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Summary

This thesis consists of three independent chapters: one on fuel economy in

the U.S. Automobile industry and two on choices between alternative fuel and

fossil fuel at fuelling stations in Brazil1.

The first chapter investigates the influence of fuel-price and fuel-economy

regulation on the adoption of fuel-saving technologies in new light-duty vehicles

sold in the U.S. This question will be addressed with an empirical model of the

U.S. automobile industry that incorporates demand, supply, and regulations.

The novelty of this model is that it allows for endogenous choices of vehicle fuel

efficiency by firms in the form of a fuel-efficiency frontier. The counterfactual

studies show that both fuel prices and regulations help explain the recent

acceleration of fuel economy, although the merits of each factor depend on

how many fuel technologies are available to each vehicle to further improve its

fuel performance.

The second chapter investigates the effect of price salience on consumer

fuel choice at the pump under the working hypothesis that consumers do not

always possess accurate information about prices. Utilizing data gathered

from an experiment conducted in four Brazilian cities, which involved the

1The later two chapters use a dataset that was generously provided by my advisor,
Professor Alberto Salvo
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showing of salient price information to random consumers at fueling stations,

this study reveals that the observed consumer choices were consistent with a

model of imperfect price information. Treatments that raise price salience can

be effective towards reducing such price noise. I then examine the extent this

imperfect information contributes towards explaining the puzzle why Brazil-

ian consumers often choose the more expensive fuel even when the cheaper

alternative is equally accessible.

The third chapter develops a discrete-continuous choice model to study the

choice between different fuels for driving in Brazil, accounting for consumer

heterogeneity along both margins. The model accommodates the preference

for fixed payment that was observed from the data, i.e. the fact that an

abnormally large proportion of drivers chose to purchase exactly 50 reais worth

of fuel. The results show that price salience can increase the quantity of

purchase and affect the choice between fuels, and that the type of treatment

is important to achieve this effect.
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Chapter 1

The Adoption of Fuel-saving
Technologies in U.S. Automobile
Industry: Regulation Push and
Demand Pull

1.1 Introduction

The transportation sector is a major consumer of energy and contributor of

air pollutants in the U.S. In 2013, its energy consumption and greenhouse gas

emission made up 27% of the U.S. total (Environmental Protection Agency,

2015). As a result, it has always been on the list of primary concerns for policy-

makers regarding energy security and environmental protection. Improving

the fuel efficiency of new vehicles is an important part of the U.S. strategy to

reduce oil dependency, improve air quality, and slow down climate change.

From 2000 to 2015, the average fuel efficiency of new passenger cars sold in
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the U.S. increased by 31%, from 28.5 miles per gallon (mpg)1,2 to 37.24 mpg.

Newly sold light-duty trucks also had a similar increase over the same period,

from 21.3 mpg to 27 mpg. This was in stark contrast with the situation in

the preceding decade, during which the U.S. automobile industry only made

meagre improvements in the fuel efficiency of its vehicle fleets (in 1990, the fuel

efficiency was 28 mpg for passenger cars and 20.8 mpg for light-duty trucks).

To understand this trend, two crucial factors need to be examined: regu-

lations and fuel prices, not only because they are two of the key incentives for

manufacturers and consumers to adopt fuel-efficient vehicles, but also because

both have experienced recent changes, the timings of which coincided with the

turn of the previously mentioned trend in fuel efficiency. These changes are il-

lustrated in Figure B.1. After being frozen for most of the 1990s and the early

years of the 2000s, fuel-economy standards started to increase again after 2005,

for trucks, and 2011, for cars. Fuel prices, due to the situation in the Middle

East post-9/11 and other supply and demand factors, have fluctuated wildly

since the start of the millennium. Understanding how much these movements

contributed to the increase in vehicle fuel efficiency is an interesting exercise

on its own. Even more importantly, however, it has great practical implica-

1Mpg measures the number of miles over which the vehicle can travel on one gallon of
fuel.

2The average reported here is the harmonic average weighted by sales.
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tions for future industry performance. Given that gasoline prices have started

to drop substantially since 2014 after reaching their peak in 2012, it is impor-

tant to assess whether the past performance of improving fuel efficiency can

still continue under the new circumstances and the ever-increasing regulatory

targets.

The ability of the industry to reduce fuel consumption hinges on its ca-

pacity to develop and adopt fuel-saving technologies. The previous empirical

literature on the automobile industry often assumes exogeneity of the product

characteristics space, including fuel efficiency (Berry et al., 1995; Petrin, 2002).

To analyse fuel-saving technology adoption, there is a need to endogenize the

choice of product characteristic, especially the fuel efficiency of the vehicles.

Several recent papers have attempted to do so, such as those by Klier and

Linn (2012); Gramlich (2010); Zhou (2016).

This paper assesses the impact of regulatory changes and fuel-price fluc-

tuation on fuel efficiency in the U.S. automobile industry. A model of a

differentiated-good oligopoly that allows for automakers endogenous adop-

tion of ready-for-production fuel-saving technologies is structurally estimated

with aggregate market data. Counterfactual studies are performed to esti-

mate what would have happened if fuel prices and/or regulations had been

kept unchanged, to separately identify the effect of each factor.
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The primary contribution of the paper is the development of a structural

model of the automobile industry with endogenous choice of vehicle fuel effi-

ciency. In addition to making the model realistic, endogenizing fuel efficiency

allows the estimation of the cost of improving fuel efficiency, with which we

can conduct various counterfactual analyses quantifying the effects of changes

in fuel prices or regulations, or even the interaction of both, on the firms, the

consumers, and the environment.

In addition, the paper contributes to the literature on the effects of the

Corporate Average Fuel Economy (CAFE) standards on the automobile in-

dustry. The model estimates a compliance cost of 230 USD per mpg-vehicle,

which is comparable to estimates in previous structural studies3,4.

This paper also extends the empirical results of the literature on the effects

of fuel prices in the automobile markets. The findings here indicate that

fuel costs have significant and substantial negative effects on demand for new

vehicles, which is consistent with the findings from existing works, which are

that consumers care about fuel prices.

The rest of the paper is structured as follows. Section 2 introduces some

background information regarding regulations, fuel prices, fuel-saving tech-

3For example Jacobsen (2013) and Gramlich (2010)
4However, Anderson and Sallee (2011), using a loophole in the standards related to

flexible fuel vehicles, estimated a much lower compliance cost in the range of $9 to $27.
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nologies, and related literature. The structural model is specified in the next

section (3), after which the estimation, identification, and estimation results

are detailed (Section 4). The counterfactual studies are then described and

the results reported (Section 5), after which the final conclusions are presented

(Section 6).

1.2 Background

1.2.1 Regulation

There are two federal government agencies in the U.S. that regulate vehicle

fuel efficiency, namely the National Highway Traffic Safety Agency (NHTSA),

which oversees vehicle fuel consumption, and the Environmental Protection

Agency (EPA), which monitors the emission of greenhouse gases and other

pollutants. This paper will focus on the regulations from the NHTSA5.

The NHTSA regulates vehicle fuel economy using the Corporate Average

Fuel Economy (CAFE) standards, which were enacted by Congress in the

1975 Energy Policy and Conservation Act (EPCA) and amended in the 2007

Energy Independence and Security Act (EISA). The standards dictate a set

of thresholds for the average fuel economy that all the fleets of new vehicles

5The regulations by the EPA are rarely violated, which may be because either the reg-
ulations are too loose or the cost of violation is too high. Lack of variation in compliance
status makes identification difficult, and if the regulations are too loose it will not affect the
firms decisions anyway
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sold in the U.S. must meet or exceed. Failure to comply with the standards

will incur a fine of 55 USD for each mpg below the standard per vehicle6,7.

Before 2011, there were two separate sets of standards for cars and for

trucks. In 2011, each model was assigned its own standard, which was set

based on the vehicle footprint (wheelbase multiplied by track width). There is

also a system of CAFE credit banking that allows manufacturers who exceed

the standards to use the excessive mpg to offset any deficit from other fleets,

or from future deficit. Limited borrowing from future credit is also allowed,

and trading of CAFE credits between manufacturers has also been allowed

since 2011, although the amount that can be traded is limited.

The standards for cars stayed unchanged at 27.5 mpg for two decades, and

only have started to increase since 2011. The standards for trucks started to

move earlier, rising since 2005 after a 10-year freeze at 20.7 mpg. Under the

EISA and the Obama Administration directive in 2009, the two standards are

to be increased even more in the future, and are expected to reach 40.3 to 41.0

mpg in 2021 and 48.7 to 49.7 mpg in 2025.

6The average used in CAFE calculation is the harmonic average, i.e. the inverse of the
production-weighted average of the inverse

7There may also be other unobserved cost of violation such as reputation cost, political
cost
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1.2.2 Fuel Prices

Purchasers of automobiles care about fuel prices. Busse et al. (2013) found

that consumers are forward looking regarding fuel cost, and that a $1 increase

in the price of gasoline is associated with a $250 decrease in the prices of new

cars in the lowest fuel-economy quartile and a $104 increase in the prices of new

cars in the highest quartile. Klier and Linn (2010)) found that the gasoline

price explains nearly half of the loss of market share of U.S. manufacturers

from 2002 to 2007.

Since 2000, fuel prices have been increasingly volatile, in contrast to the

flat and slightly downward trend during the 1990s. They rose quickly from

2000 to 2012, with only a temporary drop in 2008 during the Great Recession

(Figure B.1). However, since 2013, the trend appears to have been reversed

again, reaching a new low point, the lowest in more than a decade.

1.2.3 Fuel Saving Technologies

Knittel (2011) made two observations regarding vehicle fuel efficiency: first,

there is a trade-off between fuel efficiency and performance, and second, if

weight, power, and torque had been kept at the same level, fuel efficiency

could have improved by nearly 60% from 1980 to 2006. Figure B.2 illustrates

these two observations. At a given point in time, the scatter-plots between

7



fuel efficiency and performance attributes such as power, torque, weight, or

size are all downward sloping, suggesting trade-offs between the two variables.

However, from 2006 to 2014, the curves move outward, indicating that, at the

same level of performances, fuel efficiency improved over the period.

The improvement in fuel efficiency is due to various fuel-saving technolog-

ical developments and adoptions over the years. Table A.1, which is taken

from the National Academy of Sciences (2011), lists some of the technolo-

gies, together with the estimated cost. The adoption of these technologies is

a lengthy process dependent on both the demand and supply factors of the

industry. Figure B.3 plots the evolution of the adoption rates of some pop-

ular technologies. It takes a decade or more for most technologies to achieve

majority adoption by the market.

1.2.4 Related Work

This paper contributes to a large body of empirical literature studying the U.S.

automobile industry. The impact of gasoline prices on vehicle prices, market

shares, and fuel efficiency has been studied by Pakes et al. (1993); Bento et al.

(2009); Busse et al. (2013); Li et al. (2009), among others. Klier and Linn

(2016) studied the effect of the CAFE standard on horsepower and torque,

while Jacobsen (2013) emphasizes consumer and producer heterogeneity in

studying the distributional effects of CAFE standards.
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This paper is also particularly aligned with a recent trend within the above

literature of emphasizing the need to consider endogenous product choice in

the automobile industry. Gramlich (2010) assumed a trade-off between fuel

efficiency and vehicle quality when studying the effect of gasoline prices on fuel

economy. Klier and Linn (2012) studied the medium-run effects of the CAFE

standard, making use of engine platformbased instruments to correct for prod-

uct choice endogeneity. Zhou (2016) studied the effect of R&D and gasoline

tax policies on knowledge capital and technology adoption in the automobile

industry, using longer-run characteristics and grandfathered technologies as

instruments for product choice endogeneity.

On the technical side, the two-stage model presented in this paper loosely

follows the work of Eizenberg (2014), using Berry et al. (1995)’s specifications

in the second stage and a Nash equilibrium in the first stage to model price

competition with product choice. The model is, however, different from that

of Eizenberg (2014) in that it focuses on variable cost instead of fixed cost,

the decision is continuous so that point-identification is possible, and the first

stage decision is not directly observed but only indirectly implied from the

observed final fuel efficiency.

This paper also contributes to the studies of the impacts of fuel prices and

CAFE standards on the automobile industry with a model that endogenizes

9



technology adoption. It is important to put the two factors fuel prices and

standards together because, as shown in Figure 1, the timing of the recent

improvement in fuel efficiency coincides with substantial changes in both fac-

tors. My treatment of product choice goes beyond the research of Gramlich

(2010), and, like the work published by Zhou (2016), considers technological

adoption beyond the performancefuel efficiency trade-offs, and also considers

the cost of adoption.

1.3 Model

1.3.1 Overview

Both supply and demand will be modelled here, and compliance cost due

to regulations will also be incorporated. Demand will be modelled using a

random-coefficient discrete choice specification, similar to that developed by

Berry et al. (1995). Supply will be modelled with oligopolistic competition

between multi-product firms setting not only prices but also fuel efficiency

for their vehicles. Firms can improve the fuel efficiency of their vehicles, but

need to pay an extra cost per vehicle to install such technology throughout

the fleet. Regulators set fuel-economy standards each year; firms that violate

these standards pay fines. Some firms barely meet the standards, paying no

fines, but with the need to optimize under a shadow cost of compliance if they

10



are to maintain their standard-complying status.

1.3.2 Demand

Consumer utility Market t is populated by Mt consumers. Each consumer

is to purchase one vehicle from one of the new models available in the market,

or to make no purchase8. The consumer derives utility from the character-

istics of the purchased model. A subset of characteristics is observed by the

econometrician; the rest are not observed. Different consumers may also have

different tastes regarding each vehicle characteristic.

Suppose consumer i in market t purchasing vehicle model j receives a utility

according to the following equation:

uijt = αitpjt + γitdpmjt + xujt
′βuit + ξjt + εijt

pjt denotes the price of model j in market t (in thousands of dollars), dpmjt

represents the fuel cost of the same model, expressed in terms of dollars per 100

miles of travel, xujt is the set of observed vehicle characteristics, ξjt captures the

value from unobserved vehicle characteristics, and εijt is idiosyncratic shock.

αit and γit capture consumer marginal disutility from paying for the vehi-

cle purchase and from paying for fuel consumption. βit captures consumers

8The no-purchase option includes the choice of purchasing second-hand vehicles, which
is not modelled explicitly due to the lack of data.
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valuations of the observed vehicle characteristics. These parameters can vary

across consumers to capture consumer heterogeneity - the fact that consumers

may have different tastes for different vehicle characteristics.

There is substantial variation in income during the sample period, the

income effects from which will be accounted for by allowing the coefficients αit

and γit to depend on the median income in each market yt.

The outside good is assumed to give a zero-mean utility. This is for nor-

malization purposes, as utility is equivalent under translation by a constant.

ui0t = εi0t

Distributional assumption The distribution of the parameters on the

monetary variables (price and dollars per mile), i.e. αit and γit, is assumed

to be a log-normal distribution. There are two reasons for this choice. First,

these parameters are expected to be negative (disutility from losing money),

and hence it is necessary to avoid a situation in which consumers may have

positive utility for losing money. A log-normal distribution guarantees that

the parameters will not change sign. Note that I will allow for a constant to be

multiplied with this distribution; the constant can be negative or positive, so I

do not impose a priori the negativity of these parameters, and only impose the

restriction that the parameters do not change sign. The sign of the estimates

12



can therefore still be viewed as a test of the validity of the model. Second, these

parameters are expected to interact with income, which empirically follows a

log-normal distribution.

Specifically, assume αit = α
yt

exp(σpνp,it) and γit = γ
yt

exp(σdpmνdpm,it),

where α, σp, γ, σdpm are parameters to be estimated, and νp,it and νdpm,it

are unobserved tastes that follow i.i.d standard normal distribution.

The taste parameters for vehicle characteristics are assumed to be nor-

mally distributed. Specifically, the taste for the kth characteristics, βuk,it =

βuk +σkνk,it. β
u
k will capture the taste of the median consumer, whereas σk will

capture how dispersed this taste is among all consumers. Note that this speci-

fication allows for some consumers to like the characteristics and the others to

dislike them. How agreeable the consumers are about certain characteristics

depends on how small the dispersion of taste σk is.

Choice probability and demand Let Vijt = αitpjt+γitdpmjt+x
u
jt
′βuit+ξjt,

so that Uijt = Vijt + εijt. In addition, use t to denote the set of vehicle

models available in market t. Consumer i will choose to purchase model j if

Uijt > Uikt,∀k ∈ t. From the perspective of the econometrician, the probability

that consumer i will purchase model j, conditional on observables, is
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P (Uijt > Uikt, ∀k ∈ t) = P (εikt − εijt < Vijt − Vikt,∀k ∈ t)

Assuming type-1 extreme value for the idiosyncratic shocks {εi0t, ..., εijt},

the above probability will take on a tractable functional form:

sijt =
exp(Vijt)

1 +
∑

k∈t exp(Vikt)

The market share for model j can be calculated by averaging the choice

probability over all consumers:

sjt =

∫
exp(Vijt)

1 +
∑

r∈t exp(Virt)
dFt(i)

The estimation below simulates a population of Nt representative con-

sumers, and the market share can be obtained by taking the average across all

consumers in the simulated population:

sjt =
1

Nt

Nt∑
i=1

exp(Vijt)

1 +
∑

r∈t exp(Virt)

1.3.3 Cost

As with the work of Berry et al. (1995) and the existing literature, a con-

stant marginal cost of producing vehicles is assumed here. It is also assumed

that the marginal cost can be separated into production cost and fuel-saving
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technological cost (or fuel-tech cost for short). Production cost is the cost

of producing one vehicle, and depends on the characteristics of the vehicles.

Fuel-tech cost is the amount that firms can spend on each vehicle to improve

its fuel efficiency.

cjt = c
prod
jt + cfstjt

Production cost The production cost depends on vehicle characteristics.

To make sure that the cost is positive, its functional form is assumed to be as

follows:

ln c
prod
jt = xcjt

′βc + ωjt

xcjt is the set of observed vehicle characteristics that affect production cost,

and ωjt captures the effect of unobserved cost characteristics and technologies.

Fuel-tech cost Fuel consumption rate gpmjt
9 is assumed to be the outcome

of the engineering configuration of the vehicle, i.e. it can be expressed as a

function of the vehicle characteristics xgpmjt , subject to random technological

shocks τjt.

9Fuel consumption rate (measured in gallons per 100 miles) is the inverse of fuel efficiency.
Fuel consumption rate is linearly proportionate to fuel cost, which is what consumers really
care about. Expressing everything in terms of fuel consumption rate is also more tractable,
and hence in the model gpm instead of mpg is used.
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ln ˜gpmjt = xgpmjt
′βgpm + τjt

This is related to the concept of the fuel-efficiency frontier discussed by

Knittel (2011) who observed that trade-offs exist between fuel efficiency and

performance characteristics of the vehicle, e.g. vehicles with higher horsepower

or greater weight tend to consume more fuel.

There exists a spectrum of technologies that can be installed in a vehicle to

improve its fuel efficiency beyond what is determined by the above engineering

configuration. Let ejt denote the decrease in fuel saving of the vehicle resulting

from firms adopting a spectrum of technologies for their vehicles, i.e.

ln gpmjt = ln ˜gpmjt − ejt = xgpmjt
′βgpm + τjt − ejt

ejt would be proportionate to the number of technologies that firms used.

In fact, given a convex cost curve for fuel-saving improvement, it is likely that

there is one-to-one mapping between ejt and the set of technologies that can

achieve such improvement. Therefore, the fuel-tech cost can be defined using

this variable:

cfstjt = cfst(ejt)

16



Flexible specification of this function will be allowed for (i.e. polynomial

with flexible order).

1.3.4 Market Structure and Competition

In each market, a number of firms, each of which manufactures several vehicle

models, compete in two stages. In the first stage, without knowing the real-

ization of the market shocks ξ, ω and τ , they simultaneously choose the fuel

efficiency for all their models (by choosing the ejt described above) to maxi-

mize their expected profits, which they will receive at the end of the second

stage. In the second stage, after learning about the values of these shocks, they

choose prices simultaneously to maximize the profit, subject to the existing

regulations. Each stage is discussed in detail below, beginning with the later

stage.

Second stage

Firms learn about market shocks and make their pricing decisions. In doing so,

they need to consider their compliance status with regard to the fuel-economy

regulations.

Firms are classified into three types according to the status of their com-

pliance with the fuel-economy regulations:

1. Violating firms : those whose average fuel economy is below the standard,
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and that pay the resultant penalty.

2. Unconstrained firms : those whose average fuel economy exceeds the stan-

dards, and that incur no penalty or compliance cost.

3. Constrained firms : those whose average fuel economy is binding at the

standard levels, and that pay no penalty but incur a compliance cost

when adjusting the fuel economy of their fleets to meet the standards.

