different integers t, and that the
state assigned to each variable consumes O(n) bits. Recall from Section 4.3.3 that the algorithm
proceeds by assigning un-normalized states without affecting its accuracy. We also suppose that
the basis vectors describing the image subspace of an input projector need not be normalized.

Cost of arithmetic operations
A useful fact on the bit complexity of basic arithmetic operations that will be used recurrently
is stated below. Let M(k, k′) be the time required to multiply a k-bit integer with a k′-bit
integer and let M(k) = M(k, k). The currently known most efficient algorithm for integer
multiplication uses Fourier transforms bounding M(k) = k log k8Θ(log∗ k) [HvdHL16] where
log∗ k = min{w ∈ N : log log w times. log k ≤ 1}.
Fact 4.1. Let a be a kQ-number and b a k′Q-number. Adding, subtracting, multiplying or dividing
a and b can be performed in time O(M(k, k′)), and the result is an O(k + k′)Q-number.

Now we consider the bit complexity incurred during the course of the Q2SATSolver algorithm.
Theorem 4.3. Let H be a Q2SAT Hamiltonian on n qubits consisting of m projectors with
complex entries, each given as two kQ(i)-numbers, for some constant k > 0. Then the bit
complexity of Q2SATSolver(H) is O((n+m) M(n)).

Proof. The straightforward approach is to calculate the bit complexity of each operation that
manipulates the projectors and assignments. In the first phase of MaxRankRemoval, the unique
state satisfying each 2-qubit projector of rank-3 can be found using Gaussian elimination which
for an O(1)-sized matrix is equivalent to a constant number of multiplications. Using Fact 4.1,
the 2-qubit state found will hence be an O(k)Q(i)-number.

The second and third phases of the algorithm repeatedly propagate values across rank-1 con-
straints. The bit complexity of propagation is now analyzed. Given a product constraint
|α〉〈α| ⊗ |β〉〈β|, it requires finding |α⊥〉 and |β⊥〉 using complex conjugates. Given an entangled
constraint and a state assigned to one end of the constraint, the propagated state can be
found by solving a system of linear equations. Assuming the initial state and the projector use
kQ(i)-numbers, the propagated state will be represented using 2kQ(i)-numbers. To propagate
` steps, each step using kQ(i)-number projectors, starting with a k′Q(i)-number state, the final
propagated state will use (k′ + `k)Q(i)-numbers. Hence, an O(n) step propagation will result in
a final state represented with O(n)Q(i)-numbers when k = O(1) and k′ = O(n). This is linear in
the number of qubits and takes at most O(n)M(n, k) time. This covers the second and third
phases of the algorithm.

The last phase with ProbePropagation will deal with one or more disconnected components,
each made of only entangled constraints. The complexity of this phase is of interest when a
contradiction arises during propagation in a component and a satisfying assignment has to
be found by sliding constraints and using Proposition 4.2. Consider the way sliding across a
constraint is done as described in Lemma 4.7. Finding the transformation and its inverse both

68

require a constant number of multiplications and the new constraint after sliding will be given
using (ck)Q(i)-numbers for some constant c. Sliding along O(n) constraints will finally result in
constraints represented by O(n)Q(i)-numbers and consumes O(n)M(n, k) time.

Computing the product constraint in the resulting 2-dimensional subspace requires computing an
eigenvector as per Proposition 4.2 leading to the possibility of an irrational square root

√
r being

introduced into the representation, for some square-free integer r. This highlights the necessity of
moving to the field extension Q(i,

√
r). Assuming the two parallel rank-1 projectors were initially

given using k′Q(i)-numbers, the product constraint will require O(k′)Q(i,
√
r)-numbers to describe

it. Also,
√
r is generated as the irrational part of the eigenvalue of a 2× 2 matrix whose entries

are O(k′)Q(i)-numbers due to which t will be an O(k′)-bit integer. Hence, the representation
of each O(k′)Q(i,

√
t)-number will require O(k′) bits. Any propagation after this point does not

introduce new irrational square roots. The component, if satisfiable after ` propagation steps,
will have assignments given by O(k′ + `k)Q(i,

√
t)-numbers. An O(n) step propagation in this

setting will result in this component using O(n)Q(i,
√
t)-numbers for the assignment with the

operations bounded by O(nM(n, n)) = O(nM(n)) time when k′ = O(nk) = O(n). Note that
each disconnected component at the beginning of this phase may introduce different irrational
square roots into their partial assignments.

Recall that since propagation is carried forward with unnormalised states, this is the only
phase that may introduce square roots in the final assignment. The final output keeps all of
these separate representations and does not homogenize them into a single representation. To
conclude, each propagating, sliding or eigenvector finding step adds an overhead of at most
M(n, k) < M(n) where bit complexity is concerned. Using Theorem 4.2, the bit complexity of
Q2SATSolver is therefore O((n+m)M(n)).

Remark 4.1. The above explanation started by assuming the base representation field as that of
the Gaussian rationals, Q(i), and extends to the appropriate Q(i,

√
r) field for some square-free

integer r when required. It is also possible to consider any algebraic number field as the base field
and extend it appropriately using techniques from computational algebraic number theory [Coh93].
Of course, any overheads in performing arithmetic operations and calculating field extensions
will have to be accounted for accordingly.

4.6 On approximate Quantum 2SAT

This section deals with previously unpublished results from ongoing work [ASSZ17]. The linear
time algorithm for Q2SAT matches the linear time behaviour of classical 2SAT. This prompts
one to wonder if there exist other parallels in the behaviour of the quantum and classical versions
of 2SAT, say for instances which are almost satisfiable. Of course, the first step here is to define
a suitable notion of what entails almost satisfiable instances in either the classical or quantum
regime. Informally speaking, a natural transition to almost satisfiable instances in the classical
case could come from unsatisfiable 2SAT formulas where removing at least a small fraction, say

69

some ε > 0, of the clauses would make the resulting formula a satisfiable 2SAT formula. Such a
formula would be an ε-satisfiable formula. In fact, this is precisely a MAX2SAT formula where
any assignment satisfies at most a 1− ε fraction of clauses.

Given the discreteness of Boolean clauses, it makes sense to denote distortions to a satisfiable
2SAT formula by the addition of clauses. However, with the continuous nature of Q2SAT, an
alternative idea for distortion exists. It is possible to consider instances where each projector of
a satisfiable Q2SAT instance is modified to a projector which is at most ε away in operator norm
distance from the original. Depending on the distance ε this would produce almost frustration
free Q2SAT instances as defined below.
Definition 4.10 (Almost frustration free Q2SAT). An n-qubit Q2SAT instance H =

∑
j Π(j)

with m local projectors is ε-close to an n-qubit Q2SAT Hamiltonian H ′ =
∑
j Π′(j) with m local

terms if, for each j, Π(j) and Π′(j) act on the same pairs of qubits and ‖Π(j)−Π′(j)‖ ≤ ε. When H ′

is a frustration free n-qubit Q2SAT Hamiltonian, H is also said to (1−ε)-satisfiable. Additionally,
if there is a polynomial p such that ε ≤ 1

p(n) , H is said to be almost frustration free.

Of course, it may happen that (1 − ε)-satisfiable H is frustrated (i.e., with non-zero ground
energy). Then, finding a ground state for H could be QMA-hard [BV05, CM16b] (i.e., as hard
as the general 2-local Hamiltonian case). Instead, consider the following restricted case of the
2-local Hamiltonian problem where the goal is to find a tensor product state having low energy.
Definition 4.11 (Approximate Q2SAT (Approx − Q2SAT)). Given an n-qubit Q2SAT instance
H =

∑
j Π(j) and two thresholds a and b such that b− a > 1

poly(n) , distinguish between the cases

• (yes instance) ∃ an n qubit state |ψ〉 which is a tensor product of 1-qubit and 2-qubit states
such that 〈ψ|H|ψ〉 ≤ a
• (no instance) ∀ n-qubit states as described above, 〈ψ|H|ψ〉 ≥ b

Consider a (1 − ε)-satisfiable H which is close to a frustration free H ′. The ground state for
H ′ would violate each term of H by at most ε. Summing this violation over the m terms of H ′

and setting a = mε, it can be concluded that the ground state for H ′ is a suitable witness for
the yes case of the Approx − Q2SAT problem. This highlights the reason to look for a tensor
product of 1-qubit and 2-qubit states: every frustration free Q2SAT instance has a ground state
exhibiting this structure. Additionally, the interest in almost frustration free Q2SAT instances,
(i.e., ε = 1

poly(n)) is for the following reason. For 2-local Hamiltonians, deciding if they are
frustration free or not, seems to be lie in P. However, so far, the complexity of trying to
determine the extent to which the system is frustrated, for general instances seems to be QMA.
By trying to better understand almost frustration free instances, the aim is to throw some light
on whether this shift in complexity from P to QMA is a sharp increase as the instance moves
away from being frustration-free or if the increase in complexity is gradual.

The first step in understanding the Approx − Q2SAT scenario is to question the hardness of the
problem. The problem is definitely in NP. The low energy state, as a tensor product of 1-qubit
and 2-qubit states, has an efficient (i.e, polynomial sized) classical description and will be a

70

suitable witness. The more pertinent question is looking for specific cases which may be NP-hard.
As mentioned previously, the almost satisfiable version of 2SAT leads to the MAX2SAT problem
which exhibits the following behaviour. Recall that for a Boolean formula ϕ, and an assignment
a, unsat(ϕ,a) is the number of clauses of ϕ that are not satisfied by a.
Theorem 4.4 (Theorem 6 from [Kar01]). For constant c = 1.0005, given an integer k and a
2SAT formula ϕ with m clauses on n variables it is NP-hard to distinguish between the two cases

• (yes instance) ∃ a Boolean assignment a on the n variables such that unsat(ϕ,a) ≤ k
• (no instance) ∀ Boolean assignments a on the n variables unsat(ϕ,a) ≥ c · k

The constant c = 1.0005 is termed the inapproximability constant for MAX2SAT. Essentially, the
MAX2SAT problem is known to be NP-hard, but the above result also shows that it is NP-hard
to distinguish if certain instances have a minimal 1 or 2 violations. Drawing parallels between
2SAT and Q2SAT, a good starting point to understand the hardness of Approx − Q2SAT would
be to extend the above result about MAX2SAT, to the frustrated Q2SAT setting. In fact, the
following result demonstrates that this behaviour persists in the quantum case as well even
when restricted to product-state solutions. This is shown by reducing a MAX2SAT formula to a
frustrated Q2SAT instance.
Theorem 4.5. Let c = 1.0005 be the inapproximability constant for MAX2SAT. Then, for
every constant 1 < c′ ≤ (c)

1
6 < c, given a Q2SAT Hamiltonian H on N qubits and a threshold

a = 1
poly(N) , it is NP-hard to distinguish between the following cases1:

• (yes instance) ∃ an N -qubit product state |ψ〉, such that 〈ψ|H|ψ〉 ≤ a
• (no instance) ∀ N -qubit product states |ψ〉, 〈ψ|H|ψ〉 ≥ c′ · a

Proof. The proof is a reduction from a MAX2SAT instance which is given by the formula ϕ on
n variables and the integer k and it is broken up into the following steps. First, the formula
φ on n variables is converted to a Q2SAT Hamiltonian H on N = O(n) qubits. Also, using a
parameter ε = 1

poly(N) , k is converted to the threshold a = k ε4

(1+ε2)2 . Using this, the soundness
and completeness of the reduction is proved.

Before delving into the description of the reduction, observe that it would be straightforward to
map a 2SAT clause to a projector made up of {|0〉〈0|, |1〉〈1|} and map a Boolean assignment to the
states {|0〉, |1〉}. With the operator norm distance between these projectors (i.e., ‖|0〉〈0|−|1〉〈1|‖)
being large (i.e., a constant), the violation of any Boolean state on these projectors is a constant
(i.e., 0 or 1). However, the energy threshold, a, required for the N -qubit Hamiltonian is 1

poly(N) .
So, to shrink the energy to this bound, the classical projectors in the Hamiltonian and the
states are skewed. That is, the classical projectors made up of {|0〉〈0|, |1〉〈1|} are skewed to

1The requirement that c′ ≤ (c) 1
6 comes from the poof for the soundness of the reduction that transforms a

MAX2SAT formula to a Hamiltonian.

71

{|0〉〈0|, |1ε〉〈1ε |} where

|1ε〉 := 1√
1 + ε2 (|0〉+ ε|1〉).

This skewing ensures that the classical projectors are always close to |0〉〈0|. Correspondingly,
it would help to have the Boolean assignments mapped to states almost orthogonal to the
projectors i.e. close to |1〉. This is done by skewing the {|0〉, |1〉} assignments to {|0ε〉, |1〉}
respectively where

|0ε〉 := 1√
1 + ε2 (|1〉 − ε|0〉).

Now, any classical assignment is mapped to a state with the energy shrunk by a factor of
O(ε4) = O

(
1

poly(N)

)
. With this in mind, the way to convert a MAX2SAT formula to an

appropriate Q2SAT Hamiltonian is described below.

Mapping Instances: The MAX2SAT formula ϕ is converted to a Q2SAT Hamiltonian H =
Hϕ +HG in two steps. Here Hϕ acting on n qubits depends on the formula ϕ. and HG acting
on O(n) qubits arises from the addition of some gadgets that help to maintain the soundness of
the reduction. Table 4.1 shows how each clause of ϕ is converted to a projector in Hϕ.

MAX2SAT clause Forbidden state Q2SAT Projector Skewed Projector

xi ∨ xj 00 |00〉ij |00〉ij
x̄i ∨ xj 10 |10〉ij |1ε0〉ij
xi ∨ x̄j 01 |01〉ij |01ε〉ij
x̄i ∨ x̄j 11 |11〉ij |1ε1ε〉ij

Table 4.1: From MAX2SAT clauses to skewed Q2SAT Projectors

So, a clause acting on variables xi, xj is mapped to a 2-local projector on qubits i, j by setting
the projector to the unsatisfying assignment of the clause. For example, if the clause is (xi ∨ xj),
the projector on the two qubits would be |00〉〈00|ij . Then, projector is skewed by applying the
following transformation to each qubit in the projector:

|0〉 7−→ |0〉 |1〉 7−→ |1ε〉.

In this way, the boolean formula ϕ is converted to a Hamiltonian H(ϕ).

As mentioned previously, Boolean assignments will be mapped to states that are close to |1〉.
So, to maintain the soundness of the reduction, one would like to enforce the condition that
product states where the qubits are assigned states far from |1〉 have high energy with respect to
H. This is done by adding O(k) dummy qubits with appropriate gadgets on them for every one
of the original n qubits in Hϕ. The role of these gadgets is to have 0 energy when the qubits in

72

Hϕ are assigned values from {|1〉, |0ε〉} and to have high energy when the values assigned are
far from these states. This will be seen while proving the completeness and soundness of the
reduction. Specifically, for an integer f >

(
c′

(1− 1
c′)

4

)
· k, add a flower gadget Gi corresponding

to each qubit i ∈ Hϕ in the manner described below:

• Add 2f dummy qubits labeled from i0, . . . i2f−1;
• Add the constraints |1ε0〉〈1ε0|i, i(2`) for 0 ≤ ` < f ;
• Add the constraints |1ε0〉〈1ε0|i(2`), i(2`+1) for 0 ≤ ` < f ;
• Add the constraints |1ε0〉〈1ε0|i(2`+1), i for 0 ≤ ` < f .

i

i2

i3

i2f−2

i2f−1

f triangles
|1ε0〉〈1ε0|

|1ε0〉〈1ε0|
|1ε0〉〈1ε0|

|1ε0〉〈1ε0|
|1ε0〉〈1ε0|

|1ε0〉〈1ε0|

|1ε0〉〈1ε0|
|1ε0〉〈1ε0|

|1ε0〉〈1ε0|i1

i0

Figure 4.7: The flower gadget Gi for a qubit i.

The constraint graph for Gi, illustrated in Figure 4.7 shows that it is a collection of triangles
added with their intersection at qubit i and every edge of the triangle has the constraints
|1ε0〉〈1ε0| on it. Now, setting HG =

∑n
i=1Gi, the Hamiltonian of interest is:

H = Hϕ +HG

and the size of the frustrated instance has now blown up to N = n+ f · n = O(n) qubits.

Completeness of the reduction: The completeness of the reduction is shown by describing how
to map the best classical assignment on the n variables to a low energy product state on N
qubits. Map the Boolean assignment {0, 1} on a variable xi to the states {|0ε〉, |1〉} on qubit i
so that:

1 7−→ |1〉 0 7−→ |0ε〉.

After a qubit by qubit transformation, the assignment a ∈ {0, 1}n is mapped to a state
|ψa〉 ∈ {|0ε〉, |1〉}⊗n. The inner products between the four states {|0〉, |1〉, |1ε〉, |0ε〉} is useful to
calculate the energy of a state with respect Hϕ:

〈1ε |0ε〉 = 0, 〈1|1ε〉 = ε√
1 + ε2 , 〈0|0ε〉 = −ε√

1 + ε2 .

Suppose, without loss of generality, that the projector in Hϕ is |01ε〉〈01ε | for which the energy

73

of the skewed states is:

|〈0ε0ε |01ε〉|2 = |〈10ε |01ε〉|2 = |〈11|01ε〉|2 = 0, (4.5)

|〈0ε1|01ε〉|2 = |〈0ε|0〉 〈1|1ε〉|2 =
∣∣∣∣ −ε√

1 + ε2
ε√

1 + ε2

∣∣∣∣2 = ε4

(1 + ε2)2 . (4.6)

The energy for other projectors behaves similarly implying that for the forbidden state (in this
case, |0ε1〉), the energy is ε4

(1+ε2)2 and for the other assignments from {|0ε〉, |1〉}⊗2 it is 0.

Now consider the flower gadgets added on each qubit. As the case is symmetric for each qubit,
and for each triangle of the flower, consider the triangle {i, ia, ib} ∈ Gi. The constraints on the
triangle will be satisfied if |ψi〉 = |ψia〉 = |ψib〉 whenever |ψi〉 ∈ {|0ε〉, |1〉}. Hence, any assignment
where {i, ia, ib} have the same state assigned to them has 0 energy. This can be extended to all
the flowers resulting in 0 energy on the gadget HG. Hence, a boolean assignment a which has
unsat(ϕ,a) ≤ k gives a product state |ψ〉 ∈ {|0ε〉, |1〉}⊗N such that 〈ψ|H̃|ψ〉 ≤ k ε4

(1+ε2)2 = a.

Soundness of the reduction: To show that the reduction is sound, the following statement is
proved: when H has a low energy product state |φ〉 i.e., 〈φ|H|φ〉 ≤ a = k ε4

(1+ε2)2 , it is possible
to extract a classical assignment a from |φ〉 such that unsat(ϕ,a) ≤ k. Let this N -qubit product
state |φ〉 be expressed as |φ〉 = |φ1〉 . . . |φN 〉 where

∀i, εi ∈ [0, 1] and |φi〉 = 1√
1 + |εi|2

(|1〉 − εi|0〉) (4.7)

Then, |〈φi|1ε〉|2 = |ε − εi|2

(1 + ε2)(1 + |εi|2) (4.8)

and |〈φi|0〉|2 = |εi|2

(1 + |εi|2) . (4.9)

The proof for soundness is done in two parts. First, by setting δ = (1− 1
c′)ε, it is deduced that

∀i, εi is in the good range, i.e., the interval (−δ, δ) ∪ (ε − δ, ε + δ), for a low energy state on H.
Essentially, the good range implies that the single-qubit state is either close to 0 or close to ε .
The second part extracts a good classical assignment for ϕ from a low energy state |φ〉.

For the first part, assume toward a contradiction that there exists a qubit i in the low energy
state |φ〉 such that εi /∈ (−δ, δ) ∪ (ε − δ, ε + δ). By showing that the energy of the flower gadget
Gi ≥ c′k ε4

(1+ε2)2 , the low energy assumption is contradicted. Going back to the triangle formed
by {i, ia, ib} for qubit i with the constraints {|1ε0〉〈1ε0|iia , |1ε0〉〈1ε0|iaib , |1ε0〉〈1ε0|ibi}, let the
states in the assignment to these qubits be |φi〉, |φia〉, |φib〉 respectively. When the states have
the structure in equation (4.7), using equations (4.8) and (4.9), the energy of the triangle is

1
(1 + ε2)

(
|ε − εi|2|εia |2

(1 + |εi|2)(1 + |εia |2) + |ε − εia |2|εib |2

(1 + |εia |2)(1 + |εib |2) + |ε − εib |2|εi|2

(1 + |εib |2)(1 + |εi|2)

)
. (4.10)

To lower bound this energy, observe that a + b + c ≥ 3 min{a, b, c} when a, b, c ≥ 0. Let
I = {(i, ia), (ia, ib), (ib, i)}. Then, as energy terms are always at least 0, the triangle’s energy is

74

lower bounded by

3
(1 + ε2) min

(j,j′)∈I

{
|ε − εj |2|εj′ |2

(1 + |εj |2)(1 + |εj′ |2)

}
≥ 3

2(1 + ε2)2 min
(j,j′)∈I

{|ε − εj |2|εj′ |2} (Since, εi ≤ 1.)

≥ 3δ4

2(1 + ε2)2 (Since, min{εi, (ε − εi)} ≥ δ.)

≥
3(1− 1

c′)
4ε4

2(1 + ε2)2 . (Since, δ = (1− 1
c′

)ε.)

Given f triangles, the energy of the flower gadget Gi is

f
3(1− 1

c′)
4ε4

2(1 + ε2)2 >
c′ · k

(1− 1
c′)4

3(1− 1
c′)

4ε4

2(1 + ε2)2 > c′ k
ε4

(1 + ε2)2 .

Hence, if εi is far from the good range, then energy contributed from the flower gadget Gi is
high implying that these states will never have low energy product with respect to H.

Moving to the second part, it is known that the low energy product sate |φ〉 is such that for
all i, εi ∈ (0, δ) ∪ (ε − δ, ε + δ) and 〈φ|H|φ〉 ≤ k ε4

(1+ε2)2 . Recall that H is a combination of the
flower gadgets HG and the Hamiltonian Hϕ which has the skewed projectors corresponding to
the formula ϕ. Then for |φ〉 = |z〉ϕ ⊗ |φ〉G, where |z〉ϕ acts on the n qubits of Hϕ,

〈φ|H|φ〉 ≤ k ε4

(1 + ε2)2 ⇒ 〈z|Hϕ|z〉 ≤ k
ε4

(1 + ε2)2 . (4.11)

The implication holds as Hϕ is one of the components of H and |z〉 is just a restriction of |φ〉 to
the qubits Hϕ acts on. Due to the intervals in which the εis can be found, the states for each
of the n qubits is close to the states {|1〉, |0ε〉}. A straightforward way to extract a classical
assignment a from |z〉 is, for all 1 ≤ i ≤ n, set ai = 1 when εi ∈ (−δ, δ) and ai = 0 when
εi ∈ (ε − δ, ε + δ). To calculate unsat(ϕ,a), consider a clause C from ϕ involving the variables
xi, xj that is violated by the assignment a. Let the corresponding projector in Hϕ be Π and the
energy of |z〉 on this clause is 〈zizj |Π|zizj〉. Now, unsat(ϕ,a) is bounded by

unsat(ϕ,a) ≤ Energy of |z〉 on Hϕ

mini,j{〈zizj |Π|zizj〉 | a violates the clause C}

Suppose that C = (x̄i ∨ x̄j) which, using Table 4.1, becomes the projector Π = |1ε1ε〉〈1ε1ε | in
Hϕ. C is violated when ai = aj = 1 and in this case,

〈zizj |Π|zizj〉 = |〈1ε1ε |zizj〉|2 = |ε − εi|2|ε − εj |2

(1 + ε2)2(1 + |εi|2)(1 + |ε2
j |)

(Using Equation 4.8)

≥ (ε − δ)4

(1 + ε2)2(1 + δ2)2 (As εi, εj ∈ (−δ, δ) when ai = aj = 1)

>
(ε − δ)4

(1 + ε2)2(1 + δ)2 (As δ < 1⇒ δ2 < δ)

75

>
(ε − δ)4

(1 + ε2)2(c′)2 (By definition, δ < c′ − 1)

>
1

(c′)6
ε4

(1 + ε2)2 (Using δ = (1− 1
c′

)ε)

>
1
c

ε4

(1 + ε2)2 (Using c′ ≤ (c)
1
6).

Performing similar calculations for the other projectors (i.e., {|01ε〉〈01ε |, |1ε0〉〈1ε0|, |00〉〈00|}),
one can conclude that

min{〈zizj |Π|zizj〉 | a violates the clause C} > 1
c

ε4

(1 + ε2)2

⇒ unsat(ϕ,a) < k
ε4

(1 + ε2)2
1

1
c

ε4

(1+ε2)2

< c · k.

A key observation at this point is that the inapproximability constant c for MAX2SAT has been
picked for the instance in Theorem 4.4 in such a way that c · k < k + 1. Then,

unsat(ϕ,a) < c · k < k + 1⇒ unsat(ϕ,a) ≤ k.

This proves that the reduction is sound.

Theorem 4.5 demonstrates, that in this particular regime, differentiating between the two cases
of the Approx − Q2SAT problem is NP-hard providing more parallels in the behaviour of Q2SAT
and 2SAT. This allows one to hope that the more specific Approx − Q2SAT problem on almost
frustration free instances, which is similar to a robust instance of MAX2SAT2, may still have a
polynomial time approximation algorithm. This rides on the result by Charrikar et. al. [CMM09]
where they construct an algorithm using semidefinite programming and rounding the solution to
find a near optimal solution. That is, for a robust instance on n variables where at least 1− ε
fraction of clauses could be satisfied, the rounding generates an assignment that satisfies at least
1−
√
ε fraction of the clauses in polynomial time if ε = 1

poly(n) . If this can be extended to the
Approx − Q2SAT setting for almost frustration free instances, it could enable the finding of a
low energy tensor product state. It could also provide some insight into the construction of
approximation algorithms for quantum CSPs. However, a complete solution to this problem is
left for future work.

2For a robust MAX2SAT formula on n variables, the optimal assignment is promised to satisfy at least 1− 1
poly(n)

fraction of clauses

76

Chapter 5
Trial and error for constraint satisfaction problems

Question Is there a single framework to determine the complexity of a hidden-CSP?

This chapter deals with the development of tools that help to determine the complexity of a CSP
in the trial and error setting when the properties of the base CSP are given. This is done with
the use of transfer theorems that provide operations which, when performed on the type and
parameters of a hidden CSP, transfers the study of hidden CSPs to the more commonly studied
setting of CSPs with full access to the input. Beyond covering all the U-revealing oracles for
U ⊆ {C,R,V}, these transfer theorems can also accommodate CSPs where the input instance is
required to adhere to some promise PROM.

As a means to motivate the operations which create a richer set of CSPs, a key observation is the
polynomial time equivalence between H–S{C,R,V} and S for some CSP S for which comp(RS) ∈ P.
Clearly, any algorithm for H–S{C,R,V} can solve S as the answers of the oracle will attest to
a proposed assignment satisfying the instance. Now, for the converse, the idea is to propose
successive trials to the oracle O{C,R,V}. The oracle, for each violation, completely reveals a
violated constraint. As a subset of constraints becomes known, the next trial is then constructed
so as to satisfy all the constraints known so far using the algorithm for S. With a weaker oracle,
the procedure is not so straightforward anymore and the requirement for more complex CSPs
arises. Fortunately, as hinted to in the above case, these complex CSPs for any H–S are related
to the base problem S and the revealing oracle in question. Hence, knowing the type of S and
the oracle, it becomes a fairly straightforward process to construct these CSP extensions with
the goal of determining their complexity.

5.1 CSP extensions

The CSP extensions provide a richer sets of relations that can be derived from a given CSP
S. These extensions generally turn out to be harder than the base problem with the added
bonus of being equivalent to various hidden variants of S. The first operation connects to the
{C,V}-revealing oracle. In this case, the oracle’s answer reveals the indices of the variables
involved in some clause Cj . This would help to exclude all the relations that are violated by the
assignment to those indices. But then, Cj is necessarily one of the relations which was satisfied

77

by the assignment at those indices. In order to gain more information about satisfying the input,
the trials proposed henceforth should satisfy at least one of the satisfied relations, i.e., a union
of the satisfied relations, leading to the closure by union operation.
Definition 5.1 (Closure by Union). Given a CSP S with the relation set R, the closure by
union of R gives the relation set

⋃
R = {

⋃
R∈R′ R : R′ ⊆ R}. Then the closure by union of S

is the CSP
⋃
S whose type is

⋃
R and whose other parameters are the same as those of S.

