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Robust Deviance Information Criterion for Latent

Variable Models∗

Yong Li
Renmin University of China

Tao Zeng
Singapore Management University

Jun Yu
Singapore Management University

Abstract

It is shown in this paper that the data augmentation technique undermines the theoret-
ical underpinnings of the deviance information criterion (DIC), a widely used information
criterion for Bayesian model comparison, although it facilitates parameter estimation for
latent variable models via Markov chain Monte Carlo (MCMC) simulation. Data aug-
mentation makes the likelihood function non-regular and hence invalidates the standard
asymptotic arguments. A new information criterion, robust DIC (RDIC), is proposed for
Bayesian comparison of latent variable models. RDIC is shown to be a good approxima-
tion to DIC without data augmentation. While the later quantity is difficult to compute,
the expectation – maximization (EM) algorithm facilitates the computation of RDIC when
the MCMC output is available. Moreover, RDIC is robust to nonlinear transformations of
latent variables and distributional representations of model specification. The proposed
approach is illustrated using several popular models in economics and finance.

JEL classification: C11, C12, G12
Keywords: AIC; DIC; EM Algorithm; Latent variable models; Markov Chain Monte Carlo.

1 Introduction

One of the most important developments in the Bayesian literature in recent years is the

deviance information criterion (DIC) of Spiegelhalter et al. (2002). DIC is a Bayesian version

of the well known Akaike Information Criterion (AIC) (Akaike (1973)). Like AIC, it trades

off a measure of model adequacy against a measure of complexity and is concerned about

how replicate data predict the observed data. DIC is constructed based on the posterior
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1000872, P.R. China. He is currently a postdoc at Sim Kee Boon Institute for Financial Economics at Singapore
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Singapore Management University, 90 Stamford Road, Singapore 178903. Jun Yu, Sim Kee Boon Institute
for Financial Economics, School of Economics and Lee Kong Chian School of Business. Email for Jun Yu:
yujun@smu.edu.sg. URL: http://www.mysmu.edu/faculty/yujun/.
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distribution of the log-likelihood or the deviance, and has several desirable features. First,

DIC is simple to calculate when the likelihood function is available in closed-form and the

posterior distributions of the models are obtained by Markov chain Monte Carlo (MCMC)

simulation. Second, it is applicable to a wide range of statistical models. Third, unlike Bayes

factors (BFs), it can be implemented under noninformative priors.

An important class of models in economics and finance involves latent variables. Latent

variables have figured prominently in stories about consumption decision, investment decision,

labor force participation, conducts of monetary policy, indices of economic activity, inflation

dynamics and other economic, business and financial activities and decisions. For example,

one important class of latent variable models, the state space model, in which the state variable

is latent, provides a unified methodology for treating a wide range of problems in time series

analysis. Another example can be found in the values of stocks, bonds, options, futures, and

derivatives which are often determined by a small number of factors. Sometimes these factors,

such as the level, the slope and the curvature in the term structure of interest rates, are not

observed. In microeconometrics, discrete choices can depend on unobserved variables or there

may be unobserved individual heterogeneity across economic entities.

For latent variable models, Bayesian methods via MCMC simulation have proven to be a

powerful alternative to frequentist methods for estimating model parameters. In particular,

the data augmentation strategy proposed by Tanner and Wong (1987), which expands the

parameter space by treating the latent variables as additional model parameters, has been

found very useful for simplifying the MCMC computation of posterior distributions. This

simplification is achieved because data augmentation leads to a closed-form expression for the

likelihood function.

Comparing alternative latent variable models in the Bayesian paradigm is a daunting and

yet important task. The gold standard to carry out Bayesian model comparison is to compute

BFs, which basically compare marginal likelihood of alternative models (Kass and Raftery

(1995)). Several interesting developments have been made in recent years for computing

marginal likelihood from the MCMC output; see for example, Chib (1995), Chib and Jeliazkov

(2001). While these methods are very general and widely applicable, for latent variable models,

they are difficult to use because the marginal likelihood may be very hard to calculate. In

addition, BFs cannot be used under improper priors and are subject to the Jeffrey-Lindley

paradox. Given that DIC is simple to calculate from the MCMC output with the data

augmentation technique and also that data augmentation is often used for Bayesian parameter

estimation, DIC has been used widely for comparing alternative latent variable models; see

for example, Berg et al. (2004), Huang and Yu (2010).

The first contribution of this paper is that we argue DIC has to be used with care in the con-

text of latent variable models. In particular, we believe DIC, as it is commonly implemented

in practice, has some conceptual and practical problems. Firstly, DIC requires a concrete
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“focus” which is often not easily identified in practice. If the “focus” cannot be identified, us-

ing DIC violates the likelihood principle; see Gelfand and Trevisani (2002). Secondly, DIC is

not robust to apparently innocuous transformations and distributional representations. This

problem is made worse by the data augmentation technique for latent variable models. Data

augmentation greatly inflates the number of parameters and hence the “effective” number of

parameter used in DIC is very sensitive to transformations and distributional representations.

The detail will be explained in Section 3. Finally, DIC requires that the likelihood function

has a closed form expression for it to be computationally operational. For latent variable

models, this requires the use of data augmentation and, as a consequence, DIC opens up

to possible variations. It is unclear which variation should be used in practice; see Celeux

et al. (2006) for further discussion of this problem. In this paper we argue that although data

augmentation leads to a likelihood function in closed-form and greatly facilitates parameter

estimation, DIC should NOT be used in connection to data augmentation. The reason is

that data augmentation makes the likelihood function non-regular and hence invalidates the

standard asymptotic arguments. Consequently, it undermines the theoretical underpinnings

of DIC.

The source of the problem is data augmentation. With data augmentation, a closed-

form expression for likelihood is ensured and it is easy to compute DIC, but the asymptotic

justification of DIC is invalidated. Without data augmentation, the likelihood function does

not have a closed form expression and hence DIC is not operational for latent variable models.

However, it is asymptotically justified.

The second contribution of this paper is that we propose a new information criterion,

robust DIC (RDIC), to make Bayesian comparison of latent variable models. It is shown

that RDIC is a good approximation to DIC without data augmentation and hence is theoreti-

cally justified. We then show that the expectation – maximization (EM) algorithm facilitates

the computation of RDIC for latent variable models when the MCMC output is available.

Moreover, RDIC is robust to nonlinear transformations of latent variables and to distribu-

tional representations of model specification. The advantages of the proposed approach are

illustrated using several popular models in economics and finance.

The paper is organized as follows. In Section 2, the latent variable models are introduced.

The Bayesian estimation method with data augmentation and the EM algorithm are also

reviewed. Section 3 reviews DIC, proposes and justifies RDIC for latent variable models, and

discusses how to compute RDIC from the MCMC output. Section 4 illustrates the method

using models from economics and finance. Section 5 concludes the paper. The Appendix

collects the proof of the theoretical results in the paper.
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2 Latent Variable Models, EM Algorithm and MCMC

Let y = (y1, y2, · · · , yn)′ denote observed variables and z = (z1, z2, · · · , zn)′ the latent vari-

ables. The latent variable model is indexed by the a set of P parameters, θ = (θ1, . . . , θP )′.

Let p(y|θ) be the likelihood function of the observed data (denoted the observed-data likeli-

hood), and p(y, z|θ) be the complete-data likelihood function. The relationship between the

two functions is:

p(y|θ) =

∫
p(y, z|θ)dz. (1)

In many cases, the integral does not have a closed-form solution. Consequently, statistical

inferences, such as estimation and model comparison, are difficult to make. In the litera-

ture, maximum likelihood (ML) analysis using the EM algorithm and Bayesian analysis using

MCMC are two popular approaches for carrying out statistical inference of the latent variable

models.

2.1 Maximum likelihood via the EM algorithm

The EM algorithm is an iterative numerical method for finding the ML estimates of θ in the

latent variable models. It has been widely used in applications since Dempster et al. (1977)

gave its name and did the convergence analysis. In this subsection, we briefly review the main

idea of the EM algorithm. For more details, one can refer to McLachlan and Krishnan (2008).

Let x = (y, z) be the complete data with a density p(x|θ) parameterized by a P -dimension

parameter vector θ ∈ Θ ⊆ RP . The observed-data log-likelihood Lo(y|θ) = ln p(y|θ) often in-

volves some intractable integral, preventing researchers from directly optimizing Lo(y|θ) with

respect to θ. In many cases, however, the complete-data log-likelihood Lc(x|θ) = ln p(x|θ)

has a closed-form expression. Instead of maximizing Lo(y|θ) directly, the EM algorithm

maximizes Q(θ|θ(r)), the conditional expectation of the complete-data log-likelihood function

Lc(x|θ) given the observed data y and a current fit θ(r) of the parameter.

Generally, a standard EM algorithm has two steps: the expectation (E) step and the

maximization (M) step. The E-step evaluates

Q(θ|θ(r)) = Ez{Lc(x|θ)|y, θ(r)}, (2)

where the expectation is taken with respect to the conditional distribution p(z|y,θ(r)). The M-

step determines a θ(r+1) that maximizes Q(θ|θ(r)). Under some mild regularity conditions,

the sequence {θ(r)} obtained from the EM iterations converges to the ML estimate θ̂; see

Dempster et al. (1977) and Wu (1983) for details about the convergence properties of {θ(r)}.

2.2 Bayesian analysis using MCMC

Although the EM algorithm is a reasonable statistical approach for analyzing latent variable

models, the numerical optimization in the M -step is often unstable. This numerical problem
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worsens as the dimension of θ increases. It is well recognized that Bayesian methods using

MCMC provide a powerful tool to analyze the latent variables models. However, if the

posterior analysis is conducted from the observed-data likelihood, p(y|θ), one would end up

with the same problem as in the ML method as p(y|θ) does not have a closed-form expression.

The novelty in the Bayesian methods is to treat the latent variable model as a hierarchical

structure of conditional distributions, namely, p(y|z,θ), p(z|θ), and p(θ). In other words, one

can use the data augmentation strategy of Tanner and Wong (1987) to expand the parameter

space from θ to (θ,z). The advantage of data augmentation is that the Bayesian analysis is

now based on the new likelihood function, p(y|θ,z) which often has a closed-form expression.

Then the Gibbs sampler and other MCMC samplers can be used to generate random samples

from the joint posterior distribution p(θ, z|y). After a sufficiently long period for a burning-

in phase, the simulated random samples can be regarded as random observations from the

joint distribution. The statistical analysis can be established on the basis of these simulated

posterior random observations. As a by-product to the Bayesian analysis, one also obtains

Markov chains for the latent variables z and hence statistical inference can be made about z.

For further details about Bayesian analysis of latent variable models via MCMC, including

algorithms, examples and references, see Geweke et al. (2011). From the above discussion,

it can be seen that data augmentation is the key technique for Bayesian estimation of latent

variable models.

Two observations are in order. First, with data augmentation, the parameter space is much

bigger. More than often, the dimension of the space increases as the number of observations

increases and is larger than the number of observations. In the latter case, the new likelihood

function becomes non-regular. Second, it is difficult to argue that the latent variables can

be always treated as the model parameters. Models parameters are typically fixed but the

latent variables are often time varying. Consequently, the same treatment of these two types

of variables does not seem to be justifiable from the perspective of model selection.

3 Bayesian Comparison of Latent Variable Models

3.1 DIC

Spiegelhalter et al. (2002) proposed DIC for Bayesian model comparison. The criterion is

based on the deviance given by:

D(θ) = −2 ln p(y|θ) + 2 ln f(y),

where f(y) is some fully specified standardizing term that is a function of the data alone.

Based on the deviance, DIC takes the form of:

DIC = D(θ) + PD. (3)
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The first term, used as a Bayesian measure of model fit, is defined as the posterior expectation

of the deviance, that is,

D(θ) = Eθ|y[D(θ)] = Eθ|y[−2 ln p(y|θ)].

The better the model fits the data, the larger the log-likelihood value and hence the smaller

the value for D(θ). The second term, used to measure the model complexity and also known

as “effective number of parameters”, is defined as the difference between the posterior mean

of the deviance and the deviance evaluated at the posterior mean of the parameters:

PD = D(θ)−D(θ̄) = −2

∫
[ln p(y|θ)− ln p(y|θ̄)]p(θ|y)dθ, (4)

where θ̄ is the Bayesian estimator, and more precisely the posterior mean, of the parameter

θ. Here, PD can be explained as the expected excess of the true over the estimated residual

information conditional on data y. In other words, PD can be interpreted as the expected

reduction in uncertainty due to estimation.