The fuel-economy standards are set separately for cars and trucks. Let

mpgcarft and mpgtruckft be the harmonic average fuel efficiency for cars and trucks

manufactured by firm f 10 and mpg
car

and mpg
truck

the standards for cars and

trucks respectively. If firms violate the standards they have to pay a fine

of $55 per mpg in violation of the total standards across violating vehicles,

i.e. 55(mpg
car
t −mpgcarft )scarft , with scarft being the share of cars of firm f , and

55(mpg
truck
t −mpgtruckft )struckft , with struckft being the share of trucks. The profit

for a violating firm will be

πft =
∑
j∈ft

(pjt−cjt) sjt−55(mpg
car
t −mpgcarft )scarft −55(mpg

truck
t −mpgtruckft )struckft

(1.1)

A constrained firm, i.e. a firm whose average fuel economy is binding at

the standard level mpgcarft = mpg
car
t and mpgtruckft = mpg

truck
t , pays no fine, but

10The harmonic average is used because it is the way the regulator calculates the average
fuel economy (in miles per gallon, which is the inverse of the fuel consumption).
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in optimizing its profit it needs to operate under the constraint of the regula-

tions (assuming the firms compliance is a prior-determined commitment). In

other words, the firm is solving a maximization problem under the constraints

mpgcarft ≥ mpg
car
t and mpgtruckft ≥ mpg

truck
t . There will be a shadow associated

with each of these constraints, denoted by λcarkt and λtruckkt respectively, and the

firm will behave as if it maximizes the Lagrange of the constrained profit:

(1.2)
πft =

∑
j∈ft

(pjt − cjt) sjt − λcarft (mpg
car
t −mpgcarft )scarft

− λtruckft (mpg
truck
t −mpgtruckft )struckft

Maximizing these profits with respect to prices will provide a system of

equations that relates prices and costs. For example, for constrained firms,

the first-order condition (FOC) will be

∂πft
∂pkt

=
∑
j∈ft

(
pj − cj −

λft

gpm
2
jt

(
gpmjt− gpmjt

)
− λft
gpm2

jt

(
gpmjt− gpmjt

)) ∂sjt
∂pkt

+ skt
= 0

(1.3)

First stage

Let p∗(ξ, ω, τ, e) be the prices chosen by the firms in the second stage and

π∗(ξ, ω, τ, e) = π(p∗(ξ, ω, τ, e), ξ, ω, τ, e) be the corresponding profit. In the

first stage, firms maximize the expected profit, with that profit expectation
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informed by the distribution of ξ, ω and τ , by choosing the optimal number

of fuel-saving technologies:

max
{ejt}j∈ft

E(ξ,ω,τ)

[
π∗ft(ξ, ω, τ, e)

]

The FOC with respect to ekt is as follows:

(1.4)

∂E(ξ,ω,τ)

[
π∗ft(ξ, ω, τ, e)

]
∂ekt

= E(ξ,ω,τ)

[
∂π∗ft(ξ, ω, τ, e)

∂ekt

]

= E(ξ,ω,τ)

[
∂πft(p

∗(ξ, ω, τ, e), ξ, ω, τ, e)

∂ekt

]

The last equation is derived from the envelope theorem and the fact that

p∗(ξ, ω, τ) maximizes πft. The above FOCs can be used to solve for the

marginal cost of fuel-efficiency improvement.

(1.5)

cekt =
dcFSTkt

dekt

= E(ξ,ω,τ)

[∑
j∈ft

(
pjt − cjt −

λft

gpm
2
jt

(
gpmjt − gpmjt

)

− λft
gpm2

jt

(
gpmjt − gpmjt

)) ∂sjt
∂ekt

+ γ
sktgpmkt

gpmkt

]/
E(ξ,ω,τ)[skt]
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1.4 Data and Estimation

1.4.1 Data

The model was estimated using the market data of new light-duty vehicles sold

in the U.S. from 2006 to 2014. Sales data at the nameplate level (e.g. BMW 3-

series, Toyota Camry) were obtained from the Automotive News Market Data

Book. Vehicle characteristics, classification, and manufacturer-suggested retail

prices (which were used as a proxy for retail prices) at different trim levels

(e.g. BMW 328i XDrive 2dr Coupe AWD (3.0L 6cyl 6M), Toyota Camry SE

4dr Sedan (2.5L 4cyl 6A)) were drawn from www.msn.com/en-us/autos. The

annual average motor gasoline regular retail prices from the EIA were used as

a proxy for fuel prices faced by consumers. The number of households from

the U.S. Census Bureau was used as a measure of market size, and household

median income from Fred St Louis was used for consumer income. The CAFE

standards were taken from the National Highway Traffic Safety Agency.

Vehicle models with sales fewer than 1000 were excluded, resulting in a

total of 2,284 model-year observations from 40 manufacturers11. The data on

vehicle characteristics and prices were matched to the sales data using year,

make, and nameplate, and the corresponding average values of all the trim

11There were several mergers and splits between firms during the period. These firms will
be treated as distinct. In fact, due to the static nature of the model, the same firm from
different years will be treated as unrelated in the estimation
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levels of the same nameplate were used for estimation.

Table A.2 shows the summary statistics, grouped into Passenger Car and

Light-duty Truck categories. On average, trucks have lower fuel efficiency,

larger size, and higher horsepower, weight, and torque, and account for ap-

proximately 47% of the sales during the period.

Figure B.4 plots the evolution of the sales-weighted average vehicle char-

acteristics over the period. Weight and size stay relatively flat12, while fuel

efficiency and horsepower trend upward.

1.4.2 Identification

In addition to the usual price endogeneity, there is another source of endo-

geneity that needs to be corrected for. In the first stage, the set of fuel-saving

technologies installed in each vehicle is unknown. The selection of these tech-

nologies depends on the vehicle characteristics, and hence may potentially bias

the estimation of the fuel-efficiency frontier equation.

The first stage of the model closely follows the BLP (1995), as the BLP-

type is a natural set of instruments commonly used in the literature to correct

for price endogeneity. The average characteristics of other models from the

same manufacturer, and those of other models from the same market, are

12In the 1990s the opposite was true, i.e. the weight trend was upward and the fuel-
efficiency trend was flat. The changes suggest that manufacturers have arrived at a new set
of strategic product choices, potentially in response to new fuel prices and a new regulatory
environment
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used as instruments for the demand and cost equations.

To identify the level of fuel-saving-technology adoption, it is assumed that

the fuel-saving-technology cost is convex, so that the marginal cost of fuel-

efficiency improvement is monotonic to the level of fuel-saving technology

adoption, which enables one-to-one mapping between one variable and an-

other. Specifically, if cejt = ce(ejt) =
dcFST (ejt)

dejt
is monotonic, it can also

be written as ejt = e(cejt), and the fuel-efficiency frontier equation becomes

gpmjt = gpm
(
xgpmjt , τjt

)
exp

(
−e
(
cejt
))

.. A flexible function can be specified to

approximate e
(
cejt
)
.

τjt may contain unobserved characteristics that affect fuel efficiency and

hence can be correlated with cejt. Instruments can be used to adjust for such

omitted variable bias, but because cejt enters the fuel-efficiency frontier equation

via a flexible function specification, instruments of higher-order polynomial

power may be needed to correct for the endogeneity from the additional terms

in the flexible function. A more elegant solution is to use a control function.

Suppose we have a set of instrumental variables Ze for cejt and assume that

cejt = zejt
′ιz + χjt and τjt = χjtι

χ + εjt with εjt being uncorrelated with cejt,

the frontier becomes gpmjt = gpm
(
xgpmjt , χjt, εjt

)
exp

(
−e
(
cejt
))

with χjt being

estimable by the regression of Ze on cejt, and εjt being an exogenous error term.

The instruments used are also of the BLP-type, i.e. the average fuel-related
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vehicle characteristics of other models manufactured by the same firm.

To identify the compliance cost, firms need to be classified according to

their compliance status - standard violating, constrained, or unconstrained.

Because of the system of credit trading, averaging, banking, and borrowing,

the status is not obvious from the data on average fuel economy itself. Ja-

cobsen (2013) developed a dynamic model of credit banking and borrowing

to account for such complications. Gramlich (2010), using data from 1971 to

2007, assumed that European manufacturers were always violating, while their

domestic and Asian counterparts were always constrained and unconstrained,

respectively. Using a dynamic model, like Jacobsen (2013), is too computa-

tionally intensive, while the assumptions that Gramlich (2010) used no longer

holdhold13. Instead, I will manually go through the times series of the average

fuel economy for each manufacturer to identify whether: 1. The firm pays any

fine; 2. The average fuel economy of the firm is consistently above or below

the standards; or 3. The average fuel economy fluctuates at about the same

level as the standards.

1.4.3 Estimation

Assume the following functional forms:

13For example, BMW, a European manufacturer, previously chose to violate the stan-
dards and pay the fine, but since 2008 have consistently met and sometimes exceeded the
standards.
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ln gpmjt = xgpmjt
′βgpm − ejt + τjt

ln cprodjt = xcjt
′βc + ωjt

Let ιe be the parameters that specify the flexible functions e(·). Given a

vector of parameters θ = (α, γ, σprice, σdpm, λ, β, β
c, βgpm, ιz, ιχ, ιe), we can

• solve for {ξjt} that equates the model-predicted share with the observed

shares sjt(ξ, p, dpm,X
u; θu) = ŝjt

• solve for {cjt} using the second-stage system of FOCs, from which we

derive ωjt

• solve for {cejt} using the systems of FOCs of the first-stage, from which

we derive χjt = cejt−zejt′ιz and τjt = ln gpmjt−xgpmjt
′βgpm−e(cejt; ιe)−χjtιχ

The following moment conditions are assumed:


E[ξjt | zujt] = 0

E[ωjt | zcjt] = 0

E[τjt | zejt] = 0

There are two complications in estimating the above system of moments.

First, the estimation of the second stage of the model requires the calcula-

tion of an expectation about the distribution of the random market shocks,
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which is unknown. Following Eizenberg (2014), there are two approaches: ei-

ther approximating the expectation of the function by the function value at

the expected value of the shocks, i.e. E(ξ, ω, τ)[f(ξ, ω, τ)] ≈ f(E[ξ, ω, τ ]), or

drawing from the empirical distribution estimated in the first stage. Due to

computational constraints, in this version of the paper, the first approach is

employed.

Second, if joint GMM were to be carried out, all the parameters in the first

stage and most of the parameters in the second stage would enter the GMM

objective in a non-linear manner, preventing the use of concentration out of

linear parameters to simplify the estimation procedure. This would increase

the computational burden substantially. Therefore, for this version of the

paper, a two-step estimation strategy is employed to reduce the computational

complexity, albeit at the cost of lower estimation efficiency:

1. Estimate the first stage using demand and cost moments to derive the

first-stage parameters (α, γ, σprice, σdpm, β
u, σ, βc, λ) – this is similar to

the standard BLP.

2. Using the fitted parameters from the first step, solve the second-stage

FOCs for ce and use it to regress the fuel-efficiency frontier equation with

the control function.
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1.4.4 Results and Discussion

Panels A, B, C, and E from Table A.3 display the first-step estimation results.

Utility The signs of the coefficients on price and cost of fuel consumption

(dpm dollars per 100 miles) are negative, as expected. The average consumer

values power and size and dislikes greater weight. However, the dispersion of

taste for power and weight is relatively large, with the standard deviation of

the taste distribution for both characteristics similar in magnitude to that of

the mean taste, suggesting that a substantial portion of consumers have op-

posite tastes to those of the average consumer. Regarding size, consumers are

generally agreeable on their liking of larger size, with the standard deviation

being small compared with the magnitude of the mean taste.

The model implies an average own-price elasticity of -2. This estimate is

comparable to those of the existing literature: Zhou (2016)’s estimate is -2.0,

Klier and Linn (2012)’s -3.48, and Klier and Linn (2012)’s -1.4. My estimates

imply an average mark-up of 46%.

Production cost Increasing power, weight, and torque increases production

cost. This is to be expected, as increasing power and torque generally requires

higher-quality components and materials. Increasing size decreases cost, but

this effect should be interpreted as conditional on fixing weight and power.
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Production cost is trending downwards, reflecting a general improvement in

manufacturing technologies, among other factors.

Fuel efficient frontier An increase in power, weight, and torque decreases

the fuel efficiency of the vehicles. This is similar to the results of Knittel

(2011), who found a trade-off between fuel economy and vehicle performance.

The time effects are trending up, suggesting an improvement in fuel technology

over time. This is also in line with the outward shift of the fuel-efficiency

frontier over time reported by Knittel (2011).

Compliance cost The estimated compliance cost for constrained manufac-

turers is 230 USD per mpg per vehicle. This is higher than the penalty for

violating the standard (55 USD per mpg), but comparable with estimates from

Jacobsen (2013)), who made estimates in the range of $157$264, and Gramlich

(2010), who made an estimate of $347. Reasons for these high compliance costs

include reputational cost and political cost (due to damaged relationships with

regulators and legislators). However, these estimates are in contrast with the

low compliance cost estimated by Anderson and Sallee (2011), who suggested

a value of $9 to $27.
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Marginal fuel-tech cost In the second stage, a polynomial is used to ap-

proximate the fuel-tech function e
(
cejt
)
. Polynomials of different order have

been tried, from 1 to 7. Figure B.5 plots the shape of such functions14. A

polynomial of order 3 was chosen for the final estimation because going be-

yond order 3 does not provide significant additional explanatory power to the

function.

Panel D from Table A.3 displays the results from the second step. The me-

dian ce across all vehicles is 2.88, which means that, on average, manufacturers

incur a cost of 288 USD to improve the fuel efficiency of their vehicles by 1%

beyond what the vehicle has achieved. To put the numbers into perspective,

for a vehicle with fuel efficiency of 30 mpg equipped with the median amount

of fuel-saving technology, it will cost 944 USD to increase its fuel efficiency to

31 mpg.

Figure B.6 plots the distribution of ce separately for cars and trucks. The

truck distribution is more skewed to the right, suggesting that trucks have

exhausted their fuel-saving options more than cars have. Almost 40% of the

car models have a marginal cost of fuel-efficiency improvement of less than

1,000 USD/mpg, and 76% of less than 2,000 USD/mpg, implying that cars

14Note that the absolute vertical location of the curve is not important because the con-
stant term of the function e(cejt) is not separately identified from the constant term of the
fuel-efficiency frontier equation.
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still have a lot of room to further adopt more fuel-saving technologies at low

cost. The respective numbers for trucks are only 18% and 56%.

Counterfactual Studies This section details the investigation of how fuel

prices and CAFE standards, individually and together, have affected the re-

cent changes in fuel economy of new vehicles sold in the U.S. This will be

addressed by several counterfactual studies. In particular, the following three

counterfactual simulations will be carried out:

1. Gasoline prices over the years are kept at the 2006 level

2. CAFE standards over the years are kept at the 2006 level

3. Both gasoline price and CAFE standards over the years are kept at the

2006 level

When estimating the model, the compliance costs are assumed to be same

across fleets. In counterfactual scenarios, it is impossible to impose such con-

straints, because with any market changes firms, due to differences in cost

and product structure, will response differently, moving the cost margins in

different directions and magnitudes. Therefore, in all the simulations, I allow

the compliance costs to vary across fleets such that firms maintain the original

compliance status, unless it is impossible to do so (e.g. maximum mpg is less
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than the standard) or it is profitable to become unconstrained, not accounting

for the fixed cost of non-compliance (which is not estimated in the model).

The counterfactual equilibrium is calculated using a nested iteration algo-

rithm that sequentially solves for the equilibrium prices, the compliance costs

that satisfy the compliance status, and the equilibrium choices of fuel-saving-

technology adoption.

1. Outer-iteration: pick a vector of FST level {ejt}

(a) Middle-iteration: given {ejt}, pick a vector of compliance cost {λjt}

i. Inner-iteration: given {ejt, λjt} pick a vector of prices {pjt}

A. Check if {pjt} solve the first-stage FOC, up a tolerance of

1e-8

B. If it is, go to the middle-iteration

C. Else pick a new price vector and continue with the inner

iteration

ii. Check if the compliance constraints are all satisfied

iii. Pick a new vector of compliance cost by tightening all the con-

straints that are satisfied and loosening all the constraints that

are violated

iv. If the new vector are close enough to the old vector (up to a
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tolerance of 1e-6), go to the outer-iteration, else continue with

the middle-iteration

(b) Check if the second-stage FOCs are satisfied, up to a tolerance of

1e-4

(c) If it is, stop, else pick a new vector of {ejt}, update the fuel-efficiency

and FST costs accordingly and continue the outer-iteration

The counterfactual average fuel economy (in miles per gallon) for passenger

cars and for light-duty trucks is plotted in Figure B.7, B.8, B.9 (for cars), B.10,

B.11 and B.12 (for trucks). Two types of averages are considered: raw averages

and sales-weighted averages. Raw averages are considered to separate the effect

of demand from the firms choice of fuel efficiency. Thus, the raw average will

reflect more of the firms adoption of fuel-tech, while the sales-weighted average

will capture both the adoption by firms and the demand from consumers for

fuel-efficient vehicles.

Cars Figure B.7 demonstrates the effects of changing fuel prices from the

corresponding level to the 2006 level on the average fuel economy of cars.

The raw average of fuel economy does not change much under counterfactual

fuel prices, suggesting that fuel-price changes do not significantly affect the

firms choice of fuel efficiency for passengers. The sales-weighted average fuel

32



economy decreases slightly under 2006 fuel prices (which were mostly lower

than the fuel prices in other years), indicating that consumers switch to less

fuel-efficient cars when fuel cost decreases.

Figure B.8 demonstrates the effect of changing CAFE standards to 2006

levels on the overall car fuel efficiency. The raw average decreases slightly,

especially after 2011 (the year the car standards started to rise), indicating

that standards influenced firms adoption of fuel-tech for cars. The change in

the sales-weighted fuel economy is more pronounced, even when fuel cost does

not change, suggesting that consumers switch fuel-efficiency class when firms

adjust their fleets to meet standards.

Figure B.9 shows the effects of changing both fuel prices and CAFE stan-

dards to the 2006 levels. The effects on both the raw average and sales-

weighted average fuel economy seem to reflect the combined effects of the

individual changes.

Trucks Figure B.10 shows the effect of fuel prices on truck fuel economy.

Changing prices does not seem to change the average fuel efficiency firms

set for their fleet, or the average fuel efficiency consumers choose for their

vehicles. However, when the standards change, as shown in Figure B.11, the

fuel efficiency of trucks undergoes a big change, in both the raw average and
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the sales-weighted averages. Thus, for trucks, fuel prices have minimal impact

while CAFE standards have a big impact both on how firms adopt fuel-tech

for their vehicles and on how consumers choose fuel-efficient vehicles. This is

related to the results discussed above regarding the marginal fuel technological

cost of trucks. The options to improve the fuel-efficiency for trucks seem to

have been exhausted, and so trucks have a higher marginal cost of improving

their fuel efficiency further. A small decrease in standards would relieve firms

of a large amount of fuel-tech costs that they incur to make their trucks comply

with regulations, and this cost-saving will be passed down to consumers and

induce even more change in the sales-weighted fuel economy.

1.5 Conclusion

In this paper, a structural model of oligopolistic competition in the U.S. au-

tomobile industry that allows for the adoption of fuel-saving technologies has

been developed and fitted to market data. The counterfactual results show

that changes in regulations mostly explain the automakers adoption of fuel-

saving technologies, but that consumers adoption of those technologies de-

pends substantially on fuel prices. There is also a notable difference between

light trucks and passenger cars, namely that the fuel efficiency of light trucks

is more influenced by regulations than by fuel prices, relative to passenger

34



cars. These results highlight the challenges to the industry to meet the fuel-

efficiency target in the near future, when the fuel prices are forecasted to drop

substantially. It is also suggested that regulators may need to focus more on

passenger cars, for which there is still much room for improvement. This is

because the cost of improving the marginal fuel efficiency of a large proportion

of passenger-car models is still relatively low.
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Chapter 2

Price Salience and Imperfect
Information: Evidence from
Experiments at Fueling Stations
in Brazil1

2.1 Introduction

To reduce dependence on oil and address growing environmental concerns over

emission from fossil fuels, many countries are exploring alternative ways to

power their economies. Biofuels such as corn ethanol, sugar-cane ethanol and

biodiesel are being introduced and actively promoted to consumers as substi-

tutes to conventional fuels such as gasoline or diesel. Almost 5% of energy

consumption in the US transportation sector in 2015 was powered by biofuel

(US Energy Information Administration, 2017), while the European Com-

mission targets to achieve at least 3.6% in the use of advanced biofuels for

1The data used in this chapter were collected and generously provided to me by my
advisor, Professor Alberto Salvo. The chapter is co-authored with Professor Alberto Salvo.
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transportation by 2030 (European Commission, 2016).

Our current understanding of how consumers perceive and value these new

energy choices is still very limited. Recent empirical evidence suggests that

consumers may not see biofuels as perfect substitutes to petroleum-based fu-

els. Anderson (2012) found that a substantial fraction of US households were

willing to pay a premium for ethanol. In the Brazilian context, Salvo and Huse

(2013) reported that about 20% of consumers still chose gasoline over ethanol,

even when it was priced 20% above ethanol in terms of dollars per mile driven.

Consumers seem to leave a lot of money on the table when it comes to fuel

choice for their vehicles.

This imperfect substitution may be due to consumers valuing non-price

characteristics (with price based on the amount of dollars per mile driven).

Concerns about health, technologies, the environment and various other eco-

nomic and social issues can be factored into consumer valuation of the fuels.

As shown in Salvo and Huse (2013), motorists in Brazil perceive ethanol and

gasoline to have differing impacts on the environment, the local economy and

on the performance of the vehicle engine, which translates significantly to the

variation in choices that they make.

Imperfect substitution can also be due to imperfect price information. The

majority of consumers surveyed in Salvo and Huse (2013) chose the fuel that
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they had purchased in the last two stops, and the act of “choosing out of

habit” significantly increases the likelihood of purchasing the more expen-

sive fuel. This observed persistence in consumer fuel purchases could well be

explained by the heterogeneity in consumer preference, which is consistent

with the aforementioned theory of consumers valuing non-price characteris-

tics. However, it can also be due to friction in the way consumers obtain and

process information necessary to make optimal decisions about fuel choices.

Sub-optimal purchasing decisions have been studied extensively, with em-

pirical evidence and policy implications in various settings. In the context of

energy and fuel choice, Hastings and Shapiro (2013), Anderson (2012) and

Rivers and Schaufele (2015) provided evidence that consumers respond to

changes in carbon taxes, gasoline taxes and prices of fuels of different grades

in ways that are inconsistent with optimal full-information decision-making.

A common theme amongst these papers and other similar studies is the find-

ing that information salience, provided in the forms of information on taxes

or prices, even when publicly available and easily accessible, may still affect

consumer choices in a meaningful way.