A relation R ∈
⋃
R is represented as a list of indices from R whose union gives R. For instance,

in the case of 1SAT, given R1SAT = {Id,Neg},
⋃
R1SAT = {Id,Neg, R′ = {0, 1}} as Id ∪ Id = Id,

Neg ∪ Neg = Neg and R′ = R1 ∪R2 = Id ∪ Neg = {0, 1}. Note that dim(
⋃
R1SAT) ≤ |R1SAT|.

With respect to the {C,R}-revealing oracle, the situation requires compensating with a stronger
CSP so as to cover for the lack of information about the variables the violated clause Cj works
on. As the q-ary relation involved in Cj is revealed, the trials, henceforth, should try to satisfy
that relation on at least one of the possible q-tuple of indices. This, as a first step, leads to the
arity extension operation that produces relations whose arities are as large as the assignment
length.
Definition 5.2 (Arity Extension). Given a CSP S, for a relation R ∈ R and a q-tuple
(j1, . . . , jq) ∈ [`](q), the `-ary relation R(j1,...,jq) = {a ∈ W : (aj1 , . . . , ajq) ∈ R} and the arity
extension of R is given by X–R = {R(j1,...,jq) : R ∈ R and (j1, . . . , jq) ∈ [`](q)}. The arity
extension of S is, correspondingly, the problem X–S whose type is X–R, arity is equal to the
assignment length ` and whose other parameters are the same as S’s.

Essentially, X–R contains natural extensions of the relations in R to `-ary relations where each
extension is distinguished by the choice of the q-tuple. A relation R in X–R is represented
by the index of a relation in R and a tuple from [`](q). Going back to the case of 1SAT,
X–R1SAT = {(Id, 1), . . . , (Id, n), (Neg, 1), . . . , (Neg, n)}. However, this does not completely reflect
the situation with the O{C,R} oracle as the information obtained regarding Cj only reveals that
it is the relation R acting on one of several possible tuples in [`](q). This leads to considering the
restricted union of these arity extended relations coming from the same base relation R.
Definition 5.3 (Restricted union of arity extensions). Given a CSP S, for a relation R ∈ R and
a set of q-tuples I ⊆ [`](q), let RI =

⋃
(j1,...,jq)∈I R

(j1,...,jq) and E–R = {RI : R ∈ R and I ⊆
[`](q)}. Then the restricted union of the arity extension of S is the CSP E–S with type E–R,
parity `, and other parameters the same as S.

Since, each extension tries to correspond to each of the revealing oracles from Figure 2.3, the
final extension corresponds to the O{C} oracle which combines the first two extensions to account
for the extremely restrictive nature of this oracle. Essentially, the information revealed by this
oracle is related to the unrestricted union of arity extensions of the base problem.
Definition 5.4 (Union of arity extensions). Given a CSP S with relation set R, the

⋃
X–R is

78

the arbitrary union of arity extensions of R with

⋃
X–R =

 ⋃
1≤i≤|R′|,Ri∈R′,(i1,...,iq)∈I

R
(i1,...,iq)
i : R′ ⊆ R, I ⊆ [`](q), |R′| = |I|

 .
So, each relation from

⋃
X–R is assumed to be represented as a sequence of pairs, each consisting

of an index of a relation in R and an element of [`](q). If the difference between the last
two operations is not so clear, note that E–R ⊆

⋃
X–R =

⋃
E–R. In the context of

1SAT, given a set of indices I = {j1, j2, . . . , j|I|}, a relation from E–R1SAT will be of the
form (Id, I) = Id(j1) ∪ . . . ∪ Id(j|I|) while a relation from

⋃
X–R1SAT could be of the form(

(Id, j1), (Neg, j2), (Neg, j3), . . . , (Id, j|I|)
)

= Id(j1) ∪ Neg(j2) ∪ Neg(j3) . . . ∪ Id(j|I|).

The arity extension operation justifies the consideration of CSPs with arities, number of relations
and alphabet size which are functions of n. Though such a dependence may be unfamiliar
notationally (in most cases, these parameters are a constant), it does capture some natural
instances like the system of linear inequalities. Moreover, the arity extension also results in the
number of relations depending on n since |X–R| = O(s× `q) and the assignment length ` is a
function of n. However, as mentioned above, the relations arising as a result of these extensions
can be represented succinctly and their number can be computed easily. In fact, starting with a
set of relations R with comp(R) and considering the most complicated extension

⋃
X–R, it is

possible to determine whether an admissible assignment v ∈W satisfies a relation in
⋃
X–R in

time O(|I| · |R| · comp(R)) for I ⊆ [`](q).

Now, that the extensions are formally defined, it is possible to enter the nitty gritty of the
transfer theorems themselves.

5.2 Transfer Theorems

There are three different transfer theorems, one for each type of revealing oracle and they show
that for any CSP S, using

⋃
S, E–S and

⋃
E–S, it is possible to compensate for the information

hidden by the O{C,V}, O{C,R} and O{C} oracles respectively. It is perhaps more surprising to
also notice that these statements hold in the reverse direction: if H–CSP with some revealing
oracle can be solved, then the corresponding CSP extension can also be solved. Note that, for
each transfer theorem, H–CSP instance with m constraints corresponds to a CSP extension also
containing m constraints.
Theorem 5.1. (a) If

⋃
S is solvable in time T then H–S{C,V} is solvable in time O

(
(T + s×

comp(R))×m×min{dim(
⋃
R), |Wq|}

)
.

(b) If H–S{C,V} is solvable in time T then
⋃
S is solvable in time O(T ×m× comp(

⋃
R)).

Proof. (a) Let A be an algorithm which solves
⋃
S in time T . It is possible to construct

an algorithm B for H–S{C,V} which will repeatedly call A and query O{C,V}, until it finds a

79

satisfying assignment or reaches the conclusion no. The instance used to query A at the tth

call, Ct = {Ct1, . . . , Ctm}, is defined as Ctj =
⋃
R∈R:R∩Atj=∅

R(xjt1 , . . . , xjtq) where Atj ⊆ Wq and
(jt1, . . . , jtq) ∈ [`](q), for j ∈ [m], are determined successively by B. The set Atj reflects the
algorithm B’s knowledge about Cj after t steps in that it contains those q-tuple assignments
which, at that instant, are known to violate Cj . Initially A1

j = ∅ and (j1
1 , . . . , j

1
q) is arbitrary. If

A’s output for Ct is no then B outputs no. On the other hand, if A returns an assignment a ∈W ,
then B proposes a to O{C,V}. When the oracle returns yes, then B outputs a and concludes.
Otherwise, the oracle reveals a violated constraint j and the q-tuple (j1, . . . , jq) that Cj acts on.
Then, B updates At+1

j = Atj
⋃
{(aj1 , . . . , ajq)}, and (jt+1

1 , . . . , jt+1
q) = (j1, . . . , jq) while keeping

these sets unchanged for all other indices: At+1
i = Ati and (it+1

1 , . . . , it+1
q) = (it1, . . . , itq) for i 6= j.

The q-tuple of indices is changed at most once for each Cj – the first time when the oracle
returns Cj as a violation.

To prove that B correctly solves H–S{C,V}, let C = {C1, . . . , Cm} be the hidden instance of S
accessed using O{C,V}. It needs to be shown that if B answers no then C is unsatisfiable. B
answers no when, for some t, the tth call to A resulted in the output no. By construction, for
every j ∈ [m], Atj has the list of assignments to the indices (jt1, . . . , jtq) that violates Cj implying
that if R ∩ Atj 6= ∅, then Cj 6= R(xjt1 , . . . , xjtq). Clearly, supposing Cj was R(xjt1 , . . . , xjtq) and
b ∈ R ∩Atj , then the O{C,V}’s answer at the trial where b was added to Atj would be incorrect.
Therefore, as Ctj , for every j, contains the possible relations for Cj , when Ct is unsatisfiable, the
hidden instance C also unsatisfiable.

For the complexity of the algorithm, observe that if for some j and t, the constraint Ctj is the
empty relation then B stops since Ct becomes unsatisfiable. This happens in particular if Atj = Wq.
Since every call to A adds one new element to one of the Atjs and at least one new relation in
R is excluded from the Ctjs, the number of calls is upper bounded by m×min{dim(R), |Wq|}.
To compute a new constraint, some number of relations in R have to be computed on a new
argument, which can be done in time s× comp(R).

(b) Let A be an algorithm which solves H–S{C,V} in time T and assume without loss of generality
that A outputs a satisfying assignment a only after submitting it to the verifying oracle O{C,V}.
An algorithm B for

⋃
S is constructed as follows. Let C = {C1, . . . , Cm} be an instance of

⋃
S

where, for j ∈ [m], Cj =
⋃
R∈Rj R(xj1 , . . . , xjq), for some Rj ⊆ R and (j1, . . . , jq) ∈ [`](q). The

algorithm B calls A, and outputs no whenever A outputs no. During A’s run B simulates the
O{C,V} for A as described below. Along with the behaviour of O{C,V}, for t ≥ 1, instances of

⋃
S

Ct = {Ct1, . . . , Ctm} are specified so as to be used in the proof of correctness of B. For j ∈ [m], the
constraints of Ct are defined as Ctj =

⋃
R∈R:R∩Atj=∅

R(xj1 , . . . , xjq), where the sets Atj ⊆Wq are
determined by the result of the tth call to O{C,V}. Initially A0

j = ∅. For the tth trial a ∈W , the
algorithm B checks if a satisfies C. If this is the case, then O{C,V} returns yes and B outputs a.
Otherwise there exists j ∈ [m] such that a violates Cj , and O{C,V}’s answer is j and (j1, . . . , jq)
(where j is chosen arbitrarily among the violated constraints, if there are several). Observe that
this is a legitimate oracle for any instance of H–S{C,V} whose jth constraint is arbitrarily chosen

80

from Rj . Atj is updated as Atj = At−1
j

⋃
{(aj1 , . . . , ajq)}, and for i 6= j, Ati = At−1

i .

Showing that the instance C is unsatisfiable whenever A outputs no would prove the correctness
of B. Suppose A made t queries before outputting no. An algorithm for H–S{C,V} outputs
no only if all possible instances of S which are compatible with the answers received from
the oracle are unsatisfiable. In such an instance, the relation in Cj necessarily has an empty
intersection with Atj , therefore implying that the

⋃
S instance Ct is unsatisfiable. It also holds

that Atj
⋂

(
⋃
R∈Rj R) = ∅ for every j ∈ [m], since if b ∈ Atj

⋂
(
⋃
R∈Rj R) then the trial which

added b to Atj wouldn’t violate Cj . Thus
⋃
R∈Rj R ⊆

⋃
R∈R:R∩Atj=∅

R, and C is unsatisfiable.

For the complexity analysis, observe that during the algorithm, for every query to the oracle
and for every constraint, one relation in

⋃
R is evaluated.

Theorem 5.2. (a) If E–S is solvable in time T then H–S{C,R} is solvable in time O((T +
|[`](q)| × comp(R))×m× |[`](q)|).
(b) If H–S{C,R} is solvable in time T then E–S is solvable in time O(T ×m× comp(E–R)).

Proof. This proof follows the proof of Theorem 5.1 with some appropriate changes.
(a) Let A be an algorithm which solves E–S in time T . An algorithm B for H–S{C,R} is
constructed which will repeatedly call A, until it finds a satisfying assignment or reaches the
conclusion no. Since each constraint of E–S is an `-ary relation, it is identified with the
relation itself. For the first call C1 = {C1

1 , . . . , C
1
m} and for all j, set C1

j = W . For t > 1, the
instance Ct of the tth call will be recursively defined via Atj ⊆ W and Itj ⊆ [`](q), for j ∈ [m],
where initially A1

1 = . . . = A1
m = ∅ and I1

1 = . . . = I1
m = [`](q). Here the set Itj reflects B’s

knowledge of the hidden instance after t steps in that it contains those q-tuples of indices which,
at that instant, could still be the variable indices on which Cj acts. If A’s output for Ct is no,
then B outputs no. On the other hand, if A outputs a ∈ W , then B proposed a as a trial
to O{C,R}. When the oracle returns yes, B can output a and conclude. Otherwise, O{C,R}
returns a violated constraint’s index j and relation R ∈ R. B updates At+1

j = Atj
⋃
{a} and

It+1
j = {(j1, . . . , jq) : At+1

j

⋂
R(j1,...,jq) = ∅} and Ct+1

j = RI
t+1
j . For i 6= j, At+1

i = Ati, It+1
i = Iti

and Ct+1
i = Cti .

To prove that B correctly solves H–S{C,R}, let C = {C1, . . . , Cm} be an instance of S accessed
using the O{C,R} oracle. It has to be shown that C is unsatisfiable when B answers no. If B
answers no, then for some t, the tth call to A resulted in the output no. The claim is that for
every constraint Cj whose relation R has already been revealed, if R(j1,...,jq) ∩Atj 6= ∅ then Cj
cannot be R(xj1 , . . . , xjq). Supposing Cj = R(j1,...,jq)(xj1 , . . . , xjq) and a ∈ R∩Atj , then O{C,R}’s
answer for the trial when a was added to Atj would be incorrect. Therefore, as Ctj , for every
j, is the union of R(j1,...,jq) over all the still possible q-tuple of indices (j1, . . . , jq), when Ct is
unsatisfiable, so is the hidden instance C.

For the complexity of B, note that if the constraint Ctj , for some j and t, is the empty relation
then B stops since Ct becomes unsatisfiable. This happens in particular if Itj = ∅. Since for
every call to A, for some j, the size of Itj decreases by at least one, the total number of calls is

81

upper bounded by m× |[`](q)|. To compute new constraints, at most |[`](q)| relations from R are
evaluated in a new argument. Therefore the overall complexity is as claimed.

(b) Let A be an algorithm which solves H–S{C,R} in time T and without loss of generality suppose
that A outputs a satisfying assignment a only after submitting it to the verifying oracle. The
algorithm B for E–S is constructed as follows. Let C = {C1, . . . , Cm} be an instance of E–S
where for j ∈ [m], Cj = R

Ij
kj

for some Rkj ∈ R and Ij ⊆ [`](q). B calls A, outputs no whenever
A outputs no and simulates the O{C,R} oracle during A’s run in the following fashion. Along
with the description of O{C,R}’s behaviour, for t ≥ 1, the instances Ct = {Ct1, . . . , Ctm} of E–S
are specified which help to show the correctness of B. `-ary constraints are identified by the
relations they represent. The constraints of Ct are set to be Ctj = R

Itj
kj
, where the sets Itj ⊆ [`](q)

are defined as Itj = {(j1, . . . , jq) : Atj
⋂
R

(j1,...,jq)
kj

= ∅}, and the sets Atj ⊆ W are determined
by the result of the tth trial proposed to O{C,R}. Initially A0

j = ∅. For the tth trial a ∈ W , B
checks if a satisfies C. If so, then O{C,R} returns yes and B outputs a. Otherwise, there exists
j ∈ [m] such that a violates Cj in which case, the O{C,R} returns j and Rkj . This depicts the
behaviour of a legitimate oracle for any instance of H–S{C,R} where Cj is arbitrarily chosen
from {Rkj (xj1 , . . . , xjq) : (j1, . . . , jq) ∈ Ij}. Atj is updated as Atj = At−1

j

⋃
{a}, and for i 6= j,

Ati = At−1
i .

Showing that C is unsatisfiable whenever A outputs no suffices to prove the correctness of B.
Suppose that A made t queries before outputting no. An algorithm for H–S{C,R} outputs no only
when all possible instances of S which are compatible with the oracle’s answers are unsatisfiable.
In such an instance Cj necessarily does not intersect Atj implying that the E–S instance Ct

is unsatisfiable. For every j ∈ [m], it also holds that Atj
⋂
Cj = ∅, since the supposition that

a ∈ Atj
⋂
Cj implies that the trial which added a to Atj wouldn’t violate Cj . Thus Cj ⊆ Ctj , and

C is unsatisfiable.

For the complexity analysis, observe that during the algorithm, for every query to the oracle
and for every constraint, one relation in E–R is evaluated.

Theorem 5.3. (a) If
⋃
X–S is solvable in time T then H–S{C} is solvable in time O((T + s×

`!
(`−q)! × comp(R))×m× dim(

⋃
X–R)).

(b) If H–S{C} is solvable in time T then
⋃
X–S is solvable in time O(T ×m× comp(

⋃
X–R)).

Proof. Apply Theorem 5.1 to X–S and observe that H–X–S{C,V} and H–S{C} are essentially the
same in the sense that an algorithm solving one of the problems also solves the other one. Indeed,
the variable index disclosure of the {C,V}-revealing oracle is pointless since the relations in
X–S involve all the variables. Moreover, the map sending a constraint R(xj1 , . . . xjq) of S to the
constraint R(j1,...,jq)(x1, . . . x`) of X–S is a bijection which preserves satisfying assignments.

Corollary 5.1. Let comp(R) be polynomial. Then the complexities of the following problems
are polynomial time equivalent: (a) H–S{C,V} and

⋃
S if the number of relations s is constant;

(b) H–S{C,R} and E–S if the arity q is constant and (c) H–S{C} and
⋃
X–S if both s and q are

constant.

82

The polynomial time equivalence of Theorems 5.1, 5.2, 5.3 and Corollary 5.1 remain true when
the algorithms have access to the same computational oracle. Therefore, we get generic easiness
results for H–CSPs under an NP oracle. An H–CSP is said to be NP-hard essentially when it
demonstrates an equivalence to a CSP extension which is known to be NP-hard.
Example 5.1 (Hidden 1SAT (continued)). Since

⋃
{Id,Neg} = {∅, Id,Neg, {0, 1}},

⋃
1SAT has

only the two trivial (always false or always true) relations in addition to the relations in 1SAT.
Therefore it can be solved in polynomial time, and by the Transfer Theorem H–1SAT{C,V} is
also in P. On the other hand, for any index set I ⊆ [`], IdI is a disjunct of positive literals
with variables from I, and similarly NegI is a disjunct of negative literals with variables from
I. Thus E–1SAT includes Monotone SAT (MONSAT). The problem MONSAT is a special
case of SAT where every clause has only positive or only negated literals. It is known to be
NP-hard by Schaefer’s characterization [Sch78], and therefore the Transfer Theorems imply that
H–1SAT{C,R} and H–1SAT{C} are also NP-hard.

As NP-hard problems obviously remain NP-hard in the hidden setting (without access to an NP
oracle), it is arguably more interesting to investigate the complexity of various polynomial-time
solvable CSPs. The Transfer Theorems are first applied when there is no promise on the input
instances and the hidden CSPs are categorised depending on the type of the revealing oracle
used.

5.3 Constraint index and variables revealing oracle

With the {C,V}-revealing oracle, O{C,V}, there are several interesting families of CSPs that are
considered including the exact-Unique Games Problem and equality to a member of a fixed class
of graphs. Many of the monotone graph properties, with this oracle, show a polynomial-time
equivalence to their counterparts in the un-hidden setting and remain in P as do some other
Boolean CSPs like 2SAT. The hidden version of the exact-Unique game problem with O{C,V}
shows some split behaviour with the problem on an alphabet of size 2 remaining in P but
becoming NP-hard for alphabet size ≥ 3. Finding if a hidden graph is equal to a k-clique is
NP-hard in this setting and is equivalent to the Graph Isomorphism problem considered in
[BCZ13, Theorem 13], whose proof, with the help of the Transfer Theorem, becomes very simple.
For the sake of completeness, the CSPs considered in this section are described below under the
assumption that W = JwK` unless explicitly specified.

1. Deltas on Triplets (∆): This problem arises by flipping the truth table for 3SAT i.e.
there is exactly one string satisfying each relation instead of just one string that falsifies
it. Formally, w = 2, q = 3, and R = {Rabc : {0, 1}3 → {T,F} | a, b, c ∈ {0, 1}},where
Rabc(x, y, z) := (x = a) ∧ (y = b) ∧ (z = c).

2. Hyperplane Non-Cover (HYP−NC): Let p be a prime, and Fp be the field of size p. Denote
V = FNp , and S = {all hyperplanes in FNp }. Informally, given a set of hyperplanes S′ ⊆ S,
the problem asks to decide if there exists v ∈ FNp not covered by these hyperplanes.

83

Formally, ` = 1, q = 1, w = pN , W = V and RS = {RH | H ∈ S} where RH(a) evaluates
to T if and only if a /∈ H.

3. Arbitrary sets of binary relations on Boolean alphabet, (in particular, 2SAT): Recall that
for 2SAT, we have w = 2, q = 2, and R = {RT , RF , (a), (ā), (a∨ b), (a∨ b̄), (ā∨ b), (ā∨ b̄)},
where RT (a, b) = T is the trivially true function, RF (a, b) := F is the function that is
always false and ā denotes the negation of a.

4. Exact-Unique Game Problem (UG[k]): Given an undirected graph, G = (V,E), and a
permutation πe : JkK→ JkK for every edge e ∈ E, the goal is to decide if one can assign labels
αv ∈ JkK for every vertex v ∈ V such that for every edge e = {u, v} ∈ E with u < v we
have πe(αu) = αv. Formally: w = k, q = 2 and R = {π : JkK→ JkK | π is a permutation}.

5. k-Clique Isomorphism (kCLQ–ISO): Given an undirected graph G = (V,E), determine if
there exists a permutation π on [n] such that
(1) ∀(i, j) ∈ E, R≤k(π(i), π(j));
(2) ∀(i, j) /∈ E, ¬R≤k(π(i), π(j)).
Formally, w = n, q = 2, ` = 1, W is the set of n-tuples of integers from [n] which define
permutations on [n], and R = {R≤k,¬R≤k}, where R≤k(α, β) := T ⇐⇒ α ≤ k & β ≤ k.

6. Equality to some member in a fixed class of graphs (EQK): For a fixed class K of graphs
on n vertices variables, we denote by PK : {0, 1}(

n
2) → {T,F} the property of being equal

to a graph from K. Formally, W = K, w = 2, q = 1, ` =
(n

2
)
, and R = {Id,Neg} under

the assumption is that membership in K can be tested in polynomial time. The following
special cases will be considered:
• Equality to k-Clique (EQkCLQ): Given a graph, decide if it is equal to a k-clique.
• Equality to Hamiltonian Cycle (EQHAMC): Decide if G is a cycle on all n vertices.
• Equality to Spanning Tree (EQST): Given a graph, decide if it is a spanning tree.

First, the problems in P are illustrated after which the NP-hard problems are discussed.
Theorem 5.4. The following are in P:(a) H–2SAT{C,V}, (b) H–UG[2]{C,V}, (c) H–EQST{C,V}.

Proof. The following problems in the hidden input setting with the constraint and variable index
revealing oracle are solvable in polynomial time.

(a) Arbitrary binary Boolean relations (H–2SAT{C,V})
In the case of 2SAT, taking the union of any two relations in R2SAT is equivalent to the
disjunction of the two boolean expressions the relations signify. For example, Ra

⋃
Rb =

Ra∨b and the union remains in R2SAT. Hence,
⋃

2SAT = 2SAT, which is in P. Therefore,
from Theorem 5.1(a), H–2SAT{C,V} is also in P.
The above statement can be extended to an arbitrary set R′ of binary relations as follows.
Let R′′ stand for the set of all binary relations in Boolean variables. We trivially have⋃
R′ ⊆ R′′, therefore an instance ofH–2SAT{C,V} can actually be described by a conjunction

of the form
∧m
k=1Rk(xik , xjk) where Rk is a binary relation. Expressing each Rk by a

Boolean formula in conjunctive normal form, we obtain an instance of 2SAT consisting of

84

O(m) clauses, which can be solved in polynomial time.
(b) Unique Games with alphabet size 2 (H–UG[2]{C,V})

UG[2] is a CSP with w = 2, q = 2, and R = {π : J2K → J2K | π is a permutation}. The
only permutations in RUG[2] enforce either that αu = αv or that αu = αv ⊕ 1 for an edge
e = (u, v). Both of these relations can be represented as binary boolean relations. Hence,
UG[2] is an instance of 2SAT and from Theorem 5.4(a), H–UG[2]{C,V} is in P.

(c) Equality/Isomorphism to a member in a fixed class of graphs
We consider the H–EQK{C,V} problem in more detail. Given a graph instance G = (V,E)
in this model, the

(n
2
)
constraints for G2 are such that Ce = I(αe) for e ∈ E and Ce = ¬(αe)

otherwise. This implies that
⋃
R = {Id,Neg,T} and instances of

⋃
EQK are parametrized

with graphs (sets of edges) E1 ⊆ E2. Here E2 is the set of edges for which the constraint
is either Id or T while E1 consists of pairs for which the constraint is Id. The

⋃
EQK-

problem then becomes: given sets E1, E2 such that E1 ⊆ E2, does there exist a graph
G′ = (V,E′) ∈ K such that E1 ⊆ E′ ⊆ E2?
From Theorem 5.1, the complexity of H–EQK, can be analyzed by considering the complex-
ity of

⋃
EQK. Below, we analyze the complexity of

⋃
EQK when K is the class of spanning

trees on n vertices.
Remark 5.1. For any K, if we take E1 = ∅, then solving EQK becomes equivalent to
finding out if there exists G ∈ K which is a subgraph of E2.
Remark 5.2. Note that if we assume that K is the set of all graphs isomorphic to some
G0 and E1 = E2 as arbitrary graphs on n vertices, then solving EQK becomes equivalent to
finding out if E2 is isomorphic to G0.

Proof for Equality to a Spanning Tree (H–EQST{C,V}): Here, K is the set of all possible
spanning trees on n vertices and E1 without loss of generality is a forest F . E2 is any
arbitrary graph on n vertices containing E1. In this case, the

⋃
EQK problem becomes

equivalent to finding a spanning tree on E2 which also contains the forest F . This problem
is in P which implies that the H–EQST{C,V} problem is also in P .

Theorem 5.5. The following are NP-hard:(a) H–∆{C,V}, (b) H–HYP−NC{C,V}, (c) H–UG[k]{C,V}
for k ≥ 3, (d) H–kCLQ–ISO{C,V}, (e) H–EQkCLQ{C,V}, (f) H–EQHAMC{C,V}.

Proof. The following problems in the hidden model with the constraint and variable index
revealing oracle are shown to be NP-hard. Using Theorem 5.1, the complexity of each H–S{C,V}
is analyzed by considering the complexity of

⋃
S.

(a) Deltas on Triplets (H–∆{C,V})
By definition, each relation in R∆ identifies a boolean string on 3 variables. This implies
that

⋃
R∆ forms the set of all Boolean predicates on 3 variables. Thus, 3SAT can be

expressed as the
⋃

∆ problem. Hence, from Theorem 5.1(b), H–∆{C,V} is NP-hard.
(b) Hyperplane Non-Cover (H–HYP−NC{C,V})

The Hyperplane Non-Cover problem (HYP−NC) is the solvability of homogeneous linear
in-equations in FNp . The HYP− NC problem over ZNp for p ≥ 3 includes the 3COL problem

85

and is already NP-hard. To see this, let E be a graph on vertex set [N] and consider the
in-equations xi 6= xj for indices i, j ∈ [N] such that {i, j} ∈ E. If p = 3 that’s all we need.
Otherwise, add a variable y together with the in-equations y 6= 0, xi 6= ky for i ∈ [N] and
k ∈ [p− 3].
Hence, it remains to consider the H–HYP−NC{C,V} problem over FN2 , which we need to
examine

⋃
HYP−NC by Theorem 5.1. In this setting, let T be the set of all subspaces

(not necessarily hyperplanes) of FN2 . Then the set of constraints of
⋃

HYP−NC consists of
{RP | P ∈ T} where RP (a) evaluates to T if and only if a 6∈ P . This problem is NP-hard,
as it includes Subgroup Non-Cover by subgroups of index 4 which encompasses the 4COL
problem. Hence, the former will be NP-hard using Theorem 5.1.

(c) Unique games (H–UG[k]{C,V} for k ≥ 3)
UG[3] is a CSP with w = 3, q = 2, and R = {π : J3K→ J3K | π is a permutation}. Let

R◦ :=
⋃

π:(∀i)(π(i)6=i)
π.

Note that R◦ ∈
⋃
R. Choosing R◦ as the constraint for every edge gives us the 3COL

problem. Hence, from Theorem 5.1(b), H–UG[3]{C,V} is NP-hard.
Remark 5.3. Our proof method also shows that H–UG[k]{C,V} is NP-hard for any k > 2.

