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Generative Models for Item Adoptions Using

Social Correlation

Freddy Chong Tat Chua, Ee-Peng Lim

November 13, 2013

Abstract

Users face many choices on the Web when it comes to choosing which
product to buy, which video to watch, etc. In making adoption deci-
sions, users rely not only on their own preferences, but also on friends.
We call the latter social correlation which may be caused by the selection
and social influence effects. In this chapter, we focus on modeling social
correlation on users item adoptions. Given a user-user social graph and
an item-user adoption graph, our research seeks to answer the follow-
ing questions: whether the items adopted by a user correlate to items
adopted by her friends, and how to model item adoptions using social
correlation. We propose a social correlation measure that considers the
degree of correlation from every user to the users friends, in addition to
a set of latent factors representing topics of interests of individual users.
We develop two generative models, namely sequential and unified, and
the corresponding parameter estimation approaches. From each model,
we devise the social correlation only and hybrid methods for predicting
missing adoption links. Experiments on LiveJournal and Epinions data
sets show that our proposed models outperform the approach based on
latent factors only (LDA).

1 Introduction

1.1 Motivation

Unprecedented progress and innovation provide consumers with a wide variety
of choices. Consumer items such as books, cameras and movies come in various
subjects, features and genres. Online shopping provides access to these items
to anyone with an internet connection. Consequently, sellers anywhere can
reach consumers anywhere, and consumers have access to increasing number
of products. The direct effect is that consumers have a harder time making
purchasing decisions, while sellers do not know what to sell and whom to sell
it to.

Some merchants, such as Amazon and Netflix, have put in place person-
alized recommender systems based on the individual user’s past transactions.
However, such approaches frequently suffer from the cold start problem: no
recommendation can be generated for users who have purchased very few items.
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Therefore, while attractive retail opportunity lies in the long-tail products, it
is difficult for such products to be matched to the relevant users.

In making adoption decisions, users rely on one another to organize the
complex information on the Web. This is evident from the abundant amount
of user-generated content, such as tags, ratings, and reviews, all of which col-
lectively aim to allow items to be more easily discovered by other users. Social
networks have also become a conduit for discovering relevant information. In
platforms such as Twitter or Epinions, users can opt to receive only content
generated by other users whom they follow or trust. A user’s choices are in-
creasingly driven not only by personal preferences, but also by the preferences
of others in their social networks. This gives rise to the phenomenon of so-
cial correlation, whereby users who are socially related tend to make similar
choices.

1.2 Objectives

In this paper, we therefore aim to address the item adoption prediction problem
by studying how social correlation plays a role in user adoption of items. Here,
item adoption could refer to various actions such as buying a product, writing
a product review, joining a group, etc. We model the adoption relationship
between users and items as an undirected bipartite adoption graph Ga(V, U,E)
where V represents a set of items, U represents a set of users and E represents
the undirected adoption links between V and U . We also assume as input a
social graph Gs(U, F ), where U represents the same set of users as in Ga and
F represents the social links between users. A directed edge exists from u1 to
u2 if u1 befriends, trusts, or follows u2. In both Ga and Gs, we only require the
binary expression of the links (present or absent), and do not use any other
form of information such as ratings or review text to keep our model simple
and general.

Given Ga and Gs, we seek to address the following problems:

• Learning the extent to which a user relies on social correlation, as opposed
to her personal preferences, in making adoption choices. For a given
social link (u1, u2) ∈ F , we would like to learn a weight that reflects the
extent to which u1’s latent factors correlate with the latent factors of u2.

• Predicting the items that a user is likely to adopt based on social corre-
lation. For a given pair of user u and item v, we would like to learn the
probability that an adoption link (u, v) would exist in E.

Latent space approaches can model a user’s personal preferences [17]. One
such model is Latent Dirichlet Allocation (LDA) [4], which learns a set of latent
factors by reducing the adjacency matrix of the adoption graph into two sub
components: one that reflects the importance of each latent factor to users,
and another that does the same for items. However, this approach assumes
that all items adopted by a user can be fully explained by the user’s and items’
latent factors.

Consider the example scenario in Figure 1. There are two clusters of items:
{v1, v2, v3} and {v4, v5, v6}. Suppose that each cluster groups together items
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Figure 1: Example Scenario of Adoption (solid) and Social Links (dotted)

with similar latent factors. Users u1 and u2 have similar preferences, adopting
items in the first cluster. Users u3 and u4 adopt items in the second cluster.
Given that items in a cluster share similar latent factors, these adoptions can
largely be explained by the users’ having similar latent factors. However, u2’s
adoption of v4 cannot be clearly explained by latent factors alone. Taking into
account u2’s social links (dotted lines) to u3 and u4, we say that in the case
of v4, u2 depends on the preferences of her friends u3 and u4. We call this the
social correlation.

We propose to model social correlation directly using latent space ap-
proaches. Some users may primarily rely only on their own latent factors in
making adoptions. We say that these users have high self-dependency. How-
ever, most users rely on a mixture of self-dependency and social correlation.
This is modeled by a user-user social correlation matrix C. A user u1 therefore
adopts an item based on her preferences on latent factors of the item with a
probability proportional to cu1,u1

∈ C representing Self-Dependency, and based
on another user u2’s latent factors with probability equal to cu1,u2

∈ C. Here,
∑

u cu1,u = 1. Hence, we seek to learn both a user’s latent factors and the
social correlation matrix from the given adoption and social graphs.

1.3 Contributions

We make the following contributions in this paper:

1. We propose a Social Correlation Framework that incorporates the so-
cial correlation matrix C in the generation of user-item adoption links.
Within this framework, we propose two generative models: Sequential
Generative Model and Unified Generative Model. The Sequential Gen-
erative Model learns C in two sequential steps, first employing LDA to
learn the parameters of the user and item latent factors, followed by
learning C based on those parameters. The Unified Generative Model
learns C simultaneously with the user and item latent factors in a prin-
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cipled, and unified way. The framework and two generative models are
novel contributions over the previous state-of-the-art that relies only on
user and item latent factors (e.g., LDA).

2. In our proposed generative models, the weights in the social correlation
matrix are parameters to be learned. Hence, we do not rely on a so-
cial graph with pre-assigned link weights. This is essential because the
weights are not always known. Even if some form of weights may be
known (e.g., friendship strength), they may not accurately reflect the
dependency weights among users for all domains of interest.

3. Through comprehensive experimentation on two real-life datasets (Live-
Journal and Epinions), we establish that: (a) the proposed generative
models under the social correlation framework outperform the approach
that relies on latent factors alone, (b) the social correlation weights help
to identify the users who will benefit most from social dependencies, and
(c) the Unified Generative Model outperforms the Sequential Genera-
tive Model, which we attribute to the joint learning of parameters of the
former generative model.