This paper attempts to bridge the gap between the literature on alternative

fuel choices and the literature of information friction. A discrete choice model

will be developed, which will capture the effect of imperfect information while
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controlling for consumer heterogeneous preference. The model will be used to

address the following questions. First, do consumer choices reflect imperfect

information about fuel prices? Second, what is the effect of increased price

salience on reducing such imperfect information, if any? And finally, to what

extent does price salience and imperfect information explain the substitution

pattern between different fuel types?

These questions will be addressed empirically by analyzing data from a

series of experiments conducted in fueling stations across four cities in Brazil.

The experiments include two treatments that increase price salience. The

treatments take the form of verbal statements and and printed flyers that

are presented to consumers before their placement of orders. The treatments

are meant to provide the consumers with accurate and easy to understand

information on prices, minimizing the potential suboptimal fuel choices due to

misperception about the relative cost-effectiveness of the fuels. Differences in

choices between the control group and the treated group will reveal the effect

of the price salience, which help us identify the existence and the magnitude

of the price noise that the consumers possess.

The primary contribution of the paper is providing the empirical results

that are consistent with the purchasing behaviors of consumers who possess

imperfect information about fuel prices. This extends the existing body of
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empirical evidences on imperfect information and the effects of information

salience. More importantly, these results contribute to the understanding

of consumer behaviors in the retail energy market. Particularly, the paper

provides a partial explanation for the puzzle why Brazillian consumers often

choose the more expensive fuel even when the cheaper alternative is equally

accessible. This has important policy implications. If the low adoption of

alternative fuel stems from consumer valuing non-price characteristics of the

fuels, there is little that the policy-makers can do to promote the alternative

fuel, especially in the short-term. However, if the low adoption is because of

the low awareness of the relative cost-effectiveness of the fuel, policy-makers

can implement policies that raise price salience to attract consumers towards

the cheaper fuels.

The secondary contribution of the paper is the development of the econo-

metric model that captures the effects of price noise and of price salience

on consumer choices. The model eventually reduces to a heteroskedastic pro-

bit choice model, which enables straightforward estimation and interpretation.

The application of the model goes beyond analyzing fuel choices and the model

can be employed in other settings where the researchers need to estimate the

effects on price noise with data on revealed preference.
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2.2 Background and related works

2.2.1 Background

In Brazil, sugar-cane ethanol is widely available as an alternative to gasoline.

This is due to government policies established in the 1970s in response to the

oil crisis, which mandated the supply of sugarcane ethanol at fueling stations

across the country, whilst actively promoting the new fuel through various

agencies and programs. It was also a requirement for gasoline to be blended

with anhydrous ethanol, with an increment in the blending ratio over time,

from 10% in 1976 to 27% in 2015.

Since 2003, car-makers have been marketing flexible-fuel vehicles cars that

could operate on any combination of gasoline and ethanol. This new fleet of

vehicles proved to be a success and rapidly replaced single-fuel vehicles. By

2012, 95% of new cars and 57% of new light commercial vehicles registered in

Brazil were flexible-fuel vehicles (Brazilian Automotive Industry Association,

2013).

Due to the unique situation in Brazil, ethanol, along with gasoline, has

become accessible to a large population of motorists in the country. This

fact constitutes an important contribution of this paper. In other countries,

even if alternative fuels are introduced, it is often not accessible to the general

population, because of constraints in infrastructure (dual-fuel stations) and
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availability of suitable vehicles. Any study on fuel choice in such a setting

needs to take into consideration consumer selection within the market, as

well as the external validity of the demand estimation. Brazil provides a

unique context, as the alternative fuel is as accessible as the conventional fuel,

hence alleviating concerns about demand being influenced by infrastructure or

technologies instead of prices in the study of fuel choices.

2.2.2 Fuel prices in Brazil

In Brazil, gasoline prices are highly regulated by the government. There were

periods of time when variations in international crude oil prices did not trans-

late into changes in gasoline prices at local fuel stations2. In contrast, the sup-

ply chain for the ethanol industry was deregulated in the 1990s and ethanol

prices were greatly subjected to market forces. Particularly, ethanol prices

in Brazil were largely influenced by supply and demand in the sugar market,

as sugarcane was the main ingredient for ethanol production in the country.

In fact, between 2000 and 2010, ethanol prices at the pump have peaked each

time world sugar prices rose beyond a certain threshold (Salvo and Huse, 2013).

This provides a source of variation in the relative prices between gasoline and

ethanol, which will be exploited in this paper to identify the demand between

2Salvo and Huse (2013) mentioned that one such occasion was in mid-2008, when there
was a peak in world oil prices, but no similar peaks were observed in gasoline prices at local
stations during that period of time.
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for the two fuels.

Pure gasoline is 1.41 times higher in energy content than the same volume

of pure ethanol. The blend of gasoline used in Brazil during the period of

study contained 18% to 25% of ethanol; which resulted in an approximate

30% difference in energy content between the blended gasoline and ethanol.

This means that for ethanol prices to be equivalent to gasoline in terms of

dollars per mile traveled, it needs to be priced at 0.7 the price of gasoline for

the same volume. In fact, the ratio of 0.7 was widely reported in the media

across the country, thus informed motorists would potentially be aware of it.

Figure D.1 plots the price path for gasoline and ethanol during the period

of study, with gasoline prices scaled down by a factor of 0.7 to be comparable

with ethanol prices. The figure shows that there was substantial variation in

the relative prices between the two fuels over time and across cities, especially

in Sao Paulo and Curitiba. In Belo Horizonte and Recife, ethanol was the

more expensive fuel for most of the given period, although the price differences

experienced small changes due to fluctuation in ethanol prices. In Curitiba and

Sao Paulo, ethanol prices experienced a hike before March 2011, then decreased

quickly to a point below the corresponding normalized gasoline price, before

undergoing a smaller increase in June and stabilizing afterwards. This led to a

series of changes to the prices of ethanol, from ethanol being the cheaper fuel
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in Curitiba and Sao Paulo, to being fairly priced, and eventually becoming the

more expensive fuel relative to gasoline in the same cities. The experiments,

the timing of which is indicated by the vertical line in the figure, captured this

fluctuation in relative prices well.

2.2.3 Fuel characteristics and differences between ethanol
and gasoline

Engineering studies have identified several important differences between ethanol

and gasoline as a fuel for spark-ignition engines (Hsieh et al., 2002; Yüksel and

Yüksel, 2004; Masum et al., 2013). In this section, we will attempt to summa-

rize relevant information from these studies (mostly from section 3 of Masum

et al. (2013)).

The most relevant and important difference lies in heating value. The

heating value of ethanol is about 1/3 times lower than that of gasoline. Hence,

for the same energy output (to enable the same distance of travel), more liters

of ethanol would be required. This has two implications. Firstly, to be fairly

priced (in terms of km per dollar), the same amount of ethanol has to be priced

at a lower price than gasoline. Secondly, given one common tank used for both

fuel in most bi-fuel vehicles, one can travel over longer distances on gasoline

than on ethanol before having to visit fueling stations.

Ethanol has a higher octane number than gasoline, enabling it to with-
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stand higher compression before detonating. This leads to better anti-knock

characteristics and reduces engine damage resulting from premature fuel igni-

tion. Ethanol, being miscible with water, can cause corrosion on mechanical

components, particularly those made of copper, brass or aluminum. It can also

corrode certain types of rubber and cause blockages in the fuel pipe, unless

fluorocarbon rubber or appropriate materials are used in replacement. Corro-

sion inhibitors can be incorporated into the fuel to alleviate these problems.

Modern bi-fuel vehicles are also designed with parts and materials that are

resistant to corrosion. However, the inadequate management of the issues re-

lating to corrosion in early days of bi-fuel vehicles has left certain negative

impressions among older consumers.

Emission-wise, ethanol produces significantly less CO and HC, two impor-

tant green-house gases (GHG), whilst moderately increasing the emission of

CO2, according to the study by Hsieh et al. (2002). Accounting for CO2 ab-

sorbed by the crop used to produce ethanol, which can offset the life-cycle

GHG emission of bio-based ethanol, Wang et al. (2012) estimated that sugar-

cane ethanol can reduce the life-cycle GHG by 40-62% relative to gasoline. The

emission of other pollutants (NOx, benzene, formaldehyde, acetaldehyde, ace-

tone, etc.) has also been studied, with varying advantages and disadvantages

of ethanol relative to gasoline.
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Beyond chemical and physical characteristics, different fuels also possess

varying social attributes. Sugar and ethanol are important products in many

states in Brazil. Consumers in those states can exhibit home bias, favoring

local products over the alternatives, as they care more about the local society

and economy.

We will conclude this subsection by emphasizing what we mean by control-

ling for non-price characteristics of the fuel. As we only have 3 fuel alternatives

(ethanol, gasoline and mid-grade gasoline), instead of viewing a fuel as a bun-

dle of characteristics like what is normally done in hedonic regression, it is

more efficient and transparent to use dummy variables to represent each fuel.

The dummy will capture the effect of all the fuel-specific characteristics.

What is more important to be controlled for is the fact the different con-

sumers may value the same characteristics differently. Older consumers may

have more resistance adapting to new technology, and people with needs for

vehicle performance or high usage may prefer fuel that they perceive to be su-

perior for engine operation and maintenance, while those with environmental

or health concerns opt for fuel with lower emission. To account for this het-

erogeneity, we will use observed consumer characteristics, including important

demographics such as age, gender, education, as well as surveyed information

about their usage and vehicle prices, together with vehicle characteristics, in
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conjunction with interactions with fuel types. Unobserved heterogeneity will

also be partly controlled for by the use of station fixed effects.

2.2.4 Related works on alternative fuels

Demand for fuel has been extensively studied3, but the focus has mainly been

on fossil fuels. With the introduction of alternative fuels in many countries

around the world, literature on alternative fuels is emerging, but is still limited

in comparison to that of gasoline and diesel.

Anderson (2012) examined the demand for corn-based ethanol using data

from Minnesota, US. The data is aggregated at a station-month level and

consumer willingness to pay for ethanol was identified through OLS as well as

2SLS regression. The paper found that many consumers were willing to pay a

premium for alternative fuel. As a substitute for gasoline (E10), demand for

ethanol was estimated to have an own-price elasticity of negative 3.2-3.8 and

a gasoline-price elasticity of 2.3-3.2.

Salvo and Huse (2013) investigated consumer choices between sugarcane-

based ethanol and gasoline in 6 cities in Brazil. The paper found that a large

proportion of consumers chose to purchase the more expensive fuel, and there

was significant consumer heterogeneity in the choice between the two fuels.

3Some well-known surveys on this literature are: Drollas (1984), Dahl and Sterner (1991),
Goodwin (1992) Espey (1998), Graham and Glaister (2002)
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Salvo (2015) used the same data set as the one used in this paper and

attempted to answer similar research questions, albeit from different perspec-

tive. The paper provided reduced-formed evidences to support the fact that

increasing price salience can influence consumer choices of fuels at the pump.

It was reported in the paper that displaying information about relative prices

of the fuels prior to the purchases can increase the probability of choosing

ethanol by as much as 6 percentage points when ethanol is “very favorably

priced” in comparison to gasoline. The paper provided two structural models

explaining the effect of increased price salience on consumer choices, namely

price salience shifting consumers’ sensitivity to prices and price salience shift-

ing the consumers’ consideration set. The paper also highlighted the fact that,

although the effect of the price salience treatment is statistically significant,

its magnitude is small compared to the effects due to consumer heterogeneity

such as education.

This paper builds upon Salvo (2015). Our motivation is similar: to explain

why consumers choose the more expensive fuel and to examine how price

salience affects consumer choices. However, we recognize the following short-

comings of the models developed in Salvo (2015). With regards to the first

model, price sensitivity is associated with preference and budget constraints,

and it is not clear how price salience can affect such primitives as preference
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and budget. From a modelling perspective, allowing a treatment to alter pref-

erence without understanding the mechanisms in-between is troublesome for

the validity of the model because it entails the possibility of endogenous pref-

erences. Thus, the model with price salience shifting price sensitivity should

best be considered only as a reduced-form analysis. With regards to the sec-

ond model, it is not clear how the consideration set is formed, and why some

consumers choose to exclude certain fuels from their consideration set, espe-

cially when the number of choices to be considered is small (three or four

fuel types). Moreover, the number of possible consideration sets increases ex-

ponentially with the number of choices, and the model had to make certain

assumptions to reduce the size of the state space, raising the concern over

identification.

The present paper explores an alternative explanation for the phenomenons.

We posit that some consumers choose the more expensive fuels because they

do not possess accurate prices information, and price salience can affect con-

sumer choices by improving the accuracy of the price information that the

consumers possess. This explanation, if proven to be significant, provides an

explicit mechanism for price salience shifting price sensitivity. There is a large

literature on both the theory and the empirical evidence of imperfect infor-

mation that can provide explanation and insights about the inaccurate prices
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that consumers possess. The size of set of parameters necessary to model con-

sumer price information is manageable, which facilitates reliable identification

strategy.

2.2.5 Related works on information friction and infor-
mation salience

There is a large body of theoretical as well as empirical research on informa-

tion friction. These works have identified various reasons why consumers may

not have the most accurate information available, or may not react to it opti-

mally. For examples, there can be external and internal costs associated with

information acquisition (i.e. search cost) because of which consumers may find

it not worthwhile to continuously acquire updated information about prices.

The optimization problem may be overly complicated or may require com-

plex input, which may dissuade consumers from solving it fully and optimally.

The scarcity of various cognitive resources such as memory and attention can

further impair consumer’s ability to obtain and process all the information

available to them. The issue has been studied in several contexts, such as

in the context of health care (Handel, 2013) and cellphone plans (Miravete,

2003). In this paper, the issue will be investigated in another context, namely

the fuel retail industry.

One related literature is the literature on information salience. Chetty et al.

51



(2009) conducted an experiment in which tax-inclusive price tags were posted

on various items in grocery stores, and found that the increase in the salience

of sales tax reduced consumer demand by 8%. Similarly, Busse et al. (2006)

found that demand is more responsive to shipping charges than auction prices

in an experiment conducted using an online auction platform; Brown et al.

(2010) found that consumers react differently to rebates than to car prices

in US automobile market; DellaVigna and Pollet (2009) found that investor’s

response to earnings announcements on Friday was less immediate and more

drift than announcements on other weekdays. These findings share a common

theme: two pieces of information, although being equivalent in content, can

lead to significantly different responses from consumers, depending on how

salient they are to the consumers.

The treatments that we conducted in the experiment involved communicat-

ing verbal and printed information to consumers. Such communication can be

viewed as a form of “advertisement”. Effects of advertising on consumer choice

have been studied extensively. The long-standing issue in this literature is the

distinction between the informative, persuasive and complementary natures of

advertisement. Using scanner data of 10 brands of toilet tissues, Tellis (1988)

found that advertising is less important to brand choice than other marketing

variables such as price, features and displays. This is consistent with studies

52



on brand choice of aluminum foil and dry dog food by Kanetkar et al. (1992),

which also found that advertising increases price sensitivity. Although for yo-

gurt, Pedrick and Zufryden (1991) reported stronger effect of advertising expo-

sure on brand choice. Ackerberg (2001) suggested that one way to untangle the

informative effect from the persuasive (or prestige) effect of an advertisement

of experience-based good is to look at its interaction with experience, namely

the first effect only influences inexperienced consumers whereas the later ef-

fect influences everyone. Utilizing scanner data, Ackerberg (2003) developed

a structural model of brand choice for yogurt and found advertisement hav-

ing significant informative effect but insignificant prestige effect. Anand and

Shachar (2011) studied network television industry and structurally estimated

a significant informative effects of advertising on consumer choice, although

the effect can be negative. Surveying various studies (Bagwell, 2007) concluded

that most empirical evidences point towards information as the main factor

driving advertising effects. Howerver, existing studies have only focused on a

small set of products, most of which are frequently purchased consumer goods,

and we should be cautious when generalizing these results to other situations.

To the best of my knowledge, other than the model examined in Salvo (2015),

there has not been a study about the effect of advertising on choice of fuels.

53



2.3 Experimental design and treatment effect

The experiments were conducted at 52 different fuelling stations across four

cities in Brazil - Sao Paolo, Curitiba, Belo Horizonte and Recife. There were

in total 193 visits to the stations, with majority of the stations visited more

than three times (up to a maximum of 5 times), resulting in a total of 10,422

subjects surveyed.

Each station visit was conducted within a day. The timings of the visits

were varied so that we would have data at different times of the day on different

days of the week. By design, the first 18 consumers were assigned to the control

group, the next 18 to one treatment group, and the subsequent 18 to the other

treatment group.

Control group After the consumer had placed his order with the station’s

attendant and the vehicle was in the process of being serviced, the enumerator

would survey the consumer to match the observed fuel choice with demographic

characteristics.

Two treatments by station visit A treated subject would hear one of the

following statements, either from the attendant or from the enumerator, prior

to placing his order. The statement would be consistent with actual price

levels for regular-grade gasoline and ethanol posted at the station’s pump on
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the day of the visit:

• Hoje a gasolina está mais vantajosa, veja aqui, loosely translated as

“Today gasoline is more advantageous / the better deal, see here,”

• Hoje o álcool está mais vantajoso, veja aqui, translated as “Today ethanol

is more advantageous / the better deal, see here,”

• Hoje a gasolina e o álcool estão com rendimento parecido, veja aqui,

translated as “Today gasoline and ethanol oer similar yields / similar

deals, see here.”

As the subject hears the verbal statement regarding relative price condi-

tions at the station on that day, he or she would be handed a flyer similar to

that shown in Figure D.2, for the price-ratio relative to 70% treatment, or Fig-

ure D.3, for the km per R$50 treatment. The illustrated flyer corresponds to a

station visited in Sao Paulo on June 13, 2011 in which (pe, pg) = (1.649; 2.499).

To be clear, some treated consumers were handed a price-ratio flyer and oth-

ers were treated with a km-per-R$50 flyer, and in either case, the flyer was

consistent with the verbal statement that introduced it.

The price-ratio flyer (Figure D.2) had a thumbs up alongside Mais van-

tagem status to gasoline when pe/pg ≥ 0.705, and a thumbs up for ethanol

when pe/pg ≤ 0.695, and stated that both fuels offered similar yields (Rendi-
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mento parecido) otherwise. The flyer also reminded subjects of the media-

reported parity threshold, listing specialist advice that when the price ratio

(between ethanol and gasoline) is: (i) lower than 70%, ethanol is more advan-

tageous; and when (ii) higher than 70%, gasoline is more advantageous.

The km-per-R$50 flyer (Figure D.3) had a thumbs up for gasoline when the

distance to be travelled on R$50 of regular gasoline purchased at the station

was expected to exceed, by some margin, the distance to be travelled on R$50

of regular ethanol, and a thumbs-up for ethanol in the opposite situation, and

was neutral when gasoline and ethanol offered similar yields. A table in the

flyer specially provided comparison for the estimated distances travelled using

ethanol and gasoline across three of the most popular vehicle engine sizes,

namely the 1.0, 1.4, and 1.8 liter engines (absolute fuel economy generally

declines with engine size).

Table C.1 reports the summary statistics of variables that vary at the

consumer level and the difference in means test to check for covariate balance

across the control and treatment groups. Across station visits, the average

number of subjects who declined to participate is 3.3 for the control group,

2.7 for those subjected to the price-ratio flyer treatment and 2.5 for those

subjected to the km-per-R$50 flyer treatment. Overall, the sample appears to

have the statistical properties of a randomized experiment (see Salvo (2015)
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for more details).

Salvo (2015) also reported that when ethanol was very favorably priced

(pe/pg < 0.7/1.1), the price-ratio flyer treatment increased the proportion of

ethanol purchases by 6 percentage points, and the km-per-R$50 increased it

by 5 percentage points.

2.4 Model of consumers with noisy price in-

formation

In this section, a discrete-choice random utility model with noisy information

on fuel prices is introduced and then employed to investigate whether imperfect

price information can explain the imperfect substitutability between gasoline

and ethanol. The model will also be used to quantify the effects of the two

above-mentioned price salience treatments.

Suppose that instead of observing prices with perfect accuracy, consumers’

perceptions of fuel prices were subject to a random noise and they made pur-

chasing decisions based on these perceived prices. Denote pjt to be the actual

prices of fuel j in station t in terms of R$ per km of travel, p̃ijt the per-

ceived price, and zijt the price noise. Assume that the price noise enters

multiplicatively:p̃ijt = pjt exp(zijt). The utility from purchasing fuel j at sta-

tion t for consumer i is assumed to take the following form:
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Uijt = αi ln p̃ijt + βjXit + ξjt + εijt

Xit denotes the consumer characteristics, ξjt captures station-specific fac-

tors and εijt captures idiosyncratic utility shocks. The term ξjt can be in-

terpreted as product characteristics that are specific to each station, such

as brands or the availability of the types of fuels. It can also capture the

demographics of the neighborhood, and hence absorb certain consumer char-

acteristics that may have been in X. If firms priced strategically according to

locations, ξjt will also absorb the effects of such supply factors. αi captures

price sensitivity. βj, which varies with fuel, captures consumer heterogeneous

preference for fuels the fact that consumers with characteristics Xit can value

different fuels differently.

The logarithm form is used for prices because we found that consumers

were more responsive to price ratios than price differences. In fact, if both

variables are included in the same equation, the effects of price ratios will

be larger and statistically significant, whereas the effects of price differences

would be smaller and statistically insignificant4.