(d) k-Clique Isomorphism (H–kCLQ–ISO{C,V} for k ≥ 3)
Obviously, replacing the constraints of type Rk by Rk∪¬Rk in an instance of H–kCLQ–ISO
we obtain an instance of

⋃
H–kCLQ–ISO. This however just means omitting Constraints

(1), and we obtain the kCLQ problem (deciding whether the graph contains a k-clique)
which is NP-hard. Hence from Theorem 5.1(b), the H–kCLQ–ISO{C,V} problem is NP-hard.

(e) Equality to a k-Clique (H–EQkCLQ{C,V})
We use the framework defined in the previous proof for the H–EQST{C,V} problem. As
mentioned in Remark 5.1, given a graph E2, consider K to be the set of all possible
k-cliques on n vertices and E1 = ∅. In this setting, the

⋃
EQK problem is equivalent to

finding a k-clique on E2 which is NP-hard.
Remark 5.4. The above proof could also serve as an alternate proof for Theorem 5.5(d).

(f) Equality to a Hamiltonian Cycle (H–EQHAMC{C,V})
We use the framework defined in the previous proof for the H–EQST{C,V} problem. Here,
K is the set of all possible Hamiltonian cycles on n vertices and E1 = ∅. For an arbitrary
graph E2. the

⋃
EQK problem parametrized by E1 and E2 becomes equivalent to deciding

if E2 has a Hamiltonian cycle, which is NP-hard.

5.4 Constraint index and relation revealing oracle

With constraint and relation index revealing oracles, we show that if the arity and the alphabet
size are constant, any CSP satisfying certain modest requirements becomes NP-hard.
Theorem 5.6. Let S be a CSP with constant arity q and constant alphabet size w. H–S{C,R} is

86

NP-hard if for every α ∈ JwK, there is a non-empty relation Rα ∈ R such that (α, . . . , α) /∈ Rα.

Proof. To show that E–S is NP-hard, it will be reduced to the problem E–3SAT which is
essentially the MONSAT problem with clauses of size 3. These are instances of 3SAT where the
variables in each clause are either all positive or all negated. Their NP-completeness can be
deduced, for example, from Schaefer’s characterization [Sch78].

We first extend the relations for S as follows. Let q′ = (w − 1)q + 1 and let R′ ⊆ JwKq′ be
the set of q′-ary relations that can be obtained as an extension of an element of R \ {∅} from
any q coordinates. Since q and w are constant, the cardinality of R′ is also constant. We
claim that

⋂
R∈R′ R = ∅. Indeed, every a ∈ JwKq′ has a sub-sequence (α, . . . , α) of length q for

some α ∈ JwK, therefore the extension of Rα from these q coordinates does not contain a. Let
{R0, R1, . . . , Rh} be a minimal subset of R′ such that

⋂h
i=0R

i = ∅. Since the empty relation is
not in R′, we have h ≥ 1. Let us set A0 =

⋂
i 6=1R

i and A1 =
⋂
i 6=0R

i. Then A0⋂A1 = ∅, and
because of the minimality condition, A0 6= ∅ and A1 6= ∅.

For a boolean variable x, we will use the notation x1 = x and x0 = x̄. The main idea of the
proof is to encode a boolean variable x1 by the relation A1 and x0 by A0. We think about the
elements of A1 as satisfying x1, and about the elements of A0 as satisfying x0. Then x1 and x0

can be both satisfied, but not simultaneously.

To implement the above idea, we extend the relations further, building on the above extension.
We suppose without loss of generality that ` is a multiple of q′, and we set `′ = `/q′. Since q′ is
constant, MONSAT on `′ variables is still NP-hard. We take `′ pairwise disjoint blocks of size q′

of the index set [`] and on each block we consider relations R0, . . . , Rh. We denote by Rik the
`-ary relation which is obtained by extending Ri from the kth block. Observe that the relations
Rik are just extensions of elements of R.

After these preparations, we are ready to present the construction. Let K =
∧u
t=1Kt be an

instance of E–3SAT in `′ variables, with each 3-clause of the form Kt = xbtit,1 ∨ x
bt
it,2
∨ xbtit,3 , where

it,1, it,2, it,3 are indices from [`′] and bt is either 0 or 1. Then we map K to the instance C whose
constraints are

Rbtit,1 ∪R
bt
it,2
∪Rbtit,3 ,

for each t ∈ [u], and
Cjk = Rjk,

for each k ∈ [`′] and j ∈ {2, . . . , h}. This is an instance of E–S since the three relations Rbtit,1 ,
Rbtit,2 and Rbtit,3 are the extensions of the same relation in R. It is quite easy to see that K is
satisfiable if and only if C is satisfiable. Indeed, a satisfying assignment a for the C can be
translated to a satisfying assignment for K by assigning 0 or 1 to xk according to whether the
kth block of a was in A0

k or A1
k (taking an arbitrary value if it was in none of the two). Similarly,

a satisfying assignment b for K can be translated to a satisfying assignment a for C by picking
any element of Abkk for the kth block of a.

87

An immediate consequence is that under the same conditions H–S{C} is NP-hard too. For an
application of this consequence, let LINEQ stand for the CSP in which that alphabet is identified
with a finite field F and the `-ary constraints are linear equations over F .
Claim 5.1. H–LINEQ{C} is NP-hard.

Proof. For each i ∈ `, we pick two equations: xi = 0 and xi = 1. Observe that xi = 0 is the
same as {0}i, the `-ary extension of the unary relation {0} on the ith position and we have the
same if we replace 0 by 1. By the above observation, the H–CSPs built from relations satisfying
this condition are are NP-hard.

5.5 Monotone Graph Properties

In this section, we consider monotone graph properties in the context of constraint index revealing
oracle. Recall from the discussion on the monotone graph property framework in the trial and
error setting (Chapter 1, Section 2.0.2) that the CSP for a property P , SP , uses only one kind of
relation R = {Neg}. This makes it irrelevant if the relation is revealed or not and hence makes
the O{C} and O{C,R} oracles equivalent for this framework. We then study various monotone
graph properties like Spanning Tree, Cycle Cover, etc. (which are polynomial time decidable in
the un-hidden setting) and prove that the problems become NP-hard with the constraint index
revealing oracle.

Let us examine the CSPs for a property P, SP , in the trial and error setting. In particular, as
already noted in Section 5.3, the case with the O{C,V} oracle is polynomial time equivalent to the
“normal” problem. As |R| = 1 in this case, the restricted union of arity extension (

⋃
E–R) and

the union of arity extension (
⋃
X–R) are the same. Now, the arity extension is given by X–R

= {Nege | e ∈
(n

2
)
}, where Nege(α1, . . . , α(n2)) = ¬αe, and therefore

⋃
X–SP= {∨e∈E′Nege | E′ ⊆(n

2
)
} where ∨ denotes the OR operator. That is, the relations in

⋃
X–SP are parametrized by

sets E′ of possible edges where the relation corresponding to E′ is equivalent to one where at
least one edge of the proposed graph is not there in E′.

As a consequence, the
⋃
X–SP problem becomes the following: Given a graph G = (V,E), and

edge sets on n vertices E1, . . . , Em ⊆
([n]

2
)
, does there exist an A ∈WP such that A ⊆ E and A

excludes at least one edge from each Ei? While every subset of the edge set
(n

2
)
is in our disposal,

in actual applications, the tricky part is to come up with appropriate subsets E1, . . . , Em, which,
together with the minimal instances of the graph property in question, yield that the resulting⋃
X–SP problem is hard. From Theorem 5.3, the complexity of H–SP{C} can be analyzed by

considering the complexity of
⋃
X–SP . This will be the main content in our proofs for the

various properties (defined in Section 2.0.2) considered in Theorem 5.7.

This framework along with the extensions naturally extends to graphs with one or more designated
vertices, to directed graphs, while monotone decreasing properties can be treated by replacing
Neg with Id, the identity function.

88

Theorem 5.7. The following problems are NP-hard:(a) H–ST{C}, (b) H–DST{C}, (c) H–UCC{C},
(d) H–DCC{C}, (e) H–BPM{C}, (f) H–DPATH{C}, (g) H–UPATH{C}.

Proof. We show that the following problems in the hidden model with the constraint index
revealing oracle are NP-hard. In each case, we construct an instance of the

⋃
X–SP such that it

becomes equivalent to a known NP-hard problem and using Theorem 5.3(b) we can conclude
that the hidden version, H–SP{C}, is NP-hard.

(a) Spanning Tree (H–ST{C})
When P is connectedness, WP is the set of Spanning Trees on n-vertices.
Given G = (V,E), for every vertex v ∈ V, we consider

(n−1
3
)
edge sets Evijk where

Evijk := {(v, i), (v, j), (v, k)} 1 ≤ i < j < k ≤ n.

With this choice of Evijks the
⋃
X–ST problem asks if there exists a spanning tree in G

which avoids at least one edge from each Evijk. This is equivalent to asking that every
vertex v is incident to at most two edges of the spanning tree A. Spanning trees with
this property are just Hamiltonian paths in G. In other words, the

⋃
X–ST problem is

equivalent to asking if G contains a Hamiltonian path i.e. the HAM−PATH problem in G.
Hence, the NP-hard HAM−PATH in G problem reduces to the H–ST∅ problem in G.

(b) Directed Spanning Tree (H–DST{C})
Similar to the previous case, WP is the set of directed spanning trees rooted at vertex 1.
Let G = (V,E), be a directed planar graph such that the in-degree and the out-degree
for every vertex is at most 2. The DHAM−PATH problem in G, i.e. determining if there
exists directed Hamiltonian path ending at node 1 in G, is NP-hard [GJ79]. Our goal is to
reduce the DHAM−PATH problem in G to the H–DST{C} problem in G.
For every vertex v ∈ V, of in-degree 2 we consider the edge sets Ev where Ev := {(i, v) |
(i, v) ∈ E} with |Ev| ≤ 2 by our choice of G. In addition, for every vertex v ∈ V, of
out-degree 2 we consider the edge sets Ev where Ev := {(v, i) | (v, i) ∈ E}. With these Evs
and Evs, the

⋃
X–DST problem asks if there exists a directed spanning tree rooted at vertex

1 that contains at most one edge coming in and at most one edge originating from every
vertex. These constraints restrict the directed spanning tree, A to be a DHAM−PATH
in G, analogously to the undirected case. Hence, the NP-hard DHAM−PATH problem
reduces to the H–DST{C} problem in G.

(c) Undirected Cycle Cover (H–UCC{C})
Here, WP is the set of undirected cycle covers on n-vertices. From Hell et al. [HKKK88]
we know that the problem of deciding whether a graph has a UCC that does not use the
cycles of length, (say) 5 is NP-hard. We construct an equivalent instance of

⋃
X–UCC as

follows. We choose the edge sets EC := {e | e ∈ C} ranging over every length 5 cycle C in
G. Then, a UCC satisfying the above conditions cannot contain any 5-cycles. Hence, an
NP-hard problem reduces to the H–UCC{C} problem in G.

(d) Directed Cycle Cover (H–DCC{C})

89

In this case, WP is the set of directed cycle covers on n-vertices. The proof follows similar
to the undirected case. The NP-hard problem we are interested in is determining if a
graph has a DCC that does not use cycles of length 1 and 2 [GJ79]. This problem can be
expressed as

⋃
X–DCC by choosing the edge sets EC := {e | e ∈ C} for every length 1 and

length 2 cycle C in G.
(e) Bipartite Perfect Matching (H–BPM{C})

Here, WP is the set of perfect matchings in a complete bipartite graph with n-vertices on
each side. There is a one-to-one correspondence between perfect matchings in a bipartite
graph G = (A∪B,E) with n vertices on each side and the directed cycle covers in a graph
G′ = (V ′, E′) on n vertices. Every edge (i, j) ∈ E′ corresponds to an undirected edge
{iA, jB} ∈ E. With this correspondence the H–BPM{C} problem in G is equivalent to the
H–DCC{C} problem in G′. Thus, from Theorem 5.7(d) the former becomes NP-hard.

(f) Directed Path (H–DPATH{C})
We consider WP as the set of directed paths from s to t. It is known that given a layout
of a directed graph on a plane possibly containing crossings, the problem of deciding
whether there is a crossing-free path from s to t is NP-hard [KLN91]. This condition can
be expressed by picking the each edge set Ei as the set of pairs of edges that cross.

(g) Undirected Path (H–UPATH{C})
In this case, WP is the set of undirected paths from s to t. We can apply the same proof
method as the one used for the H–DPATH{C} problem on an undirected graph.

5.6 H-CSPs with a promise on instances

In this section we consider an extension of the H–CSP framework where the instances satisfy
some property. Formally, let S be a CSP, and let PROM be a subset of all instances. Then S
with promise PROM is the CSP SPROM whose instances are only elements of PROM. One such
property is repetition freeness where the constraints of an instance are pairwise distinct. We
denote by RF the subset of instances satisfying this property. For example 1SATRF, (as well
as H–1SATRF) consists of pairwise distinct literals. Such a requirement is quite natural in the
context of certain graph problems where the constraints are an inclusion (or non-inclusion) of
possible edges. The promise H–CSPs framework could also be suitable for discussing certain
graph problems on special classes of graphs (e.g, connected graphs, planar graphs, etc.). For
instance, the BPM problem can also be viewed as the problem of asking for a perfect matching
on a graph that is promised to be bipartite.

We would like to prove an analogue of the transfer theorems for CSPs with promise. For the
sake of simplicity, we develop this only for the simplest case i.e. with the {C,V}-revealing oracle.
To achieve this, the closure by union CSP extension for a CSP with promise is detailed here.
Given a promise PROM for the CSP S of type R = {R1, . . . , Rs}, the corresponding promise⋃

PROM for
⋃
S is defined quite naturally as follows. An instance C = {C1, . . . , Cm} of S,

90

where Cj = Rkj (xj1 , . . . , xjq), is included in an instance C′ = {C ′1, . . . , C ′m} of
⋃
S if for every

j = 1, . . . ,m C ′j = Qj(xj1 , . . . , xjq) for Qj ∈
⋃
R such that Rkj ⊆ Qj . Basically, if for every j,

the constraint Cj ∈ R is contained in the corresponding C ′j ∈
⋃
R, then C = {C1, . . . , Cm} is

included in C′ = {C ′1, . . . , C ′m}. Then,
⋃

PROM is defined as the set of instances in C′ ∈
⋃
S

which include C ∈ PROM. Note that it is not necessary for C′ to satisfy the promise PROM.
In order for the transfer theorem to work, the notion of a solution in this setting is modified.
A solution under promise for C′ ∈

⋃
PROM has to satisfy two criteria:(a) it is a satisfying

assignment when C′ includes a satisfiable instance C ∈ PROM, and (b) it is exception when C′

is unsatisfiable. However, in the ambiguous case when all the instances C ∈ PROM included in C′

are unsatisfiable but C′ itself is still satisfiable, the output can either be a satisfying assignment
or exception. An algorithm solves

⋃
S
⋃

PROM under promise if ∀C′ ∈
⋃

PROM, it outputs a
solution under promise.

Using the above definition in the transfer theorem’s proof allows the algorithm for H–SPROM
{C,V}

to terminate, at any moment of time, with the conclusion no as soon as it gets enough information
about the instance to exclude satisfiability and without making further calls to the revealing
oracle. In some ambiguous cases, it can still call the oracle with an assignment which satisfies
the

⋃
S
⋃

PROM-instance. Other cases when the satisfiability of a
⋃
S
⋃

PROM instance implies the
existence of a satisfiable included SPROM instance lack this ambiguity. With these notions the
proof of Theorem 5.1 goes through and we obtain the following.
Theorem 5.8. Let SPROM be a promise CSP. (a) If

⋃
S
⋃

PROM is solvable under promise in
time T then H–SPROM

{C,V} is solvable in time O((T + s× comp(R))×m×min{dim(
⋃
R), |Wq|}).

(b) If H–SPROM
{C,V} is solvable in time T then

⋃
S
⋃

PROM is solvable under promise in time O(T ×
m× comp(

⋃
R)).

Theorem 5.8 is applied to various problems under the promise of repetition freeness in Theorem 5.9
before which the kWEIGHT problem which has not been before is explicitly defined here for
completeness.
Definition 5.5 (k-Weight problem). The k-weight problem (kWEIGHT) decides if a Boolean
string has Hamming weight at least k i.e. the number of 1’s in the string is at least k. Formally,
we have w = 2, q = 1, R = {{0}} and W consists of words of length ` having Hamming weight at
least k. An instance of kWEIGHT is a collection (C1, . . . , Cm) of constraints of the form xij = 0
or formally, Cj = {0}ij . The satisfying string for these constraints is b ∈ {0, 1}` where bt = 0 if
and only if t ∈ {i1, . . . , im}.
Theorem 5.9. (a) Repetition free H–1SAT with constraint index revealing oracle is easy, that
is H–1SATRF

{C} ∈ P; (b) H–kWEIGHT{C} is NP-hard for certain k, but H–kWEIGHTRF
{C} ∈ P for

every k; (c) Repetition free H–2SAT, with constraint index revealing oracle, that is, H–2SATRF
{C}

is NP-hard. (d) Repetition free H–2COL, that is H–2COLRF
{C} is NP-hard.

Proof. Notice that problems are considered with the {C}-revealing oracle but the transfer
theorem uses the {C,V}-revealing oracle. However, when PROM = RF, it is possible to consider
the relations that describe the constraints to be extended to their `-ary counterparts in which

91

case the O{C} and O{C,V} oracles become equivalent. Now, the proof proceeds by applying
Theorem 5.8 to the appropriate problems.

(a) A repetition free instance of
⋃

1SAT is C = {C1, . . . , Cm}, where each Cj is a disjunction
of literals from {x1, x1, . . . , x`, x`} such that there exist m distinct literals z1, . . . , zm with
zj from Cj . A conjunction of literals is satisfiable, if for every i ∈ [`], the literals xi and xi
are not both among them. Hence an algorithm which solves H–1SATRF

{C} under promise
can proceed as follows. Using a maximum matching algorithm it selects pairwise different
variables xi1 , . . . , xim such that xij or xij is in Cj . If such a selection is not possible it
returns exception. Otherwise it can trivially find a satisfying assignment.

(b) An instance of
⋃
kWEIGHT is C′ = {C ′1, . . . , C ′m}, where there exist subsets S1, . . . , Sm of [`]

such that the relation for C ′j is the set of assignments {a ∈ {0, 1}` : ai = 0 for some i ∈ Sj}.
Finding a satisfying instance of

⋃
R is therefore equivalent to finding a hitting set (a

transversal) of size (at most) ` − k for the hypergraph {S1, . . . , Sm}. This problem is
NP-hard for, say, 0.01` < k < 0.99` [NH81]. Hence, the H–kWEIGHT{C} problem for this
range of ks is NP-hard.
A kWEIGHTRF-instance included in an instance of

⋃
kWEIGHT

⋃
RF corresponding to

subsets S1, . . . , Sm consists of constraints xij 6= 0 for m different indices i1, . . . , im with
ij ∈ Sj . Obviously, such a set of constraints is satisfiable by an element of W if and only
if m ≤ `− k. These observations immediately give the following efficient solution under
promise for

⋃
kWEIGHT

⋃
RF. If m > ` − k we return exception. Otherwise, using a

maximum matching algorithm we find m different places i1, . . . , im with ij ∈ Sj (which
must exist by the promise) and return an assignment from W which can be found in an
obvious way.

(c) For this case, we reduce 3SAT to
⋃

2SAT
⋃

RF. Let φ =
∧m
j=1Cj be a 3−CNF where

Cj = xb1j1 ∨ x
b2
j2
∨ xb3j3 .

(Here bi ∈ {0, 1} and x1 denotes x, x0 stands for x.) For each j = 1, . . . ,m we introduce a
new variable yj . We will have 2m new clauses:

C ′j = xb1j1 ∨ x
b2
j2
∨ xb3j3 ∨ y

0
j and C ′′j = xb1j1 ∨ x

b2
j2
∨ xb3j3 ∨ y

1
j for each j.

Define φ′ =
∧m
j=1(C ′j ∧ C ′′j). Then φ is satisfiable if and only if φ′ is satisfiable. In fact,

there is a 1 to 2m correspondence between the assignments satisfying φ and those satisfying
φ′: only the values assigned to the first ` variables matter. Also, the included constraints
(xb1j1 ∨ y

1
j) and (xb1j1 ∨ y

0
j) for all j = 1, . . . ,m form a system of 2m different 2−CNFs.

Furthermore, if φ′ is satisfied by an assignment then we can select a satisfiable system
of 2m pairwise distinct sub-constraints: for each j we pick s ∈ {1, 2, 3} such that xbsjs is
evaluated to 1 and take (xbsjs ∨ y

1
j) and (xbsjs ∨ y

0
j) for j = 1, . . . ,m.

(d) Here the alphabet is J2K = {0, 1}, q = 2, R has one element “6=”, that is, the strings
{10, 01}. An instance of 2COLRF consists of a set of constraints of the form xu 6= xv for m

92

pairwise distinct unordered pairs (u, v) from {1, . . . , `} (corresponding to the edges of a
graph). An instance of

⋃
2COL is a collection {C1, . . . , Cm}, where each Cj is a disjunction

of constraints of the form xu 6= xv. In an equivalent view, an instance of
⋃

2COL can
be described by the collection of edge sets (graphs) E1, . . . , Em on vertex set [n] and a
satisfying assignment can be described by a colouring c : {1, . . . , n} → {0, 1} such that for
every j there exists an edge ej ∈ Ej with endpoints having different colours. It is clear
that if the edge sets E1, . . . , Em are disjoint then the instance is repetition free and the
solutions under promise coincide with the solutions in the normal sense.
Let E1, . . . , Em be edge sets describing an instance of

⋃
2COL. Put sj = |Ej |. For each j

we introduce 2sj new vertices: uvj1, uvj2 for each (u, v) ∈ Ej , 2sj new one-element edge
sets Euvj1 = {(u, uvj1)} and Euvj2 = {(v, uvj2)}; while Ej is replaced with an edge set
E′j consisting of sj edges: (uvj1, uvj2) for each (u, v) ∈ Ej . It turns out that the

⋃
2COL

problem on the n+ 2
∑m
j=1 sj vertices with the new m+ 2

∑m
j=1 sj edge sets is equivalent to

the original one and solutions of the two problems can be easily (and efficiently) mapped
to each other. The new edge sets are pairwise disjoint and hence the repetition free version
of the new

⋃
2COL problem is the same as the non-promise version.

Theorem 5.6 shows that non-promise
⋃

2COL is NP-hard. By the reduction above, so is
its repetition free version.

On group isomorphism. Isomorphism of a hidden multiplication table with a given group,
a problem discussed in [BCZ13], can also be cast in the framework of promise H–CSPs. We
consider the following problem GROUPEQ (equality with a group from a class). Let G be a
family of groups on the set [k], that is, a set of multiplication tables on [k] such that each
multiplication table defines a group. The task is to decide whether a hidden group structure
b(,) is equal to some a(,) from G and if so, to find such an a(,). (Note that a solution of the
latter task will give the whole table for b(,).)

GROUPEQ(G) can be defined as a promise CSP. First we consider the CSP ENTRIES(G) with
the following parameters and type. We have w = k, W = G, R = {{w} : w ∈ [k]}, ` = k2. It
will be convenient to consider assignments as k× k tables with entries from [k], that is, functions
[k]2 → [k]. (Implicitly, we use a bijection between the index set {1, . . . , `} and [k]2.) The number
of constraints is m = k2 and an instance is a collection x(uh,vh) = bh, where h = 1, . . . ,m, and
uh, vh, bh ∈ [k]. Thus the assignment satisfying ENTRIES(G) are k× k multiplication tables from
G which have prescribed values at k2 (not necessarily distinct) places.

We say that an instance for ENTRIES(G) belongs to the promise GROUP if two conditions
are satisfied. Firstly, there is one constraint for the value taken by each place. Formally, the
map τ : h 7→ (uh, vh) is a bijection between {1, . . . ,m} and [k]2. As a consequence, by setting
b(u, v) := bτ−1(u,v), we have a constraint xu,v = b(u, v) for pair (u, v) ∈ [k]2. The second –
essential – condition is that the multiplication given by b(,) defines a group structure on [k].
The promise problem GROUPEQ(G) is the problem ENTRIES(G)GROUP.

93

We consider the promise problem H–ENTRIES(G)GROUP
{V } (which we denote by H–GROUPEQ(G)

for short) and the corresponding problem
⋃

ENTRIES(G)
⋃

GROUP
{V } (short notation:

⋃
GROUPEQ(G)).

In this H–CSP, if a(,) is different from b(,), the oracle reveals a pair (u, v) such that
a(u, v) 6= b(u, v).

We note here that the case of H–GROUPEQ(G) where G consists of all isomorphic copies of a
group G in fact covers the problem of finding an isomorphism with G discussed in [BCZ13]. For
that problem, the input to the verification oracle is a bijection φ : [k] → G. Recall that b(,)
encodes the hidden group structure, and we assume G is specified by the binary relation g(,).
Then, in the case when φ is not an isomorphism, the oracle has to reveal u, v ∈ [k] such that,
the product g(φ(u), φ(v)) does not equal φ(b(u, v)) in G. Indeed, given φ we can define (and
even compute) the multiplication aφ(,) on [k] – by taking aφ(x, y) = φ−1(g(φ(x), φ(y)) – such
that φ becomes an isomorphism from the group given by aφ(,) to G. Then φ is an isomorphism
from the group given by b(,) if and only if aφ(,) = b(,). Furthermore, if it is not the case
then the oracle given in [BCZ13] reveals a pair (u, v) such that aφ(u, v) = b(u, v), exactly what
is expected from a revealing oracle for H–GROUPEQ(G).

An instance of
⋃

ENTRIES(G) consists of k2 constraints expressing that a(uh, vh) ∈ Sh where
Sh ∈ 2[k] \ ∅ for h ∈ [m] = [k2]. An instance of the promise version

⋃
GROUPEQ(G) (which is

equal to
⋃

ENTRIES(G)
⋃

GROUP
{V }) should satisfy that {(uh, vh) : h = 1, . . . ,m} = [k]2, that is, our

constraints are actually x(u,v) ∈ S(u, v) for a map S(,) : [k]2 → 2[k]. Furthermore, there is a
map b(,) : [k]2 → [k] with b(u, v) ∈ S(u, v) for every (u, v) ∈ [k]2 such that b(,) gives a group
structure.

Now we are ready to reprove Theorem 11 in [BCZ13]. Note that our proof is considerably shorter
than the original proof.
Theorem 5.10. The problem H–GROUPEQ(G) is NP-hard.

Proof. Let p be a prime. We show that finding Hamiltonian cycles in Hamiltonian digraphs
of size p is reducible in polynomial time to H–GROUPEQ(G). The former problem is NP-hard,
since an algorithm that in polynomial time finds a Hamiltonian cycle in a Hamiltonian digraph
obviously can decide if an arbitrary digraph G has a Hamiltonian cycle: it just runs on G and
then tests if the outcome is indeed a Hamiltonian cycle.

Choose G as the set of all group structures on [p]. As every group having p elements is isomorphic
to Zp, G coincides with the group structures on [p] isomorphic to Zp. We essentially translate
the arguments given in [BCZ13] to the setting of

⋃
GROUPEQ as follows. This suffices to prove

the statement due to the transfer theorem stated in Theorem 5.8.

Let ([p], E) be a Hamiltonian directed graph (without loops) on [p]. Fix z ∈ [p]. For u ∈ [p], let
S(u, z) = {v : (u, v) ∈ E}, and S(u, v) = [p] for v 6= z. Let φ : [p] → {0, . . . , p − 1} = Zp be a
bijection that defines a Hamiltonian cycle in ([p], E). Then b(x, y) = aφ(x, y) := φ−1(φ(x)+φ(y))
gives a group structure on [p] (isomorphic to Zp via φ) consistent with the constraints given by

94

S(,). Conversely, if b(,) gives a group structure (necessarily isomorphic to Zp) consistent with
S(,) then the pairs (u, b(u, z)) (u ∈ [p]) form a Hamiltonian cycle in ([p], E). Thus finding
Hamiltonian cycles in Hamiltonian digraphs on p points can be reduced to

⋃
GROUPEQ on p

elements.