Note that DIC can be rewritten by two equivalent forms:

DIC = D(θ̄) + 2PD, (5)

and

DIC = 2D(θ)−D(θ̄) = −4Eθ|y[ln p(y|θ)] + 2 ln p(y|θ̄). (6)

DIC defined in Equation (5) bears similarity to AIC of Akaike (1973) and can be inter-

preted as a classical “plug-in” measure of fit plus a measure of complexity. In Equation (3)

the Bayesian measure, D(θ), is the same as D(θ̄) +PD which already includes a penalty term

for model complexity and thus could be better thought of as a measure of model adequacy

rather than pure goodness of fit.

Remark 3.1 The asymptotic justification of DIC requires that the candidate models nest the

true model and that the posterior distribution is approximately normal. These two require-

ments parallel to those in AIC where the candidate models nest the true model and the ML

estimator is asymptotically normally distributed. To see the importance of the asymptotic

normality, Spiegelhalter et al. (2002) show that, when the prior is noninformative, PD is

approximately the same as P . In this case DIC is explained as Bayesian version of AIC.

However, if the asymptotic normality does not hold true, PD cannot be approximated by P

and DIC is not the Bayesian version of AIC. Furthermore, the decision-theoretical explanation

of DIC requires the asymptotic normality of the Bayesian posterior be held true.

Remark 3.2 If p(y|θ) has a closed-form expression, DIC is trivially computable from the

MCMC output. This is in sharp contrast to BFs and some other model selection criteria
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within the classical framework. The computational tractability, together with the versatility of

MCMC and the fact that DIC is incorporated into a Bayesian software, WinBUGS, allows

DIC to enjoy a very wide range of applications.1 However, if p(y|θ) is not available in closed

form, such as in random effects models and state space models, computing DIC may become

infeasible, or at least, very time consuming.

Remark 3.3 When an information criterion is used for model selection, the degrees of free-

dom are typically used to measure the model complexity. In the Bayesian framework, the

prior information almost always imposes additional restrictions on the parameter space and

hence the degrees of freedom may be reduced by the prior information. A useful contribution

of DIC is to provide a way to measure the model complexity when the prior information is

incorporated; see Brooks (2002).

Remark 3.4 Unlike BFs that address how observed data are predicted by the priors, DIC

“addresses how well the posterior might predict future data generated by the same mechanism

that gave rise to the observed data” (Spiegelhalter et al. (2002)). This predictive perspective

for selecting a good model is important in many practical business, economic, and financial

decisions.

Remark 3.5 DIC has a number of drawbacks, however. For instance, as acknowledged in

Spiegelhalter et al. (2002), DIC requires a concrete specification of a “focus”. In practice,

however, the choice of a “focus” is not always easy. Unfortunately, it is well known that

Bayesian decisions may depend on the choice of the “focus”. For example, in Section 8.2

of Spiegelhalter et al. (2002), where Models 4 and 5 are predictively identical but their DIC

values are quite different. In this example, it is unclear what should be the right “focus”.

The same difficulty also shows up in Model 8 of Berg et al. (2004). If the “focus” is not

identified, DIC suffers from an incoherent inference problem. That is, when one model is a

distributional representation of another model and the same prior is used in the two models,

they have different DIC values. For further illustrations of the problem, see Gelfand and

Trevisani (2002) and Daniels and Hogan (2008).

For latent variable models, there are alternative ways to define DIC, as discussed in Celeux

et al. (2006) (see also, DeIorio and Robert (2002)), two of which are especially important.

First, DIC is based on the observed-data likelihood and denoted by DIC1 in Celeux et al.

(2006) as,

DIC1 = −4Eθ|y[ln p(y|θ)] + 2 ln p(y|θ̄). (7)

For certain mixture models, such as scale mixtures of normals of Andrews and Mallows (1974)

, the observed-data likelihood p(y|θ) is available in closed form. In this case, DIC1 is trivially

1As of July 8, 2012, Spiegelhalter et al. (2002) has been cited 3396 times according to Google Scholar and
1,984 time according to Science Citation Index.
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obtained, although its value depends on the choice of the “focus”, namely, the hierarchical

structure here.

However, for state-space models, including linear Gaussian state space models, the observed-

data likelihood p(y|θ) is not available in closed form.2 In this case, computing DIC1 from the

MCMC output is time consuming or even infeasible since p(y|θ) has to be computed at each

draw from the Markov chain.

Second, DIC is defined based on the data augmentation technique, treating z as the ad-

ditional parameters, and denoted by DIC7 in Celeux et al. (2006) as,

DIC7 = −4Eθ,z|y[ln p(y|z,θ)] + 2 ln p(y|z̄, θ̄)]. (8)

The corresponding PD is

PD = −2

∫
[ln p(y|z,θ)− ln p(y|z̄, θ̄)]p(z,θ|y)dzdθ. (9)

For most state space models, including the nonlinear non-Gaussian state space models, p(y|z,θ)

is available in closed form and hence computing DIC7 is trivial.

Remark 3.6 For all random effects models and state space models, applied researchers always

calculate DIC based on DIC7 in (8) which is also implemented in WinBUGS. Examples that

use DIC7 in applications include Berg et al. (2004) and Wang et al. (2011). Clearly this

choice of defining DIC is simply for computational convenience.

Remark 3.7 From a theoretical viewpoint, DIC7 has a couple of serious problems. First,

due to the data augmentation, the number of the latent variables often increases with the

sample size in latent variable models, causing the problem of a non-regular likelihood-based

statistical inference; see Gelman (2004). This invalidates the asymptotic justification of DIC

because the standard asymptotic theory derived from regular likelihood is not applicable to

non-regular likelihood. Second, due to the data augmentation, the dimension of the parameter

space becomes larger and hence we expect that DIC7 is more sensitive to transformations of

latent variables than DIC1.

To illustrate the second problem, we consider a simple transformation of latent variables

in the well known Clark model (Clark (1973)) which is given by,

Model 1 : yt ∼ N(µ, exp(ht)), ht ∼ N(0, σ2), t = 1, · · · , n. (10)

An equivalent representation of the model is

Model 2 : yt ∼ N(µ, σ2
t ), σ

2
t ∼ LN(0, σ2), t = 1, · · · , n, (11)

2For linear Gaussian state space models, to do ML, the Kalman filter can be used to obtain the likelihood
function numerically.
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where LN denotes the log-normal distribution. In Model 2 the latent variable is the volatility

σ2
t , while the latent variable is the logarithmic volatility ht = lnσ2

t in Model 1. Suppose the

parameters of interest are µ and σ2. With the same “focus”, the two models are identical

and hence are expected to have the same DIC and PD. To calculate the PD component in

DIC7, we simulate 1000 observations from the model with µ = 0, σ2 = 0.5. Vague priors are

selected for the two parameters, namely, µ ∼ N(0, 100), σ−2 ∼ Γ(0.001, 0.001). We run Gibbs

sampler to make 240,000 simulated draws from the posterior distributions. The first 40,000

are discarded as burn-in samples. The remaining observations with every 10th observation

are collected as effective observations for statistical inference. With the data augmentation,

the latent variables, ht and σ2
t are regarded as parameters, and we find that PD = 89.806 for

Model 1 but PD = 59.366 for Model 2. The difference is very significant. Given that we have

the identical models and priors, and use the same dataset, the vast difference suggests that

DIC7 and the corresponding PD are very sensitive to transformations of latent variables.

For latent variable models, DIC1 does not suffer from the same theoretical problem as

DIC7. However, computing DIC1 from the MCMC output is not feasible since p(y|θ) is not

available in closed-form and computing Eθ|y[ln p(y|θ)] necessitates numerical calculation of

p(y|θ) at each draw from the Markov chain.

To summarize the problems with DIC in the context of latent variable models, while DIC7

is trivial to calculate but cannot be theoretically justified, DIC1 is theoretically justified but

infeasible to compute.

3.2 RDIC

In this section we introduce a new information criterion which is theoretically justified and

easy to calculate. To do so, we define a robust deviance information criterion (RDIC):

RDIC = D(θ̄) + 2tr
{
I(θ̄)V (θ̄)

}
= D(θ̄) + 2P ∗D, (12)

where

P ∗D = tr
{
I(θ̄)V (θ̄)

}
, (13)

with tr denoting the trace of a matrix,

I(θ) = −∂
2 ln p(y|θ)

∂θ∂θ′
, V (θ̄) = E

[(
θ − θ̄

) (
θ − θ̄

)′ |y] .
To justify the choice of RDIC, we will show that RDIC well approximates DIC1 and P ∗D

well approximates PD that corresponds to DIC1. We then show that how the EM algorithm

facilitates the computation of RDIC from the MCMC output for latent variable models.

Let Ln(θ) = ln p(θ|y), L
(1)
n (θ) = ∂ ln p(θ|y)/∂θ, L

(2)
n (θ) = ∂2 ln p(θ|y)/∂θθ′. In this

paper, we impose the following regularity conditions.
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Assumption 1: There exists a finite sample size n∗, for n > n∗, there is a local maximum

at θ̂m so that L
(1)
n

(
θ̂m

)
= 0 and L

(2)
n

(
θ̂m

)
is a negative definite matrix. Obviously, θ̂m is

the posterior mode.

Assumption 2: The largest eigenvalue of
[
−L(2)

n (θ̂m)
]−1

, σ2
n, goes to zero when n→∞.

Assumption 3: For any ε > 0, there exists an integer n∗∗ and some δ > 0 such that for

any n > max{n∗, n∗∗} and θ ∈ H
(
θ̂m, δ

)
=
{
θ : ||θ − θ̂m|| ≤ δ

}
, L

(2)
n (θ) exists and satisfies

−A(ε) ≤ L(2)
n (θ)L−(2)

n

(
θ̂m

)
− IP ≤ A(ε),

where IP is a P × P identity matrix, A(ε) a P × P semi-definite symmetric matrix whose

largest eigenvalue goes to zero as ε→ 0.

Assumption 4: For any δ > 0, as n→∞,∫
Θ−H(θ̂m,δ)

p(θ|y)dθ → 0,

where Θ is the support of θ.

Assumption 5: For any δ > 0, as n → ∞, when θ ∈ H
(
θ̂m, δ

)
, conditional on the

observed data y, L
(2)
n (θ)/n = O(1).

Assumption 6: The likelihood information dominates the prior information, that is,

when the sample size goes to infinity, the prior information can be ignored.

Assumption 7: Assume yrep is a dataset that is derived from the same data generating

process as gave rise to the observed data y. For any δ > 0, as n→∞, when θ ∈ H
(
θ̂m, δ

)
,

we assume
1

n

[
∂2 ln p(yrep|θ)

∂θ∂θ′

]
=

1

n

[
∂2 ln p(y|θ)

∂θ∂θ′

]
+ op(1).

Lemma 3.1 Under Assumptions 1-5, conditional on the observed data y, we have

θ̄ = E [θ|y] = θ̂m + o(n−1/2),

V
(
θ̂m

)
= E

[(
θ − θ̂m

)(
θ − θ̂m

)′
|y
]

= −L−(2)
n

(
θ̂m

)
+ o(n−1).

Remark 3.8 Lemma 3.1 establishes Bayesian large sample theory. The regularity conditions

1-4 have been used in the literature to develop Bayesian large sample theory for stationary and

nonstationary dynamic models and nondynamic models; see, for example, Chen (1985), Kim

(1994), Kim (1998), Geweke (2005). The Bayesian large sample theory was also developed

from different sets of regularity conditions in different contexts. For example, Ghosh and

Ramamoorthi (2003) developed the asymptotic posterior normality and Lemma 3.1 in the iid

case.

Theorem 3.1 Under Assumptions 1-6, it can be shown that, conditional on the observed data

y,

PD = P ∗D + o(1), DIC1 = RDIC + o(1),
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where PD is defined in (4).

Remark 3.9 As DIC1 is theoretically justified for the latent variable models, Theorem 3.1

justifies RDIC asymptotically since RDIC and DIC1 are asymptotically equivalent.

Suppose a loss function, when using the observed data y to predict yrep in a model,

is given by L(yrep,y). From the decision-theoretic viewpoint, a desirable model selection

criterion should choose a model to minimize Bayesian risk, EyEyrep|yL(yrep,y). The following

theorem provides the justification of RDIC from the decision-theoretic viewpoint.

Theorem 3.2 Based on the predictive distribution, p(yrep|y) =
∫
p(yrep|y,θ)p(θ|y)dθ, the

posterior mean of the predictive loss may be expressed as:

Eyrep|yL(yrep,y)

=

∫
L(yrep,y)p(yrep|y)dyrep

=

∫
L(yrep,y)

∫
p(yrep|θ)p(θ|y)dθdyrep

=

∫ ∫
L(yrep,y)p(yrep|θ)p(θ|y)dθdyrep

=

∫ ∫
L(yrep,y)p(yrep|θ)dyrepp(θ|y)dθ

= Eθ|y

{∫
L(yrep,y)p(yrep|θ)dyrep

}
= Eθ|yEyrep|θL(yrep,y).