Rewrite the utility in terms of the actual prices and the price noise, as

4As we will discuss later, the empirical actually identifies relative utility instead of utility
levels, which means that for estimation we will difference the utility with respect to a refer-
ence fuel. Differencing two logarithms is equal to a logarithm of ratios; so using logarithm
is a convenient way of making use of price-ratio variation.
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shown below:

Uijt = αi ln pjt + βjXit + ξjt + αizijt + εijt︸ ︷︷ ︸
ε̃ijt

Denote ε̃ijt = αizit + εijt, the combination of the stochastic error term εijt

and the price noise zijt. The utility can now be viewed as a function of the

actual price pjt, but with a new stochastic term that incorporates the price

noise. One way to think of the effect of price noise on fuel choice is that it

introduces noise to the latent utility, which translates into more noise towards

choices.

Consequently, if the price salience treatments are at all effective in inform-

ing consumers about the accurate prices of the fuels, they should remove or

reduce the effect of these noises in the stochastic term of the utility. Thus,

one way to identify the effectiveness of the salience treatments is to look at

the variance of ε̃ijt and see how it changes between the control group and the

treated groups. Furthermore, given that the best the treatments can do is to

remove all the price noise, looking at the effects of the treatment can reveal

the lower bound of the amount of noise the consumers face5.

To facilitate the following exposition, let us simplify and assume only two

5 This is of course dependent on the condition that there is no other unintended effect of
raising salience beyond its informational intent. One could worry about Hawthorne’s effect -
the fact that consumers change their behaviour due to being observed, or due to unfamiliar
interaction during their purchase. But we did have a portion of the experiments conducted
by the station attendant, who was likely to be familiar with the consumers and a usual part
of the experience at the gas stations; while the rest of the experiments were conducted by
trained numerators.
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choices, i.e. j ∈ 0, 1. Also, we will drop the station index t for brevity.

Ui0 = αi ln p0 + β0Xi + ξ0 + ε̃i0

Ui1 = αi ln p1 + β1Xi + ξ1 + ε̃i1

Consumer i will choose option j = 1 when

Ui1 > Ui0 ⇔ αi ln p1 + β1Xi + ξ1 + ε̃i1 > αi ln p0 + β0Xi + ξ0 + ε̃i0

⇔ ε̃i0 − ε̃i1 < αi(ln p1 − ln p0) + (β1 − β0)Xi + ξ1 − ξ0

Increasing β0 and β1 by the same amount will not affect the above con-

dition, which also applies for ξ0 and ξ1. Thus, we cannot identify both β0

and β1, and only the difference between them can be identified. Again, this

applies similarly for ξ0 and ξ1. This is a common feature of discrete choice, in

which the utility cannot be identified in all levels, but only in the difference

compared to a reference alternative. Identifying the difference between β0 and

β1 is equivalent to setting β0 = 0 and identifying β1. Likewise, we need to set

ξ0 = 0 and identify ξ1.

Based on the above argument, it can be argued that identifying the dis-

tribution of both ε̃i0 and ε̃i1 is not feasible. Instead, we will identify the

distribution of the differenced error term ε̃i = ε̃i0 − ε̃i1. Note that this new
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error term contains the noise about the price ratios: ε̃i = αi(zi0−zi1)+εi0−εi1,

and thus the logic about the effect of price salience on the variance of the error

term still applies here. However, the price noise here is no longer the noise

about the individual fuel price itself, but should be viewed as the noise of the

price ratio between a pair of fuels.

The probability of consumer i choosing fuel j = 1 is6

Prob(Ui1 > Ui0) = Prob(ε̃i < αi(ln p1 − ln p0) + β1Xi + ξ1)

= Fε̃i(αi(ln p1 − ln p0) + β1Xi + ξ1)

Fε̃i denotes the cumulative density function of ε̃i.

Price salience will affect this choice probability by affecting the distribution

Fε̃i . Based on the assumption that price salience reduces price noise, we can

expect less noise under treated groups, i.e. smaller variance of zi1 − zi0, and

hence smaller variance of ε̃i and less dispersed distribution Fε̃i , which translates

into a more responsive choice probability.

To be precise, suppose the variance of the price noise is dependent on

whether the consumer is subjected to the salience treatment. If the consumer

is in the control group, the variance is V ar(zi0−zi1|control) = σ2
C , and if he or

she is in the treated group, the variance V ar(zi0− zi1|treated) = σ2
T . Variance

6This is a probability under the perspective of the econometrician, as the ecnometrician
does not know ε̃i and need to view it as a random error
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of the combined random error is

V ar(ε̃i|control) = V ar(αi(zi0 − zi1) + ε̃i0 − ε̃i1|control)

= α2
iσ

2
C + V ar(ε̃i0 − ε̃i1|control)

+ 2αiCov(zi0 − zi1, ε̃i0 − ε̃i1|control)

V ar(ε̃i|treated) = α2
iσ

2
T + V ar(ε̃i0 − ε̃i1|treated)

+ 2αiCov(zi0 − zi1, ε̃i0 − ε̃i1|treated)

With treatment randomization, V ar(ε̃i0−ε̃i1|control) = V ar(ε̃i0−ε̃i1|treated).

Given the inclusion of a rich set of controls, consumer heterogeneity that may

be correlated with the degree of price noise that the consumer faced should

have been removed from the unobserved error ε̃, and hence we will assume that

Cov(zi0 − zi1, ε̃i0 − ε̃i1|treated) = 0 and Cov(zi0 − zi1, ε̃i0 − ε̃i1|control) = 0.

V ar(ε̃i|control)− V ar(ε̃i|treated) = α2
i (σ

2
C − σ2

T )

The difference in the variances of the combined error terms between groups

is proportional to the reduction in the variance of the noise due to the applied

treatment.

Note that we also need to normalize the scale of the utility by setting one of

the variances σ2
C or σ2

T to a fixed number. The reason is, looking at the choice
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probability Prob(ε̃i < αi(ln p1 − ln p0) + β1Xi + ξ1) = Fε̃i(αi(ln p1 − ln p0) +

β1Xi + ξ1), we can observe that scaling ε̃i, αi, β1, ξ1 by the same constant will

not affect the choice probability, and hence the scale is not identified. We will

set σ2
C = 1.

Identification relies on two assumptions. Firstly, the stochastic term ε̃ is

assumed to be uncorrelated with prices. This assumption helps identify the

price sensitivity parameter αi. This assumption is justified by the inclusion of

a rich set of controls, including the station-product fixed effects, which will ab-

sorb all of the strategic pricing effects by the stations and the product-specific

characteristics. Secondly, the price noise z is assumed to be uncorrelated with

the unobserved utility ε. This assumption enables the identification of the

noise reduction effect (reduction in variance of z) from the reduction in the

variance of the stochastic term (variance of ε̃. One factor that can generate

correlation between these two variables is consumer characteristics. Certain

consumer types may have less access to information than others, and at same

time have strong preference for a specific fuel type. To control for these fac-

tors, we include consumer demographics as well as vehicle characteristics to

the model, alongside station-product fixed effects.

Intuitively, identification works as follows. Changes in fuel shares due to

variation in prices identify price sensitivity αi. Assuming the treated group
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is equally sensitive to price as the control group, knowing αi will help pin

down the mean value that consumers in the treated groups assign to each

fuels. If treatment is effective, the price noise in the treated groups will be

low, and consumers in these groups will simply follow the fuel associated with

the highest identified mean value, giving rise to a more concentrated market

share. If we observe a more evenly distributed market shares, it will suggest

a higher degree of price noise left over, and hence a lower effectiveness of the

salience treatments.

2.5 Estimation

In this section, we will proceed to discuss a general case of more than two

choices and how the estimation is conducted.

Similar to the case of two choices, one alternative need to be chosen as the

reference alternative, the mean utility of which will be set to zero to identify

the location of the utility; and one of the variance is normalized to 1 to pin

down the scale of the utility.

We will also need to specify the distribution for the combined error term

ε̃ij. A popular choice is the Type-1 Extreme value, which will result in a very

tractable form for the choice probability. However, assuming Type-1 Extreme

value distribution will lead to Independence of Irrelevant Alternatives, which
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will impose a strong restriction on the substitution pattern. This is particu-

larly relevant to this study, as we are looking at choices between a group of

conventional fuels (gasoline and mid-grade gasoline) and an alternative fuel

(ethanol), and it is expected that the substitution within and between groups

can be different. Furthermore, the combined error contains the price-ratio

noise, and we should not assume that the consumer perception about gasoline

and midgrade gasoline price differences is the same as the ethanol and gasoline

price differences, as the prices of the first pair are highly correlated (correlation

of 0.88), while the prices of the second pair are not (correlation of 0.48).

For these reasons, we will allow flexible correlation structures between the

random utility of different fuels by specifying a multivariate normal distribu-

tion for the combined error terms. We will also allow the covariance matrix of

this distribution to be shifted with the treatments.

To be specific, let denote J = 0, 1, 2 the set of fuels. Choose j = 0 to be

the base alternative, so that we can set β0 = 0 and ξ1 = 0

Ui0 = αi ln p0 + ε̃i0

Uij = αi ln pj +X ′iβj + ξj + ε̃ij, j > 0
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Relative utility:

Ūij = Uij − Ui0 = αi(ln pj − ln p0) +X ′iβj + ξj + (ε̃ij − ε̃i0)

= αi(ln pj − ln p0) +X ′iβj + ξj + ε̃ij

Let denote the mean relative utility: Vij = αi(ln pj − ln p0) + X ′iβj + ξj.

Consumer i will choose the base choice j = 0 when Ūi1 < 0 and Ūi2 < 0, or

[
Ūi1
Ūi2

]
<

[
0
0

]
⇔
[
ε̃i1
ε̃i2

]
<

[
−Vi1
−Vi2

]

Similarly, consumer i will choose choice j = 1 if Ūi1 > 0 and Ūi1 > Ūi2[
−Ūi1

Ūi2 − Ūi1

]
<

[
0
0

]
⇔
[
−ε̃i1

ε̃i2 − ε̃i1

]
<

[
Vi1

Vi1 − Vi2

]

And he will choose j = 2 if

[
−Ūi2

Ūi1 − Ūi2

]
<

[
0
0

]
⇔
[
−ε̃i2

ε̃i1 − ε̃i2

]
<

[
Vi2

Vi2 − Vi1

]

Assume that

[
ε̃i1
ε̃i2

]
follows a multivariate normal distribution N(0,Σi) with

the covariance matrix dependent on the treatment received, with Σi = ΣC for

control group and Σi = ΣT for the treated group.

Based on the above condition, for the consumer to choose each of the

choices, the choice probability can be calculated from with the given distribu-

tion. However, similar to the problem of scaling the utility for the two choices,

we need to impose certain normalizations on the covariance structure for it to
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be identified.

We will adopt the numerical integration method described in Train (2003).

The covariance will be decomposed using the Cholesky decompositionΣC =

S ′CSC and ΣT = S ′TST . To normalize the matrix, we will set the first element

in the Cholesky decomposition for the control group SC to 1, which essentially

results in the variance of the relative utility between the first two choices

being normalized to one. We will also use the GHK simulator as suggested

in the Train (2003), with 150 draws from the Halton sequence for numerical

integration.

The Maximum Likelihood estimator will be employed to estimate the pa-

rameters of the model. This model can be classified as a heteroskedastic multi-

nomial probit model, as the covariance matrix varies across treatment groups.

There are 3 ways to consider ξjt. Firstly, one could argue that fuel is a

rather homogeneous product, as gasoline from station A may not substantially

differ from gasoline from station B. We will consider a model with ξjt. that

depends on fuel but not stations. Secondly, one could regard ξjt. as a station-

fuel fixed effect, keeping in mind that fixed effects may not be consistently

estimated in a non-linear model with a small sample per station. In the data,

we have between 54 to 270 consumers per station, with more than 108 in

majority of the stations. Thirdly, we can use additional moments to back out
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ξjt. from data. Similar to the method in Berry (1994), Goolsbee and Petrin

(2004) and other works, the use of moments is aimed at matching the observed

shares of ethanol and gasoline purchase at each station with the predicted share

calculated from the model. As the results for the later approach is similar to

the results of using the fixed effects, for brevity, we will only show the results

from the station fixed effect models.

2.6 Results and Discussion

Table C.2 reports the estimation results for two specifications. Both specifi-

cations include consumer demographics (including gender, age, education, an

indicator for expensive vehicle as a proxy for economic status and an indicator

for extensive usage of vehicle) together with vehicle characteristics (including

vehicle class, age, engine size, fuel tank and fuel efficiency). Specification (1)

includes city fixed effects, while Specification (2) includes station fixed effects.

The included variables, together with fixed effects are meant to capture the

heterogeneity in consumer preference over non-price characteristics of the fuels.

The standard errors are clustered at station level.

Price effect and price elasticity Even after conditioning on consumer and

vehicle characteristics, effects of prices on fuel choices remain statistically and

economically meaningful. According to Specification (2), a 10% increase in
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gasoline price will lower its own share of purchases by 10.8 percentage points

(ppt), while increasing the propensity of ethanol by 10.5 ppt and mid-grade

gasoline by 0.3 ppt. Given that the market share of gasoline in the sample

is 60.4%, ethanol 33.8% and mid-grade gasoline 5.7%, and assuming that the

short-run demand for fuel is inelastic, this implies an own-price elasticity of

-1.8 for gasoline, and a gasoline cross-price elasticity of 3.1 for the market

share of ethanol and 0.5 for mid-grade gasoline. The own-price elasticity of

the market share for ethanol is estimated to be -3.8, and -3.8 for mid-grade

gasoline.

City effects Differences in choices across cities are significant, even after

accounting for differences in prices across cities. Consumers in Belo Horizonte

are 22.4 ppt less likely to choose ethanol and 23.5 ppt more likely to choose

gasoline than the consumers in Sao Paulo. The numbers for consumers in

Recife are 15.4 ppt and 18.6 ppt respectively. At the same time, consumers

at Curitiba have more or less the same distribution of purchases as consumers

in Sao Paulo, all other factors remaining equal. As relative prices of ethanol

over gasoline were consistently higher in Belo Horizonte and Recife than that

in Sao Paulo and Curitiba during the experiments, one can argue that these

differences in fuel choices may simply be due to the residual effects of different

69



price levels between these two pairs of cities, where the logs of prices in the

two specifications were not completely captured. However, these differences

remain robust even after adding a higher order of price controls to allow for

more flexible price effects. A more plausible explanation is the fact that Sao

Paolo and Curitiba are capitals of the two ethanol-exporting states where

consumers may possess bias towards their local products, as they care more

about their local society and economy. This is consistent with the results in

earlier studies.

Consumer demographics and heterogeneous preference The effects

of consumer characteristics are significant and substantial. Female consumers

appear to favor gasoline over both ethanol and mid-grade gasoline, with a

higher propensity of 4.6 ppt to purchase gasoline over male consumers, while

having a lower likelihood of purchasing the other two fuels. Older age is

associated with the choice of mid-grade gasoline, with consumers above the

age of 65 displaying a 6.1 ppt to 6.4 ppt higher propensity to choose mid-

grade gasoline over consumers below the age of 25. The effect of education is

noisy, but looking at Specification (1), which does not include the station fixed

effect, we can say with some reservation that, all else equal, higher education

is correlated with a lower likelihood of choosing ethanol, though the marginal
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effect of 4.4 ppt is only significant at the 10% level.

To interpret these effects as consumer heterogeneity in preference over non-

price characteristics of the fuels, one need to keep in mind that, more often

than not, a demographic variable can capture multiple aspects of consumer

characteristics. Age and education can be highly correlated with income, oc-

cupation, and neighborhood of residence, which in turn can be associated with

either technological savviness or health or environmental awareness. Nonethe-

less, some patterns can be interpreted with plausibility. Concerns about the

high maintenance cost of ethanol and its lower energy content (which in turn

requires more volume of purchase, thus resulting in longer stopping times

and/or higher frequencies of visits to fuelling stations) is consistent with a

lower share of ethanol among extensive-usage consumers. Familiarity with

older technology (gasoline) and skepticism against new technology (ethanol)7

is partly reflected in the 3.4 ppt lower propensity for the choice in ethanol

among consumers aged above 65, compared to those aged below 25.

Vehicle characteristics The effects of vehicle characteristics are less no-

ticeable. The differences in choice probability between most vehicle classes

and that of the compact class (the omitted class) are insignificant, with the

7especially those who experienced the time of introduction of ethanol-capable vehicles,
when the technology was still under-developed to adapt to physical and chemical properties
of ethanol, which led to negative effects on its early reputation
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exception of mid-size vehicles. This is probably due to the lack of statistical

power, as the numbers of observations for other vehicle classes, apart from the

mid-size and sub-compact classes, are limited.

Station fixed effects Next, we look at the effects of accounting for station-

specific factors by comparing Specification (1), the one without station fixed

effects, against Specification (2), the one with station fixed effects included.

Adding station fixed effects slightly changes the estimated price marginal ef-

fect, and hence affecting elasticity. The estimated gasoline own-price elasticity

changes from -2.58 (without station fixed effects) to -1.8 (with station fixed

effect), whereas the change for ethanol is from -3.37 to -3.6, and for mid-grade

gasoline from -6.1 to -3.8. Mid-grade gasoline prices also become more respon-

sive to ethanol prices with station fixed effects, compared to the estimates

without station fixed effects, where there seem to be no substitution between

the two fuels.

These changes reflect the possibility that there are station-specific factors

that correlate with prices. This includes operating cost, which correlates with

the general price-level in the neighborhood of the stations, as well as unob-

served consumer taste that firms will need to take into account when setting

prices. These factors will be part of the station fixed effects.
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We, however, do not observe significant changes in the estimated effects of

the consumer characteristics before and after adding the station fixed effects.

Thus, the unobserved consumer heterogeneity, if any, does not seem to have

a strong correlation with the observed heterogeneity. This reduces concerns

about endogeneity, as our set of controls seem to capture the most important

dimensions of consumer heterogeneity in fuel choices.

Treatment effect We now turn to the main objective of this study and

examine how price salience treatment affects the degree of consumer imperfect

price information.

Panel A of Table C.4 reports the estimated variance of the stochastic term

ε̃ijt for each treatment group and for each of the fuel types. The variance of

the control group for ethanol utility is set to 1 to anchor the scale of the utility,

and all other variances should be interpreted relative to it.

To reiterate, the variance of the stochastic term ε̃ijt includes the utility

variation due to unobserved consumer heterogeneity, conditional upon ob-

served consumer and vehicle characteristics as well as city effects and tim-

ing effects (Specification (2) further includes station fixed effects, which would

have removed variation due to station-specific factors, especially potential pric-

ing endogeneity by the station operators, from this variance). In addition, if
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price noise exists, its variance will also be constituted in the variance of these

stochastic terms. The extent that treatments are randomized and their effects

on the variance of the stochastic term is independent of the unobserved con-

sumer heterogeneity, and the process of differencing across treatment groups

will eliminate the first source of variation and reveal the effects of the increase

in price salience on the strength of the price noise.

Panel B of Table C.4 carries out the differencing of the variance of the

stochastic terms across treatment groups. For convenience of interpretation

(as it is difficult to interpret the unit of ε̃ itself), we report the difference

in logarithms, so that the values will reflect the percentage changes in the

stochastic variance due to the salience treatment. For ethanol, as the variance

of the control group is set to 1, the logarithm is 0, which is essentially equivalent

to taking the logarithm of each of the variances. We can also do differencing

in level, and the results will be very similar, as most of the values are close to

1 (and ln(1 + x) ≈ x).

Effects on ethanol-gasoline relative utility The price ratio treatment is

estimated to reduce the stochastic variation in ethanol utility by 12.7% (Speci-

fication (2)) or 15.3% (Specification (1)). The effect without including station

fixed effects (15.3%) is significant at 5% level, while the effect with station
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fixed effects included is significant at 10%. The lower statistical significance

after controlling for station effects comes from both a slightly lower precision

(standard error of 0.076 vs 0.072) and a lower estimated coefficient (0.127 vs

0.153). However, the change in the estimated effect (a decrease of 2.6 ppt)

is moderate and within the margin of error, and we take it as evidence that

these estimates are reasonably robust against station-specific unobservables.

To give some perspective on the magnitude of this effect, we can look at

the actual price variation over time and across cities. The variance of the log

ethanol-gasoline adjusted price ratio in the data is 0.0106, and the coefficient

of the log price in the utility is estimated to be -3.961 or -3.854 (depending on

which specification, (1) or (2) to be used), i.e. Uijt = αi ln(pij/kmit) + ...+ ε̃ijt

with αi = −3.961 or −3.854. All else equal, the contribution of the price

variation to the utility variation is α2
iV ar(ln(pij/kmit)), which is estimated to

be 3.9612 × 0.0106 = 0.166 or 3.8542 × 0.0106 = 0.157. In other words, the

contribution of price to variation in ethanol-gasoline relative utility is 15.7%

to 16.6% the contribution of the stochastic terms ε̃ijt (variance of which is 1).

Consequently, contribution of the reduction in price noise due to price salience

treatment (12.7% to 15.3%) is at the same magnitude as the contribution of

price variation across four cities and over the period of study contributing to

the utility. The best the treatments can do is eliminate the price noise, and this
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reduction can act as a lower bound for the amount of noise the consumers face.

This suggests that, at a given point in time, the consumers face an amount of

uncertainty about price with the same magnitude as the amount of uncertainty

a person faces when picking a random price point from the price history across

the four cities. Looking at within-city price variation can make this reduction

in noise more pronounced, as the within-city variance in log adjusted ethanol-

gasoline relative price is 0.00438, which implies a contribution to variation in

ethanol-gasoline relative of only about 6.4%-6.7% that of the stochastic term,

and half of the effect of the reduction in price noise due to the price-ratio flyer.

On the other hand, the effects of the km-per-50R$ are small and insignifi-

cant statistically. The magnitude of the effect is 1.6% reduction on the variance

ethanol stochastic term, or almost zero if station fixed effects are included. The

standard error is too large to give a definite conclusion whether the small ef-

fect is because of the ineffective treatment or the lack of statistical power.