1.4 Organization

The rest of the paper is organized as follows. Section 2 will discuss the past
research done on modeling items and users relationship. We establish the ex-
istence of correlation between adoption and social links in Section 3 through
hypothesis testing. In Section 4, we develop the Social Correlation Frame-
work that incorporates social correlation in addition to the latent factors. In
Sections 5 and 6, we describe two generative models under this framework:
Sequential and Unified respectively, and show how their parameters can be
learned efficiently. We then proceed to evaluate our methods in Section 7.
Finally we conclude our paper in Section 8.

2 Related Work

2.1 Social Correlation

Here, we review several concepts related to social correlation, such as ho-
mophily, influence, k-exposure, etc. Notably, we go beyond just establishing
or measuring social correlation, to also make use of it for adoption prediction.

Fond and Neville [20, 26] established that social correlation was a result of
two processes that happen alternatively over a period of time: “homophily”
causing users with similar attributes to form social links, and “influence” caus-
ing users with social links to become more similar in attributes. Wen and Lin
[33] show that combining different social media improves the social influence
measure. McPherson et al. [25] surveyed articles establishing that homophily
exists in various social contexts such as marriage, friendship, co-workers, class-
mates, involving similarity factors such as socio-demographic attributes. Singla
and Richardson [30] also established the correlation of search queries among
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instant messaging friends. In our work, we are concerned only with the exis-
tence of social correlation and its use for adoption prediction, and not with the
underlying causes (homophily vs. influence), which are not always observable
from the data.

The work by Liu et al. [22] sought to measure influence based on clearly ob-
servable following behaviors. Their technique is not applicable to our problem
because of the following reasons. First, they only try to measure influence, but
do not incorporate it to model item adoption. Second, they require stronger
assumptions, whereby the directions of social edges are known, and where the
influence direction is already known (e.g., Twitter users re-tweeted postings
by others). Ours is a more generalized approach that allows any friend to
be socially dependent on any friend. In such cases, the possible number of
influencers can be very large and their method may not scale up.

Also related is the notion of k-exposure: the likelihood that a user would
adopt an item increases with the number k of her friends who have adopted
it. Several works have studied k-exposure with respect to such adoptions as
choosing which Wikipedia article to edit or which LiveJournal community to
join [8, 2, 9]. The fundamental assumption here is that every user is correlated
with their friends in the same way. All that matters is the number of friends
who have adopted an item. In contrast, we do not make the same assumption.
In our approach, a user may be correlated with each friend differently, and
may have different self-dependency values.

Ma et al. extended the Bayesian Probabilistic Matrix Factorization (BPMF)
models for rating prediction by adding social factors [24, 23]. They used the la-
tent factors of users and items learned from BPMF coupled with the weighted
values of the social links for item ratings prediction. Instead of rating predic-
tion, we model item adoption. Moreover, they assume the weighted values of
social links are known (or assumed to be uniform). In this work, we do not
make the same assumption, and show that it is possible to learn these weighted
values through an optimization process.

Some prior work focused on how influence propagated across a network.
Assuming a propagation framework such that an adoption by a user would
probabilistically trigger a similar adoption by her friends, an influential user is
one whose initial adoption would eventually result in the most number of total
adoptions by all users [16, 6, 13, 7]. The problem of influence maximization is
orthogonal to our problem, in that influence maximization is more concerned
with the total number of adoptions triggered, while we are concerned more
with predicting individual adoption cases.

Leskovec et al. first analyzed the effect of social influence on viral marketing
[21]. Then Yang and Leskovec addressed influence as a form of information
diffusion [34] with temporal dynamics. Using a large collection of weblogs,
Gruhl et al. studied the effects of information propagation through social
networks [15]. However, their notion of influence requires the explicit adoption
of item while we consider in terms of latent factors.

Snowsill et al. proposed a causal analysis of inferring social influence net-
works from data [31]. Their focus is on the social influence while we are moti-
vated by the user item adoption problem. Cui et al. proposes a social influence
matrix to suggest what items a user should share to maximize their individ-
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ual influence in their own community [10]. Their matrix measures influence
between users and items while ours measure between users and users.

2.2 Latent Space Approaches

The Bayesian Probabilistic Matrix Factorization (BPMF) is a popular model
for low rank matrix approximation [27, 28] method by Salakhutdinov. The
model avoids overfitting of other methods such as SVD by adding Gaussian
noise to the sparse data. The Gaussian noise acts as a regularizer to avoid
overfitting the factorized matrices to the sparse data. Salakhutdinov then
showed that the model can be approximated using a Gibbs Sampling method.
The BPMF method subsequently was applied by Koren to rating prediction
in the Netflix Prize Competition [17].

When modeling ratings, it is appropriate to use BPMF because rating
scores can be approximated to follow the Gaussian distribution. When we
want to model simpler discrete relationships, the Latent Dirichlet Allocation
(LDA) is more suitable [4]. Wang and Blei proposed the combination of matrix
factorization methods and topic models for the recommendation task but unlike
our work, they do not consider the social network features.

2.3 Collaborative Filtering

Collaborative Filtering is a related field of research which also studies the
relationships between users and items [18, 29, 32]. The main objective in
collaborative filtering is to predict the rating a user will give to an item that has
not been rated previously by the user. The rating will then determine whether
a user will like the item and make a purchase eventually. Collaborative filtering
has two important components:(a) determining the neighboring or users similar
to the target user, and (b) personalizing the rating value based on the target
user rating patterns. Koren combined the generalization properties of latent
factor models to neighborhood methods in collaborative filtering. Koren also
extended the factor models to modeling temporal dynamics [19]. Zhang et
al. uses these approaches to demonstrate transfer learning among different
collaborative filtering domains [35].

In our work here, our assumption is that users adopt items because of their
friends’ preferences or the amount of liking they have for the items. The social
correlation which we compute between a pair of users indicates the strength
of how much a user depends on her friend adoption patterns. Collaborative
filtering also computes a similarity value between pairs of users but each pair
may not necessarily have any social relationship. We distinguish our work
by showing how the social relationships between users can be used to mea-
sure their social correlation which represents the strength of their friendship.
Like BPMF, our proposed generative models can be further combined with
neighborhood methods to derive a new collaborative filtering approach. This
extension however is beyond the scope of this paper.
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Figure 2: Latent Dirichlet Allocation in Plate Notation

2.4 LDA Generative Model

LDA was formerly conceived as a way of modeling unigram words in a doc-
ument corpus [4]. Each document is seen as a collection of words and the
words are generated as a result of the topics each document contains. Us-
ing documents and words as analogy, we view users in the adoption graph as
documents, the items they adopt as words and the latent factors of the items
as topics. Figure 2 refers to the graphical notation of LDA. The generative
process for LDA is as follows,

1. Each user u has a latent factor distribution θu which indicates their pref-
erences for a set of topics. θu follows a symmetric Dirichlet distribution
with hyper-parameters α.