If L(yrep,y) = −2 ln p(yrep|θ̄(y)), it can be shown that, conditional on the observed data y

and under Assumptions 1-7,

EyEyrep|yL(yrep,y) = Ey[DIC1] + o(1) = Ey[RDIC] + o(1).

Remark 3.10 RDIC is an unbiased estimator of Bayesian risk asymptotically.

Remark 3.11 Like DIC1, RDIC addresses how well the posterior may predict future data

generated by the same mechanism that gives rise to the observed data. This posterior predictive

feature could be appealing in many applications.

Remark 3.12 Like DIC1, RDIC is justified by the standard Bayesian large sample theory.

When the Bayesian large sample theory is not available, RDIC is not justified. These include

models in which the number of the parameters increases with the sample size, under-identified

models, models with an unbounded likelihood, and models with improper posterior distribu-

tions. For more details about the standard Bayesian large sample theory, see Gelman (2004)

and Geweke (2005). For the latent variable models, since the number of the latent variables
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increases with sample size, the standard Bayesian large sample theory is not applicable if the

data augmentation technique is used. As a result, when calculating RDIC, data augmentation

should NOT be used.

Remark 3.13 It is easy to verify that Assumptions 1-7 hold true for nondynamic models

or stationary dynamic models. Hence, Lemma 3.1 and Theorem 3.1 are applicable to these

models. For unit root models, Kim (1994) and Kim (1998) showed that the asymptotic nor-

mality of posterior distribution can be established. Hence, Lemma 3.1 is applicable to models

with a unit root. Unfortunately, Assumption 7, which is critical for developing Theorem 3.2,

does not hold true for models with a unit or explosive root due to the initial condition. Con-

sequently, Theorem 3.2 is not applicable to models with unit or explosive roots. This topic

on comparing non-stationary statistical models will be pursued in future studies. Within the

classical framework, Phillips and Ploberger (1996) and Phillips (1996) have proposed model

selection criteria for models without latent variables.

Remark 3.14 RDIC maintains all the good features of DIC1. For example, RDIC incorpo-

rates the prior information when measuring the model complexity. As shown in Spiegelhalter

et al. (2002),

I
(
θ̂m

)
= −

{
∂2 ln p(θ|y)

∂θ∂θ′
− ∂2 ln p(θ)

∂θ∂θ′

}
|
θ=θ̂m

= −L(2)
n (θ̂m)−

{
−∂

2 ln p(θ)

∂θ∂θ′

}
|
θ=θ̂m

.

Under Assumption 1-5, following Lemma 3.1 and the proof of Theorem 3.1, we get

P ∗D = tr
{
I(θ̂m)V (θ̄)

}
+ o(1)

= tr

{[
−L(2)

n (θ̂m)−
{
−∂

2 ln p(θ)

∂θ∂θ′

}
|
θ=θ̂m

]
V (θ̄)

}
+ o(1)

= tr
{
−L(2)

n (θ̂m)V (θ̄)
}
− tr

{[
−∂

2 ln p(θ)

∂θ∂θ′
|
θ=θ̂m

]
V (θ̄)

}
+ o(1)

= P − tr

{[
−∂

2 ln p(θ)

∂θ∂θ′
|
θ=θ̂m

]
V (θ̄)

}
+ o(1). (14)

From (14), it can be seen clearly that the prior information can reduce the model complexity.

Remark 3.15 Conditional on the observed data y, when the likelihood information dominates

the prior information (say, for example, if −∂2 ln p(θ)/∂θθ′|
θ=θ̂m

= O(1)), from (14) it can

be shown that PD = P ∗D + o(1) = P + o(1). In addition, as n→∞ the posterior mode θ̂m is

reduced to the ML estimator θ̂. Hence,

ln p(y|θ̄) = ln p(y|θ̂)− 1

2
(θ̄ − θ̂)′I(θ̃)(θ̄ − θ̂),

where θ̃ lies in the segment between θ̄ and θ̂. Using Assumption 5 and Lemma 3.1, we can

show that ln p(y|θ̄) = ln p(y|θ̂) + o(1). Consequently,

DIC1 = RDIC + o(1) = −2 ln p(y|θ̂) + 2P + o(1) = AIC + o(1).

12



Namely, both RDIC and DIC1 can be regarded as the Bayesian version of AIC.

Remark 3.16 Since RDIC is defined from the observed-data likelihood p(y|θ), there is no

need to specify a “focus”, and hence, RDIC does not suffer from the incoherent inference

problem.

Remark 3.17 For the latent variable models, while the number of the model parameters (P )

is fixed and usually not so big, the number of the latent variables increases as the sample size

increases. In the definition of RDIC, the latent variables are not regarded as the parameters.

Consequently, the problem of parameter transformation is less serious. For example, in the

Clark model, with the same setting as before, we get P ∗D = 1.75 for Model 1 and P ∗D = 1.80

for Model 2. There is no significant difference between them. Moreover, these two values are

close to 2, that is the actual number of parameters. This is what we expected given that the

vague priors are used and hence P ∗D ≈ P = 2.

Remark 3.18 An obvious computational advantage in RDIC is that P ∗D does not involve

inverting a matrix. This advantage is not so important when the latent variable model only

has a small number of parameters. However, for high dimensional latent variable models

where there are many parameters, this computational advantage may be important.

Remark 3.19 If the observed-data likelihood function, p(y|θ), does not have a closed-from

expression, its second derivative, ∂2 ln p(y|θ)/∂θ∂θ′ and hence RDIC will be difficult to com-

pute. In the following section, we show how the EM algorithm may be used to compute the

second derivative and RDIC.

3.3 Computing RDIC by the EM algorithm

The definition of RDIC clearly requires the evaluation of observed-data likelihood at the

posterior mean, p(y|θ̄), as well as the information matrix and the second derivative of the

observed-data likelihood function. For most latent variable models, the observed-data like-

lihood function does not have a closed-from expression. In this section we show how the

EM algorithm may be used to evaluate p(y|θ̄), the second derivative of the observed-data

likelihood function, and hence RDIC for the latent variable models. It is important to point

out that we do not need to numerically optimize any function here as in the EM algorithm.

Consequently, our method is not subject to the instability problem found in the M -step.

Lemma 3.2 For any θ and θ
∗
in Θ, let H(θ|θ∗) =

∫
ln p(z|y,θ)p(z|y,θ∗)dz, the so-called H

function in the EM algorithm. It was shown in Dempster et al. (1977) that

Lo(y,θ) = Q
(
θ|θ∗

)
−H

(
θ|θ∗

)
,

where the Q function is defined in Equation (2).
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Following Lemma 3.2, the Bayesian plug-in model fit, ln p(y|θ̄), may be obtained as

ln p(y|θ̄) = Q(θ̄|θ̄)−H(θ̄|θ̄). (15)

It can be seen that even when Q(θ̄|θ̄) is not available in closed form, it is easy to evaluate

from the MCMC output because

Q(θ̄|θ̄) =

∫
ln p(y, z|θ̄)p(z|y, θ̄)dz ≈ 1

M

M∑
m=1

ln p
(
y, z(m)|θ̄

)
.

where {z(m),m = 1, 2, · · · ,M} are random observations drawn from the posterior distribution

p(z|y, θ̄).

For the second term in (15), if p(z|y, θ̄) is a standard distribution, H(θ̄|θ̄) can be easily

evaluated from the MCMC output as

H(θ̄|θ̄) =

∫
ln p(z|y, θ̄)p(z|y, θ̄)dz ≈ 1

M

M∑
m=1

ln p
(
z(m)|y, θ̄

)
.

However, if p(z|y, θ̄) is not a standard distribution, an alternative approach has to be used,

depending on the specific model in consideration. We now consider two situations.

First, if the complete-data (yi, zi) are independent with i 6= j, and zi is of low-dimension,

say≤ 5, then a nonparametric approach may be used to approximate the posterior distribution

p(z|y,θ). Note that

H(θ|θ) =

∫
ln p(z|y,θ)π(z|y,θ)dz =

n∑
i=1

∫
ln p(zi|yi,θ)π(zi|y,θ)dzi =

n∑
i=1

Hi(θ|θ).

The computation of Hi(θ|θ) requires an analytic approximation to p(zi|yi,θ) which can be

constructed using a nonparametric method. In particular, MCMC allows one to draw some

effective samples from p (zi|yi,θ). Using these random samples, one can then use nonpara-

metric techniques such as the kernel-based methods to approximate p (zi|yi,θ). In a recent

study, Ibrahim et al. (2008) suggested using a truncated Hermite expansion to approximate

p(zi|yi,θ).

As a simple illustration, we apply this method to the Clark model. When the Gaus-

sian kernel method is used, we get ln p(y|θ̄) = −1448.97, RDIC= 2901.46 for Model 1

and ln p(y|θ̄) = −1449.41, RDIC= 2902.42 for Model 2. These two sets of numbers are

nearly identical. However, if the latent variable models are regarded as parameters, we get

DIC7 = 2884.37 for Model 1 and DIC7 = 2852.85 for Model 2. The highly distinctive dif-

ference between them suggests that DIC7 is not a reliable model selection criterion for the

model. Note that DIC1 is not really feasible to compute in this case.

Second, for some latent variable models, the latent variables z follow a multivariate normal

distribution and the observed variables y are independent conditional on z. This class of
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models is referred to as the Gaussian latent variable models in the literature. In economics

and finance, many latent variable models belong to this class of models, including dynamic

linear models, dynamic factor models, various forms of stochastic volatility models and credit

risk models. In these models, the observed-data likelihood is non-Gaussian but has a Gaussian

flavor in the sense that the posterior distribution, p(z|y,θ), may be expressed as,

p(z|y,θ) ∝ exp

(
−1

2
z′V (θ)z +

n∑
i=1

ln p(yi|zi,θ)

)
.

Rue et al. (2004) and Rue et al. (2009) showed that this type of posterior distribution can be

well approximated by a Gaussian distribution that matches the mode and the curvature at

the mode. The resulting approximation is known as the Laplace approximation and can be

expressed as,

p(z|y,θ) ∝ exp

(
−1

2
z′(V (θ) + diag(c))z

)
,

where c comes from the second order term in the Taylor expansion of
∑n

i=1 ln p(yi|zi) at the

mode of p(z|y,θ). The Laplace approximation may be employed to compute H(θ̄|θ̄). After

p(y|θ̄) is obtained, it is easy to obtain D(θ̄). It is important to point out that the numerical

evaluation of p(y|θ̄) is needed only once, i.e., at the posterior mean.

To compute P ∗D, we have to calculate the second derivative of the observed-data likelihood

function in (14). The following two lemmas show how to compute the second derivatives.

Lemma 3.3 Under the mild regularity conditions, the observed-data information matrix may

be expressed as:

I(θ) = −∂
2Lo(y|θ)

∂θ∂θ
′ =

{
−∂

2Q(θ|θ∗)
∂θ∂θ′

− ∂2Q(θ|θ∗)
∂θ∂θ∗

′

}
θ
∗

=θ

. (16)

Lemma 3.4 Let S(x|θ) = ∂Lc(x|θ)/∂θ. Under the mild regularity condition, the observed-

data information matrix has an equivalent form:

I(θ) = −∂
2Lo(y|θ)

∂θ∂θ
′ = Ez|y,θ

{
−∂

2Lc(x|θ)

∂θ∂θ
′

}
− V arz|y,θ {S(x|θ)} (17)

= Ez|y,θ

{
−∂

2Lc(x|θ)

∂θ∂θ′
− S(x|θ)S(x|θ)

′
}

+ Ez|y,θ{S(x|θ)}Ez|y,θ{S(x|θ)}′,

where all the expectations are taken with respect to the conditional distribution of z given y

and θ.

Remark 3.20 Lemma 3.3 and Lemma 3.4 were developed in Oakes (1999) and Louis (1982),

respectively, for finding the standard error in the EM algorithm. If the Q function is available,
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we can use Lemma 3.3 to evaluate the second derivatives. If the Q function does not have an

analytic form, we may use Lemma 3.4 to evaluate the second derivatives as follows,

Ez|y,θ

{
−∂

2Lc(x|θ)

∂θ∂θ
′ − S(x|θ)S(x|θ)

′
}
,

≈ − 1

M

M∑
m=1

{
∂2Lc(y, z(m)|θ)

∂θ∂θ
′ + S(y, z(m)|θ)S(y, z(m)|θ)

′

}
,

Ez|y,θ{S(x|θ)} ≈ 1

M

M∑
m=1

S(y, z(m)|θ),

where {z(m),m = 1, 2, · · · ,M} are random observations drawn from the posterior distribution

p(z|y,θ).