Nonetheless, the point estimates suggest that the effects of these treatments,

if any, seem to be smaller than the effects of the price-ratio treatments.

Effects on midgrade gasoline-gasoline relative utility The effect of

both treatments on the variance of the mid-grade gasoline stochastic term are

small and insignificant. In the sample, prices of gasoline and mid-gasoline

8the variance of the residuals when regressing the log relative price on city dummies
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are highly correlated (correlation of 0.88, compared to the correlation of 0.48

between gasoline and ethanol prices), and hence the proportional difference

between them does not change much over time (the variance of the price

ratio is 0.022, compared to a variance of 0.072 for the ethanol-gasoline price

ratio). Knowing that the two prices move together, consumers will face less

uncertainty in terms of price information comparing between the two grades

of gasoline, as opposed to comparing between ethanol and gasoline. Thus, the

lower effect of the salience treatment on gasoline-midgrade gasoline relative

utility is consistent with our hypothesis that the treatments work through

price noise reduction.

Effects of Salience treatment on choice probability We now turn to

investigating the decision-making of better-informed consumers. First, we will

compare the average probability of purchasing ethanol and gasoline when all

consumers in the sample are subject to different treatments. To understand

how these effects interact with relative prices, we will vary the price ratios

in the following ways. The prices of gasoline and mid-grade gasoline are set

at the same values as the original data. The prices of ethanol will be set as

a fixed ratio multiplied by the gasoline prices. The ratio will be varied, and

for each ratio, we will calculate the average gasoline share and ethanol share
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accordingly.

Figure D.4 plots the share of ethanol (top panel) and gasoline (bottom

panel) when ethanol-gasoline price ratios vary. There are two lines in each

panel, the dashed line is for the control group, and the solid is for the price-

ratio flyer group. Figure D.5 plots the difference between these two lines, which

essentially captures the effects of the price ratio treatment on the shares of

ethanol and gasoline. As expected, the treatment is most effective in shifting

fuel shares when the price-ratio is at the two ends of the range (i.e. either

when price of ethanol is too high, or too low in comparison to the price of

gasoline). The effect is rather small though. Even when the price ratio is as

high as 0.85, the price-ratio treatment lowers the ethanol share by only 1.5ppt

and increases the gasoline share by 1.5ppt.

In contrast, as discussed before, the effect of gender on gasoline share is

estimated to be about 4.6ppt, college degree 4.4ppt (compared to “at most

primary”). To further compare the effect of price salience treatments with the

effect of consumer heterogeneity, Figure D.6 plots the ethanol and gasoline

shares when the price ratio varies for two representative consumers, one a

gasoline “fan” (female, age > 65, college graduate from Belo Horizonte) and

the other an ethanol fan (male, age 25 to 40, primary-level education in Sao

Paulo). The solid lines plot the shares for the consumers in the control group,
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while the dashed lines plot the shares when the consumers are subject to the

price-ratio flyer treatment. Consumer heterogeneity is associated with a large

change in shares for both types of consumers, while changes as a result of the

treatments are rather minimal.

Heterogeneous treatment effects In Table C.5, we allow the variance of

the random utility to be shifted by not only the treatments, but also vehicle

prices (a proxy for economic status), vehicle usage, education and the volatility

of recent price movement, one at a time. There are several interesting results

in this table. First, column (5) shows that during periods of unstable price

movement, consumers were subject to a much higher degree of noise. Moreover,

the effects of price salience treatments were also higher. This is consistent with

the theory of consumers facing noisy price information, as the noise is likely

to become stronger with more fluctuation in the actual prices.

Secondly, columns (3) and (4) suggest that the treatments were more ef-

fective among low-usage drivers and college degree holders, although the dif-

ferences were not statistically significant. High-usage consumers may have to

fuel their vehicles more often, and thus care about fuel price movements more

than low-usage consumers. Thus, further subjecting them to the price salience

techniques would not likely be effective, as they tend to already be familiar
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with the actual prices.

2.7 Conclusion

In this paper, we employ a discrete choice model to study consumer fuel choices

in Brazil and address a puzzling phenomenon in this market the fact that a

large proportion of consumers choose to purchase a more expensive fuel despite

equal access to a cheaper alternative. The explanation that this paper exam-

ines and puts forward is that consumers may not possess accurate information

about prices, and thus at the point of purchase may not be aware of the cost

effectiveness of each fuel. To test this explanation, an experiment in which a

random set of consumers was treated with increased price salience (in the form

of a flyer handed out before the purchase) was carried out. The econometric

model allows for random noise in the prices perceived by the consumers to

enter the utility function, and act as an additional source of randomness in

the utility. By comparing the variance of the utility noise between the control

and the treatment, the effect of the price salience treatment is revealed, from

which we can gauge the accuracy of the price information that consumers have.

The results show that the price salience treatments, particularly the one

with a display of information that is simpler and easier to understand (the

price-ratio flyer), help substantially reduce the degree of price noise that the
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consumers face. The amount of variance deduction in price noise due to the

price-ratio flyer is equivalent (in contribution to the random utility variation)

to the variation of the actual price over the course of one year across four

cities.

This effect, however, does not translate into substantial changes in choice

probability between control and treated groups. The price ratio flyer only

increases the probability of choosing ethanol by about 2%, even when ethanol

is highly more favored over gasoline. This is reflects the fact that other non-

price characteristics and consumer heterogeneity seem to play a significant role

in consumer choices.

In sum, there is evidence that Brazilian consumers do not often possess

accurate information about fuel prices, which leads to fuel choices that do not

appear to be cost effective, even after controlling for consumer heterogeneity.

However, the effect of such informational imperfection on fuel demand is rather

small, compared to the effect of consumer heterogeneity on fuel demand. We

have also provided several suggestive evidences for the mechanisms behind

the informational imperfection that the consumers face. The cognitive cost

of processing information seems to play an important role. Future research,

with more fine-tuned experiments, could explore and formally test for such

mechanisms.
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Chapter 3

Discrete-continuous choice with
fixed-payment preference:
Automobile fuels in Brazil1

3.1 Introduction

The importance of fuel to the economy and the environment cannot be overem-

phasized. Unsurprisingly, fuel demand has been studied extensively in the

existing literature. However, most studies, especially the earlier ones, fo-

cus mainly on conventional fuels and aggregate demand. Recently, concerns

about environmental impact, the arrival of modern technologies, and various

economic and political factors have paved the way for the introduction and

promotion of alternative fuels to the market. Consequently, a new strand of

literature is emerging, examining the way consumers choose between different

fuels now that more alternatives are available to them. In addition, with more

1The data used in this chapter were collected and generously provided to me by my
advisor, Professor Alberto Salvo. The chapter is co-authored with Professor Alberto Salvo.
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and better data, from fieldwork as well as administrative resources, researchers

are increasingly looking at data of finer disaggregation, e.g. consumer level or

transactional level, to gain a richer understanding of how consumers value and

choose fuels.

This paper attempts to bridge the gap between the literature on quanti-

tative demand for fuel and the literature on discrete choice between different

fuel alternatives, using a novel dataset on consumer choice at fueling stations

collected during fieldwork in Brazil. The paper will present the development

of a choice model that incorporates both the discrete choice between the con-

ventional fuel (gasoline) and the alternative fuel (ethanol), and the continuous

choice of how much fuel to purchase in each visit to the stations.

Considering continuous choice alongside the discrete choices helps capture

and better explain consumer heterogeneity regarding preference for different

fuels. We can think of quantity affecting the discrete choice via its interaction

price; thus, considering the way consumers choose quantity will help account

for some aspects of consumer heterogeneity in responding to fuel price fluctu-

ations.

Continuous choice can also have policy implications. To the extent that

many energy policies aim at reducing quantitative fuel demand, a policy that

promotes a certain fuel can help or compromise another type of fuel, depending
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on how quantities and fuel types interact.

Given this background, this chapter is organized as follows. The next sec-

tion will discuss related works on discrete-continuous choice and fuel demand.

Following this, the data, which is the same data set used in Chapter 2, will be

described. The empirical models and the estimation procedure will then be

detailed. Finally, the results will be discussed and the chapter concluded.

3.2 Related works

3.2.1 Works on discrete-continuous choice

In many choice situations, consumers must decide not only which type of

goods to consume or purchase (the discrete choice) but also how much of

the chosen good to consume or purchase (the continuous choice). This paper

will specifically discuss the choices between different fuel alternatives that

motorists can choose at refueling stations in Brazil. In making these choices,

the motorists need to decide whether to refuel their vehicles with gasoline,

ethanol or mid-grade gasoline etc., and decide how much of the chosen fuel

they should purchase. However, the discrete-continuous choice duality can

also occur in the choices of traveling (in which mode to travel and how far),

recreational activities (which activity to take up and how much time to spend

on the activity), electric appliances (which appliance to use and how much
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electricity to be consumed by it) etc.

The two choices (discrete and continuous) are often interconnected; the

outcome of one choice can affect the other. For example, due to differences

in prices, the optimal quantities for different alternatives can be different; a

consumer purchasing an expensive product may need to reduce the quantity

of the purchase to match her marginal utility from consuming the product

with the excessive cost of the purchase. On the other hand, a low price for

a “low-quality” alternative can increase the quantity that the consumer can

purchase given her budget to the point at which she will switch away from the

expensive “high-quality” product.

Another important link between discrete and continuous choices is con-

sumer types. Certain types of consumers may have higher preference for

quantity, and at the same time prefer one product over the other. For ex-

ample, in the case of fuel, a consumer with high vehicle usage may prefer

gasoline to ethanol, as gasoline contains more energy for the same volume,

and is often perceived as being less corrosive to engine components. Thus, a

decrease in the price of ethanol may attract consumers to switch to ethanol,

but the proportion of consumers with high vehicle usage among them would

be small, and hence the increase in market share may not be proportionate to

the increase in quantity demanded.
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Dubin and McFadden (1984) and Hanemann (1984) provided a unified

framework to study the both discrete and the continuous choice. Dubin and

McFadden (1984) developed a specific choice model for residential electric

appliance holdings and consumption, while Hanemann (1984) discussed the

general approach to modeling consumer demand in discrete-continuous choice

situations. Both approaches were based on the process of specifying an indi-

rect utility function and using Roys identity to obtain the demand function.

Specification-wise, Dubin and McFadden (1984) used a special functional form

for the indirect utility to obtain a linear-linear form for the demand equation.

Hanemann (1984) provided three specifications that would result in a tractable

functional form for the demand equation. Estimation-wise, Dubin and McFad-

den (1984) proposed a two-stage procedure, with the first stage estimating the

discrete-choice equation and the second stage using the fitted values from the

first as instruments for the continuous choices in the demand equation. Hane-

mann (1984) discussed both the two-stage estimation and the full maximum

likelihood estimation.

Regarding the link between the discrete choice and the continuous choice,

Dubin and McFadden (1984) assumed mutual exclusion among alternatives so

that the full decision-making process could be viewed as a two-stage sequential

game with oneself: the first stage is to choose one alternative to purchase and
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the second stage is to choose the quantity of purchase conditional on the choice

in the first stage. Hanemann (1984) started with a general utility defined

over a vector of products, but employed several modeling features (perfect

substitution, cross-product repackaging, or simply mutual exclusion due to

logical or institutional reasons), so that the eventual optimal bundle consisted

of only one alternative.

A related branch of literature focuses on multiple discrete-continuous choices.

The models in this literature allow for multiple alternatives to be chosen in

one purchase, and often involve specifying a utility function over a vector of

quantities for all the alternatives. The functional form for the utility is chosen

in a way that relaxes the perfect substitution feature of Hanemann (1984) to

accommodate multi-product purchases, but still generates corner solutions to

accommodate cases in which some products are not chosen in the bundle. Such

models have been employed by Kim et al. (2002) to study consumer demand

for variety, Bhat (2005) to study time use, and Ahn et al. (2008) to study the

ownership and use of alternative-fuel vehicles.

In the data, there are consumers who purchased more than one type of

fuel, but the number is very small compared with that of the majority, who

only purchased one type of fuel. As a simplification, it is assumed that only

one alternative should be chosen in a visit to the refueling station. Thus, we
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will adopt a specification similar to those in the work of Hanemann (1984) and

Dubin and McFadden (1984), as opposed to those from the multiple-discrete

choice literature. Specifically, the model used in this paper will give rise to the

indirect utility and demand, like Equation (3.21a) and (3.21b) in Hanemann

(1984).

Nonetheless, the models from the multiple discrete-choice literature high-

light the fact that specifying the utility function can help resolve various ir-

regularities in the data, as such a utility function can be used to consistently

model consumer choices under different constraints or scenarios.

3.2.2 Works on demand for automobile fuel

The demand for fuel, especially gasoline, has been extensively studied. Various

methodologies have been applied on various types of data (cross-sectional, time

series, panel of macro data, micro data etc.) to obtain estimates for the price

and income elasticity of gasoline demand in the short run as well as in the

long run. Well-known surveys in this body of work include those of Drollas

(1984), Dahl and Sterner (1991), Goodwin (1992), Espey (1998), Graham and

Glaister (2002) and Pouliot and Babcock (2014). Graham and Glaister (2002),

after a comprehensive review, suggested that the long-run price elasticity of

gasoline demand typically falls in the range of -0.6 to -0.8, and the short run
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elasticity in the range of -0.2 to -0.3, although these numbers vary greatly

across countries and time periods. Hughes, Knittel, and Sperling (Hughes

et al.) have reported that the short-run price elasticity in the U.S. has shifted

from a range of -0.21 to -0.34 in the period 19751980 to a range of -0.034 to

-0.077 in the period 20012006.

One important conclusion from this literature is that there is a distinction

between short-run and long-run demand response to changes in fuel prices. In

the long run, consumers have a much wider range of adjustments that they can

make to accommodate a given change, from adjusting their travelling routes

and modes to switching their vehicles to those of different fuel-economy classes,

and even to relocating or changing their jobs. Espey (1998) summarizes the

long-run/short-run classification as follows: models with time dimension and

lagged structures capture both short-run and long-run elasticity estimates.

Models that include controls for vehicle ownership and/or fuel efficiency tend

to capture short-run to medium-run elasticity. Estimates from a static model

with no controls over vehicle ownership or fuel efficiency are ambiguous and

dependent on the length of the temporal dimension and the variation in prices

and incomes along the cross-sectional dimension of the data used for estima-

tion.

In this paper, experimental micro-data will be used at the transactional
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level of disaggregation one observation is one purchase by a motorist at a re-

fueling station. The estimation makes use of both temporal and cross-sectional

(across cities, and across stations within a city) variations in prices. The exper-

iments were carried out over a period of over one year, and hence, according

to the literature, the estimation is better qualified to capture short-run de-

mand. The cross-sectional variation across stations and cities is substantial,

and spatial variation in demand may reflect consumers adjusting their charac-

teristics and/or traveling patterns to the local prices over an extended period.

However, given that the data is from only one country and most stations are

in the urban area, the spatial variation is comparable with what the literature

considers short-run to medium-run dynamics, rather than long-run dynamics.

3.2.3 Works on demand for alternative fuel

The works discussed in the previous section are concerned mainly with petroleum

based fuels, especially gasoline, as they are still the main source of energy for

vehicles around the world. However, there is also a smaller strand of literature

studying demand for alternative fuels. Anderson (2012) examined the demand

for corn-based ethanol using data from Minnesota, U.S., and found that many

consumers were willing to pay a premium for alternative fuel. As a substi-

tute for gasoline (E10), ethanol was estimated to have an own-price elasticity

of negative 3.2-3.8 and a gasoline-price elasticity of 2.33.2. Salvo and Huse
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(2013) investigated the choice between sugarcane-based ethanol and gasoline

in six cities in Brazil. Their findings included the discovery that a substantial

proportion of consumers chose to purchase the more expensive fuel, and the

discovery of substantial consumer heterogeneity in the choice between the two

fuels.

One conclusion from this literature is that consumers do not always view

ethanol as the perfect substitute for gasoline as their choices do not always

align with the most cost-effective source of energy for their vehicles. There

are several potential explanations for this behavior, one being that consumers

may value the fuel beyond its energy content. For example, concerns about

technologies, environments, and societal factors were shown to significantly

influence consumer fuel choices in the work of Salvo and Huse (2013). Con-

sumers may also exhibit state-dependence in their decision process, preventing

them from flexibly responding to new prices. For example, Salvo (2016) con-

sidered a model of limited attention, with consumers having a consideration

set that may exclude certain choices. Noisy or inaccurate information about

prices may also prevent consumers from achieving optimal fuel choices.
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3.3 Data

3.3.1 Data source and Experiments

For completeness, a summary of the data is included here. The data on pay-

ments will then be discussed in detail, and used to calculate the quantity

variables for the continuous choice of the empirical model.

The data was collected from a series of experiments conducted at 53 fueling

stations in four cities in Brazil during the period between March 2011 and April

2012. There were a total of 193 visits to the stations, with each station visited

up to five times, resulting in a total of 10,422 subjects being surveyed.

Each station visit was conducted within a day. The timings of the visits

were varied so that we would have data for various times of the day and

different days of the week. By design, the first 18 consumers were assigned to

control, the next 18 assigned to one treatment group, and the subsequent 18

assigned to the other treatment group.

Control group Once the consumer had placed his order with the stations

attendant and the vehicle was being serviced, the enumerator would survey

the consumer to for the demographic and other information.

Two treatments by station visit A treated subject would, prior to placing

his order, hear one of the following statements, from either the attendant or
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the enumerator. The statement was consistent with the actual price levels for

regular-grade gasoline and ethanol posted at the stations pump on the day of

the visit:

• Hoje a gasolina está mais vantajosa, veja aqui, loosely translated as

“Today gasoline is more advantageous / the better deal, see here,”

• Hoje o álcool está mais vantajoso, veja aqui, translated as “Today ethanol

is more advantageous / the better deal, see here,”

• Hoje a gasolina e o álcool estão com rendimento parecido, veja aqui,

translated as “Today gasoline and ethanol offer similar yields / similar

deals, see here.”

As he heard the verbal statement on the relative price conditions at the sta-

tion that day, a subject would be handed a flyer similar to that shown in Figure

D.2, for the price ratio relative to 70% treatment, or to that shown in Fig-

ure D.3, for the km-per-R$50 treatment. The illustrated flyer corresponds to a

station visited in Sao Paulo on June 13, 2011 in which (pe, pg) = (1.649; 2.499).

To clarify, some treated consumers were handed a price-ratio flyer and others

were treated with a km-per-R$50 flyer, and in each case the flyer was consistent

with the verbal statement that introduced it.
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The price-ratio flyer (Figure D.2) gave a thumbs-up alongside Mais van-

tagem status to gasoline when pe/pg ≥ 0.705 and a thumbs-up to ethanol when

pe/pg ≤ 0.695, and stated that both fuels offered similar yields (Rendimento

parecido) otherwise. The flyer also reminded subjects of the media-reported

parity threshold, stating that specialists advised that when this price ratio

(between ethanol and gasoline) was (i) lower than 70%, ethanol was more

advantageous; and (ii) higher than 70%, gasoline was more advantageous.

The km-per-R$50 flyer (Figure D.3) gave a thumbs-up to gasoline when the

distance to be travelled on R$50 of regular gasoline purchased at the station

was expected to exceed, by some margin, the distance to be travelled on R$50

of regular ethanol, and a thumbs-up to ethanol for the opposite situation, and

was neutral when gasoline and ethanol offered similar yields. Specifically, a

table in the flyer compared the expected distances for ethanol and gasoline for

three of the most popular vehicle engine sizes: 1.0, 1.4, and 1.8 liters (absolute

fuel economy generally declines with engine size).

3.3.2 The choice of quantities purchased

Figure F.1 shows the distribution of payments observed from the data. Three

observations can be made.

First, there is a marked spike in the distribution at 50R$ . Approximately

one-fifth of the consumers in the data chose to spend exactly 50R$ on the
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fuel. This spike stands out not only because it is the point with the highest

density in the distribution, but also, and to a greater degree, because its den-

sity is several times higher than the neighborhood density. Being the highest

density point can be well explained by a fitting price distribution that led to

quantities chosen by consumers that fall into a range centering around 50R$.

Being distinct from neighborhood density suggests a special preference for that

payment that goes beyond the preference for quantity.

Second, there are spikes at payments that were in multiples of 10R$. The

number of consumers who paid in multiples of 10R$ is noticeably higher than

that of customers who paid with odd payments. This can be observed in

the right panel of the same figure, in which the histogram of the last digit of

payments is plotted. Approximately three-quarters of consumers (including

the 19% that chose 50R$) paid with payments in multiples of 10R$. There

are also spikes at multiples of 5R$. Although those are much less noticeable

than the mutiples-of-10R$ payments, making up only 8% of the data, they are

still significantly higher than the number of payments ending with digits other

than 0 or 5. The most plausible explanation for this is the availability of and

preference for banknotes in different denominations.

Third, there is still a small number of payments that were not in multiples

of 10R$ or 5R$, and these are spread out evenly across the range of observed
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payments. In total, they make up 17

Payments of exactly 50R$ in value will be called fixed payments, pay-

ments in multiples of 5R$ or 10R$ will be called regular payments, and other

payments will be called odd payments. If further distinctions are required,

regular payments in multiples of 10R$ will be called regular-0 payments and

other regular payments will be called regular-5 payments.

Odd payments versus regular payments

The choice of odd payments can be rather inconvenient in the given context.

At refueling stations across Brazil, most of the transactions were conducted

manually, with the actual refueling performed by a human attendantatten-

dant2 who would also process the payments, which would most likely be in

cash. As a result, a significant cognitive and time cost, to both parties, would

have been incurred for keeping track of and preparing for the right volume

of fuel and the right number of notes and coins, if available at all, to be ex-

changed. Such a cost would reasonably outweigh the change in utility from

a small deviation from the optimal quantity, in order to avoid such an odd

payment. Thus, the sizable proportion of odd payments suggests that there

are other considerations that need to be considered.