θu ∼ Dirichlet(α)

2. For each item v that u adopts, u first chooses from a set of topics based
on their topic preferences,

zv,u ∼ Multinomial(θu)

Then from the latent factors of items distribution Φ, u chooses the item
v from as follows:

ev,u ∼ Φ|zv,u

where Φ follows a symmetric Dirichlet distribution with hyper-parameters
β, as follows:

Φ|zv,u ∼ Dirichlet(β)

Solving for these parameters is fundamentally a likelihood optimization
problem subjected to the probability constraints. Blei showed that the matri-
ces are learned using variational expectation maximization [4]. Griffiths and
Steyvers subsequently showed that LDA can be learned easily using Gibbs
Sampling [14].
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Unlike BPMF which uses Gaussian noise as regularizers, the LDA uses
Dirichlet distributions as smoothing priors which essentially behaves in the
same way as regularizers. There are existing works that uses Dirichlet distri-
butions to model item - user and user - user relationships. Balasubramanya
and Cohen had proposed Block-LDA for modeling protein interactions [3]. The
Block-LDA tries to unite the Mixed Membership Stochastic Blockmodels [1]
and LDA to jointly model the relationships. However, their approach and
assumptions are currently restricted to protein interactions only.

3 Correlation of Social & Adoption Links

We justify our research motivation by first establishing that a correlation exists
between social and adoption links, i.e., whether users with social links also
tend to share common adoptions. Singla and Richardson [30] had also earlier
established that correlations exist between friends on an online social messaging
network. We investigate social correlation by performing hypothesis testing on
two real world data sets obtained from LiveJournal, an online community site
and Epinions, a product review site.

The social graph in LiveJournal consists of friendship links when a user
indicates that another user is her friend [19]. These social links are directional
and not necessarily reciprocal. An adoption link exists between a user and a
community if the user has joined the community. The LiveJournal data set was
obtained by crawling livejournal.com to collect user profile pages. The initial
crawled set corresponded to approximately 20% of active users in LiveJournal.
We only retain the users who have at least one social link and items who have
at least one adoption. The size of the data sets is given in Table 1. In total,
there are close to 16K users and 78K items for LiveJournal.

The social graph in Epinions consists of trust links formed when a user
indicates her trust on another user. An adoption link exists between a user
and a product if the user has written a review for the item for Epinions. We
collected the Epinions data set by crawling the Epinions site, focusing only on
the Videos & DVDs category. For both data sets, we only retain the users who
have at least one social link and items who have at least one adoption. There
are 13K users and 7K items for Epinions (see Table 1).

Table 1: Data Size

Data set: LiveJournal Epinions
no. of users |U |: 16,376 12,895
no. of items |V |: 78,129 6,543
no. of adoption links |E|: 63,160 83,763
no. of social links |F |: 476,227 178,659

We perform hypothesis testing using the Fisher Exact Test [12]. Our null
hypothesis H0 states that the probability of two users having a common adop-
tion is independent of whether the two users have a trust link between them.
Rejecting the null hypothesis implies accepting the alternate hypothesis H1,

8



Table 2: LiveJournal : Contingency Table For Pair of Users with Social and
Adoption Links

No Common Has Common Total
Adoption Adoption

No Social Link 131,281,395 2,485,417 133,766,812
(131,126,176) (2,640,636)

Has Social Link 150,316 161,372 311,688
(305,535) (6,153)

Total 131,431,711 2,646,789 134,078,500

Table 3: Epinions : Contingency Table For Pair of Users with Social and
Adoption Links

No Common Has Common Total
Adoption Adoption

No Social Link 80,122,890 2,874,403 82,997,293
(80,103,462) (2,893,831)

Has Social Link 112,575 24,197 136,772
(132,003) (4,769)

Total 80,235,465 2,898,600 83,134,065

which states that the probability of common adoption is dependent on having
social link.

We perform the Fisher Exact Test on the contingency table in Tables 2
and 3. Each value in the table represents the number of user pairs for a
combination of social link and common item adoption scenarios. The numbers
in parentheses are the expected values if the social graph is independent of
the adoption graph. As shown in the table, the observed number of pairs
with both common adoption and social link 161,372 is far greater than the
expected 6,153 for LiveJournal. And the observed number of pairs with both
common adoption and social link 24,197 is far greater than the expected 4,769
for Epinions.

Using Fisher Exact Test, we obtain a p-value < 2.2 × 10−16 for both con-
tingency tables which indicates that we can reject H0, and conclude that the
presence of social links is correlated with the presence of adoption links.

4 Social Correlation Measure

Our social correlation measure expresses the user-item adoptions E as a prod-
uct of three components, Φ, Θ and CT as follows:

E ≈ Φ ·Θ · CT (1)

where Φ represents the latent factors of items arranged in a |V | × |Z| matrix
with Z being the set of latent factors, Θ represents the latent factors of users
arranged in a |Z|× |U | matrix, and CT represents the tranpose of the |U |× |U |
social correlation matrix.
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The social correlation measure requires us to determine all user-item adop-
tions and the three matrix components. If some elements of E can be ob-
served, we can use them to learn the matrix components by minimzing the
error |E − Φ · Θ · CT |. This is akin to maximizing the likelihood of observing
the values in E. Maximizing the likelihood is the dual equivalent problem of
minimizing error.

Since the graphs are sparse, algorithms that scale with the number of ob-
served links would run faster. In the following, we formulate such an algorithm,
and show that the complexity is indeed polynomial to the number of observed
links.

4.1 Social Correlation Matrix

The |U | × |U | social correlation matrix C tells us how likely a user will adopt
an item based on the latent factors of other users. Each element cu,u′ reflects
the likelihood that the user u will be correlated to u′, in the sense of making
adoption decision based on the latent factors of u′. cu,u is the self-dependency
of user u, or the likelihood that u relies on her own latent factors. Each user has
a set of social correlation values where each social correlation value defines the
correlation between the user and one of her neighbor. This social correlation
tells us how likely the user will follow the actions of her neighbor. The self-
dependency value, is the social correlation value between the user and the user
herself (because the user can be a neighbor of herself). A high self-dependency
value indicates that the user is very independent in making adoption decisions
and will not follow other users easily. A low self-dependency value indicates
that the user depends on her friends for making adoption decisions.

To properly reflect the notion of correlation, C cannot just be any |U |×|U |
matrix. We require that C must have the following properties:

• It is probabilistic. Each element cu,u′ is in the range of [0, 1]. For each
user u, we also have

∑

u′ cu,u′ = 1.

• It preserves the social network structure. Since social correlation is based
on the underlying social network structure, cu,u′ should have non-zero
value only if there is a social link from u to u′, i.e., cu,u′ > 0 ⇒ (u, u′) ∈ F .
In addition, we also learn the self-dependency values cu,u for each user u.