4 Examples

We now illustrate the proposed method in three applications, covering some popular models in

economics and finance. In the first example, both Q(θ|θ) and H(θ|θ) are available in closed-

form and hence RDIC is trivial to compute. In this example, we pay attention to implications

of different distributional representations. In the second example, while p(y|θ̄) is not available

in closed-form, Kalman filter provides a recursive algorithm to evaluate it. Hence, Q(θ|θ) and

H(θ|θ) can be calculated in the same manner, facilitating the computation of RDIC. In the

third example, p(y|θ̄) is not available in closed-form and Kalman filter cannot be applied. To

compute RDIC, we use the Laplace approximation and the technique suggested in Lemma

3.4.

4.1 Comparing asset pricing models

Asset pricing theory is fundamentally important in modern finance. A basic assumption re-

quired by much asset pricing theory is that the return distribution is normal. Unfortunately,

there has been overwhelming empirical evidence against normality for asset returns, which

have led researchers to investigate asset pricing models with heavy-tailed distributions, in-

cluding the family of elliptical distributions discussed in Zhou (1993). Kan and Zhou (2003)

suggested to use the multivariate t distribution to replace the multivariate normal distribu-

tion. In addition, under the mean-variance efficiency, the asset excess premium should not

be statistically different from zero. In this section, we compare the following six asset pricing
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models:

Model 1 : Rt = β′F t + εt, εt ∼ N [0,Σ];

Model 2 : Rt = α+ β′F t + εt, εt ∼ N [0,Σ];

Model 3 : Rt = β′F t + εt, εt ∼ t[0,Σ, ν];

Model 4 : Rt = β′F t + εt, εt ∼ N(0,Σ/ωt), ωt ∼ Γ
(ν

2
,
ν

2

)
;

Model 5 : Rt = α+ β′F t + εt, εt ∼ t[0,Σ, ν];

Model 6 : Rt = α+ β′F t + εt, εt ∼ N(0,Σ/ωt), ωt ∼ Γ
(ν

2
,
ν

2

)
,

where Rt is the excess return of portfolio at period t with N × 1 dimension, F t a K × 1

vector of factor portfolio excess returns, α a N × 1 vector of intercepts, β a N × K vector

of scaled covariances, εt the random error, t = 1, 2, · · · , n. For convenience, we restrict Σ to

be a diagonal matrix and ν to be a known constant. Note that Model 4 is the distributional

representation of Model 3, and Model 5 is the distributional representation of Model 6. This

is especially true if ωt is not the quantity of interest.

Monthly returns of 25 portfolios, constructed at the end of each June, are the intersections

of 5 portfolios formed on size (market equity, ME) and 5 portfolios formed on the ratio of book

equity to market equity (BE/ME). The Fama/French’s three factors, market excess return,

SMB (Small Minus Big), HML (High Minus Low) are used as the explanatory factors (Fama

and French (1993)). The sample period is from July 1926 to July 2011, so that N = 25,

n = 1021. The data are freely available from the data library of Kenneth French.3

Bayesian analysis of the asset pricing models has attracted a considerable amount of

attentions in the empirical asset pricing literature.4 Here we apply DIC7 and RDIC to compare

Models 1-6. Based on the result of Li and Yu (2012), in the empirical study, we simply set

ν = 3. Some vague conjugate prior distributions are used to represent the prior ignorance,

namely,

αi ∼ N [0, 100], βij ∼ N [0, 100], φ−1
ii ∼ Γ[0.001, 0.001].

The use of uninformative priors implies that P ∗D should be close to the actual number of the

parameters, P , if the posterior distribution is well approximated by the normal distribution.

Under these prior specifications, we use WinBUGS to implement Bayesian analysis and

to calculate DIC7. An introduction to WinBUGS can be found in Spiegelhalter et al. (2003).

To calculate RDIC, we use R2WinBUGS, a R package that calls WinBUGS and exports

the results into R (Sturtz et al. (2005)).5 Since both Q(θ|θ) and H(θ|θ) are available in

closed-form, RDIC is trivial to compute.

We sample 100,000 random observations from the posterior distributions in each model,

the first 40,000 of which form the burn-in period. The convergence of the next 60,000 iterations

3http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
4Avramov and Zhou (2010) provided an excellent review of the literature on Bayesian portfolio analysis.
5R code may be requested from the authors of the present paper.
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is checked using the Raftery-Lewis diagnostic test statistic (Raftery and Lewis (1992)) with

every 3th observation collected. Hence, 20,000 effective observations are used for computing

the information criteria. The value of DIC7 is automatically calculated by WinBUGS. Based

on the observed log-likelihood given in formula (18) in Appendix D, we can compute DIC and

RDIC for Model 3 and 5. Table I reports DIC7, RDIC, PD, and P ∗D for all six models. Note

that when there is no latent variable DIC7 is reduced into DIC1.

From Table I, we see that PD is almost identical to P ∗D in each of Models 1, 2, 3 and 5.

Not surprisingly, DIC7 and RDIC are almost the same in each of these models. As expected,

DIC7 in Model 3 is quite different from that in Model 4 although these two models are the

same. The main reason for this distinctive difference is that in Model 4, the scale-mixture

specification is used and, hence, a sequence of latent variables, {ωt}, is introduced artificially.

In DIC7 the latent variables, {ωt}, are treated as parameters. There is no latent variable for

Model 3, however. For the same reason, DIC7 in Model 5 is quite different from that in Model

6. As argued earlier, this conceptual difficulty is due to the lack of the likelihood principle and

is consistent with what has been documented in the literature (Spiegelhalter et al., 2002 and

Berg et al., 2004). The most important finding from Table I is that RDIC does not suffer from

the same difficulty as DIC7. RDIC and P ∗D for Model 3 (and Model 5) are nearly identical

to those for Model 4 (and Model 6). In terms of the computational cost, for Model 3, after

the effective random observations are collected, RDIC takes about 3 minutes in a laptop with

Inter Core i5-540M (2.53GHz). On the other hand, DIC1 involves
∫

ln p(y|θ)p(θ|y)dθ when

computing PD, which is approximated by 1
J

∑J
j=1 ln p

(
y|θ(j)

)
. This quantity is much more

expensive to compute because it requires numerical evaluation of ln p
(
y|θ(j)

)
for J times. For

Model 3, based on the 20,000 posterior random observations, one has to evaluate ln p
(
y|θ(j)

)
20,000 times. It requires 11 hours and 4 minutes to compute DIC1 using the same laptop. The

computational relative efficiency of RDIC over DIC1 is obvious and increases as the number

of effective observations increases.

It is important to emphasize that, although our method is motivated from the case of

objective priors, informative priors can be also used in our method. In a recent study, Tu and

Zhou (2010) explored a general approach to forming informative priors based on economic

objectives and found that the proposed informative priors outperform significantly the objec-

tive priors in terms of investment performance. RDIC can be used in conjunction with the

informative prior specifications. In this case, P ∗D can be quite different from P .

4.2 Comparing high dimensional dynamic factor models

For many countries, there exists a rich array of macroeconomic time series and financial

time series. To reduce the dimensionality and to extract the information from the large

number of time series, factor analysis has been widely used in the empirical macroeconomic
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Table 1: Model selection results for Fama-French three factor models

Model M1 M2 M3 M4 M5 M6

Number of Parameters 100 125 100 100 125 125

PD 100 125 100 1021 125 1046
DIC7 -119842 -119880 -133088 -134777 -133202 -134897
P ∗D 100 125 100 100 126 126

RDIC -119842 -119880 -133087 -133087 -133201 -133201

literature and in the empirical finance literature. For example, by extending the static factor

models previously developed for cross-sectional data, Geweke (1977) proposed the dynamic

factor model for time series data. Many empirical studies, such as Sargent and Sims (1977),

Giannone et al. (2004), have reported evidence that a large fraction of the variance of many

macroeconomic series can be explained by a small number of dynamic factors. Stock and

Watson (1999) and Stock and Watson (2002) showed that dynamic factors extracted from a

large number of predictors can be used to lead to improvement in predicting macroeconomic

variables. Not surprisingly, high dimensional dynamic factor models have become a popular

tool under a data rich environment for macroeconomists and policy makers. An excellent

review on the dynamic factor models is given by Stock and Watson (2010).

Following Bernanke et al. (2005) (BBE hereafter), the present paper considers the following

fundamental dynamic factor model:

Yt = FtL
′ + ε′t,

Ft = Ft−1Φ′ + ηt,

where Yt is a 1×N vector of time series variables, Ft a 1×K vector of unobserved latent factors

which contains the information extracted from all the N time series variables, L an N ×K
factor loading matrix, Φ the K × K autoregressive parameter matrix of unobserved latent

factors. It is assumed that εt ∼ N (0,Σ) and ηt ∼ N (0, Q). For the purpose of identification,

Σ is assume to be diagonal and εt and ηt are assumed to be independent with each other.

Following BBE (2005), we set the first K×K block in the loading matrix L to be the identity

matrix.

In this dynamic factor model, the observed variable Yt consists of a balanced panel of

120 monthly macroeconomic time series. These series are initially transformed to induce

stationarity. The description of the series and the transformation is provided in BBE (2005).

The sample period is from January 1959 to August 2001. Because the data are of high

dimension, the analysis of the dynamic factor models via a frequentist method is not trivial;

see the discussion in Stock and Watson (2011). In the literature, Bayesian inference via the

MCMC techniques has been popular for analyzing the dynamic factor models; see Otrok and
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Whiteman (1998), Kose et al. (2003), Kose et al. (2008), BBE (2005).

Following BBE (2005), we specify the following prior distribution:

Σii ∼ Inverse− Γ (3, 0.001) , Li ∼ N
(
0,ΣiiM

−1
0

)
,

vec (Φ) |Q ∼ N (0, Q⊗ Ω0) , Q ∼ Inverse− Γ (Q0,K + 2) ,

where M0 is a K×K identity matrix, Li the ith (i > K) column of L. The diagonal elements of

Q0 are set to be the residual variances of the corresponding one lag univariate autoregressions,

σ̂2
i . The diagonal elements of Ω0 are constructed so that the prior variance of parameter on

the jth variable in the ith equation equals σ̂2
i /σ̂

2
j .

In this example, we aim to determine the number of factors in the dynamic factor mod-

els using model selection criteria. In BBE (2005) model comparison is achieved by graphic

methods. Our approach can be regarded as a formal statistical alternative to the graphic

methods. It is well documented that the determination of number of factors in the setting of

the dynamic factor models is important; see Stock and Watson (1999). As in the previous

example, we use DIC7 and RDIC to compare models with different numbers of factors, namely

K = 1, 2 and 3, which are denoted by M1, M2, M3 respectively. Using the Gibbs sampler,

we sample 22,000 random observations from the corresponding posterior distributions. We

discard the first 2,000 observations and keep the following 20,000 as the effective samples from

the posterior distribution of the parameters.

Based on the 20,000 samples, we compute DIC7, RDIC, PD, P ∗D for all three models.

Table II reports the simple count of the number of parameters (including the latent variables),

DIC7, the PD component of DIC7, (i.e. when the data augmentation technique is used), the

simple count of the number of parameters (excluding the latent variables), RDIC, and the

P ∗D component of RDIC (i.e. when the data augmentation technique is not used). Several

conclusions may be drawn from Table II. First, both DIC7 and RDIC suggest that M3 is the

best model. Second, since some very informative priors have been used, neither PD nor P ∗D

is close to the actual number of parameters. While it is cheap to compute RDIC, it is much

harder to compute DIC1. This is because the observed-data likelihood p(y|θ) is not available

in closed-form and Kalman filter is used to numerically calculate p(y|θ) which involves the

computation of 1
J

∑J
j=1 ln p(y|θ(j)), for J = 20, 000. We have to run Kalman filter 20,000

times, which takes more than 4 hours to compute in Matlab. In a sharp contrast, it only took

less than 80 seconds to compute RDIC. Obviously, the discrepancy in CPU time increases

with J .

4.3 Comparing stochastic volatility models

Stochastic volatility (SV) models have been found very useful for pricing derivative securities.