As an example, suppose we have p = 3, and the edges are 2 → 1, 1 → 3, 3 → 2. Then set
z = 2, so φ(2) = 1, φ(1) = 2, φ(3) = 0. (That is, i is the φ(i)th vertex to be visited in this
Hamiltonian cycle, where φ(i) should be understood as modulo p.) It can be verified that
b(x, 2) ∈ S(x, 2) = {y : (x, y) ∈ E}. On the other hand, if we set b(x, y) to be isomorphic to Zp
by the correspondence just given by φ, then the path (u, b(u, 2)) forms a Hamiltonian cycle.

95

Chapter 6
Probabilistic trials for hidden satisfiability problems

Question: What is the minimum amount of information needed to solve 2SAT efficiently?

The previous chapter discussed the consequence of using a wide range of oracles in the trial
and error model for any classical CSP whose input is unknown. The trials proposed however,
consisted of a single trial and algorithms proceeded in a deterministic fashion searching the
solution space for the next possible assignment. Given the wide range of oracles discussed,
the complexity of a single problem, say 2SAT, fluctuated widely between being intractable i.e.
NP-hard or trivial i.e. the hidden instance can be learned completely. However, the question
remains if there is any meaningful modification to the model that would allow the solving of
simple CSPs without learning every clause in the instance. Since the idea of an unknown input
roughly corresponds to the limit on the information one has about the instance, it is natural to
phrase the question as the minimum amount of information needed to solve a tractable CSP
in polynomial time. Considering SAT’s position as a flagship CSP, the question this chapter
tries to answer is in the context of 1SAT and 2SAT which can be solved efficiently when there is
full information about the instance. On another note, as it is also possible to find the ground
states for Q1SAT and Q2SAT efficiently, a quantization of the trial and error approach is also of
independent interest. This chapter aims to answer both these questions.

As far as modifications go, a first attempt is to randomize the trials made to any oracle. However,
as the complexity of the problem lies in the relational structure imposed by the transfer theorems,
randomizing the trials does not significantly decrease the complexity. Then, randomizing the
other end of the model i.e. the oracle would make for a second attempt.

The Random Oracle
Randomizing the oracle amounts to the case where the information revealed is a random violated
clause. This can be thought of as a relaxation of the clause-index revealing oracle C as repeating
the each trial many times over could reveal the indices of a all violated clauses and not just a
single violated clause index. Of course, in this case, the random oracle – denoted by Orand
– is not adversarial in nature. So, given a H–SAT instance, accessed via the Orand oracle, a
single trial, repeatedly proposed, reveals the indices of all the clauses violated by that trial. This
model corresponds more closely to real-life applications where one would expect to see observe a

96

randomly violated constraint and not an adversarially chosen one. However, this seems to be
a powerful assumption with respect to the question of interest as it is possible to learn some
clause of a H–kSAT instance in O(nk) time which would automatically translate to polynomial
time algorithms for H–1SAT and H–2SAT. For ease of notation, the hidden SAT problem with
the random oracle will be indicated as H–SATrand

Theorem 6.1. There exists an algorithm in the random oracle trial and error model which
either finds a satisfying assignment to a H–kSATrand instance on n variables containing m
clauses or learns the instance in time O(mnk) where the O(·) notation hides a constant dependent
on k.

Proof. Let the hidden instance be defined on variables x = {x1, . . . , xn} with clauses C1, . . . , Cm.
Without loss of generality, assume that all assignments tried fail to satisfy the instance as
otherwise, a satisfying assignment has been found aborting the algorithm’s run. Recall that the
tag of a clause is the set of literals contained in the clause. It will be shown that for each clause
tag T involving k literals, it is possible to learn which clauses are of this tag in O(m) times.
Since there could be at most O(nk) clause tags with arity k, the O(mnk) time follows.

Assume the clause tag to learn is (x1 ∨ x2 ∨ . . . ∨ xk); other clause tags will have an analogous
process. The first trial is the Boolean string a1 = 0n which returns a set S of violated clauses
followed by the trial a2 = 0k1(n−k) which returns S′ as the set of violated clauses. Now, consider
the intersection S ∩ S′ – which can be found in O(m) time.

The only clauses Cj in S∩S′ are those violated both by a1 and a2. Suppose Cj contained a literal
in {xk+1, . . . , xn}, then a2 would have satisfied it and if Cj contained a literal in {x̄k+1, . . . , x̄n},
then a1 would have satisfied it. If on the other hand Cj contained a literal in {x̄1, . . . , x̄k},
then both a1 and a2 would have satisfied it leading to the conclusion that Cj only contains
literals from the set {x1, . . . , xk}. In fact, S ∩ S′ only contains clauses all of whose literals are in
{x1, . . . , xj}. Note that this does not guarantee that each Cj ∈ S ∩ S′ has tag T = {x1, . . . , xk},
only that the tag T ⊆ {x1, . . . , xk}.

To ensure that each Cj of interest has tag T = {x1, . . . , xk}, one has to simply weed out the
clauses with tag T ({x1, . . . , xk} i.e. clauses with less than k literals. The way to do this would
be to run the same test as above for every L ⊂ {x1, . . . , xk} such that |L| = k− 1 and collecting
the sets SL of violated clause indices that have tag T ⊆ L. Now, ∪LSL for all k − 1 sized Ls is
the list of clauses with at most k − 1 literals and (S ∩ S′) \ (∪LSL) is the set of clauses with
the tag T = {x1, . . . , xk}. There are k such sets L and the test for each consumes O(m) time
leading to a clause tag of size k being learned in O(km) time. This proves the claim.

Corollary 6.1. In the random oracle model, H–2SATrand can be solved in polynomial time.

The corollary follows directly from Theorem 6.1 and shows that H–2SAT in this model can be
learned simply, and hence, solved in polynomial time. A more restrictive model is needed to
better satisfy the minimal information condition. Specifically, one that does not permit that

97

learning of the underlying instance completely but still provides polynomial time algorithms
for H–1SAT and H–2SAT. For this, the modification is made both over the kind of trials – a
probability distribution over assignments – and the oracle’s answers – the clause index which is
most likely to be violated by the distribution.

6.1 Probabilistic Trials, Quantum Trials

The idea for this model is to propose a probability distribution over trials D which automatically
imposes a probability of violation for each clause in the instance. This can be treated as ordering
of the likelihood of a clause being violated by the current trial and the oracle can return the index
of a clause with the maximum likelihood of being violated. Any ties can be broken arbitrarily
expecting an adversarial behaviour for the worst case scenario. This type of oracle will be
indicated by Omax and any problem will be denoted with H–CSPmax. The complexity of the
algorithms discussed in this chapter will be in terms of the total running time where one query
to the oracle takes unit time.

6.1.1 Probabilistic trials for H-SAT
A product distribution over the variables suffices for the application of interest. A probabilistic
assignment for a set of n variables is a function a : [n]→ [0, 1] such that Pr[xi = 1] = a(i) and
Pr[xi = 0] = Pr[xi = 1] = 1− a(i). For the sake of concise notation, these are usually written
as xi = a(i) and xi = 1− a(i). This naturally translates to the notion of the probability of a
clause Cj being violated which is defined as Pr[Cj = 0] :=

∏
`∈T (Cj) Pr[` = 0] =

∏
`∈T (Cj)(1− `)

which allows the oracle to calculate the probability for each clause being violated. In a slight
overload of notation, here ` refers both to the identity of a literal as well as to the probability
that literal ` is set to true. Now, the problem H–SATmax (resp. H–kSATmax) consists of
finding a satisfying assignment for a H–SAT (resp. H–kSAT) instance by proposing probabilistic
assignments to the Omax oracle. One way to do this is by learning an equivalent formula to
the hidden instance and solve it to find a satisfying assignment. Learning implies the process
of using the information from a series of violations to determine what a clause in the hidden
instance could be.

Note that it is possible for an instance to contain clauses which will never be returned by the
oracle. For instance, given clauses Ci and Cj such that their tags are related as T (Ci) ⊂ T (Cj),
then clause Ci will always be at least as violated as Cj . Then, Cj will never be returned by the
oracle and Ci will be said to obscure Cj .

6.1.2 Quantum Trials for H-QSAT
The unknown input version of QSAT, H–QSAT, is defined analogously to the classical case.
Given the continuous nature of the energy spectrum for a QSAT instance H ′ =

∑
j Π′(j), the

98

task is to decide between the following cases

yes: the ground energy is 0 with the instance being frustration free;
no: the ground energy of H ′ is at least m · 2ε2.

Here, ε > 0 is some threshold parameter that can be assumed to be inverse polynomially small
in n. The trials would clearly correspond to quantum states that could be ground states for
the hidden instance. However, generalizing the notion of probabilistic trials to the quantum
regime, the trials are in fact density matrices of mixed states i.e. an ensemble of pure states.
The oracle Omax is then required to return the index of j for which Tr(ρΠ(j)) is maximized.
Here the energy violation of the density matrix with respect to a clause indicates the probability
of the clause being violated. If the total energy of the proposed state is ≤ m · ε2 then the oracle
will indicate that a satisfying assignment has been found.

6.2 SAT with probabilistic trials

Learning WIDESAT
To start with, it is useful to compare the Omax oracle with the clause-index revealing oracle
O{C} introduced by Bei, Chen and Zhang [BCZ13]. They showed that given a H–SAT instance,
it is possible to find a satisfying assignment for it in O(mn) time when also provided with access
to a SAT oracle. The latter takes as assignment some SAT formula and provides a satisfying
assignment for it if one exists or declares it unsatisfiable. However, they also showed that there
exists instances where trying to learn an equivalent instance to the underlying formula could
require exponential trials. The set of instances used to show this are clauses containing all n
distinct variables and are termed WIDESAT clauses. The reason can be gleaned from the fact
that a WIDESAT clause contains just one assignment out of a possible 2n that violates it and
uniquely identifies it. Then, using even a randomized algorithm, if the oracle always answers
yes, each trial only eliminates one from an exponential set and identifying the clause requires
Ω(2n) trials. It is shown in [BCZ13] that exponential trials are required even when the hidden
formula consists of only a single WIDESAT clause. In contrast, using the Omax oracle in concert
with probabilistic trials allows one to identify a formula with m = O(1) number of WIDESAT
clauses in polynomial time. The following lemma is useful in proving the final claim.
Lemma 6.1. Given a set S of m distinct binary strings of length n. Then there exists a subset
of m− 1 indices such that each string restricted to those indices is unique.

It can be seen that m− 1 indices are necessary by consider S as any m-sized subset of {ei | 1 ≤
i ≤ n} where ei is the with a 1 in position i and 0 everywhere else. Clearly, any set of m− 2
indices is insufficient to correctly distinguish all the strings.

Proof. The proof proceeds by induction. For the base case, consider 2 distinct strings of length
2. Knowing that they differ at least at one index, restricting to that index gives a set of

99

m− 1 = 2− 1 = 1 index that satisfies the proposition. For the inductive step, let this hold for
sets of strings of length n− 1. Now consider S as the set of m distinct Boolean strings of length
n and any two strings in S. Since all strings in the set are distinct, they differ in at least one
position (without loss of generality, let it be in the first bit). Divide the set into two groups such
that all strings in the first group start with 0 and all strings in the second start with 1. Notice
that any two strings in differing groups are distinguished by the first index, but any two strings
in the same group must still all be distinct when restricted to the last n − 1 bits. If the first
group is of size k and second is of size m− k, then by the induction hypothesis, it is possible
distinguish to the strings within the first group with at most (k − 1) bits and the strings in the
second group require at most (m − k − 1) indices. Adding the first index used for the initial
comparison, every string in S can be distinguished using at most (k−1)+(m−k−1)+1 = m−1
indices.

Proposition 6.1. Given a hidden WIDESAT instance on n variables and m distinct clauses
where m ≤ n, it is possible learn an equivalent instance in O(

(n
m−1

)
2m + mn) time using the

Omax oracle and probabilistic trials.

Proof. First, consider the case when the instance has just a single WIDESAT clause. If the
assignment a(1) = 1,a(2) = . . . = a(n) = 1/2 satisfies the hidden formula, then the clause
contains x1 and contains x1 otherwise. Repeating this for each variable identifies the clause in
O(n) time.

Next is the case when there are m > 1 clauses. Each WIDESAT clause can be identified by
the unique n length string that violates the clause making the instance similar to a list of m
Boolean strings of length n. For each m− 1-sized subset of the variables, try all possible 0− 1
assignments on them, setting the rest to 1/2. From Lemma 6.1, eventually, the set of m − 1
indices that identifies the m strings will be chosen and over the set of assignments, each of the
m clause indices will be returned as being violated. This allows one to map exactly how these
m− 1 variables are present in each clause. Pick any one clause Ck setting the m− 1 variables
to the violating assignment which will satisfy all other clauses. Now repeat the process given
above to learn how the remaining variables occur in Ck. Further repeating this across clauses
will enable the learning of the entire WIDESAT instance. The number of such subsets is

(n
m−1

)
with 2m trials each is supplemented with an O(n) procedure for each clause giving the time
bound.

6.2.1 Hidden 1SAT
While the previous result seems to imply that it is possible to learn H–1SATmax instances the
much tougher hidden WIDESAT can be efficiently identified, there is a subtle argument to be
made for this not being true. Consider a H–1SATmax formula Φ which could contain repeated
clauses. Then, there exists a formula Φ′ 6= Φ such that the answers from the Omax oracle is
identical in both cases. In other words,

100

Proposition 6.2. There is no algorithm using probabilistic trials and the Omax oracle which,
given an unsatisfiable instance Φ, learns all the literals present in Φ – even if granted the use of
an arbitrary numbers of queries.

Proof. Consider the following two H–1SAT instances:

Φ1 : C1 = x1, C2 = x1, C3 = x1, C4 = x1

Φ2 : C1 = x1, C2 = x1, C3 = x2, C4 = x2

Both of these instances are unsatisfiable. However, note that for any oracle query, it is possible
for the oracle to give the same answer (i.e., clause index) for each query. This can be seen by
outlining the strategy that the oracle could pursue to obscure the actual instance. If x1 is more
violated than x1 or x2, Omax returns C1. If x1 is more violated than x1 or x2, then the oracle
returns clause C2. If x2 is more violated than x1 or x1, then Omax returns C3 if x1 is more
violated than x1, otherwise it returns C4. One can easily check that these oracle answers are
consistent with both instance. Hence these instances are indistinguishable to adversarial oracle
answers, and no algorithm can distinguish between Φ1 and Φ2 in this model.

Here the difficulty in learning an unsatisfiable instance does not lie in the repetition of clauses,
but rather in determining for which i do both xi and xi appear in Φ. As an aside, this does
not rule out the possibility of only learning satisfiable H–1SATmax formulas. However, any
algorithm to solve H–1SATmax must do so despite the fact that it may not be able to deduce
the underlying instance. Surprisingly, it turns out that it is possible to solve H–1SATmax in
polynomial time without deducing the underlying instance . The algorithm aims to construct
partial assignments and extend them to a satisfying assignment. In this context, any partial
assignment that extends to a satisfying assignment and is consistent with the oracle answers is
called good. Other partial assignments that are not good, are correspondingly termed as bad.
Theorem 6.2. Given a H–1SATmax instance Φ on n variables and m clauses, it is possible to
determine if Φ is satisfiable in time O(mn2).

Proof. Start with an ordering of the variables as x1, . . . , xn. The idea is to inductively create
a series of n lists L1, L2, . . . , Ln. Each list will contain a partial assignment to the variables
x1, . . . , xi and will be of size at most m except for Ln which can have size at most 2m. Note
that every partial assignment in the case of SAT1 is either good or bad. The guarantee is that
when Φ is satisfiable, it is possible to construct each list to contain at least one “good” partial
assignment. By extension, Ln contains at least one satisfying assignment and trying all the (at
most) 2m assignments in Ln should solve the problem.

The lists can now be constructed by induction. The base case of L1 is trivial - just add both
x1 = 0 and x1 = 1 to the list. To construct Li+1 given a list Li, first consider the extension L̃i+1

containing all possible extensions of the candidates in Li to variable xi+1. In other words, for
every partial assignment p in Li, add p0 and p1 to L̃i+1. If Li contained a good assignment,

101

then it is definitely present in L̃i+1 too except that the size of L̃i+1 has doubled to 2|Li|. When
i+ 1 < n, this is problematic and the new list will have to be modified to have a size at most m.
For this purpose, propose the following trials are to the Omax oracle

a(k) =

p(k) if 1 ≤ k ≤ i+ 1 and p ∈ L̃i+1

1/2 otherwise

Collect the violations Cj returned by the oracle and partition the elements of L̃i+1 accordingly
dividing the list into at most m equivalence classes. Pick a representative from each equivalence
class to construct Li+1.

Clearly Li+1 has size at most m by construction. However, the guarantee that Li+1 still contains
at least one good assignment has to be shown. Starting with a good element p ∈ Li, it is
also present as the extension p∗ ∈ L̃i+1. p∗ being good, satisfies all clauses involving variables
x1, . . . , xi+1. When there are no clauses involving xi+2, . . . , xn, p∗ is also a satisfying assignment
as will be indicated by the oracle and the algorithm can be aborted. If not, there exists a
clause involving xi+2, . . . , xn, p∗. Moreover, the clause Ck returned when the trial with p∗ is
proposed, is a clause involving xi+2, . . . , xn and has a violation of 1/2 and this equivalence class
contains a good assignment. Note that a trial corresponding to a bad assignment p′ would
violate some clause involving {x1 . . . xi+1} by 1 while Ck will only be violated by 1/2. So, for
any bad assignment, Ck will never be returned as the maximal violation. Then, all assignments
in this class are good and picking just one of them suffices to maintain the inductive guarantee.
The time to construct each list is O(mn), and the algorithm constructs n lists. Hence, the
algorithm runs in time O(mn2).

6.2.2 Hidden 2SAT
Ideally, the aim would be to generalize the previous method to encompass H–2SAT instances as
well. One of the major roadblocks lies in the fact that it is no longer clear how to separate the
good and bad assignments just based on the violations returned. The reason for this can be
traced back to there being multiple ways to satisfy a 2SAT clause. The following example would
make the scenario clearer.
Example 6.1. Suppose that the list Li has been constructed as outlined in Theorem 6.2 and
it has also been extended to L̃i+1 which has been partitioned into m equivalence classes based
on the indices returned by the oracle. Also, let the H–2SAT instance contain the following
clauses: C1 = (x1∨x2), C2 = (x4∨x5), C3 = (x1∨xn), C4 = (x4∨xi+2), C5 = (xi+2), . . . , Cm for
some i. Consider the C3 partition of L̃i+1 and two assignments a and b in it. Note that these
assignments which have a maximum violation 1/2 with a(1) = b(1) = 0 and a(2) = b(2) = 1.
Moreover, let the assignments satisfy C2 using different assignments i.e. a(4) = 0,a(5) = 1
but b(4) = 1,b(5) = 1. This is still valid behaviour for assignments C3 partition of L̃i+1. The
problem arises by noticing that a good assignment, like b can be extended to satisfy C4 and C5

but this clearly cannot be done by a. This demonstrates that any partition can contain a mix of

102

good and bad assignments such that picking one candidate from each partition does not suffice
anymore.

However, not all is lost and in the case that the H–2SAT formula Φ is promised not to contain
any repeated clauses, there is the chance to determine some 2SAT formula Φ′ from the pattern
of violations such that Φ′ and Φ have the same set of satisfying assignments i.e. sat(Φ′) = sat(Φ).
Note that Proposition 6.2 shows that one cannot always hope to learn Φ directly. The first step
would be to understand how to generate a satisfying assignment for a satisfiable Φ efficiently.
Theorem 6.3. Suppose Φ is a satisfiable H–2SATmax instance on n variables with m clauses.
Then it is possible to generate a satisfying assignment for Φ in time O(n2).

Proof. The ides is to learn if a certain clause tag is present in the instance or not. Since the oracle
will never return the index of an obscured clause, the clause tag is assumed to be unobscured
without loss of generality. Then repeating this for each 1SAT and 2SAT clause tag without
running into a satisfying assignment would result in determining the set of unobscured clauses in
Φ. It is clear that the conjunction of these clauses forms a formula Φ′ such that sat(Φ′) = sat(Φ).
Therefore, using any 2SAT algorithm which runs in time O(n+m) on Φ′ will also find a satisfying
assignment for Φ. The following series of trials are performed to determine if there is a clause
with the tag {xi, xj} and at no point is a satisfying assignment found (otherwise the algorithm
can be successfully):

1. On querying Omax with the assignment a = 0n a violation implies that there exists a
clause with the tag: (a) {xi, xj}; (b) {xi, xk} for some k 6= i, j; (c) {xj , xk} for some
k 6= i, j; or (d) {xk1 , xk2} for k1, k2 6= i, j.

2. Next query the oracle with the assignment a(i) = 0, a(j) = 0 and a(k) = 1 for all k 6= i, j.
A violation indicates the presence of a clause with the tag: (a) {xi, xj}; (b) {xi, xk} for
some k 6= i, j; (c) {xj , xk} for some k 6= i, j; or (d) {xk1 , xk2} for k1, k2 6= i, j.

3. Next is an explicit test for the presence of the clause (xi ∨ xj) using two probabilistic
assignments. If (xi ∨ xj) is present, then the same clause returned for both trials. If not,
then the returned clauses are guaranteed to be different. The two assignments are

a1(`) =

0 if ` = i, j

1
4 otherwise

a2(`) =

0 if ` = i, j

3
4 otherwise

Table 6.1 shows the violations corresponding to each assignment and each possible clause
tag consistent with the previous two trials. Clearly, if (xi ∨ xj) were indeed present in the

(xi ∨ xj) (xi ∨ xk) (xj ∨ xk) (xk1 ∨ xk2) (xk1 ∨ x̄k2) (xi ∨ x̄k) (xj ∨ x̄k) (x̄k1 ∨ x̄k2)

a1 1 3/4 3/4 9/16 3/16 1/4 1/4 1/16

a2 1 1/4 1/4 1/16 3/16 3/4 3/4 9/16

Table 6.1: Violation of the clauses based on the fractional assignments of 1/4 and 3/4.

103

formula, then both assignments return it as the maximum violation. If not, the assignments
would return some clause with a 3/4 violation in each case. From the table, it is clear
that the set of these clauses for each assignment is disjoint forcing a different clause to be
returned with each trial.

The following theorem also settles the question of finding an equivalent formula even when some
trial in the procedure ended up satisfying the instance and aborting the process of finding all
the unobscured clauses in Φ′. So, in some sense for repetition free H–2SATmax one is able to
do a little more than just finding a satisfying assignment for some hidden instance.
Theorem 6.4. Suppose Φ is a repetition-free H–2SATmax instance on n variables with m

clauses. Then, there is an algorithm to generate a 2SAT formula Φ′ such that sat(Φ′) = sat(Φ)
in O(poly(n)).

Proof. Start by running the procedure outlined in Theorem 6.3. Either all unobscured clauses
are determined successfully, or a satisfying assignment is found. Assume the latter case here and
without loss of generality, let this assignment be 1n resulting in each clause having at least one
positive literal.

Now, the procedure aims to find all variables that must necessarily be set to 1 to satisfy the
instance, adding the 1SAT clause that corresponds to these variables to Φ′. TO check if some xi
satisfies this condition, repeat the process in Theorem 6.3 by replacing a(i) = 0 for each trial.
If the formula remains unsatisfiable, then xi must be set to 1. If, however, all the trials still
satisfy the formula, then the conclusion would be that all the clauses that xi occurs in either as
a positive or negative literal are clauses on 2 variables. Moreover, since each clause contains a
positive literal, these clauses are of the form either (xi ∨ xj) or (xi ∨ xj). Repeat this process for
all variables to reach a point where the unobscured clauses are all 2 variable clauses. Recalling
the DP-procedure for 2SAT, this corresponds to being at a “branch point” of the algorithm.

To simplify the exposition, suppose that after the above procedure, the 2 variable clauses still
involve all n variables and one is still querying Φ. The next step is to learn clauses which are a
mix of positive and negative literals i.e. a clause with the tag (xi ∨ xj). Set a(i) = 0,a(j) = 1
and repeat the process in Theorem 6.3 to determine if the induced formula is satisfiable. If so,
then clearly Φ does not contain (xi ∨ xj) and if not, (xi ∨ xj) is definitely present in Φ as the
setting of a(i) = 0 and for all k 6= i, a(k) = 1 will satisfy all other 2 variable clauses in the
formula.

Finally, the procedure determines all clauses of the form (xi ∨ xj). The trial proposed is of the
form a(i) = a(j) = 0 and for all k 6= i, j, a(k) = 1. The catch is when the formula is not satisfied
as that indicates the possibility that the clause could be of the form (a) (xi ∨ xj); (b) (xi ∨ x̄k);
or (c) (xj ∨ x̄k); as all such clauses are maximally violated (with probability 1). To narrow down
the options, the next trial is replaces the assignment for all k 6= i, j as a(k) = 0.5. If (xi ∨ xj)
were absent from the formula, then the clause tag of the violation would be a mix of positive and
negative literals. However, all such clauses have already been determined previously. So, if one

104

of those clauses is returned as a violation, it is fitting that (xi ∨ xj) is absent in the formula but
if the clause returned has not been previously determined, it points to (xi ∨ xj) being present in
the formula. In this manner, all unobscured clauses can be determined.

While the above procedures may seem elementary, they accomplish two things. First, they
show that H–2SATRF with the Omax oracle is in P, whereas Theorem 5.9(c) from Chapter 5
demonstrated the NP-hardness of H–2SATRF with the O{C} oracle. Second, they act as stepping
stones to tackle the harder problem of learning an unknown input instance of Quantum 2SAT in
this model. Dealing with the general H–2SAT instance with repeated clauses using the Omax
oracle is left for future work.

6.3 Quantum SAT in the trial and error model

One of the main motivations to consider the probabilistic trials model was also to use that
as an intermediate step to quantize the trial and error setting and consider the behaviour of
Quantum SAT – specifically, Q1SAT and Q2SAT. At this point it is worth comparing the notions
of learning and solving hidden instances both in the classical and quantum settings. The classical
case is more straightforward where learning an instance means learning all the literals present in
each clause, whereas solving means finding a satisfying assignment. For H–1SAT and H–2SAT,
learning the instance in polynomial time automatically triggers solving it in polynomial time as
well. However, in the quantum setting this simple relation between learning and solving breaks
down. The continuous nature of QSAT means we can only learn a projector or find a satisfying
assignment up to a specified precision ε. However, in the case of hidden Q2SAT after learning
the instance up to precision ε, it is not clear if a satisfying assignment up to precision poly(n, ε)
can be found in polynomial time.

6.3.1 Hidden Quantum 1SAT
The algorithm used to solve H–1SAT can be extended to solve the H–Q1SAT problem as well.
A 1-local projector defined on C2 is satisfiable if it is of rank at most 1 and can be viewed as
setting the direction of the qubit on the Bloch sphere. Unlike the classical case, where the 1SAT
clauses can be viewed as either the |0〉〈0| or |1〉〈1| projectors, here the projectors can point in
any direction in the Bloch sphere. To make handling the continuous nature of the Bloch Sphere
easier, it is discretized by using an ε-net that covers the whole sphere. This allows for the lists
of 0− 1 strings used in H–1SAT to be generalized into lists of n-qubit product states where each
qubit is assigned an element of the ε-net.

Given a 1-local projector |ψ〉〈ψ|, its ground space is spanned by |ψ⊥〉. This essentially divides the
Bloch sphere into two hemispheres, a good hemisphere containing states |φ〉 having |〈ψ|φ〉| ≤ 1

2
and a bad hemisphere with states having |〈ψ|φ〉| > 1

2 . An n-qubit state a = |a1〉|a2〉 . . . |an〉 is
called good if for each qubit i, the state |ai〉 is in the good hemisphere and bad otherwise. In

105

other words, when |ψi〉 is the forbidden state for qubit i, a is good if ∀i, |〈ψi|ai〉| ≤ 1
2 and bad if

∃i, |〈ψi|ai〉| > 1
2 . For the n-qubit state a = |a1〉|a2〉 . . . |an〉, let a′ := |a⊥1 〉|a⊥2 〉 . . . |a⊥n 〉.

The first step of to construct the H–Q1SAT algorithm is to adapt the process described in
Theorem 6.2 to work for for an arbitrary n-qubit state a and provide a list of n-qubit states,
La/a′ , where at least one state is good. This is formally stated in Lemma 6.2.
Lemma 6.2. Let a = |a1〉 ⊗ . . .⊗ |an〉 be an n qubit state where {|ai〉, |a⊥i 〉} is a basis for qubit
i, for i = 1, . . . , n. Then one can produce a list, La/a′ ⊂

⊗n
i=1{|ai〉, |a⊥i 〉} of at most 2mn states

such that, if the instance is satisfiable, there is at least one good n-qubit state in the list. The
time taken to produce this list is O(n2m).