4.2 Probabilistic Formulations

We would like to illustrate the formulation of our models using probabilistic
explanations. Given a user u, we would like to know the probability that she
will adopt the item v, given the users latent factors Θ and the latent factors
of items Φ.

Suppose now that we have the edges of the social graph F and the latent
factors of all users in U including herself, we hypothesize that the user u
adopts items based on the latent factor preferences of her friends Fu and the
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user herself. We may restate the equation as follows,

P (ev,u|Θ,Φ, F ) =
∑

x∈Fu

P (ev,x, fu,x|Θ,Φ, F )

=
∑

x∈Fu

P (ev,x|Θ,Φ)P (fu,x|F ) (2)

where fu,x represents that u has a directed social link to x. Also note that
finding ev,u has become finding ev,x on the right hand side of the equations.
P (fu,x|F ) is either 0 or 1 since we do not model the probability of social links.

Equation 2 however is not a valid probability equation because it does not
sum to 1. In fact, the values will exceed 1 due to the outer summation over
x. The reason is besides knowing the probability that u indicates x as a friend
in the social graph P (fu,x|F ) and the probability that x adopts item v in the
adoption graph P (ev,x|Θ,Φ), we need a weighted component that tells us the
probability that u depends on x in the adoption graph P (xv,u = x|C,F ) (to
be defined shortly). This component is the social correlation that we want to
determine.

Hence, our proposed latent space model is to introduce the latent variable
xv,u which tells us which x that u depends on to adopt v, and the social
correlation C where its elements cu,x gives us the probability that u follows the
latent factors of x. The special case is x = u which tells us the self-dependency
of u. The higher cu,u is, the less the user u depends on social correlation.

Putting the above intuition formally, the probability that u adopts an item
v based on the social correlation C is given by:

P (ev,u|Θ,Φ, F, C) =
∑

x∈Fu

P (ev,x, xv,u = x|Θ,Φ, F, C)

=
∑

x∈Fu

P (ev,x|Θ,Φ)P (xv,u = x|C,F )

where F the social network is always available. The information to be learnt
are Θ, Φ and C.

4.3 Prediction Models

Once the social correlation matrix C has been learned, we can instantiate two
adoption prediction models as follows.

• Social Correlation represents the approach of relying only on social cor-
relation for item adoption. We compute Φ ·Θ ·CT (see Equation 1) based
on the learned C, taking into account only the non-diagonal values of C,
i.e., setting cu,u = 0, ∀u ∈ U .

• Hybrid represents the approach of combining Social Correlation and
LDA, by computing Φ ·Θ ·CT with the original learned C (with diagonal
values retained).

Special Case. Our proposed formulation subsumes the underlying latent
factors model. In the case where C is the identity matrix, with 1’s as diagonal
values and 0’s otherwise, then Φ · Θ · CT degenerates to Φ · Θ, which is the
outcome by LDA.
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5 Sequential Generative Model

The Sequential Generative Model assumes that the values ev,u is adequately
estimated by the LDA. This assumption is reflected by the shaded θ and φ
variables in the graphical model as shown in Figure 3. We also assume the
existence of a social network as reflected by the shaded f variables.

ϕ

v

θ

x

c

f

|Z|

|Vu|

|U |

|U |

Figure 3: Sequential Generative Model for Static Social Correlation

C can be obtained in several ways. The naive way is to calculate C by
multiplying E with the inverse of Φ ·Θ, i.e. C = (Φ ·Θ)−1 ·E. This naive way
will not work for several reasons.

1. C may over-fit leading to poor results in link prediction. The obtained
Φ ·Θ ·CT will be as sparse as E, and thus the factorization does not help
in link prediction.

2. C may have values outside the range of [0, 1]. In fact, they may range
from negative infinity to positive infinity. Such values do not have clear
semantics and it is hard to interpret the meaning of these values.

3. C may have non-zero values even if the users are not connected by social
links.

Instead of this naive way, we devise a generative model called Sequential
Generative Model, with the following generative process,

1. For a given user u, u chooses a friend x from her set of friends Fu and
her social correlation with that friend cu,x for adopting the item v.

P (xv,u = x|Cu, Fu) = cu,x
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2. Given the known probability of user x adopting item v, u adopts v based
on how likely x adopts item v,

P (ev,x|Θ,Φ) =
∑

z

θx,z · φz,v

where above equation has parameters Θ and Φ computed by LDA.

The probability of user u adopting item v is therefore:

P (ev,u|Θ,Φ, F, C) =
∑

x∈Fu

P (ev,x|Θ,Φ)P (xv,u = x|Cu, Fu)

=
∑

x∈Fu

e′v,xcu,x

and e′v,x is the (v, x) element of Φ ·Θ.
To learn the social correlation values, we maximize the log likelihood of

ev,u, ∀u ∈ U, ∀v ∈ Vu, using the Expectation Maximization (EM) algorithm
[11],

logP (E|Θ,Φ, F, C) =
∑

u,v

logP (ev,u|Θ,Φ, F, C)

=
∑

u,v

log
∑

x

e′v,xcu,x

where
∑

u,v is short for
∑

u∈U

∑

v∈Vu
. U represents the set of users in our data

and Vu represents the set of items Vu adopted by user u.

5.1 Expectation Maximization Algorithm

We first show the E Step. The E Step of the EM algorithm infers the latent
variables using initial values of C,

P (xv,u = x|ev,u,Θ,Φ, F, C) =
P (ev,x|Θ,Φ)P (x|Cu, Fu)

∑

x′∈Fu
P (ev,x′ |Θ,Φ)P (x′|Cu, Fu)

=
e′v,xcu,x

∑

x′∈Fu
e′v,x′cu,x′

(3)

= h(u, x, v)

Since we have introduced cu,x as a probabilistic weight, hence, it must sum
to one.

∑

x∈Fu

cu,x = 1, ∀x ∈ U

Now for the M step, we aim to maximize the log likelihood with respect to
the unknown social correlation C, subject to the above constraints. In order
to include the constraints as part of the objective function, we introduce the

13



Lagrange multipliers λu [5] and proceed to solve the following using differenti-
ation,

d

d cu,x

[

∑

v∈Vu

∑

u∈U

log
(

∑

x∈Fu

e′v,xcu,x

)

− λu

(

∑

x∈Fu

cu,x − 1
)

]

= 0

∑

v∈Vu

e′v,x
∑

x′∈Fu
e′v,x′cu,x′

− λu = 0

λu =
∑

v∈Vu

e′v,x
∑

x′∈Fu
e′v,x′cu,x′

λucu,x =
∑

v∈Vu

e′v,xcu,x
∑

x′∈Fu
e′v,x′cu,x′

cu,x =
1

λu

∑

v∈Vu

e′v,xcu,x
∑

x′∈Fu
e′v,x′cu,x′

(4)

Recall in our E step that we have calculated something similar to the RHS
of Equation 4. By inserting the results of Equation 3 from the E Step, we get

cu,x =
1

λu

∑

v∈Vu

h(u, x, v)

where λu can be seen as a normalizing constant. Calculating the E Step and
M Step in an iterative manner until convergence, we derive the EM algorithm.