Figure F.2 plots the distribution of the quantities of purchase as propor-

2http://www.planalto.gov.br/ccivil_03/Leis/L9956.htm
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tions of the consumers fuel tanks for three different subsamples in the data: a

subsample of odd payments (top-left panel), a subsample of regular-5 payments

(top-right panel), and a subsample of regular-0 payments (bottom panel, and

excluding fixed payments). The first panel shows that odd-payment consumers

tended to fill the fuel tanks of their vehicles more than halfway. Likewise, the

median and the mode of the distribution for odd payments is approximately

0.7, implying that the typical odd-payment consumers would fill more than

two-thirds of the fuel tank with their purchase. This is in stark contrast with

the other two groups of consumers who paid with regular payments. Con-

sumers with regular payments, regardless of whether the payments were in

multiples of 10R$ or not, tended to fill less than half of their fuel tanks, with

the typical person in this group purchasing about one-quarter tanks worth of

fuel.

We can make a reasonable assumption that the typical consumer would

not visit the fueling stations with too much or too little fuel left in their tank.

With too little fuel, their vehicles would run the risk of running out before

an opportunity to refill, while with too much fuel the drivers would waste

their time on too many visits to the fueling stations. Under this assumption,

odd-payment consumers are likely to fill their tanks completely, while regular-

payment consumers are not likely to. During the experiment, we did not survey
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for, and hence did not observe the amount of fuel left in the tank prior to the

purchases, I argue that odd payment is the best indicator that consumers will

order a full tank, based on the above assumption.

50R$ fixed-payments versus other regular payments

Figure F.3 plots two histograms side by side. Both are histograms of total

payments, but one is for the subsample of regular-0 payments, including the

fixed payments of 50R$, and the other is for the subsample of regular-5 pay-

ments. The rationale for plotting these two histograms side by side is that

the difference in frequency of choosing regular-0 payments over regular-5 pay-

ments is mostly due to the preference for or the availability of banknotes in

denominations of 10, 20, 50, and 100 reais, compared with that of banknotes

in denominations of 5 reais.

Assuming this effect is independent of the preference for quantity, the

difference between adjacent regular-0 and regular-5 payments will be similar

throughout the range of the observed payments. For example, the preference

for 25R$ will be close to the preference for 20R$, subtracting the banknote

effect, and the preference for 45R$ will be close to the preference for 40R$,

subtracting the banknote effect. As a result, the difference between choosing

20 vs 40 would be similar to the difference between choosing 25 vs 45, because

the banknote effect is canceled out by differencing. Drawing a histogram will
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normalize the total density to 1, and thus eliminate the effect of banknote-

specific preference. Consequently, if the above assumption is true, the two

histograms should be similarly shaped.

In fact, the plots do show that the two histograms are similar, except

for the abnormally high concentration at 50. This highlights the fact that

there is a special preference for fixed payment at 50 that goes beyond the

preference for regular-0 payments over regular-5 payments. We can use the

densities at 45R$ and 55R$ as good proxies for what the density at 50R$ could

have been in the absence of the special preference for the fixed payment at

50R$, and approximate that the density at 50R$ has been inflated almost five

times thanks to the special preference for the fixed payment. This pronounced

irregularity in the distribution of payments calls for a special treatment in the

empirical model.

The similar shapes of the two histograms support the assumption that the

note-specific preference is independent of the preference for quantity. In fact,

we can also look at the histograms of the liters of purchase as a proportion of

the fuel tank and make the same observation: the two groups of consumers, i.e.

those making regular-0 and regular-5 payments, are, along many dimensions,

similar to each other.
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Consumer Heterogeneity and Payments

As the final investigation into the ways consumers pay, the dummy variables

for different types of payments on consumer demographics and vehicle charac-

teristics are regressed. The estimation results are shown in Table E.2.

The first two columns use a dummy for odd payment as the dependent

variables and estimate using all observations in the data; this is essentially a

comparison between odd payments and regular payments. Age, vehicle prices,

vehicle usage, and ownership of non-common vehicle brands tended to increase

the likelihood of odd payments.

These variables are correlated with high income and usage, which implies

high quantity demand, increasing the likelihood of hitting the ceiling of the

vehicle tank.

This is consistent with the fact that odd payments tended to be made

to fill up to full tank. Living in Belo Horizonte and Recife decreased the

likelihood of odd payments; these are cities in which ethanol was consistently

more expensive throughout the sample period, which would have led to fewer

purchases of ethanol and more of gasoline. As gasoline takes up less volume

than ethanol while providing the same amount of energy, this would have

meant a lower chance of consumers filling a full tank for the same amount of

distance traveled.
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The third and fourth columns use a dummy for regular-0 payments as the

dependent variables and estimate using observations of regular payments; this

is essentially a comparison between regular-0 and regular-5 payments. Age,

vehicle prices, vehicle usage, and ownership of non-common vehicle brands

tend to increase the likelihood of odd payments, but otherwise there is no

clear pattern in the way consumers chose between these two payment types.

The fifth and sixth columns compare fixed payments of 50R$ against neigh-

borhood payments (payments from 40R$ to 60R$). Again, there is no clear

pattern of how consumers chose 50R$ over other neighborhood payments.

The above observations can be interpreted as evidence supporting the view

that preferences for specific banknotes are rather random and less likely to be

correlated with unobservable factors that can influence prices. As discussed

in detail later, these patterns in payments will be used to classify consumers

into three groups.

3.4 Model

3.4.1 Utility

Consumers receive utility from purchasing a certain amount of fuel. Through-

out this analysis, I remain agnostic about the nature of the continuous choice,

only assuming that consumers prefer more to less. Therefore, with utility max-
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imization, price would enter as a determinant of the chosen amount, keeping

in mind that the purchased quantity of fuel at refueling stations may reflect

not only the miles of travel that can be spent on the fuel but also the potential

increase in the time period before the next refuel, and hence the potential de-

crease in the number of trips to fueling stations, or the possibility of hedging

and speculation about future fuel prices etc.

To obtain tractable functional form for the demand function, an isoelastic

specification for the utility function is employed:

Uijt =
θ

1
ε
ijtkm

1− 1
ε

j

1− 1
ε

− pijtkmj +Xu
itβ

u
j + νijt (3.1)

In the above equation, index i indicates a consumer, index j a product (in

this case, a type of fuel), and index t a market (or, in this case, a station visit).

kmijt denotes the distance of travel (in km) that consumer i can spend on the

purchase of fuel j. pijt denotes the price per km (R$/km) of travel on fuel

j, which is equal to the price per liter of fuel j divided by the fuel efficiency

of consumer is vehicle. Xu
it denotes the observed consumer characteristics

that directly affect discrete fuel choice. ε is a preference parameter that will

eventually determine the price elasticity of demand, θijt is another preference

parameter that will determine the level of demand, and νijt is the idiosyncratic

utility shocks.
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In the data, payments were observed, and quantities were calculated ac-

cordingly based on the fuel prices. Because of this, and because of the ir-

regularities in the ways consumers pay, as mentioned in Section 3, it is more

convenient for estimation purposes to work with payments rather than quan-

tity. Theoretically, given the observed prices, using either one of the variables

is equivalent to using the other. Let Ejt = pjtxj, the payment made by the

consumer for fuel j, and rewrite the utility in terms of this payment:

Uijt =
θ

1
ε
i E

1− 1
ε

ijt p
1
ε
−1

ijt

1− 1
ε

− Eijt +Xu
itβ

u
j + νijt

3.4.2 Income effect and other heterogeneity in consumer
preference for quantity

Equation 3.1 can be understood as the result of the following utility maximiza-

tion under a constrained budget. A consumer has to choose to spend her in-

come y on either fuel or an outside good, the quantities of which will be denoted

by x and z. She will receive a utility that is quasi-linear in the outside good:

U(x, z) = u(x) + z with u(x) = θ
1
ε x1−

1
ε

1− 1
ε

, the first term in Equation 3.1. This

implies a constant marginal utility of 1 from the outside good and a decreasing

marginal utility from the fuel. The price of the outside good is normalized to

1, giving rise to the following budget constraint: px + z ≤ y. Assuming an

interior solution, we can substitute the constraint z = y − px into the quasi-
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linear utility and derive that the consumer will receive U(x) = u(x)− px + y

from purchasing x amount of fuel.

The quasi-linear specification helps keep the solutions for demand and in-

direct utility tractable and simplify estimation substantially. However, it as-

sumes away the income effect on fuel demand, and hence imposes a serious

restriction on consumer behaviors. Most of the works on fuel demand have

found a positive income elasticity of gasoline demand in the range of 1.1 to 1.3

in the long run or 0.35 to 0.55 in the short run (Espey, 1998), and omitting

income from the demand equation can be considered a misspecification (Dahl

and Sterner, 1991).

There are some other alternative functional forms that have a closed-form

solution and result in a positive income effect. For example, U(x, z) = θxρ +

zρ will result in demand: x = y

p+(θ/p)
1
ρ−1

, but this demand still constrains

the income elasticity to exactly 1 while complicating the relationship between

quantity and prices.

Another strategy is therefore employed here. Consider a more general util-

ity function. We still maintain separability but relax quasi-linearity: U(x, z) =

U(x) + f(z). Substituting the budget constraint px + z = y into the utility

function we have: U(x) = U(x, y−px) = U(x) + f(y−px). It is reasonable to

assume that the typical share of fuel expenditure over total consumer expendi-
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ture is small, and we can approximate the second term using Taylors expansion

as follows: f(y − px) ≈ f(y) − f ′(y)px. Thus, the original utility can be ap-

proximated by: U(x) ≈ U(x) + f(y)− f ′(y)px = f ′(y)
[
U(x)
f ′(y)
− px+ f(y)

f ′(y)

]
. As

scaling utility by a constant factor does not affect the preference, we can rewrite

the utility as
[
U(x)
f ′(y)
− px+ f(y)

f ′(y)

]
. The implied demand is x = U ′−1(pf ′(y)),

which is dependent on both prices and income.

The above analysis suggests that one way to induce the income effect in

a quasi-linear specification is to scale the utility by a function of income. We

can employ this strategy for the utility specified in Equation 3.1 by allowing

income to shift θ, i.e. θit = θ(yit). This, however, should not be interpreted

as allowing income to affect preference, but rather should be understood only

as a transformation of the net utility to simplify the demand and the indirect

utility function while allowing for positive income elasticity. A consequence of

this transformation is that θit can no longer be viewed purely as a preference

parameter, because it is shifted with income.

Income was not observed. Therefore, demographics such as age, education,

city, and vehicle price and usage will be used to proxy for income. In other

words, θit will be written as a function of demographics.

Allowing θ to be shifted with demographics and other consumer charac-

teristics also helps capture consumer heterogeneity along other dimensions.
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Occupation and personal need may require different consumers to have differ-

ent preferences regarding distance of travel. Vehicle characteristics in terms of

performance and emission can also be factored into the way consumers evalu-

ate the cost and benefit of driving. This heterogeneity in quantity preference

can also indirectly affect the discrete choice between fuels through its interac-

tion with prices, and accounting for this can also be viewed as accounting for

the way consumers react to prices when making the discrete choices.

Finally, consumers may value the same distance of travel with different

fuels differently, as operating and maintenance costs can vary across fuels.

As discussed before, the chemical and physical characteristics of ethanol and

gasoline, and even midgrade gasoline and gasoline, are different, resulting in

differences in wear and tear of the parts and materials of the engine, as well

as its performance. Emissions also differ between fuels, and consumers with

concerns about health and/or the environment may internalize this cost and

factor it into their valuation of each km of travel. For these reasons, I will also

allow the preference parameters to vary across fuels by incorporating a fuel

fixed effect into θijt :

ln θijt = αj +Xitγ + ηit

This is similar to an alternative specification, where we allow the effect of
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the payment on utility to differ across fuels, i.e. not always decrease utility -1

for each R$ paid:

Uijt =
θ
1/ε
it km

1−1/ε
ijt

1− 1/ε
− πjpijtkmijt +Xu

itβ
u
j + νijt

The similarity is because, if the quantity is chosen optimally, the indi-

rect utility will be
θitπ

1−ε
j p1−εijt

ε−1 + Xu
itβ

u
j + νijt, which is equivalent to having

θijt = θitπ
1−ε
j . I choose to fix the coefficient of the payment at -1 and allow

the preference parameters to vary across fuels because the payment can be in-

terpreted as the opportunity cost of consuming the outside , which should be

valued consistently across fuels. Furthermore, as payment enters the equation

linearly with a coefficient of -1, the “unit” of the utility is pinned to Brazilian

reais, giving a sense of how economically significant the estimates are.

3.4.3 Payment types

As discussed in the previous section, payments made by consumers can be

classified into three important types: regular payments, odd payments, and

fixed payments; these payment types seem to capture two special behaviors:

preference for fixed payments and preference for full-tank purchases. To cap-

ture this pattern of payments and behaviors, the model will assume that there

are three types of consumers visiting fueling stations: flexible-payment con-
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sumers, fixed-payment consumers, and full-tank consumers. These types are

determined by looking at the type of payment the consumers use. Specifi-

cally, regular payments indicate flexible-payment consumers, fixed-payments

of 50R$ indicate fixed-payment consumers, and odd payments indicate full-

tank consumers.

Flexible payment consumers The first group will choose the quantity

freely to achieve optimal utility for each fuel type :

ln km∗ijt = −ε ln pijt + ln θijt

The above equation can also be written in terms of the optimal expenditure

spent on the fuel, E∗ijt, which is same as the total payment for the purchase:

lnE∗ijt = (1− ε) ln pijt + ln θi

As discussed in the previous, let θi depend on observed consumer characteris-

tics and a random idiosyncratic demand shock ηi:

ln θijt = αj +Xe
itβ

e + ηit

Rewrite the above optimal expenditure as:

lnE∗ijt = (1− ε) ln pijt +Xe
i β

e + ηi
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The utility received from purchasing the optimal amount of fuel j:

U∗ijt =
E∗ijt
ε− 1

+Xu
i β

u
j︸ ︷︷ ︸

Vijt

+νijt

Fixed-payment consumers Fixed-payment consumers would commit to

the fixed payment E = 50, choosing the fuel that gives them the best utility

with that payment. The fixed payment, together with prices, determines how

much distance the consumer can buy with each fuel: kmijt = E/pijt. The

only choice for these consumers is which fuel to purchase. The utility that the

consumer receives is

Uijt =
θ

1
ε
i km

1− 1
ε

ijt

1− 1
ε

− E +Xu
itβ

u
j + νijt

Full-tank consumers Full-tank consumers. Full-tank consumers commit

to fill their tanks, by whatever amount is lacking . Letting this amount be ltit,

this, together with the fuel efficiency (km/lt)ijt of the vehicle, will determine

the distance the consumers can travel, ˜kmijt = ltit(km/lt)ijt, and also the

payment, Ẽijt = pijt ˜kmijt. The utility is therefore

Uijt =
θ

1
ε
i

˜km
1− 1

ε

ijt

1− 1
ε

− Ẽ +Xu
itβ

u
j + νijt
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Choice probability . In general, the utility of all the types can be expressed

by Uijt = Vijt + νijt. As with other discrete choices, we need to choose one

choice to be the base alternative to pin down the location of the utility. The βuj

for the alternative will be set to 0, and the other utility should be interpreted

as a relative utility.

Consumer i chooses fuel j when Uijt > Uikt for all k in the choice of station

t. Equivalently, the probability of choosing j is

Pijt = Prob(Uijt > Uikt,∀k) = Prob(νijt − νikt > Vikt − Vijt)

We need to specify a distribution for νijt to obtain the functional form for

this probability. This will be discussed in the next section, together with the

estimation method used.

3.4.4 Identification

Maximum likelihood will be used for estimation. As the model is highly non-

linear, identification comes from a combination of functional form assumptions

and variations in prices and choices .

What is estimated is essentially a system of two equations, one for the

discrete choice and the other for the continuous choice:
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lnx∗ijt = −ε ln pjt + ln θijt (3.2)

Uijt = θijt
p1−εjt

ε− 1
+Xu

itβ
u
j + νijt (3.3)

In the absence of the discrete choice, Equation 3.2 could be used as a lin-

ear regression to estimate the price elasticity of demand (assuming exogenous

variation in prices is justified), and ε will be identified from the response, in

terms of quantity of purchase, to changes in fuel prices. θijt is determined by

the level of the quantity of purchase, i.e. a high level of purchase will imply

high θijt . Note that ln θijt is specified as a function of demographics, and

hence the coefficients of the demographics inside θijt are determined by the

average purchase of the respective demographic group.

A commonly used specification for the random utility in a discrete model

is as follows: Uij = αpij +Xiβj + νij with α capturing the sensitivity of choice

probability with respect to price change. We can easily draw parallels between

this utility and the one specified in Equation 3.3. Conditional on the demand

response along the intensive margin ε, price changes will translate directly to

changes in the term
p1−εjt

ε−1 , which will in turn affect utility and choice probability,

but only after going through θijt. Thus, θijt here has a similar role to that of

α in the previously mentioned discrete-choice model: it reflects the sensitivity
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of choice probability in response to price changes. Thus, one important source

of identification for θijt is shifts in the market shares of different fuels under

varying prices.

The effect of ε in the discrete-choice equation is rather subtle . We need to

look at the marginal utility:
∂Uijt
∂pjt

= −θijtp−εjt . The magnitude of the marginal

utility decreases with price, and the rate of the decrease depends on ε. With

high ε, the marginal utility will decrease quickly, and so the response of the

discrete choices to the same percentage change in prices will be very different

at different price levels.

In short, variation in the continuous choice in response to price variation

identifies ε, while variation in the discrete choice in response to price variation

helps identify θijt. In addition, the level of purchase also helps identify θijt,

while the variation in discrete-choice responses to the same percentage change

in price at different price points helps identify ε.

Self-selection in types Consumer types can be endogenous if consumers

self-select into different types when price changes. It can be the case that

when fuel prices rise above some certain threshold, a consumer who usually

pays a fixed amount for fuel in each visit can be become price sensitive again

and adjust the payment according to the prices. To examine this possibility,
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I regress the dummy variables for each consumer type on the fuel prices. A

simple regression between types and fuel prices indicate strong correlation

between the two sets of variables, especially between consumer types and the

price of ethanol. However, after controlling for city fixed effects, the correlation

becomes smaller and insignificant. This result suggests that the correlation

between consumer type and fuel prices in the simple regression mostly reflect

the difference in type composition between cities, rather than a self-selection

prices. It is plausible that consumers in different cities develop different habits

in paying for fuels. I can allow for the composition of consumer type to vary

with city, or with any consumer characteristics.

Statistical test One question is whether we can have a formal test of the

current model with three types against an alternative model with a different

number of types. The test can be done if I allow for a random mixture of types,

and test if the probability of a certain type is zero or not. In this version of the

paper, I assume the consumer type is fixed and observable in order to simplify

the estimation, and hence do not conduct the tests.

3.5 Estimation

The observed data include fuel prices, consumer demographics, consumers

choices of fuel, and the payments made for the chosen fuel, from which the
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quantity of purchase can be calculated. Equations 3.3 and 3.2 capture the

essence of the system of equations that will be estimated. However, it should

be noted that for Equation 3.2 only the quantity for the chosen fuel is observed;

the quantities for the other fuels are missing, and this selection bias could

lead to incorrect estimates if the discrete choice were not considered. As

discussed previously, we can rewrite Equations 3.3 and 3.2 in terms of payments

and prices to facilitate estimation. θijt should also be written as a function

of demographics, fuel fixed effects, and idiosyncratic demand shocks θijt =

αj + Xe
itβ

e + ηijt. Let j∗i denote the fuel chosen by consumer j, p∗it = pj∗i t be

the price of the chosen fuel, and E∗it = x∗ij∗i tp
∗
it be the payment made for the

chosen fuel.

Estimation equation For flexible-payment consumers, the equations can

be written as

lnE∗it = (1− ε)p∗it + αj +Xe
itβ

e + ηit (3.4)

Uijt =
E∗it

(
pjt
p∗it

)1−ε
e
αj−αj∗

i

ε− 1
+Xu

itβ
u
j + νijt (3.5)

For fixed-payment consumers, as the continuous choice is pre-determined by

the fixed payment, only the discrete equation matters for estimation:

Uijt =
e

1
ε(αj+Xe

itβ
e+ηit)

(
E
pjt

)1− 1
ε

1− 1
ε

+Xu
itβ

u
j + νijt (3.6)
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Denote the mean utiltity as Vijt, i.e. Let the mean utility be denoted by Vijt,

i.e.

Vijt =


E∗it

(
pjt
p∗
it

)1−ε
e
αj−αj∗

i

ε−1 +Xu
itβ

u
j if not paying 50R$

e
1
ε(αj+Xeitβe+ηit)

(
E
pjt

)1− 1
ε

1− 1
ε

+Xu
itβ

u
j if paying 50R$

Distributional assumption For tractability, the stochastic term in the ran-

dom utility equation is assumed to follow Type-1 extreme value distribution.

Let mu denote the scale parameter of the distribution. This distribution gives

rise to a closed-form expression of the choice probability for fuel j, Pijt, as

follows:

Pijt =
exp(Vijt/µ)∑
k exp(Vikt/µ)

The stochastic term in the quantity ηit is assumed to follow normal distri-

bution, although this choice of distribution is not critical to the tractability

of the estimation. It is chosen because the distribution of the payments is ob-

served to be right-skewed, and can therefore be well captured by a lognormal

distribution. ηit enters the log equation of the payments, and hence a normal

distribution is appropriate to model this term. Let σ2 denote the variance of

ηit; the likelihood of observing a payment Eijt is then

l(ηijt) = φ(ηit/σ) = φ((ln(Eijt − (1− ε)pjt −Xitβ
e)/σ)
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with φ(·) denoting the probability density function of a standard normal dis-

tribution.