In the discrete time log-normal SV models, the logarithmic volatility is the state variable
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Table 2: Model selection results for dynamic factor models

Model M1 M2 M3

Number of Parameters 752 1385 2019
PD 350 965 1391

DIC7 -135480 -149010 -155060

Number of Parameters 241 363 486
P ∗D 87 20 326

RDIC -22452 -34868 -40420

which is often assumed to follow an AR(1) model. The basic log-normal SV model is of the

form:

yt = α+ exp(ht/2)ut, ut ∼ N(0, 1),

ht = µ+ φ(ht−1 − µ) + vt, vt ∼ N(0, τ2),

where t = 1, 2, · · · , n, yt is the continuously compounded return, ht the unobserved log-

volatility, h0 = µ, and (ut, vt) independently normal variables for all t. In this paper, we

denote this model by M1.

To carry out Bayesian analysis of M1, following Meyer and Yu (2000), the prior distribu-

tions are specified as follows:

α ∼ N (0, 100) , µ ∼ N (0, 100) ,

φ ∼ Beta (1, 1) , 1/τ2 ∼ Γ (0.001, 0.001) .

An alternative specification of M1 is given by:

yt = α+ σtut, ut ∼ N(0, 1),

lnσ2
t = µ+ φ

(
lnσ2

t−1 − µ
)

+ νt, vt ∼ N(0, τ2),

which is denoted by M2. Obviously, the only difference between M2 and M1 is that the latent

variable in M2 is the exponential transformation of that in M1. If the same priors are used

for the model parameters, θ = (α, µ, φ, τ), the two models are identical to each other. Our

goal here is to compare the two models using DIC7 and RDIC. In both models, p(y|θ) is

not available in closed-form. Since the models are of a nonlinear non-Gaussian form, Kalman

filter cannot be applied and DIC1 is infeasible to compute.

The dataset consists of 1,822 daily returns of the Standard & Poor (S&P) 500 index,

covering the period between January 3, 2005 and March 28, 2012. For M1 and M2, after a

burn-in period of 10,000 iterations we save the next 20,000 iterations.

Table III reports DIC7, RDIC, PD, P ∗D for both models. To calculate RDIC, since the Q
function does not have a closed-form expression, we employ the technique in Lemma 3.3 to
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Table 3: Model selection results for stochastic volatility models

Model M1 M2

PD 102.94 89.67
DIC7 5200.56 5183.12
P ∗D 3.62 3.78

RDIC 5296.20 5296.55

compute the second order derivative of the observed-data likelihood. To compute P ∗D, we use

the Laplace approximation of Rue, Martino and Chopin (2009).

The following findings can be obtained from Table III. First, PD in M1 is 13 points more

than that in M2. Similarly, DIC7 in M1 is nearly 20 points more than that in M2. These

differences are very large and indicate that M2 is a much better model than M1 although the

two modes are actually the same. Second, P ∗D in M1 is nearly identical to that in M2, which is

about the same as P = 4, the actual number of parameters. Similarly, RDIC in M1 is nearly

identical to that in M2. Given that M1 and M2 are two equivalent representations to each

other, the empirical results from RDIC are more reasonable than those from DIC7.

5 Conclusion

In this paper, we have proposed a robust deviance information criteria (RDIC) for comparing

models with latent variables. Although latent variable models can be conveniently estimated

in the Bayesian framework via MCMC if the data augmentation technique is used, we argue

that data augmentation cannot be used in connection to DIC. This is because that the justi-

fication of DIC rests on the validity of the standard Bayesian asymptotic theory. With data

augmentation, the number of parameters increases with the number of observations, mak-

ing the likelihood nonregular. As a consequence, the standard Bayesian asymptotic theory

does not hold. In addition, the use of the data augmentation makes DIC is very sensitive to

transformations and distributional representations.

While in principle one can use the standard DIC (i.e. DIC1) without resorting to the

data augmentation technique, in practice this standard DIC is very difficult to use because

the observed-data likelihood is not available in closed-form for most latent variable models

and because the standard DIC1 has to numerically evaluate the observed-data likelihood at

each MCMC iteration. These two observations make the implementation of DIC1 practically

non-operational.

The problem is overcome by RDIC. RDIC is defined without augmenting the parameter

space and hence can be justified by the standard Bayesian asymptotic theory. We then show

that how the EM algorithm can facilitate the computation of RDIC in different contexts.
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Since the latent variables are not counted as parameters in our approach, RDIC is robust

to nonlinear transformations of the latent variables and distributional representations of the

model specification. Asymptotic justification, computational tractability and robustness to

transformation and specification are the three main advantages of the proposed approach.

These advantages are illustrated using several popular models in economics and finance.

A Proof of Lemma 3.1

Using the Taylor-expansion on the log-posterior probability density function, we can show

that

ln p(θ|y) = ln p(θ̂m|y) + L(1)
n (θ̂m)′(θ − θ̂m) +

1

2
(θ − θ̂m)

′
L(2)
n (θ̃)(θ − θ̂m)

= ln p(θ̂m|y) +
1

2
(θ − θ̂m)

′
L(2)
n (θ̃)(θ − θ̂m),

where θ̃ lies on the segment between θ and θ̂m. It follows that

p(θ|y) = p(θ̂m|y) exp

[
1

2
(θ − θ̂m)

′
L(2)
n (θ̃)(θ − θ̂m)

]
.

Let ω =
√
n(θ − θ̂m), J(θ) = − 1

nL
(2)
n (θ), c∗n =

∫
exp[−1

2ω
′
J(θ̃)ω]dω,

cn =
∫

exp[−1
2ω
′
J(θ̂m)ω]dω. It can be shown that

p(ω|y) ∝ exp

[
1

2
(θ − θ̂m)

′
L(2)
n (θ̃)(θ − θ̂m)

]
= exp

{
−1

2
ω
′
J(θ̃)ω

}
.

Then, we have

Pn =

∫ ∣∣∣∣p(ω|y)− 1

cn
exp

[
−1

2
ω
′
J(θ̂m)ω

]∣∣∣∣dω
=

∫ ∣∣∣∣ 1

c∗n
exp

[
−1

2
ω
′
J(θ̃)ω

]
− 1

cn
exp

[
−1

2
ω
′
J(θ̂m)ω

]∣∣∣∣dω
=

1

cn

∫ ∣∣∣∣cnc∗n exp

[
−1

2
ω
′
J(θ̃)ω

]
− exp

[
−1

2
ω
′
J(θ̂m)ω

]∣∣∣∣dω
=

1

cn

∫ ∣∣∣∣cn − c∗nc∗n
exp

[
−1

2
ω
′
J(θ̃)ω

]
+ exp

[
−1

2
ω
′
J(θ̃)ω

]
− exp

[
−1

2
ω
′
J(θ̂m)ω

]∣∣∣∣dω
≤ 1

cn

{∫ ∣∣∣∣cn − c∗nc∗n

∣∣∣∣ exp

[
−1

2
ω
′
J(θ̃)ω

]
dω +

∫ ∣∣∣∣exp

[
−1

2
ω
′
J(θ̃)ω

]
− exp

[
−1

2
ω
′
J(θ̂m)ω

]∣∣∣∣ dω}
≤ |cn − c∗n|

cn
+

1

cn

∫ ∣∣∣∣exp

[
−1

2
ω
′
J(θ̃)ω

]
− exp

[
−1

2
ω
′
J(θ̂m)ω

]∣∣∣∣ dω
≤ 2

cn

∫ ∣∣∣∣exp

[
−1

2
ω
′
J(θ̃)ω

]
− exp

[
−1

2
ω
′
J(θ̂m)ω

]∣∣∣∣ dω
≤ 2

cn

∫ ∣∣∣∣exp

{
−1

2
ω
′
[
J(θ̃)− J(θ̂m)

]
ω

}
− 1

∣∣∣∣ exp

[
−1

2
ω
′
J(θ̂m)ω

]
dω.
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By Assumption 3, for any ε > 0, there exists some δ > 0 such that when Ω = {ω : ||ω|| <
√
nδ}

we have θ ∈ H(θ̂m, δ) and −A(ε) ≤ [J(θ̃)J−1(θ̂m) − IP ] ≤ A(ε). By Hölder inequality, we

have

lim
n→∞

Qn = lim
n→∞

∫ ∣∣∣∣exp

{
−1

2
ω
′
[
J(θ̃)− J(θ̂m)

]
ω

}
− 1

∣∣∣∣ exp

[
−1

2
ω
′
J(θ̂m)ω

]
dω

= lim
n→∞

∫
Ω

∣∣∣∣exp

{
−1

2
ω
′
[
J(θ̃)− J(θ̂m)

]
ω

}
− 1

∣∣∣∣ exp

[
−1

2
ω
′
J(θ̂m)ω

]
dω

= lim
n→∞

∫
Ω

∣∣∣∣exp

{
−1

2
ω
′
[
J(θ̃)J−1(θ̂m)− IP

]
J(θ̂m)ω

}
− 1

∣∣∣∣ exp

[
−1

2
ω
′
J(θ̂m)ω

]
dω

≤

{
lim
n→∞

∫
Ω

∣∣∣∣exp

{
−1

2
ω
′
[
J(θ̃)J−1(θ̂m)− IP

]
J(θ̂m)ω

}
− 1

∣∣∣∣2 exp

[
−1

2
ω
′
J(θ̂m)ω

]
dω

}1/2

= (D1 − 2D2 +D3)1/2,

where

D1 = lim
n→∞

∫
Ω

exp

[
−1

2
ω
′
J(θ̂m)ω

]
dω,

D2 = lim
n→∞

∫
Ω

exp

{
−1

2
ω
′
[
J(θ̃)J−1(θ̂m)− IP

]
J(θ̂m)ω

}
exp

[
−1

2
ω
′
J(θ̂m)ω

]
dω

= lim
n→∞

∫
Ω

exp

[
−1

2
ω
′
J(θ̃)ω

]
dω,

D3 = lim
n→∞

∫
Ω

exp
{
−ω′

[
J(θ̃)J−1(θ̂m)− IP

]
J(θ̂m)ω

}
exp

[
−1

2
ω
′
J(θ̂m)ω

]
dω.

It can be shown that D1 = (2π)P/2|J(θ̂m)|−1/2. Following the proof of the posterior normality

in Lemma 2.1 and Theorem 2.1 of Chen (1985), we have D−2 ≤ D2 ≤ D+
2 , D

−
3 ≤ D2 ≤ D+

3

and

D+
2 =

∣∣∣J(θ̂m)
∣∣∣1/2 |IP −A(ε)|−1/2

∫
||Z||<sn

exp

[
−1

2
Z ′Z

]
dZ,

D−2 =
∣∣∣J(θ̂m)

∣∣∣1/2 |IP +A(ε)|−1/2

∫
||Z||<tn

exp

[
−1

2
Z ′Z

]
dZ,

D+
3 =

∣∣∣J(θ̂m)
∣∣∣1/2 |IP − 2A(ε)|−1/2

∫
||Z||<sn

exp

[
−1

2
Z ′Z

]
dZ,

D−3 =
∣∣∣J(θ̂m)

∣∣∣1/2 |IP + 2A(ε)|−1/2

∫
||Z||<tn

exp

[
−1

2
Z ′Z

]
dZ,

where sn = δ(1 − e∗(ε))1/2/σ∗n and tn = δ(1 + e(ε))1/2/σn, σ2
n and σ∗2n is the largest and

smallest eigenvalue of {nJ(θ̂m)}−1, e(ε) and e∗(ε) is the largest and smallest eigenvalue of

24



A(ε). Under the regularity conditions, when n→∞, sn →∞ and tn →∞, if ε→ 0, we get

lim
n→∞

|IP ±A(ε)| = 1, lim
n→∞

|IP ± 2A(ε)| = 1,

lim
n→∞

∫
||Z||<sn

exp

[
−1

2
Z ′Z

]
dZ = (2π)P/2,

lim
n→∞

∫
||Z||<tn

exp

[
−1

2
Z ′Z

]
dZ = (2π)P/2.

Then, we can show thatD1 = D2 = D3 = (2π)P/2|J(θ̂m)|−1/2 which impliesthat limn→∞Qn =

0 and that limn→∞ Pn = 0.