5.2 Complexity Analysis

In Section 3, we show that the social and adoption graphs are sparse. That is,
the number of edges in the graph is significantly smaller than the total number
of possible edges, |F | << |U |2 and |E| << |V | · |U |. Since the graphs are
sparse, our algorithm complexity should scale with respect to the number of
edges instead of the number of vertices. We should also use sparse matrices to
reduce the amount of memory required.

The efficiency of our learning algorithm can be easily seen from Equation
3 of the E Step and Equation 4 of the M Step. In the E Step, each user has to
compute the latent variable xv,u for the number of items u has. The number
of possible values xv,u can take depends on the number of social links u has.
Based on this analysis, the complexity of the Sequential Estimation is therefore
given by, O(|U | ·avg(|Vu|) ·avg(|Fu|)). Expressing in terms of number of edges,

O(|U | · avg(|Vu|) · avg(|Fu|)) = O

(

|U | · avg(|Vu|) · |U | · avg(|Fu|)

|U |

)

= O

(

|E| · |F |

|U |

)

Complexity for each iteration of our EM algorithm is given by O
(

|E|·|F |
|U |

)

. We

will empirically verify the running time and number of iterations for conver-
gence in Section 7.5.
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6 Unified Generative Model

The Sequential Model performs the derivation of latent factors and social cor-
relation variables separately for simplicity. Following the model semantics, the
social correlation parameters requires knowledge of the latent variables xv,u

which can only be estimated accurately given the latent variables zv,u. How-
ever, the latent variables zv,u also depend on the value of xv,u. This circular
dependency complicates the learning of the latent variables and their respec-
tive parameters: Θ, Φ and C. The sequential approach we took in Section 5,
gives us a simple approach to estimating xv,u and additional assurance that
once the latent variables zv,u have been adequately estimated, estimation of
xv,u will lead to a better overall performance of the model. In this section, we
proposed a unified estimation for the parameters of Φ, Θ and C.

ϕ

vzx

c

f

|Z|

|Vu|

|U |

|U |

Figure 4: Unified Generative Model for Static Social Correlation

Figure 4 shows the plate notation of our graphical model. In this paper, we
provide a unified way of learning the latent variables x and z using the Expec-
tation Maximization (EM) approach for learning two sets of latent variables.
We describe the generative process as follows,

1. For a given user u, u chooses a friend x from her set of friends Fu and
her social correlation with that friend cu,x for adopting the item v.

P (xv,u = x|Cu, Fu) = cu,x

2. From the chosen friend x, who may be u herself, u chooses a latent factor
zv,u based on the latent preferences of the chosen friend θx.

P (zv,u = z|xv,u = x,Θ) = θx,z

3. Finally, given the latent factor zv,u and the latent factor items φz, u
chooses an item v to adopt.

P (ev,u|zv,u = z,Φ) = φz,v
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6.1 Parameter Estimation

Given a user-item matrix E, a social network F , a set of users U , a set of
items V , let u ∈ U denote a user, v ∈ V denote an item, the element ev,u = 1
of matrix E denote that u adopts item v. Suppose we have a user to user
correlation matrix C, where cu,x > 0 if u, x ∈ U and u is friends with x.
Details of the derivation is given in Appendix A.

The E Steps are

f(u, v, z) =
φz,vθu,zcu,u

∑

z′∈Z

∑

x′∈Fu
φz′,vθx′,z′cu,x′

(5)

g(u, v, z) =

∑

x∈Fu
φz,vθx,zcu,x

∑

z′∈Z

∑

x′∈Fu
φz′,vθx′,z′cu,x′

(6)

h(u, v, x) =

∑

z∈Z φz,vθx,zcu,x
∑

z′∈Z

∑

x′∈Fu
φz′,vθx′,z′cu,x′

(7)

The M Steps are,

θu,z =
1

γu

∑

v∈Vu

f(u, v, z)

φz,v =
1

δz

∑

u∈U

g(u, v, z)

cu,x =
1

λu

∑

v∈Vu

h(u, v, x)

6.2 Complexity Analysis

As mentioned in Section 5.2, it suffices to analyze the complexity of the E Step,
so we shall focus on the E Step for the Unified Estimation method. The E
Steps of Unified Estimation depends on Equations 5, 6 and 7. For each user u,
Equations 5, 6 and 7 requires O(|Z| · |Vu| · |Fu|). So the complexity for all users
is given by O(|U | · |Z| · avg(|Vu|) · avg(|Fu|)). Following the previous analysis
on the complexity, The complexity is given by,

O

(

|Z| · |E| · |F |

|U |

)

7 Experimental Evaluation

7.1 Experimental Setup

Data Set: For experiments, we extracted data sets from the LiveJournal data
set and Epinions data set described in Section 3. The items in LiveJournal
are communities that the users join, while the items in Epinions are products
reviewed by users. Also recall that Epinions has user-user trust links while
LiveJournal has user-user friendship links.

Since our interest is in learning the correlation between social and adoption
graphs, we prune the data set such that each user or item has a sufficient
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number of links in both graphs. Thus, we iteratively remove users with less
than three incoming/outgoing links and items, and items with less than three
users, until no such user/item can be found in the graphs. We need such a
minimum threshold so that when we divide the data sets into training and
testing sets, each user and item will at least have some links to hold out for
testing. Table 4 shows the statistics of our LiveJournal and Epinions data
sets. The size of our dataset here is smaller than the size as shown in Table 1
due to the pruning steps as mentioned above. It is necessary for the pruning
because it will be difficult to learn the latent factors of users with fewer than
three items.

Table 4: Statistics of our Data Subset

Name #users #items #social links #adoption links
LiveJournal 3,773 21,463 209,832 216,586
Epinions 2,934 2,146 66,036 135,940

The statistics in Table 4 shows that the LiveJournal data set and Epinions
data set have different properties. The LiveJournal data set has a denser user-
user social graph, while the Epinions data set has a denser user-item adoption
graph. The two data sets will give a fair overview of how our models perform
in predicting missing links under different scenarios.

Methods: In the experiments, we compare the following methods in terms
of effectiveness.

• Random represents the approach where we randomly predict the items
that a user will adopt. This is our baseline method for obtaining a
performance ratio.

• LDA represents the approach where a user relies only on her own latent
factors and also latent factor of items.

• Sequential Social represents the approach using only social correlation
(i.e., friends’ latent factors), and parameters estimated using the Se-
quential Model Method.

• Sequential Hybrid represents the approach of using both a user’s own
latent factors as well as her friends’, and parameters estimated using the
Sequential Model Method.