Likelihood Let Θ denote the set of all the parameters in the model, i.e.

(αj, β
u
j , β

e, ε, σ, µ). For a flexible-payment consumer, given Θ and a payment

for a particular fuel, we can derive ηjt. Conditional on ηjt, we can derive

the optimal payments for all other fuels, and hence the mean utility and the

choice probability of other fuels. Thus, the likelihood of choosing fuel j and

spending Eijt on that fuel can be decomposed into the likelihood of Eijt being

the optimal payment for fuel j and the likelihood of j being the best fuel

conditional on the optimal payment.

Lflex(Eijt, j|Θ, X, p) = l(Eijt|Θ, X, p)× P (j|Eijt,Θ, X, p)

= l(ηit = lnEijt − αj − (1− ε)pjt −Xe
itβ

e|Θ, X, p)

× P (j|ηit,Θ, X, p)

= φ((ln(Eijt − (1− ε)pjt −Xitβ
e)/σ)

× exp(Vijt/µ)∑
k exp(Vikt/µ)

For a fixed-payment consumer, as her ˙ijt is not known, we need to integrate

ηit out to obtain the choice probability, which is also the likelihood of her
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purchase:

Lfixed(j|Θ, X, p) =

∫
exp(Vijt/µ)∑
k exp(Vikt/µ)

dF (ηit)

3.5.1 Simulation study

A simulation study was conducted to verify the internal validity of the model

and the estimation. Artificial data was created using the prices of gasoline

and ethanol in the sample. The stochastic terms ηit and νijt were randomly

generated according the distributions assumed above. Choices and payments

were calculated based on the demand equation and utility equation described

above (Equations 3.2 and 3.3). Fixed-payment preference was assigned ran-

domly with a probability of 0.2. For simplicity, no covariates were used, µ was

set to 1, σ = exp(−0.4), αgasoline = 0 and αethanol = 4.5. ε. ε was varied,

taking on three different values of e−0.2 = 0.82, e−0.5 = 0.61 and e−0.8 = 0.45.

For each set of parameters, 200 sets of data were simulated.

Estimations with and without the consideration of the preference for fixed

payments were conducted on these sets of data to obtain 200 sets of esti-

mates. Table E.1 displays the average of the estimates for each parameter,

together with the average biases and the standard deviation of the estimates.

Without considering preference for fixed payment, the magnitude of the price

118



elasticity of quantity demanded, ε, was overestimated, while the variance of

the stochastic term in the continuous choice equation, σ, and the difference

in preference for quantity between ethanol and gasoline, αethanol, were under-

estimated. Taking fixed-payment preference into account in the estimation

corrected these biases.

3.5.2 Estimation Results

Table E.4 displays the estimates for four specifications. For these for specifi-

cations, I allowed vehicle characteristics (class, engine, fuel efficiency, model

year, fuel tank), consumer demographics (gender, age, education), cities, day

of the week, and time of the day to shift both the discrete choice utility and the

continuous choice (via the effect on consumer preference type θ). In addition,

station fixed effects are included in the discrete utility of specifications 2 and

4, and in the continuous choice equation of specifications 3 and 4.

The continuous choice Panel B of Table E.4 displays the estimated coef-

ficient for the continuous choice equation, i.e. the equation for the logarithm

of quantity of purchase. The income effect is very apparent from these results;

increasing age, education, and vehicle price is associated with a higher quan-

tity of purchase. Consumers aged over 65 purchase 25% to 28% more than

consumers under 25 at the stations. Consumers with some college education
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purchase 23% to 28% more than consumers with primary education at most,

and 17% to 20% more than those with some type of secondary degree. Con-

sumers with vehicles priced in the top quartile purchase 9.3% to 9.7% more

than the rest. To the extent that these variables are correlated positively with

income, this can be interpreted as the income effect, which increases demand

when income increases.

Vehicle characteristics are also an important determinant of the continuous

choice. Larger engines and newer vehicles are associated with a higher quantity

of purchase. Owners of mid-size vehicles choose 11% to 12% more quantity

than owners of compact vehicles (the omitted class). Full-size vehicles are also

estimated to require approximately 5% more fuel from one purchase, but the

effect is not statistically significant. These variables can be correlated with

income as well, but they can also reflect the occupational or personal needs of

the drivers. The latter is also captured by the significant estimated effect of

extensive vehicle usage on purchased quantity, which is 15% to 16%.

Consumers tend to purchase more quantity with ethanol than with gaso-

line or mid-grade gasoline. This, however, does not fit the argument that

consumers perceive ethanol as having higher maintenance costs than gasoline

(due to the perceived corrosive effects of ethanol on the engine). Thus, this

effect is more likely due to consumers attaching different valuations to the
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same distance travelled on different fuels. Consumers may regard ethanol as

cleaner due to its low GHG emission, or value its higher octane and anti-knock

properties, which will offset the cost for each km of travelling on it.

In short, the continuous choice has captured a lot of consumer heterogeneity

in the way consumers make quantity decisions. Most important among them

seems to be the income effect. To the extent that consumers value quantity,

and due to price differences, the quantity that they get for different fuels varies.

This heterogeneity will also capture consumers heterogeneous responses to

prices in their discrete choices between different fuel types.

Discrete choice Panels C and D of E.4 display the coefficients of the vari-

ables included in the relative utility equation. The equation has been scaled

(by the scale parameter µ of the type-I extreme value distribution) such that

it has the same unit as payment (i.e. in Brazilian reais).

Of the consumer demographic variables, gender and age display significant

effects on discrete choice. Being female is associated with more purchases of

gasoline, while the mid-grade gasolinegasoline relative utility increases with

age. Consumers aged between 25 and 65 appear more likely to choose ethanol

or mid-grade gasoline over gasoline, all else being equal, than consumers aged

less than 25 do. Consumers from Curitiba and Sao Paulo appear to value
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ethanol over gasoline more than consumers from Belo Horizonte and Recife

do. Consumers with high usage seem less likely to purchase ethanol over

gasoline than the rest, although the difference is smaller and not precise after

including the station fixed effects in the continuous choice equation.

Elasticity The estimated elasticity of purchased quantity is from -−e−0.224 =

−0.748 to −e−0.209 = −0.811. This is different from the elasticity of fuel

demand in the short run as stated in the literature, which is around -0.2 or

-0.3, and can fall to as low as -0.02. However, we should not expect them to be

similar. The elasticity estimated here should be understood as the quantity

variation from one fueling-station visit to another. Instead of varying the

quantity of purchases and payments, consumers can vary the frequency of

their station visits. Furthermore, the data only cover consumers who pulled

up at the fueling stations, and hence would not have captured the responses

of people who switched to public transport or other modes of travel when fuel

prices were high. In addition, the data potentially oversample frequent visitors

to fueling stations, who may tend to be more price sensitive than the average

consumer.
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3.5.3 Estimating the effect of Price Salience Treatments

This section will address the question of how price-salience treatments affect

how consumers make fuel-choice decisions along both the extensive and in-

tensive margins. Table E.3 displays the estimation results for three different

specifications. For these specifications, the full set of controls (consumer de-

mographics, vehicle characteristics, day of week, time of day, and station fixed

effects) is included in both the continuous and discrete choice relative utility

equations. What changes across these three specifications is the inclusion of

the dummy for the salience in either or both the continuous choice equation

or/and the discrete choice equation.

It should be noted that the discrete choice equation is essentially the rela-

tive utility between the given fuel and gasoline. Even if the treatments shift

the utility, they will likely shift the utilities of both the given fuel and gasoline,

and the effects will be cancelled when the relative utility is considered . In

addition, there is no obvious reason the price-salience treatment would shift

the utilities of different fuels differently.

It would be more interesting to examine how salience treatments affect

consumers when there is asymmetry between fuels. Given that price salience

informs consumers about price, we can expect the treatments to benefit the

consumers by making them aware of the cheaper alternative. Specifically, if
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ethanol is favorably priced and some consumers are not aware of that, increas-

ing price salience should help them recognize the greater benefits of ethanol

and cause some of them to switch from gasoline to ethanol. Therefore, to iden-

tify the effects of the price-salience treatments in the discrete choice equation,

I use the treatments interacting with a dummy variable indicating if ethanol

is more a favorable fuel than gasoline in reais-per-km terms.

Specification (2) includes the treatment dummies only in the continuous

choice equation, specification (3) includes them only in the discrete choice

equation, and specification (4) includes them in both equations. The results

are consistent across the three specifications.

The price-ratio flyer treatment increases the quantity of purchase by be-

tween 4.6% (specification (2)) and 7.4% (specification (4)), although the latter

estimate is less precise (standard error of 4.1%). The price-ratio treatment also

increases the utility of ethanol relative to that of gasoline during the period

when ethanol is favorable, which is consistent with the argument that price

salience helps the consumers realize the economic benefit of the alternative

fuel that they would have missed otherwise.

On the other hand, the effect of the km-per-50R$ flyer is small and sta-

tistically insignificant in both the continuous choice equation and the discrete

choice equation. A statistical test indicates that the effect of the km-per-50R$
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flyer is lower than that of the price-ratio flyer. One explanation for this differ-

ence is that the information displayed in the km-per-50R$ flyer is less familiar

and more difficult to process than that of the price-ratio flyer. In fact, the ra-

tio 0.7 is widely publicized in the media, and Salvo and Huse (2013) surveyed

consumers and found that 70% of them could recall this ratio. This suggests

that the effect of the price salience can be partly explained by the possibility

that it lowered the mental cost of processing information that, even though

available and sufficient, was not immediately apparent for decision making.

These results have two implications. The first is that, policy-wise, the

choice along both dimensions matters. A policy may be designed to induce

consumers to purchase more efficient fuel by making the price more salient,

but price salience can have the side-effect of increasing the quantity purchased,

which compromises the objective of the policy. The second is that, regarding

information salience, content and presentation matter. Having sufficient but

poorly presented information may diminish the effect of that information.

3.6 Conclusion

In this paper, a model of discrete-continuous choice is introduced. The data

show an irregularity in the way that an abnormally large number of consumers

choose to pay a specific amount, 50R$, and a simulation study shows that
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ignoring this irregularity can affect the accuracy of the estimation. The model

was employed in the study of consumer fuel choice at fueling stations in Brazil.

The results show that price salience can increase the quantity of purchase and

help consumers realize more of the benefits from the favorably priced fuels. In

addition, the type of treatment is important to achieve this effect.
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Table A.1: Examples of fuel-saving technologies, taken from EPA (2015)

Table A.2: Summary statistics

Truck Car All

Price (’000 $) 29.6 [7.77] 23.89 [11.03] 26.58 [10.04]
Household income (’000 $) 56.83 [1.61] 56.85 [1.59] 56.84 [1.60]
Price/HH income 0.52 [0.14) 0.42 [0.19] 0.47 [0.18]
Gasoline price ($) 2.84 [0.29] 2.83 [0.29] 2.84 [0.29]
Fuel efficiency (miles/gal) 26.95 [3.26] 36.64 [5.99] 32.07 [5.95]
Fuel consumption (gal/100 miles) 3.82 [0.89] 2.84 [0.76] 3.3 [1.08]
Fuel cost ($/mile) 0.13 [0.03] 0.09 [0.03] 0.11 [0.04]
Horsepower (’00 hp) 2.59 [0.59] 2 [0.67] 2.28 [0.70]
Weight (’000 lb) 4.56 [0.83] 3.26 [0.45] 3.87 [0.92]
Hp/Weight (’0 hp/lb) 0.57 [0.07] 0.6 [0.13] 0.58 [0.11]
Space (’0000 ft2) 1.54 [0.23] 1.3 [0.12] 1.41 [0.22]
Torque (lbft) 270.13 [72.25] 194.93 [67.86] 230.37 [79.39]
Car (dummy) 0 [0.00] 1 [0.00] 0.53 [0.50]
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Table A.3: Estimation Results
Utility/Mean Utility/std

estimate se t-stat estimate se t-stat
price/income -45.04 9.86 -4.57 1.47 0.16 9.20
dpm/income -23.86 6.14 -3.89 -0.60 0.14 -4.18
hp/weight 2.77 0.70 3.97 2.26 0.40 5.64
weight -0.46 0.15 -2.95 -0.35 0.07 -4.65
size 3.81 0.39 9.71 -0.44 0.22 -2.02
const 1.22 0.46 2.67 -14.00 0.79 -17.74
suv -1.13 0.24 -4.65
truck -2.85 0.44 -6.44
van -3.49 0.56 -6.19
minivan -1.23 0.21 -5.88

Marginal Cost Fuel-efficiency Frontier

estimate se t-stat estimate se t-stat
log(hpwt) 1.21 0.16 7.78 -0.22 0.02 -8.88
log(weight) 2.10 0.42 5.01 -0.57 0.05 -12.27
log(size) -1.67 0.19 -8.69 0.20 0.04 4.79
log(torque) 0.64 0.11 5.90 -0.28 0.03 -9.14
const 1.81 0.42 4.34 0.03 0.11 0.27
suv 0.02 0.04 0.41 -0.09 0.01 -13.29
truck 0.02 0.06 0.30 -0.14 0.01 -13.22
van 0.00 0.12 -0.03 -0.29 0.02 -12.92
minivan 0.12 0.06 1.92 -0.09 0.01 -7.58
trend -0.05 0.01 -3.30
year 2007 0.01 0.01 1.17
year 2008 0.08 0.01 7.67
year 2009 0.06 0.01 6.75
year 2010 0.09 0.01 9.37
year 2011 0.11 0.01 12.50
year 2012 0.13 0.01 13.96
year 2013 0.18 0.01 19.01
year 2014 0.18 0.01 19.11
control function -0.03 0.01 -3.09
ce 0.15 0.02 9.04
c2e -0.02 0.00 -6.90
c3e 0.00 0.00 5.69

Compliance cost

estimate se t-stat
compliance cost 0.23 0.13 1.84
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and the harmonic average fuel economy of new light-duty vehicles sold in the US (in miles

per gallon) from 1980 to 2014 ( the gaosoline prices series covers some extra years). The

number are reported separately for passenger cars (right panel) and light-duty trucks (left

panel). Source: NHTSA

Figure B.1: Gasoline prices, average fuel economy, CAFE standards
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Figure B.2: Fuel economy and vehicle characteristics
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Figure B.3: Adoption rate of different fuel-saving technologies, taken from
EPA (2015)
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Figure B.4: Average vehicle characteristics over time
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Notes: This figure plots the amount of improvement on fuel efficiency (in proportion,

vertical axis) against the marginal technological cost of further improving the fuel-efficiency

(USD per 100% improvement). Polynomials of different order are used to fit this curve,

which is indicated by different colors

Figure B.5: Marginal fuel saving cost curve
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Notes: this figure is based on the model’s estimates for the marginal fuel technological cost,

i.e. the cost of improving the fuel efficiency further by 1mpg.

Figure B.6: Distribution of the marginal fuel technological cost
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Figure B.7: Counterfactual car average fuel economy if fuel prices are set at
2006 level
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Figure B.8: Counterfactual car average fuel economy if CAFE standards are
set at 2006 level
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Figure B.9: Counterfactual truck average fuel economy if fuel prices and CAFE
standards are set at 2006 level
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Figure B.10: Counterfactual truck average fuel economy if fuel prices are set
at 2006 level
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Figure B.11: Counterfactual truck average fuel economy if CAFE standards
are set at 2006 level
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Figure B.12: Counterfactual truck average fuel economy if fuel prices and
CAFE standards are set at 2006 level
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Table C.1: Summary statistics by treatment groups and Covariate balance

Mean Difference to control [SE]

Control Price-ratio Km/R$50 Price-ratio Km/R$50

Female 0.340 0.345 0.347 -0.004 [0.011] -0.007 [0.011]
Age 25 to 40 0.458 0.469 0.479 -0.011 [0.012] -0.021* [0.012]
Age 40 to 65 0.372 0.368 0.359 0.005 [0.012] 0.013 [0.012]
Age more than 65 0.045 0.035 0.037 0.010** [0.005] 0.008* [0.005]
Secondary school 0.267 0.271 0.268 -0.003 [0.011] -0.001 [0.011]
College 0.689 0.685 0.691 0.004 [0.011] -0.002 [0.011]
Fiat vehicle 0.292 0.298 0.298 -0.006 [0.011] -0.007 [0.011]
GM vehicle 0.202 0.203 0.197 -0.001 [0.010] 0.005 [0.010]
Volkswagen vehicle 0.215 0.221 0.199 -0.006 [0.010] 0.016 [0.010]
Ford vehicle 0.102 0.096 0.104 0.005 [0.007] -0.003 [0.007]
Vehicle price (’000R$) 29.048 28.975 29.106 0.073 [0.225] -0.058 [0.233]
Engine size (liters) 1.355 1.358 1.356 -0.003 [0.008] -0.001 [0.009]

Observations 3474 3474 3474

*p<0.10 **p<0.05 ***p<0.01



Table C.2: Estimation results
(1) (2)

ln(price/km) -3.854*** -3.961***

[0.363] [0.419]

Mean utility equation ethanol mgasoline ethanol mgasoline
Female (DV) -0.128*** -0.081 -0.126*** -0.092
Age 25-40 (DV) 0.073 0.126 0.074 0.088
Age 40-65 (DV) 0.047 0.287* 0.036 0.259
Age >65 (DV) -0.103 0.591** -0.133* 0.593
Expensive Car (DV) -0.082* -0.021 -0.083* -0.033
Extensive Usage (DV) -0.044 0.109 -0.079** 0.092
Education: Secondary -0.096 0.045 -0.050 0.058
Education: College -0.147* 0.164 -0.098 0.162
ln(Fuel tank) 0.293** -0.111 -0.001 -0.044
Engine size (lt) -0.078 0.228 -0.094 0.271
Car Age (year) 0.001 -0.031 -0.003 -0.039
Fuel efficiency (km/lt) 0.017 -0.038 0.003 -0.038

Variance of random utility ethanol mgasoline ethanol mgasoline
Control group 1.000 1.257 1.000 1.250

- [1.189] - [1.685]
Price-ratio flyer group 0.858*** 1.282 0.881*** 1.225

[0.062] [1.245] [0.067] [1.667]
Km-per-50R$ group 0.984*** 1.316 1.002*** 1.275

[0.088] [1.264] [0.092] [1.728]

Timing FE Yes Yes Yes Yes
Vehicle brand FE Yes Yes Yes Yes
City FE Yes Yes
Station FE Yes Yes

Station-clustered standard errors in brackets (some excluded for space)
*p<0.1, **p<0.05, ***p<0.01



Table C.3: Average marginal effects

(1) (2)

change in fuel share change in fuel share
g e mg g e mg

Price gasoline increase 10% -0.155*** 0.115*** 0.037** -0.108*** 0.105*** 0.003***
[0.021] [0.011] [0.017] [0.013] [0.013] [0.001]

Price ethanol increase 10% 0.115*** -0.114*** 0.000 0.103*** -0.122*** 0.019***
[0.010] [0.010] [0.000] [0.013] [0.011] [0.004]

Price mgasoline increase 10% 0.037** 0.000 -0.035** 0.003*** 0.019*** -0.022***
[0.016] [0.000] [0.016] [0.001] [0.004] [0.004]

Female (vs. Male) 0.046*** -0.037*** -0.008* 0.046*** -0.035*** -0.011***
[0.010] [0.010] [0.004] [0.010] [0.010] [0.004]

Age 25-40 (vs. Age <25) -0.030** 0.021 0.009 -0.028** 0.019 0.009
[0.013] [0.014] [0.006] [0.012] [0.014] [0.006]

Age 40-65 (vs. Age <25) -0.038*** 0.013 0.024*** -0.034*** 0.012 0.022***
[0.011] [0.013] [0.006] [0.011] [0.013] [0.006]

Age >65 (vs. Age <25) -0.034 -0.030 0.061*** -0.032 -0.034* 0.065***
[0.024] [0.021] [0.013] [0.024] [0.020] [0.013]

Edu: Secondary (vs. Primary) 0.030 -0.044* 0.014* 0.018 -0.028 0.011
[0.025] [0.024] [0.008] [0.025] [0.024] [0.008]

Educ: College (vs. Primary) 0.025 -0.028 0.003 0.013 -0.015 0.002
[0.025] [0.026] [0.007] [0.026] [0.026] [0.008]

Expensive car 0.021* -0.015 -0.006 0.023* -0.020 -0.003
[0.013] [0.012] [0.007] [0.013] [0.012] [0.008]

Extensive usage 0.002 -0.014 0.011** 0.012 -0.019** 0.007
[0.011] [0.009] [0.005] [0.010] [0.009] [0.005]

Car age increases 1 year 0.002 0.001 -0.003* 0.003 -0.000 -0.003
[0.003] [0.003] [0.001] [0.003] [0.003] [0.002]

Engine size increase 1lt 0.000 -0.024 0.023 0.010 -0.029 0.018
[0.025] [0.024] [0.014] [0.026] [0.026] [0.015]

Fuel tank increase 10% -0.069* 0.087** -0.018 -0.058 0.016 0.042
[0.036] [0.039] [0.019] [0.072] [0.068] [0.036]

Fuel efficiency incease 1km/lt -0.005 0.006 -0.001 0.003 -0.001 -0.002
[0.008] [0.009] [0.004] [0.010] [0.011] [0.005]

Fullsize (vs Compact) 0.019 -0.030* 0.011 0.016 -0.021 0.006
[0.016] [0.018] [0.011] [0.018] [0.019] [0.010]

Midsize (vs Compact) -0.028** 0.012 0.015** -0.028** 0.014 0.014**
[0.014] [0.014] [0.006] [0.014] [0.015] [0.006]

Minivan (vs Compact) -0.060* 0.023 0.035 -0.049 0.019 0.030
[0.034] [0.032] [0.023] [0.040] [0.037] [0.024]