Proof. The list is built inductively as in Theorem 6.2 where, at stage k, Lk,a/a⊥ contains at
most m strings at least one of which is good for qubits 1, . . . , k if the instance is satisfiable.
This is done by querying the following trials. At stage k, replace {0, 1} from Theorem 6.2 with
{|ak〉, a⊥k } for qubit k and replace 1

2 with I
2 , the completely mixed state, for qubits k + 1, . . . , n

so that

Lk,a/a⊥ ⊆
k⊗
i=1
{|ai〉, |a⊥i 〉} ⊗

(I
2

)⊗(n−k)
.

This almost finishes the process except for one caveat while constructing Lk+1,a/a⊥ from Lk,a/a⊥a
– the case when there is no projector on qubits k+ 2, . . . , n . This situation also occurs at the last
step while constructing Ln. In both cases, while proposing a good state, all violations are ≤ 1

2
and any clause index returned by the oracle involves a qubit in 1, . . . , k + 1. This same clause
could also be violated with probability > 1

2 when a bad string is proposed which will incorrectly
be put in the same equivalence class as the good one. Then, picking just one representative from
Cj is insufficient and the size of the lists cannot be compressed. To fix this, following additional
checks are made:

1. If k + 1 = n, just double the number of states on the list, assuming that there is a clause
involving n, i.e. the last qubit that is assigned values. This is okay to do at the last step
as the list only doubles once.

2. Repeat the procedure n times by placing a different qubit at the last position each time.
Let La/a⊥ be the union of all the lists found in this manner and it is of size 2m · n which
is still polynomial in the size of the problem. For a non-empty instance, at least one of
these repetitions will have a clause on the qubit in the last position and so, will contain a
good state.

Hence, La/a⊥ with 2mn n-qubit states contains at least one good state and by repeating the
classical process n times, an O(mn2) time procedure is obtained for this task.

However, this only provides an assignment that violates each projector by ≤ 1
4 while the

requirement is for assignments that violate each projector by ≤ ε2. The key observation involves
constructing two lists La/a′ and Lb/b′ where b 6= a, a′ and picking a state from each list. Consider

106

the case when both states are good. Let the states on qubit i from each list be |ai〉 and |bi〉
respectively. Each state defines a hemisphere Ri,ai and Ri,bi respectively containing all the
states that are bad with respect to the forbidden state for qubit i, |ψi〉. Then, |ψi〉, should be
contained in Ri,aibi := Ri,ai ∩ Ri,bi . The optimal choice for bi, given ai, would be one where
|Ri,aibi | ≤

|Ri,ai |
2 . Then, similar to performing a binary search on the Bloch Sphere, repeating

this process log2

(
1
ε

)
times, will give a region consisting of good approximations to the forbidden

state (See Figures 6.1 (a) and (b) for illustrations).
Theorem 6.5. Let ε > 0. Given a H–Q1SATmax instance on n qubits containing m projectors,
there exists an O((2mn)2 log 1

ε ·mn2) time algorithm, with the property that
(a) on a frustration free instance, it outputs an assignment where for each projector, the

forbidden state is violated with probability ≤ ε2;
(b) otherwise, the algorithm outputs unsat.

Proof. Initially, with no information, for each qubit i, Ri = Bloch sphere. Now the algorithm
executes the following steps:
• Start by picking an arbitrary state, say ā = |0〉⊗n, and construct L|0〉⊗n/|1〉⊗n as per the

procedure in Lemma 6.2. For each a ∈ L|0〉⊗n/|1〉⊗n repeat:
– a defines the region Ri,ai in this branch of the iteration.
– For i = 1, . . . , n pick a basis {|bi〉, |b⊥i 〉} such that their equator |bi〉+|b

⊥
i 〉√

2 bisects Ri,ai .
– Set b̄ = b1 . . . bn, construct Lb̄/b̄′ and for each b ∈ Lb̄/b̄′ :
∗ The tuples (a, b) define the region Ri,aibi in this branch.
∗ Repeat the process to find c̄ to bisect each Ri,aibi .
∗ Find a new region Ri,aibici for each c ∈ Lc̄/c̄′ .
∗ Continue the recursion up to log2

(
1
ε

)
depth and let the last list be Lz/z⊥ .

∗ Propose |φ⊥〉 =
⊗n

i=0 |ϕ⊥i 〉 where ∀i, |ϕi〉 ∈ Ri,aibi...zi to the oracle. Output |φ⊥〉
if the oracle returns yes, otherwise continue.

• Output unsat if none of the trials satisfy the instance.

This algorithm essentially creates a recursion tree with each new string created where the width
of the recursion at each point is 2mn and the depth is log2

(
1
ε

)
. This leads to (2mn)log2

1
ε trials

to be proposed at the end and the number of lists created is also (2mn)log2
1
ε , each at a cost of

O(mn2). Hence, the total running time of the algorithm is O((2mn)log 1
ε ·mn2). Figure (6.1)

shows exactly how the algorithm given above proceeds for a particular qubit i. Consider a
qubit i and the states a, b, c, . . . , z that are picked in one branch of the recursion tree of the
algorithm. To argue the correctness of this algorithm, analyze the region Ri,aibi...zi obtained at
the leaf of the recursion tree. Let the forbidden state for qubit i be |ψi〉. At the beginning, let
∀ i, |Ri| = 1 (the complete Bloch sphere) and the only guarantee for each list is that there is at
least one good string in it. Tracing the path in the recursion tree to the leaf, assume that each
step of the recursion picked a good state i.e. a, b, . . . , z are all good states. For a and ∀i, the
forbidden state |ψi〉 is in the opposite hemisphere to |ai〉 which reduces the size of the region to
|Ri,ai | = 1/2 as shown in Figure 6.1(a). Taking (a, b) at the next iteration, the region for each

107

|ai〉

|a⊥i 〉

Ri,ai

(a)

|ai〉

Ri,aibi

|bi〉 |b⊥i 〉

(b)

|c⊥i 〉

|ai〉

Ri,aibici

|bi〉

|ci〉

(c)

|ai〉

Ri,aibi...zi

|bi〉

|ci〉

|zi〉

(d)

Figure 6.1: Shown here are four stages of the algorithm for a qubit i, with forbidden state |ψi〉,
starting with picking string a, b and c followed by the last string z. (a) After picking |ai〉 for
qubit i, the hemisphere orthogonal to it is Ri,ai ; (b) On choosing |bi〉, the interesting region is
the quadrant Ri,aibi ; (c) After |ci〉 is determined, |ψi〉 should be in the hatched 1/8th region of
the sphere; (d) Continuing the process of picking strings for log2

1
ε steps and picking the final

state |zi〉 shows that |ψi〉 should be present in Ri,aibi...zi .

qubit is the overlap of two hemispheres Ri,ai ∩Ri,bi and by construction, since bi bisects Ri,ai ,
the overlaps of the hemispheres also bisect Ri,ai setting |Ri,aibi | = 1/4 (Figure 6.1(b)). As this
pattern continues, each step of the iteration halves the region for qubit i and leaving regions of
size at most ε at the end of the branch as shown in Figures 6.1(c) and 6.1(d). If the instance is
satisfiable, the state proposed will satisfy each projector up to ε resulting in the oracle to return
yes. Of course, when one of the states chosen is bad, the proposal |φ⊥j 〉 for some qubit j will
end up having a large inner product with the forbidden state |ψj〉 and will result in the oracle
returning the id of the projector involving j. This concludes the proof.

6.3.2 Hidden Quantum 2SAT
The approach to deal with H–Q2SATmax is similar to the approach used for H–2SATmax which
makes the first step an algorithm to approximately learnt the projectors in the instance. In
other words, learn the underlying local Hamiltonian to precision ε by finding 2-local projectors
Π′(j) such that ‖Π(j) − Π′(e)‖ ≤ ε for every projector Πe. This yields an approximate local
Hamiltonian H ′ =

∑
e Π′e whose ground energy is at most mε2 away from the ground energy of

the original Hamiltonian H =
∑
e Πe. If ε is set such that mε is much smaller than the promise

gap of the initial Hamiltonian H (which merely requires ε < 1/poly), then the Hamiltonian H ′

108

will have a promise gap as well.
Theorem 6.6. Given a H–Q2SATmax problem H =

∑
(u,v) Πuv on n qubits, and precision ε.

If the interaction graph for H is not Star-like, then there is an O(n4 +n2 log
(

1
ε

)
) algorithm that

can find an approximation H ′ =
∑

(u,v) Π′uv where ∀ (u, v), ‖Π′uv −Πuv‖ ≤ ε

The algorithm proceeds by:

(1) Identifying two pairs of qubits (i, j) 6= (k, `) on which two projectors are defined, Πij and
Πk`, and finding a constant approximation for these projectors;

(2) Improving the constant approximation of the two projectors iteratively so that the approx-
imation improves by a factor of 2 in each iteration; and

(3) Using the ε-approximation of a projector Πij to identify the rest of the independent
projectors i.e. Πuv such that (u, v) 6= (i, j) and approximating each of them to ε-precision.

For the sake of clarity, the discussion initially assume that all the projectors in H ′ are of rank 1.
Generalize to cases where the rank of projectors is > 1 requires only a slight modification that
does not affect the running time significantly and will be sketched after describing the algorithm
in full. The following series of lemmas will build up to the proof of Theorem 6.6.

Before delving into the details of the implementation for Step 1, consider the procedure Test-I,
which checks if there is a projector between qubits i, j at a constant distance from |ψ〉〈ψ|. The
test returns yes if and only if there is a projector at i, j which is close to |ψ〉〈ψ| along with the
id of the projector and no otherwise. The test is defined for two fixed constants 0 < ν < 1 and
0 < ε < 1, and a ν-net Tν in the space of rank-1 projectors on two qubits.

Test-I(i, j, |ψ〉〈ψ|)

• For all possible pairs (k, `) which are different from (i, j) repeat:
- For all |α〉〈α| ∈ Tν , construct the trial state ρk`α , propose it to the oracle and receive
a projector id as violation where

ρk`α := |ψ〉〈ψ|ij ⊗
[
(1− ε)|α〉〈α|k` + ε(Ik` − |α〉〈α|k`)

]
⊗
(I

2

)⊗(n−4)
(6.1)

• If for all trials the oracle answers the same id, output yes together with the id of the
projector, otherwise output no.

Claim 6.1. Assume that ε+ 1
2ν

2 < 1/4, and further assume that there is at least one projector
in the system that is defined on qubits k 6= `, which are different from i, j. Then, if Test-I outputs
yes, there exists a projector |ψ′〉〈ψ′| on the (i, j) qubits, whose id is the one that was output and

‖|ψ′〉〈ψ′| − |ψ〉〈ψ|‖ ≤
√

2ε+ ν2 . (6.2)

Conversely, if there exists a projector |ψ′〉〈ψ′| on (i, j) such that

‖|ψ′〉〈ψ′| − |ψ〉〈ψ|‖ <
√

2ε , (6.3)

109

then the test will report it.

Proof. Assume that there is a projector |φ′〉〈φ′| on qubits k, `, which are different from i, j.
Let |α〉〈α| be the closest member of Tν to |φ′〉〈φ′|, and calculate the violation energy for this
particular assignment. Note that Tr[(I− |α〉〈α|) · |φ′〉〈φ′|] = 1− Tr(|α〉〈α| · |φ′〉〈φ′|) and so the
violation due to this assignment is

(1− ε) Tr(|α〉〈α| · |φ′〉〈φ′|) + ε
[
1− Tr(|α〉〈α| · |φ′〉〈φ′|)

]
= (1− 2ε) Tr(|α〉〈α| · |φ′〉〈φ′|) + ε

By assumption, ‖|α〉〈α| − |φ′〉〈φ′|‖ ≤ ν, and therefore by connecting energies and the Frobenius
norm,

1− 1
2ν

2 ≤ Tr(|α〉〈α| · |φ′〉〈φ′|) ≤ 1 ,

which implies that

1− ε− 1
2ν

2 ≤ max (k, `) violation energy ≤ 1− ε .

Similarly, by looking at the state from the ν-net that is closest to |φ′⊥〉〈φ′⊥|, one can deduce
that

ε ≤ min (k, `) violation energy ≤ ε+ 1
2ν

2 .

If all tests returned the same answer then it cannot be due to one of the completely mixed
states since there the violation is always 1/4, but for the maximal α, the violation is at least
1− ε− 1

2ν
2 > 1/4. It also cannot be due to the (k, `) projector as the minimal violation energy

there is at most ε+ 1
2ν

2 < 1/4, i.e., less violated than the mixed projectors. Therefore, it must
be the projector at (i, j).

Moreover, the violation of (i, j) must be at least as big as the maximal (k, `) violation:

Tr(|ψ〉〈ψ| · |ψ′〉〈ψ′|) ≥ 1− ε− 1
2ν

2 .

Therefore,

‖|ψ〉〈ψ| − |ψ′〉〈ψ′|‖ =
√

2− 2 Tr(|α〉〈α| · |ψ′〉〈ψ′|) ≤
√

2ε+ ν2 .

For the other direction, note that if ‖|ψ〉〈ψ| − |ψ′〉〈ψ′|‖ <
√

2ε, its violation must satisfy
Tr(|ψ〉〈ψ| · |ψ′〉〈ψ′|) > 1− ε, which is bigger than both the violations of the completely mixed
state and the maximal violation of (k, `).

A 2-qubit state |ψ〉ij is called δ-good for δ =
√

2ε+ ν2 if it is returned during a call to Test-

110

I(i, j, |ψ〉〈ψ|). The idea is that a δ-good state for (i, j) would be a constant approximation for
the projector on (i, j). Suppose no δ-good state is found for (i, j) then it can be concludes that
there is no projector on (i, j).

Step 1

• Set ν2 := 1
16 , ε := 1

32 and η := 1
4

• Repeat for all pairs i 6= j until a δ-good approximation for some Πij is found.
– For all |ψ〉 ∈ Tη, perform Test-I(i, j, |ψ〉〈ψ|). If the test is positive, set |ψ〉〈ψ| as the
δ-good approximation for Πij .

• Repeat the above process for all qubit pairs (k, `) that are disjoint from (i, j) till a δ-good
approximation for Πk` is found.

Lemma 6.3. If there exist two projectors in H ′ acting on disjoint pairs of qubits then Step 1 will
always succeed in finding independent pairs (i, j), (k, `) and projectors |ψ(0)〉〈ψ(0)|ij, |φ(0)〉〈φ(0)|k`
such that ‖|ψ(0)〉〈ψ(0)|ij −|ψ′〉〈ψ′|ij‖ ≤ 1√

8 and ‖|φ(0)〉〈φ(0)|k`−|φ′〉〈φ′|k`‖ ≤ 1√
8 . Moreover, Step

1 can be executed in O(n4) time.

Proof. Set the parameters according to Step 1. Then from Claim 6.1, Test-I succeeds in finding
states that are

√
2ε+ ν2-good = 1√

8 -good approximations. For each Test-I(i, j, |ψ〉), iterating
over all possible disjoint pairs (c, d) gives

(n−2
2
)
pairs to be checked. The space of 2-qubit states

is 4-dimensional space and for any γ > 0, a γ-net over C2 ⊗ C2 will contain O
(

1
γ4

)
points. So,

for ν, η ∈ O(1), one checks only O(1) states in Tν for each qubit pair (c, d) and runs Test-I for
O(1) states in Tη giving a total of O(n2) trials proposed. To find the second projector on (k, `)
repeat the above process for at most O(n2) pairs. Hence, Step 1 can be executed in O(n4) time
and the result follows directly.

At the end of Step 1 there are two projectors |ψ(0)〉〈ψ(0)|ij and |φ(0)〉〈φ(0)|k` which are a constant
approximation of their hidden counterparts Π′ij and Π′k` i.e. at a distance δ ≤

√
2ε+ ν2. For this

step, the procedure used is Test-II to improve their value to |ψ(1)〉〈ψ(1)|ij (resp. |φ(1)〉〈φ(1)|k`)
such that it is at a distance ≤ δ

2 from Π′ij (resp Π′k`). Then, Step 2 basically repeats this test c
times to improve the value to Π(c)

ij to a distance ≤ δ
2c from Π′ij and when c = O(logn), this will

generate a polynomially close approximation to Π′ij .

From Step 1, it is know that Π′ij lies somewhere in a radius of δ around |ψ(0)〉〈ψ(0)|ij and similarly
for qubits (k, `). Let Bij be the ball of radius δ around |ψ(0)〉〈ψ(0)|ij and correspondingly consider
Bk`. The states will be enumerated over T Bν′ which is the ν ′-net restricted to some ball B in the
space of rank-1 projectors on 2 qubits.

Set ν ′ = ν
2 , η

′ = η
2 and ε′ = ε

4 . The test is defined for values of ν ′, η′, ε′ > 0 as

Test-II (i, j, k, `)

111

• For (i, j), repeat over all |ψ〉〈ψ| ∈ T Bijη′ and perform Test-I(i, j, |ψ〉〈ψ|) over T Bk`ν′ with
parameter ε′. If the test outputs yes, set |ψ(1)〉ij = |ψ〉.
• For (k, `), repeat over all |φ〉〈φ| ∈ T Bk`η′ and perform Test-I(k, `, |φ〉〈φ|) over T Bijν′ with
parameter ε′. If the test outputs yes, set |φ(1)〉ij = |φ〉

Claim 6.2. If there exists projectors |ψ(l)〉〈ψ(l)|ij, |φ(l)〉〈φ(l)|k` on qubit pairs (i, j), (k, `)
that have been approximated to a distance δ, then Test-II(i, j, k, `) will give us projectors
|ψ(l+1)〉〈ψ(l+1)|ij and |φ(l+1)〉〈φ(l+1)|k` such that

‖|ψ(l+1)〉〈ψ(l+1)|ij − |ψ′〉〈ψ′|ij‖ ≤
δ

2 and ‖|φ(l+1)〉〈φ(l+1)|k` − |φ′〉〈φ′|k`‖ ≤
δ

2 . (6.4)

Test-II(i, j, k, l) requires O
((

δ
η′

)4
×
(
δ
ν′

)4
)

trials where δ is the radius of Bij and Bk`.

Proof. Clearly, as Test-I works on the complete space of 2-qubit rank 1 projectors, it will also
work on the restricted ball of size δ and when all other parameters remain poly(n) sized. Since
the existence of nontrivial projectors Π′ij and Π′k` has already been determined from Step 1, on
is sure to find another state over the new η′-net that approximates the projectors according
to the new values. Then, setting the parameters as mentioned in Step 2, the bound follows
directly from Claim 6.1. For the number of trials, since (k, `) is fixed for (i, j) and vice-versa,
the trials only iterate over the number of states in the δ-ball of a γ-net over the space of 2-qubit
states which contains O

(
δ4

γ4

)
states. Substituting for the values of γ gives the required number

of trials.

Step 2 To approximate the projectors on qubit pairs (i, j), (k, `) to polynomial accuracy, collect
parameters η, ν and ε from Step 1. Set the counter c = 0.

• Set ν ′ = ν
2 , η

′ = η
2 , ε
′ = ε

4 and δ =
√

2ε+ ν2.
• Let Bij be the ball of radius δ around |ψ(c)〉〈ψ(c)|ij and correspondingly Bk`.
• Run Test-II(i, j, k, `) which output states |ψ(c+1)〉〈ψ(c+1)|ij and |φ(c+1)〉〈φ(c+1)|k`
• Update the parameters such that ν = ν ′, η = η′ and ε = ε′.
• Increment the counter and repeat the process till c = O(logn).

A crucial part of the analysis for Step 2 is to show that it can be executed in polynomial time.
This is ensured by showing that the number of trials for each iteration of Test-II actually
remains a constant independent of n.
Lemma 6.4. Given projectors |ψ(1)〉〈ψ(1)|ij , |φ(1)〉〈φ(1)|k` on qubit pairs (i, j), (k, `) that have
been approximated to a distance δ, Step 2 will successfully find projectors |ψ̄〉〈ψ̄|ij and |φ̄〉〈φ̄|k`
such that ‖|ψ̄〉〈ψ̄|ij − |ψ′〉〈ψ′|ij‖ ≤ 1

poly(n) and ‖|φ̄〉〈φ̄|k`− |φ′〉〈φ′|k`‖ ≤ 1
poly(n) . Additionally, this

step can be executed in O(logn) time.

Proof. Step 2 starts the first iteration in Step 2 with the parameters δ, ν2 ,
η
2 and proceeds in each

iteration by halving these parameters. In effect, at the tth iteration, the parameters used are
δ

2t−1 ,
η
2t and ν

2t . The costliest operation in executing Step 2 involves Test-II being performed at

112

each iteration. From Claim (6.2) the tth iteration of Test-II can be executed in time expressed
via the parameters δt, νt, ηt as

O

(
δ8
t

η4
t ν

4
t

)
= O

(
δ8

28(t−1)
24t

η4
24t

ν4

)
= O

(
δ8

η4
t ν

4
t

28
)
∈ O(1)

where the last inclusion holds as δ, η and ν start as constants. With O(logn) iterations, this
leads to Step 2 being executed in O(logn) time. Considering the accuracy of the states output,
it is clear that in iteration t the projectors output are δ

2t close to the projectors in the hidden
instance. For t = O(logn) this translates to a distance of δ

2O(logn) ≤ δ
O(nc) for some constant

c > 0 and this in turn is written as 1
poly(n) for δ ∈ O(1) and the result follows.

Step 3 To approximate the remaining projectors, do the following:

• Pick a pair of qubits (u, v) that is independent from at least one of the projectors approxi-
mated so far.
• Perform Step 1 to approximate Π(0)

uv to constant accuracy (if it exists). Otherwise, pick
another pair of qubits.
• Let (x, y) be independent of (u, v) such that Πxy has been approximated to 1

poly(n) accuracy.
Use Π(0)

xy , . . . ,Π(O(logn))
xy to approximate Πuv to 1

poly(n) accuracy as per Step 2.
• Repeat for all possible independent qubit pairs.

To learn a projector Πik when Πij has already been found, set qubit j to the mixed state and
choose a different Πmn to use in Steps 1 and 2 for improving the accuracy of Πik

Dealing with higher rank projectors. As mentioned earlier, the tests have been clearly
designed assuming the presence of only rank 1 projectors. To generalize Test-I for projectors of
rank > 2, don’t stop after finding just one state |ψ〉 that succeeds the test. By continuing to
iterate over all 2-qubit states, it is possible to find a constant number of states that span the
forbidden subspace and then use any one of the linear algebra techniques to find a basis for that
space whose dimensions would give the rank of the projector. This would also approximate the
basis up to constant accuracy at the end of Test-I as the states that will be returned from the
test can be shown as having a low distance (or high violation energy) with at least one of the
non-zero components of the high rank projector. Then, repeating Test-II for each basis element
will successfully approximate each of them to 1

poly(n) accuracy. Note that each of these changes
do not significantly affect the runtime of the algorithm or the number of trials proposed.

Proceeding to wrap up the proof of Theorem 6.6

Proof of Theorem 6.6. As outlined previously, putting together the 3 steps is required algorithm.
Consider Test-I(i, j) returning the projector |ψ〉 and all the states of the form ραk` used for the
test. From Claim 6.1, ‖|α〉kl −Π′kl‖ ≤ 1√

8 for some (k, l) and some α. Then, any state that is
output by Test-I should be closer to Π′ij to have a larger overlap with it. In case of (i, j) being
disjoint from (k, `), there is no problem to ensure this.

113

However, when no projectors independent of (i, j) exist, consider another projector (i, k). Now,
the states used in Test-I would be of the form ραk . Let the reduced density matrix on i with
respect to |ψ〉〈ψ| be ρi. Then the error threshold used for any state output by Test-I in this
case would be related to maxα Tr(ρi|α〉kΠ′ik) ≤ Tr(ρi Trk(Π′ik)). It is possible for the latter value
to be almost 0 in the case that ρi almost satisfies Π′ik (e.g. the product state on i satisfies Π′ik).
This would lead to an inaccurate error threshold and affect the accuracy of the states output by
Test-I. This explains the necessity of H ′ not having a Star-like configuration.

For the running time argument, from Lemmas 6.3 and 6.4, the running time for finding a
projector up to constant accuracy is O(n2) and to improve the accuracy to β << 1 takes
O(log 1

β) time. Step 3 essentially repeats the combination of (Step 1 + Step 2) for n2 pairs of
qubits and results in an overall running time of O(n2(n2 + log 1

β)). Setting β < 1
nc for some

constant c, makes the overall runtime O(n4 + n2 logn) = O(n4). Similarly, the correctness also
follows from combining Lemmas 6.3 and 6.4.

Using the H output by the above algorithm in a procedure which could find a good approximation
to the ground energy of H ′ would completely solve H–Q2SAT. At this time, though, existing
Q2SAT algorithms [ASSZ16, Bra11, dBG16] are not robust to such errors and seem to require

1
exp(n) precision. Our algorithm forH–Q2SAT does allow one to learn the projectors to exponential
precision, since the dependence on ε in Theorem 6.6 is merely logarithmic. However, in this
parameter regime our algorithm is somewhat unrealistic, as this would require the oracle to
be able to distinguish between values that are exponentially close together. This seems to
give the oracle too much power - because having the ability to distinguish exponentially close
quantum states would allow one to solve PP-hard problems [AL98]. In contrast all of the
problems considered are in NP due to the presence of classical, poly(n) size witnesses. If our
oracle were constrained to be implementable in polynomial time by an experimenter, acting on
polynomially many copies of the proposed state ρ, then one could only learn the instance up to
error ε = 1

poly(n) . A natural open question is to determine whether one can still solve Q2SAT
when one only knows the individual clauses to inverse polynomial precision – a fundamental
question about the nature of Q2SAT itself.

While one caveat here is with respect to the precision, another is the exclusion of pathological
cases, namely Star-like configurations. Learning even projector in the case of the interaction
graph being a Star is not possible with the current method. However, the intermediate case
when there is exactly one edge in the graph that is not independent of the other edges, seems
to have an intermediate albeit slightly unnatural solution. In fact, to explicitly learn some
projectors and then solve the instance requires the oracle to distinguish between exponentially
small values. In particular, the following lemma holds.
Claim 6.3. Given a H–Q2SATmax problem H ′ =

∑
(u,v) Π′uv on n qubits, ε ≤ 1

nβ
for a constant

β and a function f(n) ∈ exp(n). If there is exactly one edge (i, k) that does not have any
independent projector, then there is an O(n4 + n2 log f(n)) time algorithm that can find an

114

approximation H =
∑

(u,v) Πuv where

∀ (i, j), 6= (i, k)‖Π′ij −Πij‖ ≤
1

f(n)

and we can find a 2 qubit state |Φ〉ik in O(ε4) time, such that 〈Φ|Π′ik|Φ〉 ≤ ε2.

Proof. For every qubit pair except (i, k), use Step 1 to find a constant approximation to the
hidden projector and repeat Step 2 for poly(n) iterations, find exponentially close approximations
to the hidden projectors. Using these approximations, find an n− 2-qubit (resp. n− 1-qubit)
state that almost satisfies all projectors except Π′ik following any O(n+m) algorithm to solve
Q2SAT [ASSZ16, dBG16]. The n − 1 qubit state includes either i or k but not both in the
satisfiable case. Then, iterating over all 2-qubit (resp. 1-qubit) states on an ε-net, and proposing
the complete n qubit state to the oracle, will help in finding a state that has low overlap with
Π′ik.

For the remaining case of the Star graph, at the present time, we do not have an algorithm
to learn the projectors to any level of accuracy. This is due to the interference of the center
of the star with all the projectors skewing the error thresholds used in this type of algorithm.
Of course, the brute force technique to find the ground state by iterating over an ε-net of all
n-qubit states with at most pairwise entanglement leads to an exponential number of trials to be
proposed but the power of the oracle doesn’t change. Hence, an obvious trade-off between the
power of the oracle and the number of trials proposed exists although both techniques currently
lead to unnatural algorithmic techniques for the pathological cases.