• Unified Social represents the approach using only social correlation (i.e.,
friends’ latent factors), and parameters estimated using the Unified Model
Method.

• Unified Hybrid represents the approach of using both a user’s own latent
factors as well as her friends’, and parameters estimated using the Unified
Model Method.

At times, we may need to refer to two methods as a group. In those cases,
we use a short form of Sequential to refer to both the Sequential Social and
Sequential Hybrid. Similarly for Unified. On the other hand, Social is a short
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form to refer to both Sequential Social and Unified Social. Similarly for Hybrid.
The formulations of these methods were given in Section 2.4 (LDA), Section 5
(Sequential), and Section 6 (Unified) respectively.

Metrics: We first hide 30% of the user item adoption links randomly in
each data set to create a training set with the remaining links and a testing set
with the missing adoption links. Then for each method, we generate a ranking
of adoption links for each user based on the probability values returned by
the method. We then construct a Precision-Recall (PR) curve for each user,
and measure the area under the PR curve (AUC). The AUC ratio refers to
the ratio of a method’s AUC to Random’s AUC. The higher the AUC ratio,
the better a method performs relative to Random. The performance of each
method is therefore defined to be the average of AUC or AUC ratio over all
users.

7.2 Number of Latent Factors

To decide the number of latent factors for factorizing, we measure the predic-
tion performance of LDA, Sequential Social, Sequential Hybrid, Unified Social
and Unified Hybrid using their aggregated AUC results of all users, while vary-
ing the number of latent factors.

Figures 5 and 6 show the AUC with respect to the number of latent factors.
Unified Hybrid outperforms Sequential Hybrid and LDA for all factors. Unified
Social outperforms Sequential Social for all factors.
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0.025

Number of Factors
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AUC vs # of Factors

 

 

LDA

Sequential Social

Sequential Hybrid

Unified Social

Unified Hybrid

Figure 5: LiveJournal: AUC vs Number of Factors

Since our performance is consistent across all latent factors, for the rest
of the experiments in this section, we pick 40 latent factors for LiveJournal
and 10 latent factors for Epinions because they are manageable numbers for
computation and are reasonable numbers for the size of the data sets.

Appendix B shows the list of top ranked items for a subset of the topics.
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Figure 6: Epinions: AUC vs Number of Factors

The items in these topics give us a qualitative view of whether the chosen
number of topics is appropriate.

7.3 Self-Dependency Analysis

Here, we showcase the merits of our proposed models by examining the AUC
ratios for groups of users with varying self-dependency. Given that we have the
Sequential Model and Unified Model of deriving the self-dependencies, we only
compare for LDA vs Sequential Social vs Sequential Hybrid and LDA vs Unified
Social vs Unified Hybrid. The diagonal values in C tell us how much each user
depends on her own latent factors for items adoption. If a diagonal value cu,u
is high, the corresponding user u is said to have a high self-dependency. Such
a user is likely to adopt items based on her own latent factors. In contrast,
a user with low self-dependency is likely to adopt items based on her friends’
latent factors. We hypothesize that Social likely performs better than LDA
for users with low self-dependency and Hybrid should do well on average for
the different groups of users.

We bin the users into three groups of self-dependency with low as cu,u ∈
[0, 1

3
), mid as cu,u ∈ [1

3
, 2
3
] and high as cu,u ∈ (2

3
, 1]. The bins interval are

selected for them to be equal in width. We calculate for each user the AUC
ratios AUC Social

AUC Random
and AUC Hybrid

AUC Random
. Subsequently, we place each user in one

of the low, mid, high self-dependency groups then prune away the top 95
percentile and bottom 5 percentile to calculate the trimmed mean of the ratios.

Figures 7 and 8 show the results of LiveJournal and Epinions for the mean
ratios using the Sequential Model. In each figure, a higher bar indicates a better
performance over the baseline method Random. AUC ratio ≈ 1 means compa-
rable performance with Random, while higher ratios mean better performance
over Random. The number in parenthesis next to each self-dependency label
indicates the number of users in that category.
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Figure 7: LiveJournal: Sequential Model AUC Ratio vs Self-Dependency

In both figures, the results indicate that Social and Hybrid methods work
very well for users with low self-dependency values, showing significant im-
provement over LDA. For users with mid self-dependency values, the improve-
ments over LDA are more modest. For users with high self-dependency, as
expected, the results of Hybrid are very similar to LDA, with slight over-
performance by Hybrid and slight under-performance by Social. These find-
ings support our hypothesis that Social and Hybrid vastly improve upon LDA’s
performance, especially for users with low self-dependency values. The perfor-
mance of Hybrid over Social increases as the self-dependency increases. This
suggests that friend’s preferences matters less to users of high self-dependency.

Figures 9 and 10 show the results of LiveJournal and Epinions for the mean
ratios using the Unified Model. In both figures, the results indicate that our
models work well for users with low self-dependency values. As self dependency
increases, the edge unified has over LDA decreases as expected. These findings
are also similar to that of the Sequential Model. Consistent with the Sequential
Model results, the Hybrid performance increases over Social as self-dependency
increases.

We are not able to compare side-by-side the performance of Sequential
Model and Unified Models with respect to the self-dependency values because
the self-dependency values are specific only to each method. In the following
section, we will compare the performance of Sequential and Unified with re-
spect to the number of items each user has. Please also refer to Appendix C
for further analysis on the self-dependency values.

7.4 Number of Items

Besides comparing with the self-dependency of each user, we also look at the
AUC performance with respect to the number of items each user has. Figures
11 and 12 show the AUC ratio with respect to the log of the number of items
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Figure 8: Epinions: Sequential Model AUC Ratio vs Self-Dependency

(communities or movies) of the users. Users are organized into different groups
based on the number of items that they have adopted. The vertical-line paral-
lel to the y-axis gives the median value for the number of items each user has.
As shown in Figure 11 for LiveJournal, Social outperforms LDA for approxi-
mately half of the users. For Figure 12 for Epinions, Social outperforms LDA
in the first three bins (beyond the median), effectively improving prediction for
more than half of the users. The figures show that Social improves prediction
for a majority of the users in Epinions and approximately half of the users in
LiveJournal. Hybrid improves the prediction accuracy for even more users in
LiveJournal and Epinions. From these figures, we can also conclude that our
methods (especially Hybrid) are very helpful for improving item adoption pre-
diction for users with shorter adoption history (fewer items), while maintaining
performance for users with longer adoption history.

Figures 11 and 12 show that the performance of our models with respect to
Random decrease when number of items adopted by the user increases. This
decrease in relative performance is because Random has better performance
when there are more items to predict. Theoretical estimate of Random’s AUC
with respect to the number of items can be found in D.