For i, j = 1, 2, · · · , P , it can be shown that∫
ωi

{
p(ω|y)− 1

cn
exp

[
−1

2
ω
′
J(θ̂m)ω

]}
dω

≤
∫
|ωi|

∣∣∣∣p(ω|y)− 1

cn
exp

[
−1

2
ω
′
J(θ̂m)ω

]∣∣∣∣dω
≤ 2

cn

∫
|ωi|

∣∣∣∣exp

{
−1

2
ω
′
[
J(θ̃)− J(θ̂m)

]
ω

}
− 1

∣∣∣∣ exp

[
−1

2
ω
′
J(θ̂m)ω

]
dω

≤ 2

cn

 lim
n→∞

∫
Ω
|ωi|2

∣∣∣∣∣∣exp

−ω
′
[
J(θ̃)J−1(θ̂m)− IP

]
J(θ̂m)ω

2

− 1

∣∣∣∣∣∣
2

exp

[
−ω

′
J(θ̂m)ω

2

]
dω


1
2

=
2

cn
(ED1 − 2ED2 + ED3)1/2,

∫
ωiωj

{
p(ω|y)− 1

cn
exp

[
−1

2
ω
′
J(θ̂m)ω

]}
dω

≤
∫
|ωiωj |

∣∣∣∣p(ω|y)− 1

cn
exp

[
−1

2
ω
′
J(θ̂m)ω

]∣∣∣∣ dω
≤ 2

cn

∫
|ωiωj |

∣∣∣∣exp

{
−1

2
ω
′
[
J(θ̃)− J(θ̂m)

]
ω

}
− 1

∣∣∣∣ exp

[
−1

2
ω
′
J(θ̂m)ω

]
dω

=
2

cn
(V D1 − 2V D2 + V D3)1/2,
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where

ED1 = lim
n→∞

∫
Ω
ω2
i exp

[
−1

2
ω
′
J(θ̂m)ω

]
dω,

ED2 = lim
n→∞

∫
Ω
ω2
i exp

{
−1

2
ω
′
[
J(θ̃)J−1(θ̂m)− IP

]
J(θ̂m)ω

}
exp

[
−1

2
ω
′
J(θ̂m)ω

]
dω,

= lim
n→∞

∫
Ω
ω2
i exp

[
−1

2
ω
′
J(θ̃)ω

]
dω,

ED3 = lim
n→∞

∫
Ω
ω2
i exp

{
−ω′

[
J(θ̃)J−1(θ̂m)− IP

]
J(θ̂m)ω

}
exp

[
−1

2
ω
′
J(θ̂m)ω

]
dω,

V D1 = lim
n→∞

∫
Ω
ω2
i ω

2
j exp

[
−1

2
ω
′
J(θ̂m)ω

]
dω,

V D2 = lim
n→∞

∫
Ω
ω2
i ω

2
j exp

{
−1

2
ω
′
[
J(θ̃)J−1(θ̂m)− IP

]
J(θ̂m)ω

}
exp

[
−1

2
ω
′
J(θ̂m)ω

]
dω,

= lim
n→∞

∫
Ω
ω2
i ω

2
j exp

[
−1

2
ω
′
J(θ̃)ω

]
dω,

V D3 = lim
n→∞

∫
Ω
ω2
i ω

2
j exp

{
−ω′

[
J(θ̃)J−1(θ̂m)− IP

]
J(θ̂m)ω

}
exp

[
−1

2
ω
′
J(θ̂m)ω

]
dω.

For the same argument, we can prove that ED1 = ED2 = ED3 and V D1 = V D2 = V D3.

Hence, we have ∫
ωi

{
p(ω|y)− 1

cn
exp

[
−1

2
ω
′
J(θ̂m)ω

]}
dω

≤
∫
|ωi|

∣∣∣∣p(ω|y)− 1

cn
exp

[
−1

2
ω
′
J(θ̂m)ω

]∣∣∣∣dω → 0,∫
ωiωj

{
p(ω|y)− 1

cn
exp

[
−1

2
ω
′
J(θ̂m)ω

]}
dω

≤
∫
|ωiωj |

∣∣∣∣p(ω|y)− 1

cn
exp

[
−1

2
ω
′
J(θ̂m)ω

]∣∣∣∣ dω → 0.

Note that ∫
ωi

{
1

cn
exp

[
−1

2
ω
′
J(θ̂m)ω

]}
dω = 0,∫

ωiωj

{
1

cn
exp

[
−1

2
ω
′
J(θ̂m)ω

]}
dω = J−1

ij (θ̂m),

where J−1
ij (θ̂m) is the (i, j)th element of J−1(θ̂m). Hence, we have E(ω|y) = 0 + o(1) and

E(ωω
′ |y) = J−1(θ̂m) + o(1) which imply that

E[(θ − θ̂m)|y] = o(n−1/2), E[(θ − θ̂m)(θ − θ̂m)
′ |y] = −L−(2)

n (θ̂m) + o(n−1).

B Proof of Theorem 3.1

Under Assumption 6, when n→∞, we have

∂ ln p(y|θ)

∂θ
= L(1)

n (θ),−I(θ) =
∂2 ln p(y|θ)

∂θθ
′ = L(2)

n (θ),
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and the ML estimator θ̂ is asymptotically equivalent to the posterior mode θ̂m. According to

Lemma 3.1, we can show that θ̄ = E(θ|y) = θ̂m + o(n−1/2). Hence, there exists an integer

N , when n > N , θ̄ ∈ H(θ̂, δ). We can then find some δ1 with 0 < δ1 < ||θ̂ − θ̄|| so that

H(θ̄, δ1) ⊂ H(θ̂, δ).

Applying the Taylor expansion to the log-likelihood function, we get

ln p(y|θ) = ln p(y|θ̄) + L(1)
n (θ̄)(θ − θ̄) +

1

2
(θ − θ̄)

′
L(2)
n (θ̃)(θ − θ̄),

where θ̃ is some θ lying on the segment between θ and θ̄. When n→∞, H(θ̄, δ1) ⊂ H(θ̂, δ)

and θ̃ ∈ H(θ̄, δ1) ⊂ H(θ̂, δ). Hence, for any ε > 0, there exists an integer N such that for any

n > N , L
(2)
n (θ̃) satisfies

[IP −A(ε)] [−L(2)
n (θ̂)] ≤ −L(2)

n (θ̃) =
[
L(2)
n (θ̃)L−(2)

n (θ̂)
] [
−L(2)

n (θ̂)
]
≤ [IP +A(ε)]

[
−L(2)

n (θ̂)
]
.

That is,

[IP −A(ε)] I(θ̂) ≤ I(θ̃) =
[
I(θ̃)I−1(θ̂)

]
I(θ̂) ≤ [IP +A(ε)] I(θ̂).

Hence, under the regularity conditions, when n→∞, we have

PD = −2

∫
Θ

[
ln p(y|θ)− ln p(y|θ̄)

]
p(θ|y)dθ

= −2

∫
Θ

[
L(1)
n (θ̄)(θ − θ̄) +

1

2
(θ − θ̄)

′
L(2)
n (θ̃)(θ − θ̄)

]
p(θ|y)dθ

=

∫
Θ
−(θ − θ̄)

′
L(2)
n (θ̃)(θ − θ̄)p(θ|y)dθ

=

∫
H(θ̂,δ)

(θ − θ̄)
′
I(θ̃)(θ − θ̄)p(θ|y)dθ

=

∫
H(θ̂,δ)

(θ − θ̄)
′
I(θ̃)I−1(θ̂)I(θ̂)(θ − θ̄)p(θ|y)dθ,

which is bounded above by

P+
D =

∫
H(θ̂,δ)

(θ − θ̄)
′
[IP +A(ε)] I(θ̂)(θ − θ̄)p(θ|y)dθ = tr

{
[IP +A(ε)] I(θ̂)V (θ̄)

}
,

and below by

P−D =

∫
H(θ̂,δ)

(θ − θ̄)
′
[IP −A(ε)] I(θ̂)(θ − θ̄)p(θ|y)dθ = tr

{
[IP −A(ε)] I(θ̂)V (θ̄)

}
.

Under the regularity conditions, for ε → 0, we have limn→∞ PD = tr{−L(2)
n (θ̂)V (θ̄)} or

PD = tr{I(θ̂)V (θ̄)}+ o(1).

Conditional on the observed data y, note that L
(2)
n (θ̄)/n = O(1), L

(2)
n (θ̂)/n = O(1), we

get L
(2)
n (θ̄)/n = L

(2)
n (θ̂)/n+ o(1). According to Lemma 3.1, we have nV (θ̂) = n[V (θ̄) + (θ̂ −
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θ̄)(θ̂ − θ̄)
′
] = nV (θ̄) + no(n−1) = nV (θ̄) + o(1) and nV (θ̂) = [−L(2)

n (θ̂)/n]−1 + o(1) = O(1)

so that nV (θ̄) = O(1). Thus, we have

PD = tr
{
I(θ̂)V (θ̄)

}
+ o(1) = tr

{
[I(θ̂)/n][nV (θ̄)]

}
+ o(1)

= tr
{

[I(θ̄)/n][nV (θ̄)]
}

+ o(1)O(1) + o(1)

= tr
{

[I(θ̄)/n][nV (θ̄)]
}

+ o(1) = tr
{
I(θ̄)V (θ̄)

}
+ o(1) = P ∗D + o(1).

Similarly, DIC1 =RDIC+o(1) and the theorem is proved.

C Proof of Theorem 3.2

According to Spiegelhalter et al. (2002), we get

−2Eyrep|θ
{

ln p(yrep|θ̄)− ln p(y|θ̄)
}

= −2Eyrep|θ{ln p(yrep|θ̄)− ln p(yrep|θ) + ln p(yrep|θ)− ln p(y|θ) + ln p(y|θ)− ln p(y|θ̄)}

= D1 +D2 +D3,

where

D1 = −2Eyrep|θ
{

ln p(yrep|θ̄)− ln p(yrep|θ)
}
,

D2 = −2Eyrep|θ{ln p(yrep|θ)− ln p(y|θ)},

D3 = −2Eyrep|θ{ln p(y|θ)− ln p(y|θ̄)} = −2{ln p(y|θ)− ln p(y|θ̄)}.

Note that EyEθ|yD2 = 0. From Theorem 3.1, we have Eθ|yD3 = PD = P ∗D + o(1). For

D1, applying the Taylor expansion, conditional on the observed data y, we get

Eθ|yD1 = −2Eθ|yEyrep|θ

{
(θ̄ − θ)T

∂ ln p(yrep|θ)

∂θ
+

1

2
(θ̄ − θ)

′ ∂2 ln p(yrep|θ)

∂θ∂θ′
|
θ=θ̃

(θ̄ − θ)

}
= −Eθ|y

{
(θ̄ − θ)

′
Eyrep|θ

∂2 ln p(yrep|θ)

∂θ∂θ′
|
θ=θ̃

(θ̄ − θ)

}
,

where θ̃ lies on the segment between θ and θ̄. When n → ∞, for any δ > 0, θ̃ ∈ H(θ̂, δ).

Under Assumption 7, we have

1

n
Eyrep|θ

[
∂2 ln p(yrep|θ)

∂θ∂θ′
|
θ=θ̃

]
=

1

n
Eyrep|θ

[
∂2 ln p(y|θ)

∂θ∂θ′
|
θ=θ̃

+ op(n)

]
=

1

n

[
∂2 ln p(y|θ)

∂θ∂θ′
|
θ=θ̃

+ o(n)

]
= − 1

n
I(θ̃) + o(1).
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Following Lemma 3.1 and Theorem 3.1, as n→∞, we have

Eθ|yD1 = Eθ|y

{
(θ̄ − θ)

′
[
−Eyrep|θ

∂2 ln p(yrep|θ)

∂θ∂θ′
|
θ=θ̃

]
(θ̄ − θ)

}
= Eθ|y

{
(θ̄ − θ)

′
I(θ̃)(θ̄ − θ)

}
+ Eθ|y{(θ − θ̄)(θ − θ̄)

′
o(n)}

= Eθ|y

{
(θ̄ − θ)

′
I(θ̃)(θ̄ − θ)

}
+ o(1)

= Eθ|y

{
(θ̄ − θ)

′
I(θ̂)(θ̄ − θ)

}
+ o(1)

= tr
{
I(θ̂)V (θ̄)

}
+ o(1) = P ∗D + o(1).

Hence, under Assumptions 1-6, based on Theorem 3.1, we can further obtain

−2EyEθ|yEyrep|θ{ln p(yrep|θ̄)}

= −2EyEθ|yEyrep|θ{ln p(yrep|θ̄)− ln p(y|θ̄)} − 2Ey[ln p(y|θ̄)]

= −2Ey[ln p(y|θ̄)] + EyEθ|y[D1 +D2 +D3]

= −2Ey[ln p(y|θ̄)] + Ey[PD + P ∗D] + o(1)

= −2Ey[ln p(y|θ̄)] + 2PD + o(1) = Ey[DIC1] + o(1)

= −2Ey[ln p(y|θ̄)] + 2P ∗D + o(1) = Ey[RDIC] + o(1).