Small truck (vs Compact) -0.003 0.012 -0.008 -0.001 0.010 -0.009
[0.021] [0.020] [0.009] [0.021] [0.020] [0.009]

Subcompact (vs Compact) -0.004 0.004 0.000 -0.014 0.011 0.003
[0.010] [0.011] [0.005] [0.010] [0.011] [0.006]

SUV (vs Compact) -0.043 0.022 0.020 -0.033 0.026 0.008
[0.028] [0.027] [0.013] [0.027] [0.026] [0.011]

Belo Horizonte 0.235*** -0.224*** -0.008
[0.028] [0.024] [0.012]

Recife 0.186*** -0.154*** -0.029***
[0.038] [0.034] [0.010]

Curitiba 0.020 0.003 -0.021**
[0.029] [0.025] [0.011]

Fuel: g stands for gasoline, e for ethanol, mg for midgrade gasoline
Station clustered standard errors in bracket
* p<0.1, ** p<0.05, *** p<0.01



Table C.4: Average marginal effects

(1) (2)

Variance of random utility
ethanol mgasoline ethanol mgasoline

Control group 1.000 1.257 1.000 1.250
- [1.189] - [1.685]

Price-ratio flyer group 0.858*** 1.282 0.881*** 1.225
[0.062] [1.245] [0.067] [1.667]

Km-per-50R$ group 0.984*** 1.316 1.002*** 1.275
[0.088] [1.264] [0.092] [1.728]

Treatment effect on log variance of random utility
ethanol mgasoline ethanol mgasoline

Price-ratio flyer group -0.153** 0.020 -0.127* -0.021
[0.072] [0.073] [0.076] [0.069]

Km-per-50R$ group -0.016 0.046 0.002 0.020
[0.089] [0.073] [0.092] [0.072]

Station-clustered standard errors in brackets
*p<0.1, **p<0.05, ***p<0.01



Table C.5: Estimated variance of the random utility term

(3) (4) (5) (6)

Car price Usage College Price history
Low High Low High No college College Stable Unstable

Panel A: Variance of random utility, ethanol
Control (a) 1.000 1.007*** 1.000 0.982*** 1.000 1.093*** 1.000 1.458***
Price-ratio flyer (b) 0.809*** 0.875*** 0.800*** 0.868*** 0.875*** 0.860*** 0.806*** 1.071***
km/R$50 flyer (c ) 0.966*** 0.851*** 0.896*** 1.046*** 1.014*** 0.978*** 0.934*** 1.165***

Panel B: Variance of random utility, midgrade gasoline
Control (d) 1.063** 0.545* 0.766** 0.619** 0.778* 0.800** 1.102** 1.879**
Price-ratio flyer (e ) 0.862** 0.583** 0.601** 0.664** 0.636* 0.673** 1.081** 1.032**
km/R$50 flyer (f) 0.86** 0.518* 0.629** 0.567** 0.687* 0.644** 1.055** 1.036*

Panel C: Treatment effect on log(variance of random utility, ethanol)
Price-ratio flyer (ln(b) - ln(a)) -0.212** -0.141 -0.223** -0.123 -0.133 -0.239** -0.216* -0.308*

[0.105] [0.191] [0.105] [0.186] [0.167] [0.109] [0.114] [0.172]
km/R$50 flyer (ln(c ) - ln(a)) -0.034 -0.169 -0.110 0.064 0.013 -0.111 -0.068 -0.224

[0.106] [0.187] [0.106] [0.185] [0.170] [0.110] [0.113] [0.174]

Panel D: Treatment effect on log(variance of random utility midgrade gasoline)
Price-ratio flyer (ln(e ) - ln(d)) -0.210* 0.068 -0.242* 0.070 -0.200 -0.173 -0.019 -0.599***

[0.127] [0.247] [0.134] [0.229] [0.197] [0.141] [0.141] [0.199]
km/R$50 flyer (ln(f) - ln(d)) -0.211* -0.050 -0.197 -0.088 -0.123 -0.218 -0.043 -0.595***

[0.132] [0.240] [0.137] [0.239] [0.194] [0.144] [0.136] [0.213]
Station clustered standard errors in bracket

*p<0.1, ** p<0.05, *** p<0.01

Gasoline is the base alternative. The variance of random utility term for ethanol of the control group is set to 1. Specification (3),

first 2 columns allows the covariance matrix to shift with the dummy for expensive car. Specification (4) allows the covariance

matrix to shift with the dummy for extensive usage. Specification (5) for College degree and Specificaiton (6) price is stable)
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All prices are median prices in a week across all sampled stations within the city. Vertical
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Figure D.1: Price path of gasoline and ethanol by cities
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Figure D.2: A sample of Price-ratio flyer
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Figure D.3: A sample of Km-per-50R$ flyer
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Notes:

This figures plot the ethanol share (top panel) and gasoline share (bottom panel) when

ethanol-price ratio varies. Prices for gasoline and midgrade gasoline are set to the values in

the data, and ethanol prices are set to the a price ratio times the gasoline price. The shares

are calculated as if all consumers are in control group (the solid lines) or in price-ratio flyer

group (the dashed lines)

Figure D.4: Fuel shares, control group vs price-ratio flyer group
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This figures plot changes in ethanol share (top panel) and gasoline share (bottom panel)

when consumers in control group are treated with price-ratio flyer. Prices for gasoline and

midgrade gasoline are set to the values in the data, and ethanol prices are set to the a price

ratio times the gasoline price.)

Figure D.5: Difference in fuel shares between control and treatment groups
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Figure D.6: Fuel shares for a gasoline fan and an ethanol fan
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Table E.1: Simulation study results

without fixed-payment with fixed-payment

ε σ α ε σ α p
True value 0.67 4.50 0.67 4.50 0.20

0.45 0.56 0.60 4.39 0.46 0.67 4.50 0.20
(0.11) (-0.07) (-0.11) (0.01) (-0.01) (0.00) (-0.00)
[0.06] [0.01] [0.08] [0.08] [0.01] [0.10] [0.00]

0.61 0.68 0.60 4.40 0.60 0.67 4.52 0.20
(0.07) (-0.07) (-0.10) (-0.01) (-0.00) (0.02) (-0.00)
[0.07] [0.01] [0.09] [0.08] [0.01] [0.11] [0.00]

0.82 0.86 0.61 4.38 0.83 0.67 4.49 0.20
(0.04) (-0.06) (-0.12) (0.01) (-0.00) (-0.01) (-0.00)
[0.06] [0.01] [0.08] [0.07] [0.01] [0.09] [0.00]

This table reports the average of the estimates obtained from 200 simulated sets of data.

The average biases are inside the brackets and the standard deviations are inside the

square brackets. The true values used for simulation are reported under the header of each

column.
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Table E.2: Consumer characteristics and Payment types

(1) (2) (3) (4) (5) (6) (7) (8)
Dependent variable odd odd 10x 10x fixed50 fixed50 fixed20 fixed20

City: Curitiba -0.058* 0.036* 0.134*** 0.040
(0.024) (0.014) (0.030) (0.030)

City: Belo Horizonte -0.109** 0.037* 0.074 0.047
(0.035) (0.016) (0.049) (0.036)

City: Recife -0.166*** 0.053** 0.041 0.112*
(0.034) (0.019) (0.050) (0.045)

Female -0.025** -0.026** -0.001 -0.002 0.015 0.010 -0.004 -0.001
(0.009) (0.009) (0.007) (0.007) (0.017) (0.017) (0.016) (0.016)

Age: 25 to 40 0.028* 0.027* 0.025** 0.024* -0.004 -0.010 0.031 0.027
(0.010) (0.010) (0.009) (0.009) (0.028) (0.028) (0.024) (0.025)

Age: 40 to 65 0.067*** 0.062*** 0.019 0.020* 0.063* 0.055* 0.021 0.019
(0.011) (0.011) (0.010) (0.010) (0.027) (0.027) (0.025) (0.026)

Age: >65 0.101*** 0.100*** 0.033* 0.038* 0.083 0.079 0.031 0.017
(0.029) (0.028) (0.016) (0.017) (0.049) (0.045) (0.055) (0.054)

Secondary -0.044* -0.040 0.002 -0.002 -0.091* -0.085 -0.087* -0.088
(0.021) (0.022) (0.014) (0.013) (0.044) (0.043) (0.042) (0.046)

College 0.028 0.025 0.012 0.009 -0.070 -0.068 -0.076 -0.073
(0.020) (0.022) (0.014) (0.014) (0.041) (0.041) (0.040) (0.045)

Expensive car 0.039*** 0.038*** -0.009 -0.008 -0.038 -0.037 0.029 0.035
(0.010) (0.010) (0.008) (0.008) (0.023) (0.022) (0.031) (0.031)

Extensive usage 0.054*** 0.056*** -0.009 -0.005 0.006 -0.003 0.038* 0.037*
(0.012) (0.012) (0.008) (0.008) (0.021) (0.021) (0.018) (0.017)

Car model year 0.003 0.003 0.004* 0.004* -0.000 0.001 -0.002 -0.002
(0.003) (0.003) (0.002) (0.002) (0.007) (0.006) (0.006) (0.006)

Tank -0.002 -0.003 -0.000 -0.000 0.001 0.001 0.003 0.002
(0.002) (0.002) (0.001) (0.001) (0.003) (0.003) (0.003) (0.003)

Fuel efficiency -0.034 -0.046 0.002 0.008 0.039 0.054 -0.015 -0.000
(0.024) (0.031) (0.013) (0.018) (0.036) (0.042) (0.028) (0.040)

Brand: Fiat -0.054*** -0.051** -0.004 -0.006 -0.024 -0.029 -0.030 -0.036
(0.015) (0.015) (0.010) (0.010) (0.029) (0.030) (0.027) (0.027)

Brand: GM -0.067*** -0.062*** -0.004 -0.003 -0.020 -0.022 -0.020 -0.023
(0.016) (0.015) (0.011) (0.011) (0.033) (0.034) (0.032) (0.032)

Brand: VW -0.064*** -0.060*** -0.003 -0.003 -0.004 -0.009 -0.039 -0.041
(0.016) (0.015) (0.009) (0.009) (0.031) (0.033) (0.027) (0.026)

Brand: Ford -0.052** -0.055** -0.013 -0.013 -0.051 -0.062 -0.019 -0.017
(0.017) (0.017) (0.011) (0.011) (0.038) (0.037) (0.039) (0.038)

Price control Yes Yes Yes Yes Yes Yes Yes Yes
Station fixed effects no yes no yes no yes no yes

Sub sample All All regular regular payment payment payment payment
payments payments 40 to 60 40 to 60 10 to 30 10 to 30

N 10422 10422 8491 8491 3112 3112 3806 3806

Standard errors in parentheses
* p<0.05, ** p<0.01, *** p<0.001
Odd is a dummy variable for odd-payment, 10x is dummy variable for regular-0 payments,
fixed50 dummy for payments exactly at 50R$ and fixed20 dummy for payments exactly
20R$. Price controls include ethanol and gasolin price and price squared.
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Table E.3: Price salience treatment effects on continuous and discrete choice

(5) (6) (7)

Panel A: Continuous choice equation
Price-ratio flyer (DV) (1) 0.046** 0.074*

[0.022] [0.041]
km-per-50R$ flyer (DV) (2) -0.020 -0.028

[0.020] [0.023]
Difference in treatment effects (1) - (2) 0.066*** 0.102**

[0.018] [0.041]

Panel B: Discrete choice equation
Ethanol Mean Utility
Ethanol is favorable (DV) 17.359*** 17.684***

[3.973] [4.090]
Price-ratio flyer (DV) -1.840 -2.833

[1.264] [1.895]
km-per-50R$ flyer (DV) 0.872 1.241

[1.405] [1.753]
Price-ratio flyer × Ethanol is favorable (3) 4.207** 3.878**

[1.790] [1.794]
km-per-50R$ flyer × Ethanol is favorable (4) 0.343 0.526

[1.981] [2.052]
Difference in treatment effects (3) - (4) 3.863** 3.352**

[1.516] [1.665]

Midgrade gasoline Mean Utility
(omitted for space)

Station-clustered standard errors in brackets

p<0.1, **p<0.05, ***p<0.01

All three specifications include consumer characteristics (age, gender, education, vehicle

price and usage), vehicle characteristics (engine size, fuel tank, vehicle age, vehicle class),

day of week and time of day and station fixed effects to both the continuous and the

discrete choice equation. “Ethanol is favorable” is a dummy varible for ethanol-gasoline

price ratio less than 0.7.
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Table E.4: Estimation Results

Panel A: Structural parameters

(1) (2) (3) (4)

ln(elas) -0.290*** -0.292** -0.224** -0.209*
[0.098] [0.123] [0.091] [0.110]

ln(sigma) -0.355*** -0.354*** -0.384*** -0.384***
[0.013] [0.013] [0.013] [0.013]

ln(mu) 2.447*** 2.550*** 2.445*** 2.547***
[0.131] [0.180] [0.125] [0.166]

logit(prob fixed-payment) -1.391*** -1.391*** -1.391*** -1.391***
[0.041] [0.041] [0.041] [0.041]

Panel B: Continuous choice equation

spec 1 spec 2 spec 3 spec 4

Ethanol 0.041** 0.049* 0.031* 0.036
[0.019] [0.029] [0.017] [0.025]

Midgrade gasoline -0.044** -0.047 -0.034* -0.033
[0.020] [0.029] [0.018] [0.023]

ln(fuel tank) 0.046 0.048 0.045 0.044
[0.127] [0.128] [0.122] [0.122]

Engine displacement 0.228*** 0.227*** 0.229*** 0.229***
[0.048] [0.049] [0.046] [0.047]

Vehicle model year 0.032*** 0.032*** 0.035*** 0.035***
[0.006] [0.006] [0.006] [0.006]

Fuel efficiency 0.013 0.012 0.004 0.003
[0.019] [0.021] [0.018] [0.020]

Vehicle class: Subcompact -0.020 -0.020 -0.013 -0.013
[0.017] [0.017] [0.018] [0.018]

Vehicle class: Midsize 0.110*** 0.111*** 0.116*** 0.117***
[0.023] [0.023] [0.024] [0.024]

Vehicle class: Smalltruck 0.001 -0.001 0.014 0.013
[0.051] [0.051] [0.048] [0.048]

Vehicle class: SUV -0.021 -0.020 -0.040 -0.038
[0.046] [0.046] [0.045] [0.046]

Vehicle class: Fullsize 0.050 0.049 0.045 0.045
[0.043] [0.043] [0.040] [0.040]

Vehicle class: Minivan 0.061 0.061 0.017 0.018
[0.068] [0.069] [0.065] [0.066]

Female 0.011 0.012 -0.001 0.000
[0.015] [0.015] [0.015] [0.015]

Age: 25 to 40 0.127*** 0.126*** 0.119*** 0.119***
[0.025] [0.025] [0.024] [0.024]

Age: 40 to 65 0.211*** 0.210*** 0.206*** 0.206***
[0.026] [0.026] [0.026] [0.026]

Age: >65 0.279*** 0.279*** 0.247*** 0.248***
[0.041] [0.041] [0.042] [0.042]

Education: Some secondary 0.086** 0.088** 0.057 0.059
[0.037] [0.037] [0.037] [0.038]

Education: Some college 0.285*** 0.286*** 0.227*** 0.229***
[0.038] [0.038] [0.040] [0.040]

Vehicle price: top quartile 0.093*** 0.093*** 0.097*** 0.097***
[0.024] [0.024] [0.025] [0.025]

Vehicle usage: top quartile 0.161*** 0.161*** 0.150*** 0.149***
[0.018] [0.018] [0.017] [0.017]

Average vehicle price in station 0.029*** 0.029*** 0.003 0.003



[0.007] [0.007] [0.008] [0.008]
Curitiba 0.034 0.033

[0.039] [0.039]
Belo Horizonte 0.084 0.088*

[0.051] [0.051]
Recife 0.036 0.039

[0.062] [0.062]
Day of week Yes Yes Yes Yes
Time of day Yes Yes Yes Yes
Station effects No No Yes Yes

Panel C: Discrete choice - ethanol utility

spec 1 spec 2 spec 3 spec 4

ln(fuel tank) 6.756 7.033 6.653 6.951
[4.557] [5.291] [4.534] [5.214]

Engine displacement -2.129 -1.347 -2.135 -1.377
[1.772] [1.925] [1.760] [1.910]

Vehicle model year 0.351*** 0.480*** 0.336*** 0.466***
[0.011] [0.013] [0.011] [0.013]

Fuel efficiency -0.722 -0.715 -0.706 -0.704
[0.609] [0.691] [0.604] [0.685]

Vehicle class: Subcompact 0.488 1.171 0.502 1.185
[0.720] [0.829] [0.719] [0.821]

Vehicle class: Midsize 1.803* 1.927* 1.764* 1.896*
[0.993] [1.161] [0.980] [1.133]

Vehicle class: Smalltruck 0.424 0.588 0.448 0.646
[1.428] [1.660] [1.420] [1.649]

Vehicle class: SUV 0.541 0.462 0.583 0.513
[1.906] [2.180] [1.891] [2.162]

Vehicle class: Fullsize -1.320 -1.210 -1.356 -1.250
[1.236] [1.407] [1.229] [1.403]

Vehicle class: Minivan -0.136 0.150 -0.169 0.039
[2.265] [2.737] [2.259] [2.711]

Female -2.997*** -3.470*** -2.989*** -3.480***
[0.786] [1.019] [0.779] [0.990]

Age: 25 to 40 2.405** 2.848** 2.359** 2.788**
[1.074] [1.294] [1.057] [1.255]

Age: 40 to 65 2.684*** 3.023** 2.622*** 2.944**
[1.012] [1.272] [0.994] [1.226]

Age: >65 0.773 0.823 0.709 0.730
[1.589] [1.801] [1.592] [1.799]

Education: Some secondary -1.326 -0.487 -1.363 -0.591
[1.793] [2.090] [1.790] [2.090]

Education: Some college -0.516 0.180 -0.606 -0.021
[1.672] [1.902] [1.668] [1.898]

Vehicle price: top quartile -0.091 -0.182 -0.115 -0.206
[0.834] [0.971] [0.828] [0.954]

Vehicle usage: top quartile -0.668** -0.353 -0.677*** -0.402
[0.263] [0.468] [0.262] [0.469]

Average vehicle price in station 0.693 -0.008 0.636 -0.091
[0.666] [0.716] [0.674] [0.734]

Curitiba -1.572 -1.555
[1.474] [1.460]

Belo Horizonte -21.213*** -21.149***
[3.917] [3.759]

Recife -18.516*** -18.406***
[3.668] [3.546]

Day of week Yes Yes Yes Yes
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Time of day Yes Yes Yes Yes
Station effects No Yes No Yes

Panel D: Discrete choice - midgrade gasoline utility

spec 1 spec 2 spec 3 spec 4

ln(fuel tank) 0.887 2.876 1.122 3.216
[7.639] [8.847] [7.607] [8.791]

Engine displacement 1.395 3.832 1.393 3.866
[3.143] [3.489] [3.161] [3.486]

Vehicle model year 0.494*** 0.659*** 0.525*** 0.693***
[0.018] [0.022] [0.018] [0.022]

Fuel efficiency -1.008 -0.661 -1.058 -0.700
[0.968] [1.069] [0.978] [1.071]

Vehicle class: Subcompact 1.140 1.749 1.137 1.703
[1.278] [1.411] [1.274] [1.402]

Vehicle class: Midsize 2.789** 3.338** 2.871** 3.428**
[1.404] [1.519] [1.391] [1.506]

Vehicle class: Smalltruck -2.811 -3.149 -2.862 -3.183
[2.730] [3.151] [2.714] [3.115]

Vehicle class: SUV 3.373 3.738 3.219 3.648
[2.389] [2.786] [2.392] [2.770]

Vehicle class: Fullsize 1.488 0.657 1.500 0.690
[2.469] [2.842] [2.436] [2.799]

Vehicle class: Minivan 3.493 5.969 3.386 5.915
[3.814] [4.504] [3.780] [4.433]

Female -2.652** -3.578*** -2.651** -3.558***
[1.115] [1.274] [1.101] [1.231]

Age: 25 to 40 3.024 2.623 3.086 2.706
[2.071] [2.241] [2.054] [2.221]

Age: 40 to 65 5.952*** 6.059*** 6.009*** 6.156***
[1.961] [2.181] [1.948] [2.152]

Age: >65 11.077*** 13.373*** 11.126*** 13.554***
[2.749] [3.703] [2.706] [3.603]

Education: Some secondary -0.448 -0.421 -0.364 -0.276
[2.226] [2.452] [2.217] [2.446]

Education: Some college 0.565 0.351 0.728 0.658
[2.187] [2.376] [2.155] [2.352]

Vehicle price: top quartile -2.162 -2.755 -2.117 -2.710
[1.709] [1.930] [1.714] [1.908]

Vehicle usage: top quartile -1.222*** -1.101* -1.203*** -1.044*
[0.469] [0.595] [0.462] [0.579]

Average vehicle price in station 0.866 0.570 0.933 0.719
[1.320] [1.557] [1.299] [1.499]

Curitiba -8.492*** -8.360***
[2.994] [2.977]

Belo Horizonte -10.793*** -10.678***
[3.000] [2.963]

Recife -16.327*** -16.226***
[3.450] [3.394]

Day of week Yes Yes Yes Yes
Time of day Yes Yes Yes Yes
Station effects No Yes No Yes
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The left panel plot the histogram of the payment itself. The right panel plots the histogram

of the last digit of the payment (so multiples of 10 will be combined into the bin at 0).

Figure F.1: Histogram of total payments

Appendix F

Chapter 3: Figures
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Figure F.2: Histogram of liters of purchase as proportion of fuel tank by
payment types
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Figure F.3: Histograms of payments with last digit 5 and with last digit 0
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