7.5 Convergence Rate

We explained the complexity of the algorithm in Section 5.2 and Section 6.2.
We now proceed to empirically verify that the EM algorithm for learning the
social correlation matrix is able to converge by achieving a higher likelihood
than LDA and is able to reach convergence relatively fast. We test our algo-
rithm on a machine with Intel(R) Xeon(R) CPU X5460 @3.16GHz with 24 GB
of memory.

Figures 13 and 14 show the likelihood with respect to number of iterations
for LiveJournal and Epinions respectively. Since we have pre-computed LDA

21



Low (478) Mid (408) High (1372) All (2258)
0

5

10

15

20

25

30

35

40

Unified Self Dependency

R
a

ti
o

 

 

LDA / Random

Unified Social / Random

Unified Hybrid / Random

Figure 9: LiveJournal: Unified Model AUC Ratio vs Self-Dependency

for the Sequential Model, the likelihood given by LDA is therefore a constant
as shown by the red line in Figures 13 and 14. In the figures, each dot repre-
sents each iteration. As shown in the figures, it only takes a small number of
iterations for the likelihood of Sequential Model and Unified Model to exceed
that of LDA. The time required for these iterations is also quite fast taking a
couple of seconds to reach convergence.

For LiveJournal, LDA took 547 seconds, each iteration of Sequential Model
0.315 seconds and each iteration of Unified Model took 365 seconds. For Epin-
ions, it took about 6.1 seconds to run LDA, each iteration of Sequential Model
took 0.0313 seconds, each iteration of Unified Model took 3.49 seconds. Hence,
the Sequential Model takes less time to be learnt compared with the Unified
Model (assuming that each model requires at least 5 iterations). The LDA
model requires the least amount of time.

7.6 Case Studies

To illustrate how our proposed models work differently than other methods,
we describe case studies involving two types of users: one with a low self-
dependency (relying on friends for item adoption) and another with a high
self-dependency (relying on own latent factors). To avoid repetition of analysis
and space constraints, we only show the case studies for the Unified Social and
Unified Hybrid for the LiveJournal data set.

Low Self-Dependency. Figure 15 shows the profile of starkoff, a user
with low self-dependency (cu,u = 0.19) as shown by the number in parentheses.
starkoff has adopted twenty four items, in which eight of these items are also
adopted by starkoff ’s friends, uletelisamolety and ruslash. For each prediction
method, we show the items’ ranks based on adoption probabilities generated
by the method. In other words, the higher the probability of adopting the item,
the smaller the number (rank). Since these items are the true adoptions by the
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Figure 10: Epinions: Unified Model AUC Ratio vs Self-Dependency

user, a smaller rank implies a stronger result. As shown by the ranks, seven out
of eight items gives a better or equal rank when we apply the probabilities given
by Unified Social and Unified Hybrid. This suggests that starkoff ’s adoptions
are highly motivated by friends’ latent factors and the social correlation for a
user friends is important to suggest items of adoption for low self-dependency
users.

High Self-Dependency. Figure 16 shows the profile of prmarker, a user
with high self-dependency (cu,u = 0.953). prmarker adopts fifty nine items
where four of these items are also adopted by her friends. The ranks of these
four items show that we should use either LDA or Unified Hybrid to predict
for their adoption. Hybrid is better than Social for these four items while LDA
is better than Social and Hybrid for three out of four items. In addition to
these four shared items, we also show five other items that prmarker does not
share with her friends. In these five items, the ranks indicate that Hybrid is
better than LDA which in turn is better than Social. This suggests that the
social correlation is less important for high self-dependency users.

8 Summary

In this chapter, we address the problem of modeling item adoptions based on
social correlation. We propose a social correlation measure that incorporates
a probabilistic social correlation matrix into a latent space approach. Our
social correlation is based on several key ideas. In making item adoption
choices, users are not motivated just by their own latent factors, but also by
their friends’. The degree to which a user correlates to their friends’ latent
factors is not uniform, rather it differs from one user to another. We design
two generative models: Sequential Generative Model that learns the social
correlation matrix and latent factors in two steps, and Unified Generative
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Figure 11: LiveJournal: AUC Ratio vs Log (# Communities)

Model that learns both in a unified way. To solve these models, we propose
efficient parameter estimation solutions based on Expectation-Maximization
that scale with the number of observed links. Our experiments with Epinions
and LiveJournal data sets show that Unified outperforms Sequential, and both
outperform the approach based on latent factors only (LDA).
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A Derivation of the E-Steps and M-Steps for

Unified Generative Model

Suppose we have Θ the users latent factor distributions and Φ the latent factors
item distribution. Then the likelihood of E is given by,

P (E|Θ,Φ, C, F ) =
∏

u∈U

∏

v∈Vu

P (ev,u|Θ,Φ, C, F )

=
∏

u∈U

∏

v∈Vu

∑

z∈Z

∑

x∈Fu

[

P (ev,u|zv,u = z,Φ)

P (zv,u = z|xv,u = x,Θ)P (xv,u = x|Cu, Fu)
]

Then expressing in logarithm form,

logP (E|Θ,Φ, C) =
∑

u∈U

∑

v∈Vu

log
[

∑

z∈Z

∑

x∈Fu

P (ev,u|zv,u = z,Φ)

P (zv,u = z|xv,u = x,Θ)P (xv,u = x|Cu, Fu)
]

Find the E Step for zv,u assuming that we do not have xv,u,

P (zv,u = z|ev,u,Θ,Φ, C, F ) =

∑

x∈Fu
P (ev,u, z, xv,u = x|Θ,Φ, C, F )

∑

z′∈Z

∑

x′∈Fu
P (ev,u, z′, xv,u = x′|Θ,Φ, C, F )

∝
∑

x∈Fu

P (ev,u|z,Φ)P (z|x,Θ)P (x|Cu, Fu)

= g(u, z, v)
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Then find the E Step for xv,u assuming that we do not have zv,u,

P (xv,u = x|ev,u,Θ,Φ, C, F ) =

∑

z∈Z P (ev,u, zv,u = z, x|Θ,Φ, C, F )
∑

z′∈Z

∑

x′∈Fu
P (ev,u, zv,u = z′, x′|Θ,Φ, C, F )

∝
∑

z∈Z

P (ev,u|z,Φ)P (z|x,Θ)P (x|Cu, Fu)

= h(u, x, v)

In the M Step of EM algorithm, take partial derivative of the log likelihood
with respect to Θ,Φ and C,

logP (E|Θ,Φ, C) =
∑

u∈U

∑

v∈Vu

log

(

∑

z∈Z

∑

u′∈U

φz,vθu′,zcu,u′

)

Given that
∑

u′∈U cu,u′ = 1,
∑

z∈Z θu,z = 1 and
∑

v∈Vu
φz,v = 1 are constraints,

we may optimize for the above using the following Lagrange constraint,

L(Θ,Φ, C, F, λ) = logP (E|Θ,Φ, C, F )