D The derivation of RDIC for the asset pricing models

It has been noted in Kan and Zhou (2003) that under the multivariate t specification, a

direct numerical optimization of the observed data likelihood function is very difficult. By

using normal-gamma scale-mixture distribution to replace the t distribution, the powerful EM

algorithm can be used to obtain the Q function. Since Models 1-5 are nested by Model 6, we

only need to derive the first and second derivatives for Model 6.

Let R = {R1,R2, · · · ,Rn}, F = {F1,F2, · · · ,Fn}, ω = {ω1, ω2, · · · , ωn}, θ = (α,β,Σ).

The density function of the multivariate t is given by

f(εt) =
Γ(ν+N

2 )

(πν)
2
N Γ(ν2 )|Σ|

1
2

{
1 +

ε
′

tΣ
−1εt
ν

}− ν+N
2

.

Hence, the observed data log-likelihood function, Lo(R|θ), is:

Lo(R|θ) = C(ν)− n

2
ln |Σ| − ν +N

2

n∑
t=1

log [ν + ϕ (Rt,F t,θ)] , (18)

where

C(ν) = −nN
2

log(πν) + n

[
ln Γ

(
ν +N

2

)
− ln Γ

(ν
2

)]
+
n(ν +N) ln ν

2
,

ϕ (Rt,F t,θ) = (Rt − α− βF t)
′

Σ−1 (Rt − α− βF t) .
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Based on the normal-gamma mixture representation for the multivariate t distribution,

the complete log-likelihood, Lc(R,ω|θ), can be expressed as

−1

2
nN ln(2π) +

N

2

n∑
t=1

lnωt −
n

2
ln |Σ| − 1

2

n∑
t=1

ωtϕ (Rt,F t,θ)

−n ln Γ
(ν

2

)
+
nν

2
ln
(ν

2

)
+
ν

2

n∑
t=1

(lnωt − ωt)−
n∑
t=1

lnωt.

Thus, the posterior expectation of ωt is

ωt|y ∼ Γ

[
ν +N

2
,
ν + ϕ (Rt,Ftθ)

2

]
.

According to McLachlan and Krishnan (2008), it can be shown that

E (ωt|θ,Rt) =
ν +N

ν + ϕ (Rt,F t,θ)
,

E (lnωt|θ,Rt) = lnE (ωt|θ,Rt) + ψ

(
ν +N

2

)
− ln

(
ν +N

2

)
,

where ψ(x) is the Digamma function, ∂Γ(x)/∂x/Γ(x). Hence, we get

Q(θ|θ∗) =

∫
Lc(R,ω|θ)p(ω|R,θ∗)dω

= −1

2
nK ln(2π) +

N

2

n∑
t=1

E(lnωt|Rt,θ
∗)− n

2
ln |Σ| − 1

2

n∑
t=1

E(ωt|Rt,θ
∗)ϕ(Rt,F t,θ)

−n ln Γ
(ν

2

)
+
nν

2
ln
(ν

2

)
+
ν

2

n∑
t=1

E(lnωt − ωt|Rt,θ
∗)−

n∑
t=1

E(lnωt|Rt,θ
∗).

For the asset price models considered in this paper, we obtain the second derivatives:

∂Q(θ|θ∗)
∂θ∂θ

′ =
∂2(−n

2 ln |Σ|)
∂θ∂θ

′ − 1

2

n∑
t=1

E(ωt|Rt,θ
∗)
∂2ϕ(Rt,F t,θ)

∂θ∂θ
′

∂Q(θ|θ∗)
∂θ∂θ∗

′ = −1

2

n∑
t=1

∂ϕ(Rt,F t,θ)

∂θ

∂E(ωt|Rt,θ
∗)

∂θ∗
′

=
1

2

n∑
t=1

1

ν + ϕ(Rt,F t,θ
∗)
E(ωt|Rt,θ

∗)
∂ϕ(Rt,F t,θ)

∂θ

∂ϕ(Rt,F t,θ
∗)

∂θ∗
′
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For i, j = 1, 2, · · · , N , letting φi = σ−1
ii , we get

∂2(−n
2 ln |Σ|)

∂α∂α′
= 0,

∂2(−n
2 ln |Σ|)

∂α∂β
′ = 0,

∂2(−n
2 ln |Σ|)

∂α∂φi
= 0,

∂2(−n
2 ln |Σ|)

∂β∂β
′ = 0,

∂2(−n
2 ln |Σ|)

∂β∂φi
= 0,

∂2(−n
2 ln |Σ|)
∂φ2

i

= − n

2φ2
i

,

∂ϕ(Rt,F t,θ)

∂αi
= −2φi(Rit − αi − β

′

iFt),

∂ϕ(Rt,F t,θ)

∂βi
= −2φi(Rit − αi − β

′

iFt)Ft,

∂ϕ(Rt,F t,θ)

∂φi
= (Rit − αi − β

′

iFt)
2,

∂2ϕ(Rt,F t,θ)

∂α2
i

= 2φi,
∂ϕ2(Rt,F t,θ)

∂αi∂αj
= 0, i 6= j,

∂2ϕ(Rt,F t,θ)

∂αi∂βi
= 2φiF t,

∂ϕ2(Rt,F t,θ)

∂αi∂βj
= 0, i 6= j,

∂2ϕ(Rt,F t,θ)

∂αi∂φi
= −2(Rit − αi − β

′

iF t),
∂ϕ2(Rt,F t,θ)

∂αi∂φj
= 0, i 6= j,

∂2ϕ(Rt,F t,θ)

∂βi∂β
′

i

= 2φiF tF
′

t,
∂ϕ2(Rt,F t,θ)

∂βi∂βj
= 0, i 6= j,

∂2ϕ(Rt,F t,θ)

∂βi∂φi
= −2(Rit − αi − β

′

iF t)F t,
∂2ϕ(Rt,F t,θ)

∂βi∂φj
= 0, i 6= j,

∂2ϕ(Rt,F t,θ)

∂φ2
i

= 0,
∂ϕ2(Rt,F t,θ)

∂φi∂φj
= 0, i 6= j.

E The derivation of RDIC for the dynamic factor models

The complete-data log-likelihood function is:

ln f (Y, F |L,Σ,Φ, Q) = −(K +N)T −K
2

ln 2π − T

2
ln |Σ| − 1

2
tr
[
Σ−1

(
Y − FL′

)′ (
Y − FL′

)]
−T − 1

2
ln |Q| − 1

2
tr
[
Q−1

(
F+1 − F−1Φ′

)′ (
F+1 − F−1Φ′

)]
,

where Y = [Y ′1 , Y
′

2 , ..., Y
′
T ]′, F = [F ′1, F

′
2, ..., F

′
T ]′, F+1 = [F ′2, F

′
3, ..., F

′
T ]′, F−1 =

[
F ′1, F

′
2, ..., F

′
T−1

]′
.

Denote this function by ϕ(L,Σ,Φ, Q), In this appendix, we derive the first and second deriva-

tive of the complete-data log-likelihood function. The matrix differentiation used here follows

the rules discussed in Magnus and Neudecker (1999).

The first order derivatives of ϕ(L,Σ,Φ, Q):

Whenever there is no confusion, we denote ϕ(L,Σ,Φ, Q) simply by ϕ. The differential of
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ϕ(L,Σ,Φ, Q) with respect to L is

dL(ϕ) = d

(
−1

2
tr
[
Σ−1

(
Y − FL′

)′ (
Y − FL′

)])
= −1

2
tr
{
−Σ−1 (dL)F

′ (
Y − FL′

)
+ Σ−1 (Y − FL)

′ (
−F (dL)′

)}
=

1

2
tr
{

Σ−1dLF
′ (
Y − FL′

)
+ Σ−1

(
Y − FL′

)′
F (dL)′

}
=

1

2
tr
{
F
′ (
Y − FL′

)
Σ−1dL+ dLF ′Σ−1

(
Y − FL′

) (
Σ−1

)′}
=

1

2
tr
{
F
′ (
Y − FL′

) ((
Σ−1

)′
+ Σ−1

)
dL
}

= tr (c̃dL) ,

where

c̃ =
1

2
F
′ (
Y − FL′

) ((
Σ−1

)′
+ Σ−1

)
.

Taking vec both sides, we get

d

(
vec

(
−1

2
tr
[
Σ−1(Y − FL′)′(Y − FL)

]))
= d(vec(ϕ)) =

(
vec(c̃)′

)′
d(vec(L)).

The first derivative of ϕ (L,Σ,Φ, Q) is

DL (ϕ) =

(
vec

([
1

2
F
′ (
Y − FL′

) ((
Σ−1

)′
+ Σ−1

)]′))′
.

Similarly, we have

DΣ (ϕ) =

(
vec

(
−T

2
Σ−1 +

1

2
Σ−1

(
Y − FL′

)′ (
Y − FL′

)
Σ−1

)′)′
,

DΦ (ϕ) =

(
vec

([
1

2
F ′−1

(
F+1 − F−1Φ′

) ((
Q−1

)′
+Q−1

)]′))′
,

DQ (ϕ) =

(
vec

(
−T − 1

2
Q−1 +

1

2
Q−1

(
F+1 − F−1Φ′

)′ (
F+1 − F−1Φ′

)
Q−1

)′)′
.

The second order derivatives of ϕ (L,Σ,Φ, Q):

The first order derivative of c̃ is

dc̃ = d

(
1

2
F
′ (
Y − FL′

) ((
Σ−1

)′
+ Σ−1

))
= −1

2
F
′
F (dL)

′
((

Σ−1
)′

+ Σ−1
)
.

And the second order derivative is

d2
Lϕ = tr (dc̃ ∗ dL)

= tr

(
−1

2
F
′
F (dL)

′
((

Σ−1
)′

+ Σ−1
)
dL

)
.
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Then, we have,

DL,L (ϕ) = −1

2

(
F
′
F ⊗

((
Σ−1

)′
+ Σ−1

))
,

H = G (T ) = T
′
, T = S (Σ) =

1

2
F
′ (
Y − FL′

) ((
Σ−1

)′
+ Σ−1

)
,

D (G (T )) = KKN ,

D (S (Σ)) = IN ⊗
(
F
′ (
Y − FL′

))
·
(
−1

2
(KNN + INN )

)
·
((

Σ−1
)′
⊗ Σ−1

)
,

DH (Σ) = (DG (T )) (DS (Σ)) ,

where KKN is the commutation matrix for a matrix with K rows and N columns. Thus, we

have

DL,Σ (ϕ) =
∂DL (ϕ)

(∂vecΣ)
′ = (DG (T )) (DS (Σ))

= KKN · IN ⊗
(
F
′ (
Y − FL′

))
·
(
−1

2
(KNN + INN )

)
·
((

Σ−1
)′
⊗ Σ−1

)
,

DL,Φ (ϕ) = 0,

DL,Q (ϕ) = 0,

DΣ,Σ (ϕ) = KNN ·


T
2 ·

1
2

((
Σ−1

)′
⊗ Σ−1 +

(
Σ−1

)′
⊗ Σ−1

)
−1

2

 (
Σ−1 (Y − FL′)

′
(Y − FL′) Σ−1

)′
⊗ Σ−1

+
(
Σ−1

)′
⊗
(

Σ−1 (Y − FL′)
′
(Y − FL′) Σ−1

)

 ,

DΣ,Φ (ϕ) = 0,

DΣ,Q (ϕ) = 0,

DΦ,Q (ϕ)

= KKK ·
(
IK ⊗ F ′−1

(
F+1 − F−1Φ′

))
·
(
−1

2
(KKK + IKK)

)
·
((
Q−1

)′
⊗Q−1

)
,

DΦ,Φ (ϕ) = −1

2

(
F
′
−1F−1 ⊗

((
Q−1

)′
+Q−1

))
,

DQ,Q (ϕ) = KKK ·


T−1

2 ·
1
2

((
Q−1

)′
⊗Q−1 +

(
Q−1

)′
⊗Q−1

)
−1

2

 (
Q−1 (F+1 − F−1Φ′)

′
(F+1 − F−1Φ′)Q−1

)′
⊗Q−1

+
(
Q−1

)′
⊗
(

Σ−1 (F+1 − F−1Φ′)
′
(F+1 − F−1Φ′)Q−1

)

 .

The special structure of parameter matrix:

Let L,Σ,Φ, Q have some special structures. In particular, let

L∗ = vec
(
L
)
,
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where L is the last (N −K)×K block of L, and

Σ∗ = diag (Σ) , Φ∗ = vec (Φ) , Q∗ = vech (Q) .