Barring the Star case, once the approximate Hamiltonian H ′ is learned, one would like to find
a ground state for H ′ which could approximate the ground state for the H–2SAT instance H.
However, unlike the H–2SAT case where the formula learned maintains the satisfiability of the
original instance, there is no guarantee that H ′ does so. In fact, H ′ turns out to be an ε-satisfiable
instance of Q2SAT (See Definition 4.10) and for ε = 1

poly(n) , H
′ is an almost frustration free

Q2SAT Hamiltonian. Finding a low energy product state to approximate the ground state for H ′

amounts to solving the Approx − Q2SAT problem for H ′. Theorem 4.5 shows the NP-hardness of
the Approx − Q2SAT for a specific choice of parameters i.e. where b = c′a. However, finding an
approximate ground state for H ′ and, by extension, H is similar to approximating the optimal
assignment for robust instances of MAX2SAT1. As discussed in Chapter 4, this setting for the
Q2SAT case is presently unresolved and left for future work. Hence, the H–Q2SATmax which
now reduces to this setting of the Approx − Q2SAT problem also remains unresolved beyond
learning an approximate Hamiltonian H ′.

1Recall that a robust MAX2SAT instance on n variables has an optimal assignment that is promised to satisfy
at least a 1− ε fraction of clauses for some ε = 1

poly(n) . The approximation algorithm finds a state that satisfies at
least 1−

√
ε fraction of clauses [CMM09] in polynomial time

115

Chapter 7
Lex-first oracle in the trial error model

Question: What is the minimum amount of information needed to determine if a graph has a
monotone graph property?

The previous chapter considered probabilistic trials in an attempt to quantify the minimum
amount of information needed to solve 2SAT. Ultimately, with probabilistic trials, any repetition-
free H–2SAT instance can be solved and an unknown instance of Q2SAT can be approximately
learned. In this chapter, the same question is posed in the context of monotone graph properties.
It is known from Chapter 5 that when the clause index revealing oracle is used, it is not possible
to determine if the unknown graph possesses a cycle cover, is bipartite or even connected unless
P = NP. However, revealing the edge involved in a constraint trivializes the problem as the
underlying instance can be learned with polynomially many trials. An intermediate approach is
to consider an oracle which does not reveal an arbitrary violated clause but only the identity of
the lexicographically first clause that is violated – i.e., a lex-first oracle. For instance, when a
certificate C violates clauses as 4, 5, 8, . . . (arranged in ascending order) one learns that “clause
4 is the first clause violated”by this trial. The lex-first oracle denoted as Ofirst, for a trial T,
therefore reveals a clause index which is minj{Cj(T) = F} and any hidden CSP using this oracle
is denoted as H–CSPfirst. This oracle aims to determine if a graph has a property without
learning the complete graph. In fact, there are limitations to completely learning a H–CSPfirst
instance, even with unlimited queries made to the lex-first oracle, as shown below.

Limitations to learning
Proposition 7.1. There is no algorithm which, given an unsatisfiable instance ϕ and access to
the corresponding lex-first oracle, learns all the unique clauses present in ϕ (even when provided
with unlimited queries to the oracle).

Proof. To show the behaviour of the lex-first oracle in the general CSP setting, consider two
H–1SAT instances:

ϕ1 : C1 = x1, C2 = x1, C3 = x2, C4 = x2;

ϕ2 : C1 = x1, C2 = x1, C3 = x3, C4 = x4;

116

While it is clear that both these instances are unsatisfiable and ϕ1 6= ϕ2, the oracle answers
for every trial will be exactly the same for both cases. Any assignment proposed to the oracle
will always violate either C1 (if a1 = 0) or C2 (if a1 = 1) irrespective of whether the hidden
instance is ϕ1 or ϕ2. Hence, these instances remain indistinguishable to oracle answers and any
algorithm in this setting.

A similar behaviour can be demonstrated in the Graph Properties Framework as well. Let the
property of interest be connectivity for which the certificate is a spanning tree in the underlying
graph. Consider the two disconnected graphs in Figure 7.1 represented in the graph properties
framework as (xuv denotes that the edge between vertices u, v is missing)

G1 : C1 = x12, C2 = x13, C3 = x14, C4 = x24;

G2 : C1 = x12, C2 = x13, C3 = x14, C4 = x14;

As vertex 1 in both G1 and G2 (See Figure 7.1) is disconnected from the rest of the graph,
the graphs do not contain a spanning tree. Moreover, any spanning tree on the 4 vertices will
connect vertex 1 to either vertex 2 (violating C1), vertex 3 (violating C2) or vertex 4 (violating
C3). This gives rise to identical oracle answers in both instances and the graphs G1 and G2

would remain indistinguishable to any algorithm.

2

3

4

1

G1

2

3

4

1
G2

Figure 7.1: Two disconnected graphs G1 and G2

7.1 Structure of Lex-first algorithms

Before dealing with graph properties in the lex-first model, it is useful to understand the general
structure underlying every lex-first algorithm. In their introductory paper on the trial and
error model, Bei, Chen and Zhang [BCZ13] presented an algorithm that solves hidden SAT with
polynomially many queries to the constraint index revealing oracle (i.e., H–SAT{C}) provided
there is access to a SAT oracle. Recall from Algorithm 2.2 in Chapter 1 that their algorithm
maintains a list for each clause that contains all the literals that could be present in the clause.
For a SAT instance, each clause Cj has a corresponding list of literals Ĉj which is initialized to
all the literals in the system. This list remains consistent with all the trials and corresponding
violations revealed by O{C}. For instance, let the all-0s assignment returns clause j as a violation.

117

Then, the list Ĉj is updated to contain only positive literals as 00 being the forbidden assignment
for Cj implies that which ever literals are in the clause, they are falsified by the 00 assignment.
This process continues with each trial until a satisfying assignment is found or the entire instance
is learned. The SAT oracle is used to generate the next trial in the sequence. From the transfer
theorems of Chapter 5, it is known that this achieves the optimal complexity with the clause
index revealing oracle.

The lex-first algorithms are in a similar vein with some key changes. The lex-first algorithms also
use the lists Ĉj for every clause Cj . Think of the lists as representing the aggregate information
one has about the clause Cj . These lists perform a similar function to the Atjs used in the transfer
theorems (see Theorem 5.1) except that the latter stored assignments violating Cj and the
former stores possible variables that could be involved in Cj . For example, if Ĉj = {x1, x5, x8}
for some H–2SAT instance, then Cj = (`1 ∨ `2) where `1, `2 ∈ Ĉj . Assuming `1 6= `2, this results
in 6 possibilities for what Cj in the hidden instance could be. Successive trials can then be
chosen so that each possibility is either ruled out or the algorithm learns what Cj is. So, for
H–2SATfirst, Ĉj , at any point, is essentially a list of literals that could be in Cj , consistent
with the trials proposed and violations received so far. For the Monotone Graph Properties
framework, each clause denotes an edge that is missing from the hidden graph. Correspondingly,
the list Ĉj is a set of edges such that Cj refers to one of the edges from this set. For example,
if Ĉ1 = {e2, e10, e15}, then C1 = (¬e) where e ∈ {e2, e10, e15}. Successive trials will aim to
learn which of the three possibilities for e describes the hidden graph. The similarities with
Algorithm 2.2 end here.

The first major change is that there is no need for access to a black-box NP oracle as a procedure
to generate the next trial from the preceding one is explicitly presented. This is done by showing
that given a current trial T and violation Cj , it is possible to choose a small subset of variables
in the trial and change their assignment to create a new trial T′. For H–2SAT, this would
mean that a small subset of variables is chosen and their assignment is flipped (i.e., 0 to 1 and
vice-versa). For a graph property, it means that some small set of edges from the current trial
are removed, and a different set of edges is added to create a new trial. Of course, the results in
this work demonstrate that for the examples considered here, this can be done efficiently, in
polynomial time, without access to an NP oracle. Informally, if trial T1 returned Cj1 as the
violation, the construction picks some suitable candidates R ⊆ T1 ∩ Ĉj1 and changes or removes
their assignments to create a partial assignment T′. T′ is then extended to a new trial T2 such
that T2 6= T1. One of the contributions here is demonstrating how a suitable R for different
problems can be chosen efficiently.

The second differing aspect is that the candidates for a clause are eliminated by observing
the pattern of the clauses returned in two successive violations and do not depend solely on
the current violation observed. Also, the candidates removed at each step are related to the
difference between the two corresponding trials and not just the current trial and its violation.
This leads to the need for more book-keeping and intricacies in these algorithms. Irrespective

118

of the problem at hand, this can be seen with some simple reasoning backed by the lex-first
behaviour of the oracle. Let the successive trials T1,T2 generate the violations j1, j2 respectively.
If j1 = j2, then both trials satisfy all clauses Cj with j < j1. More importantly, Cj1 is violated by
variables whose assignment remains unchanged between T1,T2. If j1 > j2, then T1 satisfied Cj2
but T2 violates it which implies that the additions/changes made to create T2 are responsible
for violating Cj2 . Finally, if j1 < j2, then T1 violated Cj1 but T2 satisfies it. This implies
that the removals/changes made to T1 were responsible for violating Cj1 as, without them, T2

satisfies Cj1 .

Algorithm 7.1 A Lex-first Algorithm Template
Initialize global variables and pick the first guess G. Repeat,

1: Propose a trial T1 and receive index j1.
2: Construct the next trial T2 using T1 and Ĉj1 .
3: Propose T2 and receive index j2.
4: Use T1,T2 to reduce the candidates for Cj in Ĉj where j = min{j1, j2}
5: Repeat from Step 4 till Ĉj converges to Cj for some j.
6: Use information from the convergence to update G.
7: Update all global variables.

until the oracle says yes or there is no other trial to be found in G

The lex-first algorithm for the unknown input version of a CSP S, H–S, is given in broad strokes
in Algorithm 7.1. It is natural to maintain a guess G, which is an instance of S that is consistent
with the trials proposed and violations revealed by Ofirst. One way to view this is that for
the guess G paired with the H–S instance G, at any point, sat(G) ⊆ sat(G) ⊆ W where W is
the set of admissible assignments for S and sat(G), sat(G) denote the trials that satisfy G,G
respectively. Then, starting from a trivial guess such that W (G) = W , as trials are proposed,
this guess is modified so that W (G) approaches closer to W (G)1. Solving H–Sfirst for the
hidden instance G now amounts to finding a trial in sat(G) ∩ sat(G). So, the lex-first algorithm
naturally progresses by proposing trials from sat(G), ruling them out when they violate G. Note
that, sat(G) = sat(G) does not necessarily mean that G = G.

Moving to the clause lists, Ĉj is said to converge to Cj in the hidden instance when the updated
structure of Ĉj at some point reveals at least one of the variables involved in Cj . For example,
while dealing with graph properties, convergence occurs when Ĉj = {e} and Cj = (¬e) for an
edge e. For compactness, Step 1 to Step 5 of the algorithm is collectively referred to as a phase
and Step 6 with Step 7 is an update. Within a phase, Step 2 is the process of constructing
the next trial and Step 4 is the process of candidate elimination. Both steps are detailed with
respect to monotone graph properties and 2SAT in the following sections. Now, one can view
the algorithm as a series of phases with the purpose of each phase being to identify some new
convergence with the hidden instance. Each phase consists of a sequence of trials proposed
to the oracle and the candidates for clauses that turn up as a violation are brought closer to

1Here closer implies that |W (G) \W (G)| shrinks in size progressively.

119

convergence.

7.2 Graph Properties with the lex-first oracle

Let P be a monotone graph property and let SP be the CSP associated with it as per the Graph
Properties framework described in Chapter 1, Section 2.1.1. This section aims to precisely
characterize every monotone graph property that can be solved in polynomial time with a lex-first
algorithm as given in Algorithm 7.3. An artefact of the conditions required to successfully
construct the next trial in this lex-first algorithm is the P∩ defined below.
Definition 7.1 (P∩ problem). The P∩ problem corresponding to a monotone graph property P,
is defined as: given a graph H and a set of edges E′ ⊆ E(H), find a certificate T for P such
that T ∩ E′ 6= ∅.

Now, for any monotone graph property, the following is demonstrated.
Theorem 7.1. Let P be a monotone graph property and its associated CSP be SP . Then,
H–SPfirst is in P if the corresponding P∩ problem can be solved in polynomial time.

The proof of the theorem explicitly constructs a lex-first algorithm in line with the high level
description in Algorithm 7.1. Before describing the algorithm itself, notations and concepts used
in the algorithm are given here. Let the hidden instance of H–SP be the graph G = (V,E). For
ever trial proposed, the aim is for the trial to avoid edges that are known to be absent from G as
well as edges that cannot occur in any certificate in G. For this, a guess graph G is maintained
as a super-graph of the possible certificates in the hidden graph (recall that sat(G) ⊇ sat(G)).
Essentially, at any point of time, G reflects the current knowledge the algorithm has about the
hidden graph G. The algorithm starts with G = Kn, the complete graph on n vertices. As
per the framework of Section 2.1.1, each clause Cj = (¬e) for some e /∈ E. The candidates for
the missing edge that Cj represents is given in the list Ĉj such that it is consistent with the
violations seen in the course of the algorithm. For every j, Ĉj is initialized to the set of all
possible edges in an n vertex graph i.e. Ĉj = {e1, . . . , e(n2)}. Progress in the algorithm would
mean that with every trial proposed, some candidates are eliminated from Ĉj for some j. This
is done by comparing the differences between successive trials T1 and T2 with their respective
violations j1 and j2.

A clause list Ĉj is said to converge to Cj and end a phase when the algorithm finds that the
edge(s) in Ĉj will not occur in any certificate for P in G and, by extension, in the hidden graph
G. The algorithm ends either when a certificate for P is found in G or it is determined that G
does not satisfy P and the algorithm outputs unsat. Edges that are found either to be missing
from G or not occurring in any certificate in G are termed ignored edges. In other words, the
union of edges from all the converged Ĉj forms the set of ignored edges. They are listed in IE
and an invariant maintained through the algorithm is that G = Kn \ IE . Any clause list Ĉj
that consists only of ignored edges is called an ignored clause and is listed in I. The edges that

120

change (i.e., removed or added) between successive trials are crucial to identify edges that should
be eliminated. They are denoted by A := T1 \T2 and B := T2 \T1. As G is updated after each
phase, it may happen that certain edges become critical for P, i.e. they must be present in G
for a certificate to be present in the hidden graph. This set of critical edges is defined as,

Crit := {e ∈ G|G \ {e} does not have a certificate for P}

Since the aim is to reduce the possible candidates for a clause while constructing the next trial, a
good potential function to track progress is

∑
j /∈I |Ĉj | where I is the list of ignored clauses. The

potential function initially starts at m
(n

2
)
and when all clauses are ignored, it will to 0. As part

of the correctness proof of Algorithm 7.3, it will be shown that the lex-first algorithm ensures
that each trial successfully reduces the potential function.

7.2.1 An example: Connectivity and spanning trees
To facilitate the discussion of the lex-first algorithm for all graph properties, an example using
graph connectivity is discussed where the certificates are spanning trees.
Theorem 7.2. Given an unknown graph G on n vertices accessed via a lex-first oracle Ofirst,
it is possible to determine if G is connected in poly(n)-time.

The proof constructs a lex-first algorithm, given in Algorithm 7.2, following the template of
Algorithm 7.1. Step 5 of Algorithm 7.2 details the way to construct a new spanning tree from
an existing one with the aim of achieving some progress. Step 4 shows the candidate elimination
while Step 5 lists the updates that need to be done if a clause list Ĉj converges (i.e., it is deduced
that Cj = (¬e) for some edge variable e).

Algorithm 7.2 The lex-first algorithm for connectivity
1: Initialize global variables: G ← Kn, I ← ∅, IE ← ∅, Crit← ∅ and ∀j, Ĉj ← {e1, . . . , e(n

2)}.
2: If G has no spanning tree, abort and output unsat. Otherwise, find a spanning tree T1 in G, get a

violation j1 and set Ĉj1 ← Ĉj1 ∩T1.
3: If Ĉj1 ⊆ Crit, return unsat and abort. If Ĉj1 = {e”}, then Cj1 = (¬e”), j ← j1 and go to Step 5.

Otherwise, to create the next trial:
• Pick an edge e such that e ∈ Ĉj1 ∩T1 ∩Crit.
• Pick e′ ∈ G \T1 such that T1 ∪ {e′} \ {e} forms another spanning tree T2.

4: Use T2 as the next trial, get the violation j2 and compare j1, j2:
• If j1 = j2, Ĉj1 ← Ĉj1 \ {e, e′}. Repeat from Step 5.
• If j1 < j2, Ĉj1 ← {e} ⇒ Cj1 = (¬e) and j ← j1.
• If j2 < j1, Ĉj2 ← {e′} ⇒ Cj2 = (¬e′) and j ← j2.

5: Perform the updates such that: IE ← IE ∪ Ĉj , G ← Kn \ IE , I ← {j′|Ĉj′ ⊆ IE} and
Crit← {e ∈ G|G \ {e} is not connected}.

6: Repeat from Step 9 till the oracle returns yes.

Proof. The goal here is to show that Algorithm 7.2 can find a spanning tree in the hidden graph

121

G, if one exists, or output unsat and that this can be done in poly(n) time when G is a graph
on n vertices. The correctness of the algorithm hinges on the following arguments:(a) every
candidate elimination process results in decreasing the potential function

∑
j /∈I |Ĉj |; (b) the

algorithm outputs unsat, only when G is not connected; (c) the trials do not repeat in an
endless loop within any phase. When all three arguments hold, every trial is unique and either
decreases |Ĉj | or results in learning the edge in Cj . Then, assuming G has a spanning tree, with
at most O(m

(n
2
)
) trials, either the oracle returns yes or all the edges absent from G can be

learned using which the spanning tree in G can be found directly.

For the first argument, let T1 and T2 be the trials with corresponding violations j1 and j2. Also,
T2 has been created by removing an edge e from T1 and adding the edge e′. The lex-first nature
of the oracle suggests that when j2 < j1, Cj2 was satisfied by T1 but generated a violation
with T2. The only difference between these two trials is the edge e′ implying that Cj2 = (¬e′).
Similarly, when j1 < j2, the edge that was removed satisfied Cj1 implying that Cj1 = (¬e).
In both these scenarios, a clause j is added to the list of ignored clauses I due to which the
potential function decreases by |Ĉj |. When j1 = j2, both trials violate Cj1 implying that it is
one of the edges common to both trials that causes the violation. This excludes the edges {e, e′}
from Ĉj1 . As e was originally picked from Ĉj but is now eliminated, |Ĉj | decreases by 1 and
accordingly decreases the potential function.

For the second argument, it has to be shown via induction that, if G has spanning trees, all
those spanning tree are also present in G throughout the run of the algorithm. Initially G is the
complete graph Kn which contains all the possible spanning trees in an n vertex graph. This
satisfies the hypothesis. Now, consider the situation where G is updated. Denote G before the
update as G(i) and G after the update as G(f). By the inductive hypothesis, suppose that G(i)

contained all the spanning trees in G. Notice that the update happens only when the absent edge
e represented by a clause Cj is learned. In addition to this, the only difference between G(f) and
G(i) is the missing edge e. Obviously, e, as it is absent from G, is not part of any spanning tree
in G. Hence, G(f) also contains all the spanning trees in G satisfying the inductive hypothesis.
As a result, if G has no spanning tree, then G also has no spanning tree. Additionally, if an edge
is critical for G, it is also critical for G. So, if here exists some j such that Ĉj ⊆ Crit, it implies
that Cj represents the absence of a critical edge from G due to which G has no spanning tree.
Hence, if the algorithm outputs unsat, then G is not connected.

For the final argument, consider the way a new trial is created in Step 5. Since e is not critical
to G, it is part of a cycle C in G and one edge of C is missing from T1. This missing edge is
the required e′ as adding it to T1 would complete C but removing e after that would ensure
that there is no cycle in T2. As all the vertices in C still remain connected after swapping these
edges and no other part of T1 was changed, T2 remains a spanning tree too. The candidate
elimination in Step 4 loops back to Step 5 if j1 = j2 and |Ĉj1 | > 1. Observe that the next trial
T′2 is created after the candidate elimination by removing an edge from the updated Ĉj1 ∩T1.
However, at this point e has already been removed from Ĉj1 and so, it won’t be removed from

122

T1 to construct T′2. Hence, T′2 6= T2 because e ∈ T′2 \T2. |Ĉj1 | ≤ |T1| = n − 1, and its size
strictly decreases with each repetition. So, the phase can continue for at most n− 2 trials before
|Ĉj1 | = 1 or Ĉj1 ⊆ Crit and the algorithm will not get stuck in an endless phase loop.

For the complexity, note that it is possible to find a spanning tree in G in O(n2) time. A simple
graph traversal algorithm can find the cycle C and the edge e′ in O(n +

(n
2
)
− m) = O(n2)

time since |V | = n and |E| =
(n

2
)
−m in this framework. The candidate elimination step can

be executed in |Ĉj1 | = O(n) time. So, a clause can be determined in O(n3) time in the worst
case. The step which updates the variables requires at most O(mn2) time as it may have to
modify each clause list. Assuming this happens for each of the m clauses, the algorithm totally
consumes O(m2n2 +mn3) = O(mn3) time before a certificate for G is found or all the clauses
are determined. In the latter case, it is possible to find a spanning tree in G in O(|E|) = O(n2)
time. Hence, it is possible to determine if a hidden graph G is connected in O(mn3) time.

7.2.2 The Algorithm
To prove Theorem 7.1, Algorithm 7.2 is generalized to work for any monotone increasing graph
property P as described in Algorithm 7.3. The algorithm is designed such that, at any point, if
the oracle return yes, then abort and return the corresponding trial as certificate for P in the
hidden graph G. If not, the process is repeated till all the clauses are learned or it is determined
that G does not satisfy P.

Algorithm 7.3 A lex-first algorithm for H–SPfirst
1: Initialize global variables, setting G ← Kn, I ← ∅, IE ← ∅, Crit← ∅ and ∀j, Ĉj ← {e1, . . . , e(n

2)}.
2: If there are no trials in G, abort and output unsat.
3: Let j′ ← min{j | j /∈ I}. Find a certificate for P in G, T1 = A(G, Ĉj′), get a violation j1 and set

Ĉj1 ← Ĉj1 ∩T1.
4: If Ĉj1 ⊆ Crit, return unsat and abort. If Ĉj1 = {e”}, then Cj1 = (ē”), set j ← j1 and go to

Step 6. Otherwise, to create the next trial:
• Pick an edge, e ∈ Ĉj1 ∩T1 ∩Crit
• Find a certificate T2 = A(G \ {e}, Ĉj \ {e})
• Set A← T1 \T2 and B ← T2 \T1.
• If no T2 can be created for any choice of e ∈ Ĉj1 ∩T1 ∩Crit, j ← j1 and go to Step 6.

5: Use T2 as the next trial, get the violation j2 and compare j1, j2:
• If j1 = j2, Ĉj1 ← Ĉj1 \A.
• If j1 < j2, Ĉj1 ← Ĉj1 ∩A.
• If j2 < j1, Ĉj2 ← Ĉj2 ∩B, j1 ← j2 and T1 ← T2.
• j ← min{j1, j2} and if |Ĉj | > 1, repeat from Step 4.

6: Update IE ← IE∪Ĉj , G ← Kn\IE , I ← {j′|Ĉj′ ⊆ IE}, Crit← {e ∈ G|G\{e} does not satisfy P}.
7: Repeat from Step 2 till the oracle returns yes.

The parallels between the lex-first template in Algorithm 7.1 and Algorithm 7.3 are that Step 4
gives the procedure to create the next trial and Step 5 performs candidate elimination. A phase
involves creating a series of trials and repeating these two steps in succession until an update

123

is performed in Step 6. Note that Algorithm 7.3 uses, as a subroutine, an algorithm A for P∩

to create the trials that will be proposed to the lex-first oracle. A takes as input a graph H,
a set of edges E′ and outputs a certificate T in H for P such that T ∩ E′ 6= ∅. The analysis
of Algorithm 7.3 is similar to the proof of Theorem 7.2 in that the following arguments are
shown to hold:(a) every candidate elimination process results in decreasing the potential function∑
j /∈I |Ĉj |; (b) the algorithm outputs unsat, only when G is not connected; (c) the trials do not

repeat in an endless loop within any phase.

Proof of Theorem 7.1. Let A be an algorithm for P∩ that requires time T to execute and let
the maximum certificate size for P be s. Let j1, j2 be two successive violations with their
corresponding trials T1 and T2. It will be demonstrated that Algorithm 7.3 can, in poly(T, n)-
time, find a certificate for P, in the hidden n-vertex graph G, if one exists, or output unsat.
The key idea is to show that Step 4 and Step 5 don’t execute in an endless loop in a phase. This
can be done by showing that trials within a phase do not repeat. Also, after at most O(m)
successive trials, the potential function

∑
j /∈I |Ĉj | is shown to strictly decrease. Then, assuming

G satisfies P, with at most O(m2(n
2
)
) unique trials, a certificate can be found or all the edges

absent from G can be learned. If all the clauses of G become known, then using A(G,E(G)), a
certificate for P in G (trivially, intersecting the edge set of G) can be found.

To this aim, first it is demonstrated that the algorithm outputs unsat, only when G does not
satisfy P. Essentially, via induction, it is shown that if G contains certificates for P, then G
always contains these certificates at every point of the algorithm. G is initialized to the complete
graph on n vertices Kn and P is a monotone increasing property. Hence, G will contain every
possible certificate for P on n vertex graphs. The place where G changes is during the updates.
Let G before the update be denoted G(i) and after the update let is be denoted as G(f). Assume
that G(i) contains all certificates for P in G.

One cause for an update is when there is no choice of e ∈ Ĉj1 ∩T1 ∩Crit to create the trial T2

in Step 4. In this scenario, Ĉj1 ∩Crit = ∅ as otherwise, any e′ ∈ Ĉj1 ∩Crit would satisfy the
requirement to create the next trial. Since, e /∈ Crit, there definitely exists at least one other
certificate in G(i) \ {e}. But, the certificate(s) in G(i) \ {e} are such that they don’t contain any
of the e′ ∈ Ĉj1 \ {e} i.e. T1 is the only certificate in G involving the edges in Ĉj1 . However, the
Cj1 actually represents one of the edges from Ĉj1 . Additionally, the only certificate involving
this edge and the remaining edges from Ĉj1 generates a violation. Hence, no valid certificate for
G will include the edges in Ĉj1 resulting in their being label as ignored edges. Then by creating
G(f) = G(i) \ Ĉj1 does not affect the certificates of G in these graphs. The other cause to update
occurs when the absent edge e represented by some clause Cj is determined which is similar
to the spanning tree case. Using the same reasoning, the certificates of G which are already in
G(i) will remain in G(f) as well. This satisfies the inductive hypothesis. Again, the reasoning for
critical edges carries over from the proof of Theorem 7.2 and so, if the algorithm outputs unsat,
then G does not satisfy P.

124

To argue that the trials in each phase are unique and that the potential function strictly decreases,
consider the three cases of Step 5 where candidate elimination is done. For each case, it is
shown that at least one edge is eliminated from Ĉj for j = min{j1, j2} after at most O(m)
successive trials. Additionally, for any pair of trials T1,T2, it is shown that subsequent trials T′

constructed after candidate elimination, in a phase, cannot be T1 or T2. For some j, let Ĉ(i)
j

denote Ĉj before the candidate elimination and Ĉ(f)
j denote it after the elimination. The three

cases are discussed below:

j2 = j1 : The violation observed is j1 = j2 and T2 has been created for some e picked from
Ĉ

(i)
j1
∩T1 ∩Crit. Also, Ĉ(f)

j1
= Ĉ

(i)
j1
\A where A = T1 \T2 as per the first case of Step 5.