−
∑

u∈U

[

λu

(

∑

x∈Fu

cu,x − 1

)

+ γu

(

∑

z∈Z

θu,z − 1

)]

−
∑

z∈Z

δz

(

∑

v∈Vu

φz,v − 1

)

Suppose we differentiate L(Θ,Φ, C, F, λ) with respect to cu,x, θx,z and φz,v:

d

d cu,x
L(Θ,Φ, C, λ) =

∑

v∈Vu

∑

z∈Z φz,vθx,z
∑

z′∈Z

∑

x′∈Fu
φz′,vθx′,z′cu,x′

− λu

d

d θu,z
L(Θ,Φ, C, λ) =

∑

v∈Vu

φz,vcu,x
∑

z′∈Z

∑

x′∈Fu
φz′,vθx′,z′cu,x′

− γu

d

d φz,v

L(Θ,Φ, C, λ) =
∑

u∈U

∑

x∈Fu
θx,zcu,x

∑

z′∈Z

∑

x′∈Fu
φz′,vθx′,z′cu,x′

− δz

Then find the cu,x, θu,z and φz,v which gives zero gradient for L(C, λ). To
summarize, the E Steps are

f(u, v, z) =
φz,vθu,zcu,u

∑

z′∈Z

∑

x′∈Fu
φz′,vθx′,z′cu,x′

g(u, v, z) =

∑

x∈Fu
φz,vθx,zcu,x

∑

z′∈Z

∑

x′∈Fu
φz′,vθx′,z′cu,x′

h(u, v, x) =

∑

z∈Z φz,vθx,zcu,x
∑

z′∈Z

∑

x′∈Fu
φz′,vθx′,z′cu,x′

The M Steps are,

θu,z =
1

γu

∑

v∈Vu

f(u, v, z)

φz,v =
1

δz

∑

u∈U

g(u, v, z)

cu,x =
1

λu

∑

v∈Vu

h(u, v, x)
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B Topic Analysis

Here, we evaluate the effectiveness of LDA in deriving the latent factors or
topics. If LDA has learned the latent factors or topics well, each topic would
correspond to a cluster of related items. For ease of illustration, we only show
three topics each for LiveJournal and Epinions. For each topic, we identify the
top items with the highest latent factor values for that topic.

Table 5 shows a sample of the top communities in each topic for the Live-
Journal data set. The names of communities in LiveJournal draw from a wide
variety of languages with Russian being a dominant language as seen by the
prefix ru in the communities name. Topic L1 shows preference for East Asian
culture. “jpop” is a synonym for Japanese Pop Music, “kpop” for Korean
Pop Music, “jdramas” for Japanese Drama, “anime” and “manga” are terms
for Japanese cartoons. Topic L2 is of Information Technology subjects and
Topic L3 shows art and design. Table 6 shows a sample of the top movie

Table 5: Example Top Communities for Each Topic in LiveJournal

Topic L1 Topic L2 Topic L3
free manga ru webdev ru designer
anime downloads ru linux ru photoshop
jdramas ru sysadmins design books
jpop uploads ru software ru illustrators
kpop uploads ru programming ru vector

titles in each topic for the Epinions data set. The movies in each topic tend
to be similar in terms of their genres. For instance, movies in Topic E1 such
as the Spider-Man and Lord of the Rings series are action movies. Movies
in Topic E2 are dramas such as Erin Brockovich and Fight Club. Movies in
Topic E3 seem to be comedies. Intuitively, these three topics also correspond
to the three most popular genres in the data set: action, drama, and comedy.

Table 6: Example Top Movie Titles for Each Topic in Epinions

Topic E1 Topic E2 Topic E3
Spider-Man Erin Brockovich Shrek
Spider-Man 2 Fight Club Charlie’s Angels
Batman Begins American Psycho What Women Want
Lord of the Rings:
The Two Towers

Magnolia Meet the Parents

Lord of the Rings:
The Return of the
King

American Beauty Miss Congeniality

C Distribution of Social Correlation

Figures 17 and 18 show the histogram of self-dependency values. The x-axis
indicates the self-dependency values in logarithm scale and y-axis indicates
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Figure 17: LiveJournal: Histogram of Self Dependency

the number of users who fall into the respective bins. The dotted black line
parallel to the y-axis represents the logarithm value of 0.5. We define users
having self dependency value less than 0.5 as followers (left of the dotted line),
because they depend more on others in aggregate than in themselves. With
this definition, 35% of users in LiveJournal and 29% of users in Epinions are
followers. These significant percentages indicate that a sizable portion of the
population do depend on others in their item adoptions, which validate our
proposed approach of not relying on self preferences alone.

On the other hand, since the majority of users are non-followers, many
social links between the users have very low social correlation values. In other
words, a user may choose to follow another user but many of such follow
relationships do not share common interests or result in item adoptions for
the following user. This may imply that while the observed social network is
sparse, the actual underlying dependency network between users is sparser.

D Theoretical Performance of Random

Given that there are M items for the Random prediction model to select from
and v out of M items are Actual Positive. That is, a random user has these v
items in the testing set and we want to test how well Random method recovers
these v items. Then given that we select the top k items returned by the
Random method such that k ≤ M . What is the probability that there are t
correctly chosen items, given that t ≤ v?

Since AUC of Precision & Recall (AUC-PR) Curve for Random depends
on the precision (PREC) and recall (REC) for each k, we should find the
expected precision E(PREC|k) and expected recall E(REC|k) for each k.
Expected values of precision and recall depends on the number of true positives
(tp) at k,
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Figure 18: Epinions: Histogram of Self Dependency

E(PREC|k) =
E(tp|k)

k

E(REC|k) =
E(tp|k)

v

E(tp|k) =

min(k,v)
∑

t=1

t · P (tp = t|k)

P (tp = t|k) =

(

v

t

)

·

(

M − v

k − t

)

/

(

M

k

)

P (tp = t|k) is derived as follows, given that there are v actual positives, the
number of possible ways to get t predicted positives, is the combinatorial

(

v

t

)

.
Then there are M − v actual negatives, to select k− t predicted negatives out
of these actual negatives, we have

(

M−v

k−t

)

different combinations of selections.

Finally, there are
(

M

k

)

ways of choosing top k randomly from the entire possible
set of items.

P (tp = t|k) is in fact a HyperGeometric Distribution. Finally, expected
AUC of PR Curve is given by the area under curve of the list of PR values for
each k, from 1 to M .

Figure 19 shows the theoretical and actual empirical results given by Ran-
dom. The performance of Random increases as number of items increases. This
explains why our AUC ratio which represents the improvement over Random
decreases when number of items increases, as shown in Figures 11 and 12. The
values of AUC on the y-axis in Figure 19 shows that the AUC values are in the
order of e−10 to e−3. In comparison, the AUC values obtained by our models
as reflected in Figures 5 and 6 are relatively higher than Random.
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