The first order derivatives are as follows:

DL∗ (ϕ) = DL (ϕ) ·DL∗ (L (L∗)) = DL (ϕ) · İL∗ ,

DΣ∗ (ϕ) = DΣ (ϕ) ·DΣ∗ (Σ (Σ∗)) = DΣ (ϕ) · İΣ∗ ,

DΦ∗ (ϕ) = DΦ (ϕ) · İΦ∗ ,

DQ∗ (ϕ) = DQ (ϕ) · İQ∗ .

The second order derivatives are as follows:

DL∗,L∗ (ϕ) = DL∗ (DL∗ (ϕ)) = DL∗

(
DL (ϕ) · İL∗

)
=

(
İ
′
L∗ ⊗ I1

)
·DL∗ (DL (ϕ))

=
(
İ
′
L∗ ⊗ I1

)
·DL,L (ϕ) · İL∗ ,

DL∗,Σ∗ (ϕ) = DΣ∗ (DL∗ (ϕ)) = DΣ∗

(
DL (ϕ) · İL∗

)
=

(
İ
′
L∗ ⊗ I1

)
·DΣ∗ (DL (ϕ))

=
(
İ
′
L∗ ⊗ I1

)
·DΣ (DL (ϕ)) ·DΣ∗ (Σ (Σ∗))

= İ
′
L∗ ·DL,Σ (ϕ) · İΣ∗ ,

DL∗,Φ∗ (ϕ) = 0,

DL∗,Q∗ (ϕ) = 0,

DΣ∗,Σ∗ (ϕ) = DΣ∗ (DΣ∗ (ϕ)) = DΣ∗

(
DΣ (ϕ) · İΣ∗

)
= İ

′
Σ∗ ⊗ I1 ·DΣ∗ (DΣ (ϕ))

= İ
′
Σ∗ ·DΣ (DΣ (ϕ)) · İΣ∗ ,

DΣ∗,Φ∗ (ϕ) = 0,

DΣ∗,Q∗ (ϕ) = 0.

DΦ∗,Φ∗ (ϕ) = İ
′
Φ∗ · (DΦ,Φ (ϕ)) · İΦ∗ ,

DΦ∗,Q∗ (ϕ) = İ
′
Φ∗ · (DΦ,Q (ϕ)) · İQ∗ ,

DQ∗,Q∗ (ϕ) = İ
′
Q∗ ·DQ,Q (ϕ) · İQ∗ ,

where DL∗ (L (L∗)) = İL∗ , DΣ∗ (Σ (Σ∗)) = İΣ∗ .

For İL∗ which is a block diagonal matrix, we have

İL∗ = diag (P1, P2, ..., PK) ,
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where

Pi =

[
0K×(N−K)

IN−K

]
.

And for İΣ∗ , which is an N2 ×N matrix whose nth column has 1 in the ((n− 1)×N + n)th

row and other elements are all zeros. For İΦ∗ , we have

İΦ∗ = IK∗K .

For İQ∗ , we have

İQ∗ = diag (R1, R2, ...Rk, ..., RK) .

where

Rk =

[
0(k−1)×(K−k+1)

IK−k+1

]
K×(K−k+1)

,

since Q is a symmetric matrix.

The first order derivative matrix of the complete-data likelihood with respect to L∗,Σ∗,Φ∗, Q∗

is:

vec
([

DL∗ (ϕ) DΣ∗ (ϕ) DΦ∗ (ϕ) DQ∗ (ϕ)
])
.

The second order derivative matrix of the complete-data likelihood with respect to L∗,Σ∗,Φ∗, Q∗

should be: 

DL∗,L∗ (ϕ) DL∗,Σ∗ (ϕ)
0 0

DΣ∗,L∗ (ϕ) DΣ∗,Σ∗ (ϕ)
0 0

0 0
DΦ∗,Φ∗ (ϕ) DΦ∗,Q∗ (ϕ)

0 0
DQ∗,Φ∗ (ϕ) DQ∗,Q∗ (ϕ)


.

F The derivation of RDIC for the stochastic volatility model

F.1 The derivatives of the complete-data log-likelihood for M1

The complete-data log-likelihood function

ln p (y,h|θ) = −n ln 2π +
n

2
ln ν − 1

2

n∑
t=1

ht −
1

2

n∑
t=1

(yt − α)2

exp (ht)

−1

2
ν

[
n∑
t=1

(ht − µ− φ (ht−1 − µ))2

]
,

where y = (y1, y2, ...yn)′, h = (h1, h2, ...hn)′, ν = 1/τ2.
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The first order derivatives

∂ ln p (y,h|θ)

∂α
=

n∑
t=1

(yt − α)

exp (ht)
,

∂ ln p (y,h|θ)

∂µ
= −1

2
ν

[
−2

n∑
t=1

(ht − µ− φ (ht−1 − µ)) (1− φ)

]

= ν

[
(1− φ)

n∑
t=1

(ht − µ− φ (ht−1 − µ))

]
,

∂ ln p (y,h|θ)

∂φ
= −1

2
ν

[
−2

n∑
t=1

(ht − µ− φ (ht−1 − µ)) (ht−1 − µ)

]

= ν

[
n∑
t=1

(ht − µ− φ (ht−1 − µ)) (ht−1 − µ)

]
,

∂ ln p (y,h|θ)

∂ν
=
n

2

1

ν
− 1

2

[
n∑
t=1

(ht − µ− φ (ht−1 − µ))2

]
.

The second order derivatives

∂2 ln p (y,h|θ)

∂α∂α
= −

n∑
t=1

1

exp (ht)
= −

n∑
t=1

exp (−ht) ,

∂2 ln p (y,h|θ)

∂α∂µ
=
∂2 ln p (y,h|θ)

∂α∂φ
=
∂2 ln p (y,h|θ)

∂α∂ν
= 0,

∂2 ln p (y,h|θ)

∂µ∂µ
= ν

[
−
(
1− φ2

)
− (1− φ)

n∑
t=1

(1− φ)

]
= −ν

[
n (1− φ)2

]
,

∂2 ln p (y,h|θ)

∂µ∂φ
= ν

[
−

n∑
t=1

(ht − µ− φ (ht−1 − µ))− (1− φ)
n∑
t=1

(ht−1 − µ)

]

= −ν

[
n∑
t=1

(ht − µ− φ (ht−1 − µ)) + (1− φ)
n∑
t=1

(ht−1 − µ)

]
,

∂2 ln p (y,h|θ)

∂µ∂ν
= (1− φ)

n∑
t=1

(ht − µ− φ (ht−1 − µ)) ,

∂2 ln p (y,h|θ)

∂φ∂φ
= ν

[
−

n∑
t=1

(ht−1 − µ)2

]
,

∂2 ln p (y,h|θ)

∂φ∂ν
=

n∑
t=1

(ht − µ− φ (ht−1 − µ)) (ht−1 − µ) ,

∂2 ln p (y,h|θ)

∂ν∂ν
= − n

2ν2
.
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F.2 The derivatives of the complete-data log-likelihood for M2

The complete-data log-likelihood function

ln p
(
y,σ2|θ

)
=

n∑
t=1

lnσ2
t −

n

2
ln 2π +

n

2
ln ν − 1

2
ν

[
n∑
t=1

(
σ2
t − µ− φ

(
lnσ2

t−1 − µ
))2]

−1

2

n∑
t=1

(yt − α)2

σ2
t

− n

2
ln 2π − 1

2

n∑
t=1

lnσ2
t ,

where σ2 =
(
σ2

1, σ
2
2, ...σ

2
n

)′
.

The first order derivatives

∂ ln p
(
y,σ2|θ

)
∂α

=
n∑
t=1

yt − α
σ2
t

,

∂ ln p
(
y,σ2|θ

)
∂µ

= ν

[
(1− φ)

n∑
t=1

(
σ2
t − µ− φ

(
lnσ2

t−1 − µ
))]

,

∂ ln p
(
y,σ2|θ

)
∂φ

= ν

[
n∑
t=1

(
σ2
t − µ− φ

(
lnσ2

t−1 − µ
)) (

lnσ2
t−1 − µ

)]
,

∂ ln p
(
y,σ2|θ

)
∂ν

=
n

2ν
− 1

2

[
n∑
t=1

(
σ2
t − µ− φ

(
lnσ2

t−1 − µ
))2]

.

The second order derivatives

∂ ln p
(
y,σ2|θ

)
∂α∂α

= −
n∑
t=1

1

σ2
t

,

∂ ln p
(
y,σ2|θ

)
∂α∂µ

=
∂ ln p

(
y,σ2|θ

)
∂α∂φ

=
∂ ln p

(
y,σ2|θ

)
∂α∂ν

= 0,

∂ ln p
(
y,σ2|θ

)
∂µ∂µ

= ν

[
−
(
1− φ2

)
− (1− φ)

n∑
t=1

(1− φ)

]
= −ν

[
n (1− φ)2

]
,

∂ ln p
(
y,σ2|θ

)
∂µ∂φ

= ν

[
−

n∑
t=1

(
σ2
t − µ− φ

(
lnσ2

t−1 − µ
))
− (1− φ)

n∑
t=1

(
lnσ2

t−1 − µ
)]

= −ν

[
n∑
t=1

(
σ2
t − µ− φ

(
lnσ2

t−1 − µ
))

+ (1− φ)
n∑
t=1

(
lnσ2

t−1 − µ
)]
,
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∂ ln p
(
y,σ2|θ

)
∂µ∂ν

= (1− φ)

n∑
t=1

(
σ2
t − µ− φ

(
lnσ2

t−1 − µ
))
,

∂ ln p
(
y,σ2|θ

)
∂φ∂φ

= ν

[
−

n∑
t=1

(
lnσ2

t−1 − µ
)2]

,

∂ ln p
(
y,σ2|θ

)
∂φ∂ν

=
n∑
t=1

(
σ2
t − µ− φ

(
lnσ2

t−1 − µ
)) (

lnσ2
t−1 − µ

)
,

∂2 ln p
(
y,σ2|θ

)
∂ν∂ν

= − n

2ν2
.

F.3 Gaussian Approximation

The complete-data log-likelihood function of M1 can be also expressed as follows:

ln (p (y,h|θ)) = −n
2

ln (2π)− n

2
ln
(
τ2
)
− 1

2
(h− µ)′Q (h− µ)

−n
2

ln (2π)− 1

2

n∑
t=1

ht −
n∑
t=1

(yt − α)2

2
exp (−ht) ,

where h = (h1, h2, ..., hn), µ = µe, e′ = (1, . . . , 1)n, Q is a tri-diagonal precision matrix,

Q = Q∗/τ2, Q∗ is defined as follows:

Q∗ =



φ2 −φ
−φ 1 + φ2 −φ

. . .

. . .
−φ 1 + φ2 −φ

−φ 1

 .

The posterior density of h is

p (h|y,θ) ∝ exp

[
−1

2
(h− µ)′Q (h− µ)−

n∑
t=1

(
1

2
ht +

(yt − α)2

2
exp (−ht)

)]

= exp (f (h)) ≈ exp

(
−1

2
h′ch + bh + cons

)
.

In order to obtain the parameters c and b of the canonical form, we use the first and second

order derivatives:

ḟ (h) = −h′Q+ µ′Q− 1

2
e′ +

1

2

(
y∗2
)′ � exp (−h)′

f̈ (h) = −Q− diag
(

1

2
(y∗)2 � exp (−h)

)
,

where y∗ = y − α and α = αe, e′ = (1, . . . , 1)n, y∗2 = (y∗21 , . . . , y
∗2
n )′ and exp(−h) =

(exp(−h1), . . . , exp(−hn))′.
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Denoting the mode of f by m, we apply the Taylor expansion to f (x):

f (h) ≈ (h−m)′
f̈ (m)

2
(h−m) + ḟ (m) (h−m) + cons

= −1

2
h′
(
−f̈ (m)

)
h−m′f̈ (m) h + ḟ (m) h + cons

= −1

2
h′ch + bh + cons.

Now, we obtain c and b as

c = −f̈ (m) = Q + diag

(
1

2
y∗2 � exp (−m)

)
,

b = −m′f̈ (m) + ḟ (m)

= m′Q + m′diag

(
1

2
y∗2 � exp (−m)

)
−m′Q + µ′Q− 1

2
e′ +

1

2

(
y∗2
)′ � exp (−m)′

= m′diag

(
1

2
y∗2 � exp (−m)

)
+

1

2

(
y∗2
)′ � exp (−m)′ + µ′Q− 1

2
e′.

Using

−1

2
h′ch + bh + cons = −1

2
(h−m∗)′Q∗ (h−m∗) ,

we obtain

Q∗ = c = Q + diag

(
1

2
y∗2 � exp (−m)

)
,

m∗ = Q∗−1b′.

In order to obtain the optimal mode of Q∗ and m∗, we run the above procedure recursively

until convergence.
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