This means that the edges picked for subsequent trials are not from A. Suppose by way of
contradiction that, for the subsequent trial, the edge e” in Ĉ(f)

j1
on being removed creates

T2 again. In other words, e” ∈ T1 \T2 which leads to a contradiction as e” is not in A.
Hence, subsequent trials cannot create T2 again. By forcing that e ∈ A, e /∈ Ĉ(f)

j1
due to

which |Ĉj1 | strictly decreases in size.
j2 > j1 : From Step 5, one of the edges removed from T1 satisfied Cj1 implying that Ĉ(f)

j1
=

Ĉ
(i)
j1
∩A. Using A to find the next trial forces some e′ ∈ Ĉ(i)

j1
\ {e} to be present in both

trials. Hence, Ĉ(f)
j1
⊂ Ĉ

(i)
j1

and |Ĉj1 | strictly decreases. Suppose that the f ∈ Ĉ(f)
j1

has
been chosen to create the next trial T′2 and that T2 = T′2. However, this would mean
that the f ′ ∈ Ĉ(f)

j1
\ {f} which is forced to be in T1,T′2 is, by assumption, also in T2. As

A = T1 \ T2, this implies that f ′ /∈ A ⇒ f ′ /∈ Ĉ(f)
j1

= Ĉj1 ∩ A which is a contradiction.
Hence, any subsequent trial cannot be T2.

j2 < j1 : Step 5 indicates that it was one of the edges added to create T2 that violated Cj2 such
that Ĉ(f)

j2
= Ĉ

(i)
j2
∩ B where B = T2 \T1. The nature of the “lex-first” oracle returning

the first violated index results in each trial T being associated with a specific violation j.
In other words, any time T is proposed as a trial, the oracle always returns the same j.
This allows for a certain symmetry between the cases when j1 < j2 and j2 < j1 with some
change of variables. Specifically, let T′1 = T2, T′2 = T1 which would set A′ = T′1 \ T′2.
Now, this case can be viewed as T′2 created from T′1 by removing the edges in A′ and
adding the edges in B′ = T′2 \T′1 giving violations j2 followed by j1 > j2. The reasoning
for subsequent trials not being T′2 = T1 then follows from the previous case. Moving
to the question of decreasing the potential function, it may happen that Ĉ(f)

j2
= Ĉ

(i)
j2

and no candidates are eliminated. However, there are only O(m) times that j2 < j1 can
successively occur before j′ = min{j|j /∈ I} is reached. For this clause, candidates will
have to be eliminated as any violation returned will be ≥ j′.

For the complexity argument, each execution of Step 3 takes O(T) time, Step 6 is limited by
O([T +m]n2) to find critical edges and modify each clause set and Step 5 takes O(|T|) = O(s)
time as the size of a clause set is limited by the size of the certificate. Each run of Step 4
requires cycling through at most |Ĉj | choices for e before the next trial is found using the
algorithm for P∩ with E′ = Ĉj \ {e}. The total running time would be O(sT) since |Ĉj | ≤ s.
On comparing violations j1, j2 in Step 5, if j1 = j2 or j1 > j2, at least one candidate in Ĉj1

125

will be eliminated and when j1 < j2, this happens after at most O(m) trials. Hence, in the
worst case, a candidate is eliminated in O(m[sT + s]) time and a clause can be determined in
O(ms[sT + s]) = O(ms2T) time with O(ms) trials. The total time for each clause can be upper
bounded by O(T +ms2T + [T +m]n2) = O(ms2T + [T +m]n2) and for m clauses, the algorithm
requires O(m2s2T + [T +m]mn2) time before all clauses are determined or a certificate for G is
found. The size of the certificate can be at most the number of edges in an n-vertex graph giving
an overall complexity of O(m2n4T) when the certificate size is large i.e. O(n2). Clearly, with
m = O(n2), the final running time is poly(n)-time when T = poly(n). Hence, any monotone
graph property P has a polynomial time lex-first algorithm if it has a polynomial time algorithm
for the P∩ problem associated with it.

7.2.3 Applications
Theorem 7.1 is applied to the following properties: (a) Directed Spanning Tree (DST); (b) Undi-
rected Cycle Cover (UCC); (c) Directed Cycle Cover (DCC); (d) Bipartite Perfect Matching
(BPM); (e) Directed Path (DPATH); and (f) Undirected Path (UPATH).
Theorem 7.3. The following properties in the Graph Properties Framework with the have polyno-
mial time algorithms: (a) H–DSTfirst; (b) H–UCCfirst; (c) H–DCCfirst; (d) H–BPMfirst;
(e) H–DPATHfirst; (f) H–UPATHfirst.

Proof. If a polynomial time algorithm as mentioned in Theorem 7.1 exists for a property P , then
it is straightforward to also find a certificate for P in a graph H(V,E) by setting E′ = E(H).
Hence, it is enough to show that all the above properties satisfy the fact that a certificate
containing an edge E′ ∈ A can be found in H in polynomial time.

From previous works in graph theory, all the above properties definitely have polynomial time
algorithms to find certificates in a given graph H [Die12, Edm67, Tut54]. Now consider the
condition in Theorem 7.1. Let E′ be the set of edges intersecting which a certificate has to be
found. Clearly, if a certificate can be found intersecting a specified edge (u, v), then with |E′|
iterations over {(u, v)|(u, v) ∈ A}, an intersecting certificate can be found.

Given a graph H and a specified edge (u, v), subdivide (u, v) as given below:

• If H = (U ∪ V,E) is a bipartite graph with u ∈ U and v ∈ V , add two vertices ṽ, ũ such
that Ũ = U ∪ {ũ}, Ṽ = ∪{ṽ} and Ẽ = E ∪ {(u, ṽ), (ũ, v)} \ {(u, v)} and H ′ = (Ũ ∪ Ṽ , Ẽ).
• If H = (V,E) is an undirected graph, add a vertex x such that V ′ = V ∪ {x} and
Ẽ = E ∪ {(u, x), (x, v)} \ {(u, v)} and H ′ = (Ṽ , Ẽ).
• If H = (V,E) is a directed graph, add a vertex x such that Ṽ = V ∪ {x}, Ẽ = E ∪
{(u, x), (x, v)} \ {(u, v)} where the direction of the newly added edges is the same as the
direction of (u, v).

Now for each property, the condition in Theorem 7.1 becomes equivalent to finding a certificate
for the property in H ′ which can be done in polynomial time as they are polynomial time solvable
properties. To illustrate, consider each property of interest:

126

1. H has a BPM containing (u, v) if and only if H ′ has a BPMM′. Clearly, {(u, v′), (u′, v)} ∈
M′ as the only way to match u′ and v′. NowM′ \{(u, v′), (u′, v)}∪{(u, v)} is the required
matching in H.

2. H has a UCC if and only if H ′ has a UCC where the only way to cover x is a cycle passing
through (u, x), (x, v). Now replacing these two edges in this cycle cover with (u, v) gives
the required cycle cover in H. The DCC case can be argued similarly.

3. H has a UPATH from s to t passing through (u, v) if and only if there are vertex disjoint
UPATHs from s to x and from x to t in H ′. Now replacing (u, x), (x, v) with (u, v) in the
join of these paths is the required path in H. The DPATH can be solved similarly.

4. The subdivision of edges is not needed for the spanning tree problem. Consider a spanning
tree T in H not containing (u, v). This means that adding (u, v) to T creates a cycle.
Then, adding (u, v) to T and removing an edge of the created cycle will give a spanning
tree containing (u, v). The DST case follows similarly.

If there exists a polynomial time algorithm for P∩ for a property P, then it is straightforward
to also find a certificate for P in a graph H(V,E) by setting E′ = E(H). This along with the
above illustration would make one suspect that every polynomial time solvable monotone graph
property satisfies the above condition. However, there exists a counter example that refutes this
possibility.
Claim 7.1. Let P be the property of finding an odd-length directed cycle with the associated
CSP SP . Then, it is NP-hard to solve H–SP using the lex-first oracle Ofirst.

Proof. There exists a linear time algorithm to find an odd-length cycle in a directed graph using
breadth first search2. However, finding an odd length cycle containing a specific directed edge
(v, u) is equivalent to asking if there exists an even length path from u to v, both explicitly specified.
This problem has been proved to be NP-complete by LaPaugh and Papadimitriou [LP84].

Interestingly, the undirected version of this problem can still be evaluated in polynomial
time [LP84] and so the hidden, undirected version of this problem is still in P. This prompts
one to ask if there is any undirected graph property which could also serve as a counterexample.
This question is currently left for future work.

7.3 2SAT with the lex-first oracle

The previous section showed that using the lex-first oracle certain polynomial time monotone
graph properties are still polynomial time decidable in the hidden setting. This prompts
the consideration of how well this oracle performs with CSPs whose clauses are not unary.
The immediate choice would be to consider an instance of hidden 2SAT. Recall that a 2SAT

2Colour vertices at even and odd distances differently. Then look for monochromatic non-tree edges.

127

formula φ is defined n variables x = (x1, . . . , xn) and m clauses ϕ = ∧mj=1Cj where each Cj is
a disjunction of two literals. The trials are assignments a = a1 . . . an with a ∈ {0, 1}n and a
satisfying assignment satisfies each Cj . If a 2SAT formula contains any unary constraint (`),
it will be considered as a binary constraint of the form (` ∨ F) where F denotes the literal
being false. Given a set of literals, L, L contains the negation of each literal in L while the
complementary set is given by Lc := {x1, x1, . . . xn, xn} \ L. A polynomial time algorithm to
solve every H–2SATfirst instance is described by proving that
Theorem 7.4. Given a H–2SAT instance ϕ = ∧mj=1Cj on n variables and m clauses accessed
using a lex-first oracle Ofirst, there exists a poly(n) time algorithm that finds a satisfying
assignment for ϕ if one exists or outputs unsat.

The proof follows from the analysis of Algorithm 7.4. While many notations carry over from
Section 7.2, the differences are explicitly defined here. The algorithm ends either when a
satisfying assignment to ϕ is found or it is determined that ϕ cannot be satisfied.

Since each 2SAT clause contains at most 2 literals, Ĉj is the ordered tuple Ĉj = (L̂j , R̂j) for Cj
where L̂j , R̂j ⊆ {F, x1, . . . , xn, x1, . . . , xn}. Each component of the tuple is the list of candidates
for the corresponding literal of clause j on proposing trial a. In the beginning, both sets will
be {x1, . . . , xn, x1, . . . , xn}. Note that if at any time R̂j becomes empty, then Cj is determined
to be a unary clause and R̂j ← {F} so that the invariant ∀j, |L̂j |, |R̂j | ≥ 1 is maintained at all
times. The order of the literals in Cj does not matter i.e. (x ∨ y) and (y ∨ x) are considered to
be equivalent.

Similar to the guess graph maintained for graph properties, for the H–2SATfirst instance ϕ,
the guess is a 2SAT induced formula Φ such that for all assignments a ∈ {0, 1}n, ϕ(a) = T⇒
Φ(a) = T. In other words, the induced formula helps maintain the invariant sat(Φ) ⊇ sat(φ). As
Φ is meant to be consistent with all the violations and clauses already known, it is defined as

Φ :=
∧

{Cj :|L̂j |=|R̂j |=1}

(`1 ∨ `2) where L̂j = {`1} and R̂j = {`2}

Given a guess Φ, aΦ denotes a partial assignment restricted to the variables that appear in Φ
such that aΦ(Φ) = T. Correspondingly, it is possible to partition the n variables depending
on if they occur in Φ or not. This is done by defining VΦ := {i|xi or xi occurs in Φ} and
V c

Φ := {1, . . . , n} \ VΦ. The literals can also be similarly partitioned with LΦ := {xi, xi|i ∈ VΦ}
and its complement LcΦ. The potential function used to mark progress is

∑m
j=1 |Ĉj | where

|Ĉj | = |L̂j |+ |R̂j |. It initially starts at m× 4n, where each component starts with 2n literals
and should drop to 2m. In the analysis of the algorithm the rate at which each trial reduces the
potential function is shown. For ease of notation, Ŝj refers to a component of Ĉj and takes the

128

values

Ŝj =


L̂j if |L̂j |, |R̂j | > 1 i.e. Cj is unknown;

R̂j if |L̂j | = 1, |R̂j | > 1 i.e. Cj is partially known;

∅ if |L̂j | = |R̂j | = 1 i.e. Cj is known.

When a literal in Cj is learned during the course of the algorithm, Ŝj will be updated to reflect
if Cj is known, or partially known. Given two n-length Boolean assignments a,a′, it is useful to
find the variables with the same assignment in a and a′ and those which flipped. For this, define

A(a,a′) := {xk|ak = a′k = 0} ∪ {xk|ak = a′k = 1}

B(a,a′) := {xk|ak = 0 and a′k = 1} ∪ {xk|ak = 1 and a′k = 0}

It is assumed that set operations consume unit time. As the size of the sets is O(n) they will only
add a linear factor to the final run-time which still satisfies the polynomial time requirement.

7.3.1 Algorithm Details
The H–2SAT lex-first algorithm is discussed below and outlined in Algorithm 7.4. The trials are
generally assumed to generate violations as otherwise, the algorithm can be aborted on having
found a satisfying assignment.

Algorithm 7.4 A H-2SAT lex-first algorithm outline
1: Initialization: Set ∀j, L̂j ← R̂j ← {x1, x1, . . . , xn, xn}, Ŝj ← L̂j and Φ← T.
2: Using O(n) trials learn at least one clause. Add the clauses learned to Φ.

• If trial a is found such that Ofirst(a) returns yes, return a.

Update the guess Φ
3: Add the clauses learned to Φ. For all literals ` such that ` = T⇒ Φ is unsat:

• Replace ` with F in all clause lists and remove ¯̀ from them. Add (¯̀∨ F) to Φ.
4: Find aΦ such that Φ(aΦ) = T. If Φ is unsatisfiable, return unsat.

Learn one of the literals present in some clause Cj:
5: Let j0 ← Ofirst(aΦ0rest) and j1 ← Ofirst(aΦ1rest).
6: If j0 6= j1, identify ` /∈ LΦ such that ` ∈ Cj for j ≤ min{j0, j1}.
7: Else if j0 = j1, identify ` ∈ LΦ such that ` ∈ Cj for some j ≤ j0.
8: If Step 6 or Step 7 find a trial a such that Ofirst(a) returns yes, return a.
9: If `1, `2 have been identified such that Cj = (`1 ∨ `2) and Cj /∈ Φ, go to Step 3.

Learn the second literal in a clause Cj where it is known that ` ∈ Cj:
10: Otherwise, to identify the second literal in Cj , fix ` = F and repeat from Step 5 with trials where

` = F is maintained.

Repeat from Step 3 till the oracle return yes.

To help visualize the flow of the algorithm, it is presented as a flow chart in Figure 7.2 with the
main procedures related to the phases highlighted.

129

Sub-Phase 1

Sub-Phase 2

Sub-Phase 3

Pre-Processing
Return a

initialize variables

Learn at least one
clause with O(n)
trials. Add the

clauses learned to Φ

Add clauses
learned to Φ

∃`′ s.t.
`′ = T⇒ Φ is

unsat?

∃aΦ, s.t.
Φ(aΦ) = T?

Replace `′ with F
in clause lists and
add (¯̀′ ∨ F) to Φ

Return unsat

j0 = Ofirst(aΦ0rest),
j1 = Ofirst(aΦ1rest)

Is j0 = j1?

Identify ` /∈ LΦ
s.t. ` ∈ Cj for
j ≤ min{j0, j1}

Identify ` ∈ LΦ s.t.
` ∈ Cj for j ≤ j0

Are both
literals of Cj

known?

Fix ` = F, and
learn the sec-

ond literal of Cj

no

yes

no

yes

yes

no

no

The phase finds a s.t.
Ofirst(a) = yes

Pre-processing finds a
s.t. Ofirst(a) = yes

Figure 7.2: Flow chart of Algorithm 7.4

While not appearing so at first glance, the outline in Algorithm 7.4 does line up with the template
in Algorithm 7.1. For instance, the execution of Step 6 requires the construction of a series
of next trials corresponding to which candidate elimination is performed and Φ is accordingly
updated at the end. The same applies to Step 7 and Step 10. Essentially, Step 5 – Step 10
constitutes a single phase which is broken up into sub-phases, each with a different notion of
convergence: (a) learn a literal not restricted by aΦ i.e., ` /∈ LΦ (Step 6); (b) learn a literal that
is restricted by aΦ i.e., ` ∈ LΦ (Step 7); and (c) learn the second literal in a partially known
clause (Step 10).

130

A phase ends when any one of the sub-phases converges by learning a previously unknown literal
in a clause. After Φ is accordingly updated, Step 3 updates the clause lists to exclude literals
that are forced to be F by the clauses learned so far in Φ. A new trial is created is by flipping
the assignment to some subset of literals while ensuring that these changes do not violate the
clauses in Φ at any point.

The proof of Theorem 7.4 is built on the correctness and complexity of Algorithm 7.4. The steps
required to execute each sub-phase of the algorithm are described and analyzed in the lemmas
below. The goal is to understand how the next trials are created in each sub-phase and how the
candidate elimination affects the progress of the algorithm (i.e.,

∑
j |Ĉj |). Candidate elimination

basically infers the presence or absence of a subset of literals from some clause list Ĉj . This
leads to a series of set operations performed on L̂j , R̂j to reflect this information. The relation
between the inference drawn and the operations performed is described below. Given a set of
literals L, if it is inferred that

• L /∈ Cj ⇒ L̂j ← L̂j \ L and R̂j ← R̂j \ L.
• L ∈ Cj as one of the literals in L set Cj to true ⇒ Ŝj ← Ŝj ∩ L.
• L ∈ Cj as the literals in L falsified Cj , then both literals of Cj have been set to false. So,
L̂j ← L̂j ∩ L and R̂j ← R̂j ∩ L.
• Further, if a literal of Cj is determined as a result of these inferences, Ŝj is updated to

point to R̂j or ∅ as the case may be.

Note that, the proofs of the lemmas in this section will use the inferences to refer to the execution
of the set operations given above. For instance, when it is concluded that a literal ` /∈ Cj

during candidate elimination, it implicitly means that the procedure executed L̂j ← L̂j \ {`} and
R̂j ← R̂j \ {`}. With these operations consuming O(n) time, it will not affect any complexity
considerations for the procedure in question. After initializing all the global variables in
Algorithm 7.4, Φ is trivially true and every clause is unknown. Step 2 performs some pre-
processing before any sub-phase is executed to learn at least one of the clauses in the hidden
instance φ.
Lemma 7.1 (Step 2 - Pre-processing). Given a H–2SATfirst formula ϕ, with none of its
clauses being known, it is possible to learn the literals of at least one clause of ϕ using O(n)
trials in O(n) time.

Proof. As per Step 2 of the algorithm, let the two trials a = 0n, b = 1n generate violations ja
and jb. Note that, ja 6= jb as a,b indicate that Cja is the first clause with two positive literals
and Cjb is the first clause with two negative literals. Assume without loss of generality that
ja < jb (the case with jb < ja is symmetric). Do the following:

• Using a, for each i ∈ {1, . . . , n} create the assignment ai with ai = 1 and all other variables
set to 0. Let the trial ai generate a violation ji.
– If ji = ja, then {xi, xi} /∈ Cja .
– If ji > ja, then xi ∈ Cja .

131

– If ji < ja, then xi ∈ Cji , R̂j = {x1, . . . , xi−1, xi+1, . . . , xn}.
• Next, repeat the same process using b except that in bi, bi = 0. Let the trial bi generate

a violation ji.
– If ji = jb, then {xi, xi} /∈ Cjb .
– If ji > jb, then xi ∈ Cjb .
– If ji < jb, then xi ∈ Cji , R̂j = {x1, . . . , xi−1, xi+1, . . . , xn}.

The complexity is straightforward as the process takes 2n+ 2 trials and modifies one clause list
for every trial. Hence, it can be executed in O(n) time.

To argue the correctness of the candidate elimination, first consider the violations (ja, ji)
generated by the trials a,ai for some i ∈ {1, . . . , n}. When ji = ja, Cja is violated by both trials
which means Cja is made of variables whose assignment did not change between the two trials.
In other words, the variable xi whose assignment was flipped between both trials is absent from
the clause, i.e., {xi, xi} /∈ Cja . When ja < ji, ai satisfied Cja , i.e., setting ai = 1 (or equivalently,
xi = T) satisfied Cja leading to the conclusion that xi ∈ Cja . When ji < ja, a similar argument
helps in reaching the conclusion that setting ai = 1 (or equivalently, xi = F) causes Cji to
become violated due to which xi ∈ Cji . Observe that, for all j < ja, Cj is satisfied by both 0n

and 1n implying that none of these clauses have two positive or two negative literals. In other
words, all these clauses contain one positive and one negative literal. Also, Cji is such that ai
sets the positive and negative literal in Cji to F. ai = 1 implies that the positive literal cannot
be xi and with ai′ = 0, ∀i′ 6= i, the negative literal can only be xi.

Now, consider the violations (jb, ji) generated by the trials b,bi for some i. The correctness
follows for the most part from the arguments made above (except that the xis and xis are
swapped), along with the observation that, Cji has one positive and one negative literal even
when ja < ji < jb. Suppose that Cji two positive literals. Then, with only bi = 0 in bi, Cji
would not have been violated by this assignment, leading to a contradiction.

At the end of the 2n+ 2 trials, for every i ∈ {1, . . . , n}, the first clause containing xi among the
clauses Cj with j ≤ ja is known along with the first clause containing xi among the clauses Cj
with j ≤ jb. With a simple argument it is shown that the literals in C1 are guaranteed to be
learned at the end of this procedure. Clearly, if ja = 1, this is the case. Suppose ja > 1, then as
previously mentioned, with ja < jb, all clauses Cj with j ≤ ja are of the form (xj1 ∨ xj2), and
this includes the clause C1. As C1 will also be the first occurrence for the literals present in it,
both literals of C1 will be learned and this satisfies the claim.

At the end of the procedure outlined in Lemma 7.1, all the clauses fully determined are added
to Φ. The update in Step 5 also tries to ensure that the clause lists only contain literals whose
assignment is unresolved with respect to Φ. A variable xi ∈ VΦ is said to be unresolved with
respect to Φ if there exists a,a′ ∈ sat(Φ) such that ai 6= a′i. This definition naturally extends
to literals too. Analogously, a variable in xi ∈ VΦ is said to be resolved if ∀ a,a′ ∈ sat(Φ),
ai = a′i. Now, the update procedure in O(nm) time removes all the resolved literals from the

132

clause lists. The rationale for removing resolved literals from clause lists is similar to that for
removing ignored edges in the graph properties lex-first algorithm. In this case, it helps minimize
the number of trials proposed by ensuring that all subsequent trials do not violate the clauses
already learned, i.e., those in Φ. A more detailed argument for the correctness of this procedure
is discussed in the proof of Theorem 7.4. A satisfying assignment aΦ can be found in O(n+m)
time using one’s favourite algorithm for 2SAT. The next step is to expand the number of clauses
in Φ by learning more clauses. One way to do this is find a clause involving variables currently
not assigned in aΦ, i.e., those in V c

Φ. This is given by the first sub-phase, Step 6, and it is
described below.
Lemma 7.2 (Step 6 - First sub-phase). Let Φ be an induced formula for a H–2SATfirst
formula ϕ and let aΦ be a satisfying assignment for Φ. Let the assignments a0 = aΦ0V cΦ and
a1 = aΦ1V cΦ produce violations j0 6= j1. Then in O(n) time, it is possible to learn a literal ` in
Cj where ` ∈ LcΦ and j ≤ min{j0, j1}.

Proof. Assume without loss of generality that j0 < j1 (the j1 < j0 case is symmetric). Without
modifying aΦ, do the following:

• Update Ĉj0 such that {xk|k ∈ V c
Φ} ∈ Cj0 i.e., Ŝj0 ← Ŝj0 ∩ {xk|xk ∈ LcΦ}.

• For each variable i ∈ V c
Φ, create bi from a0 by flipping the assignment of bi from 0 to 1.

Let the trial bi generate a violation ji.
– If ji = j0, then {xi, xi} /∈ Cj0 i.e., Ŝj0 ← Ŝj0 \ {xi, xi}.
– If |Ŝj0 | = 1, end sub-phase.
– If ji < j0, then xi ∈ Cji . End sub-phase.
– If ji > j0, then xi ∈ Cj0 . End sub-phase.

Recall from its definition that Ŝj points to the component of Ĉj with the candidates for the
literal of Cj that the algorithm would like to learn. In the case of Cj0 , Ŝj0 contains the candidates
for the literal `. To argue the correctness of this procedure, consider the types of literals present
in Cj0 . As j0 6= j1, and aΦ is common to a0 and a1, Cj0 is violated by the assignment to the V c

Φ
variables. More specifically, as 0V cΦ violates Cj0 and 1V cΦ satisfies it, Cj0 contains at least one
positive literal ` from Lcφ that is, {xk|k ∈ V c

Φ}. This justifies updating Ŝj0 ← Ŝj0 ∩ {xk|k ∈ V c
Φ}.

The correctness of the candidate elimination follows from the same arguments as the proof of
Lemma 7.1 except that the arguments only involve the literals in Lcφ as only their assignments
change.

To show that at least one literal will be learned, notice that if there is some i ∈ V c
φ such that

ji 6= j0, then a literal from Cj for j = min{ji, j0} ≤ j0 will be learned satisfying the claim. The
only case left to consider is when for all i ∈ V c

Φ, ji = j0. Then, after the first step of the process
described above, Ŝj0 ⊆ {xk|k ∈ V c

Φ} and |Ŝj0 | ≤ |V c
Φ|. For each i such that ji = j0, {xi} /∈ Cj0

implies that xi can be removed from Ŝj0 when the latter is updated as Ŝj0 ← Ŝj0 \ {xi}. Hence,
|Ŝj0 | decreases by at most 1 after the update. Then with at most |V c

φ | trials such that ji = j0,
the size of |Ŝj0 | will decrease until there is only one choice for `. As ` ∈ Cj0 is determined, this

133

satisfies the claim.

The complexity is straightforward as the process takes at most n+ 2 trials, modifies one clause
list every time and so can be executed in O(n) time.

Any new clauses learned are added to Φ to update it along with a corresponding aΦ. The first
sub-phase is not executed if j0 = j1 and this case is handled by the second sub-phase Step 7. In
this case, one would like to learn a literal which is restricted by Φ.
Lemma 7.3 (Step 7 - Second sub-phase). Let Φ be an induced formula for a H–2SATfirst
formula ϕ and let aΦ be a satisfying assignment for Φ. Let the assignments a0 = aΦ0V cΦ and
a1 = aΦ1V cΦ produce violations j0 = j1 respectively. Then it is possible in poly(n) time to learn
a literal ` in Cj for j ≤ j0 such that ` ∈ LΦ.

Proof. Let a = a1 and j = j1. For two assignments b, b′, recall that A(b,b′) is the set of literals
that are set to F in both assignments. In addition, B(b,b′) is the set of literals that change
their values from being F in b to being T in b′ and B̄(b,b′) is the set of literals that changes
from being T in b to F in b′. Also, for Cj0 , Ŝj0 will contain the candidates for the literal from
LΦ that the algorithm tries to learn. Without modifying the assignment to V c

φ in a = aΦ1V cΦ , do
the following:

• Update Ĉj as A(a0,a1) ∈ Cj i.e., Ŝj ← Ŝj ∩A(a0,a1). If |Ŝj | = 1, end sub-phase.
• Otherwise, to create the next assignment b, for each literal `′ ∈ Ŝj \ {F} repeat:

– Set `′ = T and find a bΦ with `′ = T such that Φ(bΦ) = T. Set b = bΦ1V cΦ .
– Let B = B(a,b). If Ŝj \ B = ∅, repeat with a different literal.

• If Ŝj \ B = ∅, pick any literal from ` ∈ Ŝj and conclude ` ∈ Cj . End sub-phase.
• Otherwise, let the trial b generate the violation j′.

– If j = j′, then B /∈ Cj i.e., Ŝj ← Ŝj \ B. Update a← b.
– If j < j′, then B ∈ Cj i.e., Ŝj ← Ŝj ∩ B.
– If j > j′, then B ∈ Cj′ i.e., Ŝj′ ← Ŝj′ ∩ B. Update a← b and j ← j′.

• If |Ŝj | = 1, end sub-phase.
• Otherwise repeat by creating a new b.

Note that, as j0 = j1, and aΦ is common to a0, a1, the clause Cj0 is made up of two literals
from LΦ such that aΦ sets these literals to F. This is exactly the set of literals in A. Hence, it is
justified to set Ŝj0 ← Ŝj0 ∩ A. For all j ≤ j0, Cj is satisfied both by a0 and a1 and can fall into
one of two categories. Consider splitting an assignment into two parts: one part acting on VΦ

and the other on V c
Φ. Either the Cj is such that it is satisfied by aΦ in which case it contains

at least one literal from LΦ; or, Cj is satisfied by the assignments to V c
Φ. In the latter case, as

both 0V cΦ and 1V cΦ satisfied Cj , it contains at least one positive and one negative literal from LcΦ.
Clearly, as the process described above does not change the assignments on V c

Φ, these clauses
will not show up as violations during the execution of this procedure.

The first part of showing the correctness of this process is to analyze how the next trial b is

134

created. Observe that it is always possible to create a suitable bΦ with `′ = T. Clearly |Ŝj | > 1
and so there is definitely some `′ ∈ Ŝj \ {F}. Suppose by way of contradiction that it is not
possible to find a bΦ by setting `′ = T. Then, there is a literal `′ ∈ Ŝj \{F} such that `′ = T⇒ Φ
is unsat. In other words, for all a′ ∈ sat(Φ), `′ = F. This, by definition means that `′ is a literal
resolved to be F. However, the clause lists are updated in Step 5 so that Ŝj contains only F or
unresolved literals. Any subsequent updates to Ŝj during the process results only in removing
literals and not adding any literals (resolved or otherwise) to it. Hence `′ /∈ Ŝj \ {F} which leads
to a contradiction.

If Ŝj \ B = ∅, then Ŝj ∩ B = Ŝj . If this holds for all literals in Ŝj \ {F}, clearly F /∈ Ŝj and
Ŝj \ {F} = Ŝj as the fixed literal F cannot, by definition, be in B. Additionally, it means that all
assignments in sat(Φ) require that the literals in Ŝj either all be T or all be F. In other words,
the assignment to all these variables has to be the same leading to the conclusion that these
literals are logically equivalent in the formula, i.e., for all `, `′ ∈ Ŝj , `⇔ `′. Replacing a literal
in a clause with an equivalent literal does not change the set of satisfying assignments of both
formulas. This allows for any literal from Ŝj to be picked as the representative present in the
clause. The literal in Cj is now learned up to an equivalence and so, the sub-phase can be ended.

The candidate elimination used here is similar to those used in previous procedures with one
difference. As the trial changes from a to b, a set of literals may change their assignment instead
of just one literal. However, B and B′ capture the set of literals that change their assignments.
Using these sets, the correctness of candidate elimination will directly follow from the proof of
Lemma 7.1. Finally, notice that sub-phase ends only when |Ŝj | = 1 which is when it has been
determined that for Ŝj = {`}, ` ∈ Cj . At the beginning of the procedure j = j0 and during
candidate elimination, j is always set to the min{j, j′} ≤ j ≤ j0. Hence, the clause whose literal
is revealed is some Cj where j ≤ j0. This satisfies the lemma’s claim.

To calculate the complexity, observe that the procedure tries to create the next trial by flipping
the literals of Ŝj \ {F} where |Ŝj \ {F}| ≤ n as there are at most n variables in VΦ. Whenever
a trial b is created, it happens by finding a bΦ where some literal `′ is set to T. This can be
done using Unit Propagation [DLL62]. For example, if Φ = (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x3 ∨ x4) and
aΦ = 1001, then setting x1 = T would propagate by forcing x2 = T to satisfy the first clause
which in turn forces x3 = T to satisfy the second clause. A slight modification to any linear time
2SAT algorithm to maintain ` = T suffices to find bΦ in O(m+ n) time if it exists. All other
operations are just set operations and consume O(1) time. It may happen that Ŝj \ B = ∅ for b
and so it may require at most |Ŝj | = O(n) tries to find a suitable b for candidate elimination.
In total, it may take O(mn+ n2) time to find a suitable b.

To bound the total number of trials needed, consider the size of B when candidate elimination
occurs. Clearly, Ŝj \ B 6= ∅ ⇒ Ŝj ∩ B (Ŝj ⇒ |Ŝj ∩ B| < |Ŝj | ≤ n. So, with O(n) trials where all
the violations are at least j it is possible to learn a literal in Cj . However, it is possible that
some violation j′ < j is observed in which |Ŝj′ ∩ B| ≤ |Ŝj′ | and if they are equal, no candidate is
eliminated. As there are m clauses, after at most O(m) jumps where j decreases, the algorithm

135

reaches the j′ = min{j|Cj has a literal from LΦ}. For this j′ all violations will be at least j′

and a literal in Cj′ can be learned. Hence, at mostO(nm) trials are needed in the worst case.
The complexity of the procedure is just O(mn · (mn+ n2)) = poly(n).

While this completes the ways to learn a single literal in a clause, it is usually assumed that it is
the first literal in the clause that one is trying to identify. With a little bit of extra processing,
the same processes in Lemmas 7.2 and 7.3 can be recycled to also learn the second literal in a
clause. This also forms the third and last sub-phase, Step 10. For this step, any modifications
to Cj imply modifications to Ŝj = R̂j .
Lemma 7.4 (Step 10 - Third sub-phase). Let Φ be an induced formula of a H–2SATfirst
formula ϕ with aΦ satisfying Φ. If one literal, `, of Cj is known, then it is possible in poly(n)
time to learn the second literal of Cj or identify a clause Cj′ with j′ < j where at least one literal
of Cj′ is not known.

Proof. The idea is to force the first literal in Cj to be set to F so that the only way to satisfy
Cj is if the second literal is set to T. This will allow it to be identified using the pattern of
violations. The process is different depending on if the first literal is in LΦ or LcΦ. Let ` be the
first literal of Cj that is already known and assume that ` is already set to F and the violation
with the current trial a is j. Assume that no violation j′ < j is returned during this process as
otherwise, the process can be aborted and the algorithm tries to learn the literals of Cj′ .

• Mark ` so that its assignment will not be changed within this procedure.
• To test if the second literal of Cj is in LcΦ, run the procedure from Lemma 7.2 on the

literals in LcΦ.
• Otherwise, to test if the literal is in LΦ use the procedure in Lemma 7.3 with the following

modification when ` ∈ LΦ: For all `′ ∈ Ŝj ∩ LΦ, if `′ = T forces ` = T to satisfy Φ, replace
`′ with F in Ŝj .

The complexity is pretty straightforward. The procedure above takes O(mn) time for the first
step and poly(n) time for the second and so can run in poly(n) time in total.

To argue the correctness of the process, note that if no j′ < j was returned, then all violations
were either of the form j′ = j or j′ > j. Using the proof of Lemma 7.2 in the first step, with
the former type of violation, some literals are eliminated as possibilities for Cj and the latter
violation actually reveals the second literal. For the second step, the argument gets more involved.
Observe that a new trial satisfying Φ will be created from a by setting some literal in Ŝj ∩ LΦ

to T. During this process, using the proof of Lemma 7.3, it is known that the value of more
than one literal may change. Consider the scenario where the value of ` is forced to change
(i.e, from F to T). Then, there is a literal `′ ∈ Ŝj ∩ LΦ such that setting `′ = T forces ` = T
in every assignment bΦ that satisfies Φ. Suppose that `′ was the second literal in the clause
Cj . Clearly, for all b ∈ sat(Φ) if b sets `′ to T, then it also sets ` to T. This will satisfy Cj as
both literals are T. However, even if `′ is F, the only way to satisfy the clause is if ` is set to T.
Essentially, sat(Cj) reduces to the satisfiability of the unary clause (`). This is represented as

136

(` ∨ F) justifying the replacement of `′ with the symbol F. Now, the end of the second step will
reveal the second literal of Cj .

Finally, the proof of Theorem 7.4 is given below combining the correctness and running times of
the pre-processing and sub-phases discussed previously.

Proof of Theorem 7.4. Algorithm 7.4 can be viewed, after the pre-processing step, as a series of
updates and phases. Further, each phase is broken up into three sub-phases being executed where
one of them ends the phase by learning previously unknown literal in some clause. Following
this, appropriate updates are applied to the induced formula Φ and the clause lists.

To argue the correctness of the algorithm, it is shown that the algorithm outputs unsat only
when ϕ is unsatisfiable. If not, it is possible in poly(n) time, using Lemmas 7.1, 7.2, 7.3, 7.4, to
learn the clauses in ϕ up to some equivalence of literals and use any 2SAT algorithm to find a
satisfying assignment for ϕ. To this aim, it is shown that every assignment a that satisfies ϕ
will also satisfy Φ. In other words, throughout the run of the algorithm, the following invariant
is maintained sat(Φ) ⊇ sat(ϕ) and Φ is indeed an induced formula for ϕ. This clearly holds after
initialization because when Φ = (T) then sat(Φ) = {0, 1}n ⊇ sat(ϕ). Let this hypothesis hold
for some Φ before it enters the update where the guess is denoted Φ(i) and via induction, it is
shown that Φ after the update, denoted Φ(f) will also satisfy the hypothesis. The update can be
broken up into two parts: one part where the clauses learned are added to Φ and the second
where resolved literals are identified and replaced with F in the clause lists.

Take the first part where L̂j = {`1}, R̂j = {`2}, `1, `2 6= F has been identified for some clause j.
If the literals were learned by candidate elimination, then the correctness of this procedure from
Lemma 7.1 and Lemma 7.3 indicates that Cj in ϕ is actually (`1 ∨ `2). As Cj is sub-formula of
ϕ, sat(Cj) ⊇ sat(ϕ).

When candidate elimination is not used, it is possible that Cj = (`′1 ∨ `2) in ϕ and `′1 6= `1 6= F.
This could happen in the second sub-phase when one of the literals from Ŝj is picked to represent
the literal in Cj . The proof of Lemma 7.3 guarantees that in this case, the literal picked is
logically equivalent to the literal in Cj . This means, for all a ∈ sat(Φ(i)) ⊇ satϕ, `, `1 are either
both F or both T. This implies that sat((`1 ∨ `2)) = sat(Cj) ⊇ sat(ϕ).

Next, consider the case when `2 = F but Cj = (`1∨`′2) in ϕ where `′2 6= F. This occurs in the third
sub-phase while trying to learn a literal from LΦ(i) . From the proof of Lemma 7.4, observe that this
happens only if the only way to satisfy Cj is to set `1 to T. Then sat(Cj) = sat((`1∨F)) implying
that sat((`1 ∨ F)) ⊇ sat(ϕ). In all these cases, coupled with the fact that sat(Φ(i)) ⊇ sat(ϕ),
when Φ(f) = Φ(i)∧(`1 ∨ `2), sat(Φ(f)) ⊇ sat(ϕ).

Finally, for the second part, while replacing a resolved literal `, notice that Φ(i) is such that for
all a ∈ sat(Φ(i)), ¯̀ is set to T. Adding the clause (¯̀∨ F) does not change the set of satisfying
assignments for it. So, sat(Φ(f)) = sat(Φ(i)) ⊇ sat(ϕ).

137

To argue the complexity, the pre-processing in Step 2 takes O(mn) time from Lemma 7.1 to
learn at least one clause. This is followed by Step 3 that takes O(mn) time and O(m+ n) time
to learn a new aΦ for the updated Φ. A literal is learned in a clause because a phase achieves
convergence. For this the first literal in some clause is learned after the execution of the first
two sub-phases i.e. Step 6 and Step 7. The second literal in a clause can be learned after the
third sub-phase i.e. Step 10. Hence, from Lemmas 7.2, 7.3 and 7.4, a clause can be learned in at
most poly(n) time. This upper bounds the total time to learn a clause to poly(n) time. This is
repeated for at most m clauses, the total running time is still poly(n) as m = O(n2).

This concludes the results on the lex-first trial and error oracle.

138

References

[ABG+16] Itai Arad, Adam Bouland, Daniel Grier, Miklos Santha, Aarthi Sundaram, and
Shengyu Zhang. On the complexity of probabilistic trials for hidden satisfiability
problems. In 41st International Symposium on Mathematical Foundations of Com-
puter Science, MFCS 2016, August 22-26, 2016 - Kraków, Poland, pages 12:1–12:14,
2016.

[AKLT87] Ian Affleck, Tom Kennedy, Elliott H Lieb, and Hal Tasaki. Rigorous results on
valence-bond ground states in antiferromagnets. Physical Review Letters, 59(7):799–
802, 1987.

[AL98] Daniel S. Abrams and Seth Lloyd. Nonlinear quantum mechanics implies polynomial-
time solution for NP-complete and #P problems. Physical Review Letters, 81:3992–
3995, 1998.

[APT79] Bengt Aspvall, Michael F. Plass, and Robert Endre Tarjan. A linear-time algorithm
for testing the truth of certain quantified boolean formulas. Information Processing
Letters, 8(3):121–123, 1979. Erratum: Information Processing Letters 14(4): 195
(1982).

[AS08] Noga Alon and Asaf Shapira. Every monotone graph property is testable. SIAM
Journal on Computing, 38(2):505–522, 2008.

[ASSZ16] Itai Arad, Miklos Santha, Aarthi Sundaram, and Shengyu Zhang. Linear time
algorithm for quantum 2SAT. In 43rd International Colloquium on Automata,
Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, pages
15:1–15:14, 2016.

[ASSZ17] Itai Arad, Miklos Santha, Aarthi Sundaram, and Shengyu Zhang. Almost frustration-
free Quantum 2SAT. Paper in preparation., 2017.

[BCD+13] Xiaohui Bei, Ning Chen, Liyu Dou, Xiangru Huang, and Ruixin Qiang. Trial
and error in influential social networks. In The 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD 2013, Chicago, IL,
USA, August 11-14, 2013, pages 1016–1024, 2013.

[BCZ13] Xiaohui Bei, Ning Chen, and Shengyu Zhang. On the complexity of trial and error.
In Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA,
June 1-4, 2013, pages 31–40, 2013.

139

[BCZ15] Xiaohui Bei, Ning Chen, and Shengyu Zhang. Solving linear programming with con-
straints unknown. In Automata, Languages, and Programming - 42nd International
Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part I, pages
129–142, 2015.

[BDW02] Harry Buhrman and Ronald De Wolf. Complexity measures and decision tree
complexity: a survey. Theoretical Computer Science, 288(1):21–43, 2002.

[Bra11] Sergey Bravyi. Efficient algorithm for a quantum analogue of 2-SAT. Contemporary
Mathematics, 536:33–48, 2011.

[BS16] Anne Broadbent and Christian Schaffner. Quantum cryptography beyond quantum
key distribution. Designs, Codes and Cryptography, 78(1):351–382, 2016.

[BT97] Béla Bollobás and Andrew Thomason. Hereditary and Monotone Properties of
Graphs. Springer Berlin Heidelberg, Berlin, Heidelberg, 1997.

[BV05] Sergey Bravyi and Mikhail Vyalyi. Commutative version of the local Hamiltonian
problem and common eigenspace problem. Quantum Information & Computation,
5(3):187–215, 2005.

[Cal11a] Steven Callander. Searching and learning by trial and error. American Economic
Review, 101(6):2277–2308, 2011.

[Cal11b] Steven Callander. Searching for good policies. American Political Science Review,
105(04):643–662, 2011.

[CCD+11] Jianxin Chen, Xie Chen, Runyao Duan, Zhengfeng Ji, and Bei Zeng. No-go theorem
for one-way quantum computing on naturally occurring two-level systems. Physical
Review A, 83(5):050301, 2011.

[Che09] Hubie Chen. A rendezvous of logic, complexity, and algebra. ACM Computing
Surveys, 42(1):2:1–2:32, 2009.

[CHTW04] Richard Cleve, Peter Høyer, Benjamin Toner, and John Watrous. Consequences and
limits of nonlocal strategies. In 19th Annual IEEE Conference on Computational
Complexity (CCC 2004), 21-24 June 2004, Amherst, MA, USA, pages 236–249,
2004.

[CJ15] Fiona R. Cross and Robert R. Jackson. Solving a novel confinement problem by
spartaeine salticids that are predisposed to solve problems in the context of predation.
Animal Cognition, 18(2):509–515, 2015.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[CM16a] Steven Callander and Niko Matouschek. The risk of failure: Trial and error learning
and long-run performance. Technical report, Mimeo, 2016.

140

[CM16b] Toby S. Cubitt and Ashley Montanaro. Complexity classification of local Hamiltonian
problems. SIAM Journal on Computing, 45(2):268–316, 2016.

[CMM09] Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Near-optimal
algorithms for maximum constraint satisfaction problems. ACM Transactions on
Algorithms, 5(3):32:1–32:14, July 2009.

[Coh93] Henri Cohen. A Course in Computational Algebraic Number Theory. Springer-Verlag
New York, Inc., New York, NY, USA, 1993.

[Coo71] Stephen A. Cook. The complexity of theorem proving procedures. In Proceedings of
the Third Annual ACM Symposium, pages 151–158, New York, 1971. ACM.

[dBG16] Neil de Beaudrap and Sevag Gharibian. A linear time algorithm for quantum 2-SAT.
In 31st Conference on Computational Complexity, CCC 2016, May 29 to June 1,
2016, Tokyo, Japan, pages 27:1–27:21, 2016.

[Dic17] Merriam-Webster Online Dictionary. “Trial and Error”. https://www.merriam-
webster.com/dictionary/trial%20and%20error, 2017. Retrieved on 2017-04-10.

[Die12] Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in
mathematics. Springer, 2012.

[DLL62] Martin Davis, George Logemann, and Donald W. Loveland. A machine program for
theorem-proving. Communications of the ACM, 5(7):394–397, July 1962.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification theory.
Journal of the ACM, 7(3):201–215, July 1960.

[ECP10] Jens Eisert, Marcus Cramer, and Martin B. Plenio. Area laws for the entanglement
entropy - a review. Reviews of Modern Physics, 82(277), 2010.

[Edm67] Jack Edmonds. Optimum Branchings. Journal of Research of the National Bureau
of Standards, 71B:233–240, 1967.

[EIS76] Shimon Even, Alon Itai, and Adi Shamir. On the complexity of timetable and
multicommodity flow problems. SIAM Journal on Computing, 5(4):691–703, 1976.

[FF56] Lester R. Ford and Delbert R. Fulkerson. Maximal flow through a network. Canadian
Journal of Mathematics, 8(3):399–404, 1956.

[Gha10] Sevag Gharibian. Strong NP-hardness of the quantum separability problem. Quantum
Information & Computation, 10(3):343–360, March 2010.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman, 1979.

[GJS76] Michael R Garey, David S. Johnson, and Larry Stockmeyer. Some simplified NP-
complete graph problems. Theoretical Computer Science, 1(3):237–267, 1976.

141

[GKNR09] Oded Goldreich, Michael Krivelevich, Ilan Newman, and Eyal Rozenberg. Hierarchy
theorems for property testing. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, pages 504–519. Springer, 2009.

[GN13] David Gosset and Daniel Nagaj. Quantum 3-SAT is QMA1-complete. In 54th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29
October, 2013, Berkeley, CA, USA, pages 756–765, 2013.

[Gol11] Oded Goldreich. Introduction to testing graph properties. In Studies in Complexity
and Cryptography. Miscellanea on the Interplay between Randomness and Compu-
tation - In Collaboration with Lidor Avigad, Mihir Bellare, Zvika Brakerski, Shafi
Goldwasser, Shai Halevi, Tali Kaufman, Leonid Levin, Noam Nisan, Dana Ron,
Madhu Sudan, Luca Trevisan, Salil Vadhan, Avi Wigderson, David Zuckerman,
pages 470–506. Springer, 2011.

[Got97] Daniel Gottesman. Stabilizer codes and quantum error correction. PhD thesis,
California Institute of Technology, 1997.

[GS62] David Gale and Lloyd S. Shapley. College admissions and the stability of marriage.
American Mathematical Monthly, 69(1):9–15, 1962.

[Har11] Tim Harford. Adapt: Why Success Always Starts with Failure. Little, Brown, 2011.

[Her06] Israel N Herstein. Topics in algebra. John Wiley & Sons, 2006.

[HG96] Cecilia M. Heyes and Bennett G. Galef, editors. Social Learning In Animals: The
Roots of Culture. Elsevier Science, 1996.

[HHH96] Michał Horodecki, Paweł Horodecki, and Ryszard Horodecki. Separability of mixed
states: necessary and sufficient conditions. Physics Letters A, 223(1):1–8, 1996.

[HKKK88] Pavol Hell, David G. Kirkpatrick, Jan Kratochvíl, and Igor Kríz. On restricted
two-factors. SIAM Journal on Discrete Mathematics, 1(4):472–484, 1988.

[HvdHL16] David Harvey, Joris van der Hoeven, and GrÃľgoire Lecerf. Even faster integer
multiplication. Journal of Complexity, 36:1–30, 2016.

[IKQ+14] Gábor Ivanyos, Raghav Kulkarni, Youming Qiao, Miklos Santha, and Aarthi Sun-
daram. On the complexity of trial and error for constraint satisfaction problems. In
Automata, Languages, and Programming - 41st International Colloquium, ICALP
2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I, Lecture Notes in
Computer Science, pages 663–675. Springer, 2014.

[Imm12] Neil Immerman. Descriptive complexity. Springer Science & Business Media, 2012.

[JWZ11] Zhengfeng Ji, Zhaohui Wei, and Bei Zeng. Complete characterization of the ground-
space structure of two-body frustration-free Hamiltonians for qubits. Physical Review
A, 84:042338, 2011.

142

[Kar72] Richard Karp. Reducibility among combinatorial problems. In Raymond E. Miller
and James W. Thatcher, editors, Complexity of Computer Computations, The IBM
Research Symposia Series, pages 85–103. Plenum Press, New York, 1972.

[Kar01] Marek Karpinski. Approximating bounded degree instances of NP-hard problems.
In Fundamentals of Computation Theory, 13th International Symposium, FCT 2001,
Riga, Latvia, August 22-24, 2001, Proceedings, pages 24–34, 2001.

[Kit03] Alexei Kitaev. Fault-tolerant quantum computation by anyons. Annals of Physics,
303(1):2–30, 2003.

[KKR06] Julia Kempe, Alexei Kitaev, and Oded Regev. The complexity of the local Hamilto-
nian problem. SIAM Journal on Computing, 35(5):1070–1097, May 2006.

[KLN91] Jan Kratochvíl, Anna Lubiw, and Jaroslav Nešetřil. Noncrossing subgraphs in
topological layouts. SIAM Journal on Discrete Mathematics, 4(2):223–244, March
1991.

[Kot12] Joanne Kotz. Phenotypic screening, take two. SciBX, 5(15):380, 2012.

[KR03] Julia Kempe and Oded Regev. 3-local Hamiltonian is QMA-complete. Quantum
Information & Computation, 3(3):258–264, 2003.

[Kro67] Melven R. Krom. The decision problem for a class of first-order formulas in which
all disjunctions are binary. Mathematical Logic Quarterly, 13(1-2):15–20, 1967.

[KSV02] Alexei Kitaev, Alexander Shen, and Mikhail N. Vyalyi. Classical and Quantum
Computation. American Mathematical Society, Boston, MA, USA, 2002.

[Lev73] Leonid A. Levin. Universal sequential search problems. Problems of Information
Transmission, 9(3):265–266, 1973.

[LGS88] László Lovász, Martin Grötschel, and Alexander Schrijver. Geometric algorithms
and combinatorial optimization. Berlin: Springer-Verlag, 33:34, 1988.

[LMSS10] Christopher R. Laumann, Roderich Moessner, Antonello Scarddichio, and S. L.
Sondhi. Random quantum satisfiability. Quantum Information & Computation,
10(1):1–15, 2010.

[LP84] Andrea S. LaPaugh and Christos H. Papadimitriou. The even-path problem for
graphs and digraphs. Networks, 14(4):507–513, 1984.

[LS09] Troy Lee and Adi Shraibman. Lower Bounds in Communication Complexity. Foun-
dations and trends in theoretical computer science. Now Publishers, 2009.

[LUM+12] Jonathan A. Lee, Mark T. Uhlik, Christopher M. Moxham, Dirk Tomandl, and
Daniel J. Sall. Modern phenotypic drug discovery is a viable, neoclassic pharma
strategy. Journal of medicinal chemistry, 55(10):4527–4538, 2012.

143

[Mit82] Tom M. Mitchell. Generalization as search. Artificial intelligence, 18(2):203–226,
1982.

[MM14] Frances K. McSweeney and Eric S. Murphy. The Wiley Blackwell handbook of
operant and classical conditioning. John Wiley & Sons, 2014.

[Mon16] Ashley Montanaro. Quantum algorithms: an overview. npj Quantum Mechanics, 2,
2016.

[NC00] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information. Cambridge University Press, 2000.

[Nel08] Richard R. Nelson. Bounded rationality, cognitive maps, and trial and error learning.
Journal of Economic Behavior & Organization, 67(1):78 – 89, 2008.

[NH81] Simeon C. Ntafos and S. Louis Hakimi. On the complexity of some coding problems.
IEEE Transactions on Information Theory, 27(6):794–796, 1981.

[NM07] Daniel Nagaj and Shay Mozes. New construction for a QMA complete three-local
Hamiltonian. Journal of Mathematical Physics, 48(7):072104–072104, July 2007.

[Oxl06] James G. Oxley. Matroid Theory (Oxford Graduate Texts in Mathematics). Oxford
University Press, Inc., New York, NY, USA, 2006.

[Per96] Asher Peres. Separability criterion for density matrices. Physical Review Letters,
77(8):1413–1415, 1996.

[PY12] Bary S.R. Pradelski and H. Peyton Young. Learning efficient nash equilibria in
distributed systems. Games and Economic Behavior, 75(2):882 – 897, 2012.

[Sac07] Subir Sachdev. Quantum phase transitions. Wiley Online Library, 2007.

[SC03] John ER Staddon and Daniel T Cerutti. Operant conditioning. Annual Review of
Psychology, 54(1):115–144, 2003.

[Sch78] Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of the
10th Annual ACM Symposium on Theory of Computing, May 1-3, 1978, San Diego,
California, USA, pages 216–226, 1978.

[SCT00] Karyl B. Swartz, Shaofu Chen, and Herbert S. Terrace. Serial learning by rhesus
monkeys: Ii. learning four-item lists by trial and error. Journal of Experimental
Psychology: Animal Behavior Processes, 26(3):274, 2000.

[Sun17] Aarthi Sundaram. Trial and error for graph properties with the lex-first oracle.
Paper in preparation., 2017.

[Tho98] Edward Lee Thorndike. Animal intelligence: An experimental study of the associative
processes in animals. Psychological Monographs: General and Applied, 2(4):i–109,
1898.

144

[Tho83] William H. Thorpe. The origins and rise of ethology: The science of the natural
behaviour of animals. Journal of the History of the Behavioral Sciences, 19(1):95–97,
1983.

[Tut54] William T. Tutte. A short proof of the factor theorem for finite graphs. Canadian
Journal of Mathematics, 6:347–352, 1954.

[Tut59] William T. Tutte. Matroids and graphs. Transactions of the American Mathematical
Society, 90(3):527–552, 1959.

[Val84] Leslie G. Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134–1142, 1984.

[VLRK03] Guifre Vidal, José I. Latorre, Enrique Rico, and Alexei Kitaev. Entanglement in
quantum critical phenomena. Physical Review Letters, 90:227902, Jun 2003.

[WB03] Pawel Wocjan and Thomas Beth. The 2-local Hamiltonian problem encompasses
NP. eprint arXiv:quant-ph/0301087, January 2003.

[You09] H. Peyton Young. Learning by trial and error. Games and Economic Behavior,
65(2):626 – 643, 2009.

[ZTM13] Wei Zheng, Natasha Thorne, and John C McKew. Phenotypic screens as a renewed
approach for drug discovery. Drug discovery today, 18(21):1067–1073, 2013.

145

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Constraint Satisfaction Problems
	Boolean Satisfiability
	Graphs and Graph Properties

	The Trial and Error Model
	Monotone Graph Properties Framework

	Quantum Satisfiability
	Basics of Quantum Computation
	Local Hamiltonian Problem
	Quantum SAT
	Q1SAT and Q2SAT
	Energies and distances

	A linear time quantum 2SAT algorithm
	Algorithms for Boolean 2SAT
	Krom's Algorithm
	Davis-Putnam Procedure

	2-Local Hamiltonian and Quantum 2SAT
	Bravyi's Algorithm

	Generalizing the Davis-Putnam Procedure
	Simple ground states
	The Constraint Graph
	Assignments
	Propagation

	The main algorithm
	Algorithm Sketch
	Max rank removal
	Parallel Propagation
	Probe Propagation
	Analysis of the algorithm

	Bit Complexity of Q2SATSolver
	On approximate Quantum 2SAT

	Trial and error for constraint satisfaction problems
	CSP extensions
	Transfer Theorems
	Constraint index and variables revealing oracle
	Constraint index and relation revealing oracle
	Monotone Graph Properties
	H-CSPs with a promise on instances

	Probabilistic trials for hidden satisfiability problems
	Probabilistic Trials, Quantum Trials
	Probabilistic trials for H-SAT
	Quantum Trials for H-QSAT

	SAT with probabilistic trials
	Hidden 1SAT
	Hidden 2SAT

	Quantum SAT in the trial and error model
	Hidden Quantum 1SAT
	Hidden Quantum 2SAT

	Lex-first oracle in the trial error model
	Structure of Lex-first algorithms
	Graph Properties with the lex-first oracle
	An example: Connectivity and spanning trees
	The Algorithm
	Applications

	2SAT with the lex-first oracle
	Algorithm Details

	References

