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Abstract

Resource Constrained Project Scheduling Problems with minimum and maximum time lags

(RCPSP/max) provides a general model for resource scheduling in many real-world problems

(such as manufacturing and construction engineering). Due to its practical importance and

generality, providing effective algorithms and scalable solutions for RCPSP/max is a topic of

growing research. Traditional methods have addressed deterministic models with all parame-

ters known with certainty. In this thesis, we are concerned with RCPSP/max problems in an

uncertain environment where durations of activities are stochastic and resource availabilities

are subject to unforeseen breakdowns.

We propose methods for generating robust execution strategy to protect against uncertainty.

Given a level of risk prescribed by the planner, we investigate the problem of computing

the minimum probability-guaranteed makespan (i.e. Robust Makespan) and propose meth-

ods for generating an execution strategy such that when uncertainty is dynamically realized,

any schedule instantiated from the execution strategy will be guaranteed to finish within the

robust makespan with the given level of confidence (or risk).

To the end, we first introduce and study the properties of a decision rule used to compute

the start times of all activities with respect to execution strategies and dynamic realizations of

uncertainty. Based on the decision rule, we derive the expression for robust makespan of an

execution strategy as a quantitative and exact measurement of robustness and propose methods

for generating execution strategy with the best robust makespan. To improve performance of

local search, we provide enhancements that exploit temporal dependencies between activities.

Our experimental results illustrate that robust local search is able to provide robust execution

strategies efficiently. We then apply our methodology in the MRO industry context and provide

the planner candidate execution strategy based on his own attitude to risk.



Next, we deal with the additional consideration of resource uncertainty due to resource

breakdown and repair. We propose different chaining procedures and compute robust resource

allocations by predicting the effect on robustness of generated strategies. We incorporate such

information into robust local search and propose methods for generating execution strategies

that can better absorb resource and durational uncertainties. Experiments show that our pro-

posed model is capable of addressing uncertainties of both resources and durations and the

most robust execution strategy is generated by the chaining procedure that takes into account

of both mean and variance values of the effect of resource breakdown.

Finally, we apply our model to the service industry context and add visibility from a risk

management perspective to the service provider by computing the robust cost of business pro-

cesses.



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contributions and Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Literature Review 6

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Generation of Generic Schedule . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Strongly Controllable Techniques . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Probabilistic Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Generation of Flexible Schedule . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Dynamically Controllable Techniques . . . . . . . . . . . . . . . . . . 9

2.3.2 Redundancy-based Techniques . . . . . . . . . . . . . . . . . . . . . . 9

2.3.3 Schedule Policy-based Techniques . . . . . . . . . . . . . . . . . . . . 10

2.4 Scenario-based Optimization in Scheduling . . . . . . . . . . . . . . . . . . . 11

2.5 Robust Optimization in Scheduling . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Background 13

3.1 Definitions of RCPSP/max . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

i



3.1.1 Deterministic RCPSP/max . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.2 Data Uncertainty and Robust Makespan . . . . . . . . . . . . . . . . . 16

3.1.3 An Instance: Job-shop Scheduling Problem (JSP) . . . . . . . . . . . . 17

3.2 Execution Strategy: Partial Order Schedule (POS) . . . . . . . . . . . . . . . . 18

3.2.1 Chaining Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Segregated Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Decision Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4.1 Decision Rules for Optimization under Data Uncertainty . . . . . . . . 23

3.4.2 Segregated Linear Approximation (SLA) in Scheduling . . . . . . . . . 24

3.5 Robust Fitness Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Robust Execution Strategy under Durational Uncertainty 28

4.1 Contributions and Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Decision Rule for RCPSP/max with Durational Uncertainty . . . . . . . . . . . 29

4.2.1 General Non Linear Approximation (GNLA) . . . . . . . . . . . . . . 29

4.3 Robust Local Search Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.1 Schedule Infeasibility of a Given POS . . . . . . . . . . . . . . . . . . 43

4.4 Enhancing Robust Local Search . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4.1 Ordering Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4.2 Improved Chaining based on Robustness Feedback . . . . . . . . . . . 46

4.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5.2 Comparison between SLA and GNLA . . . . . . . . . . . . . . . . . . 50

4.5.3 Comparisons between Robust Local Search Enhancements . . . . . . . 54

4.5.4 Comparisons with JSPs with Durational Uncertainty . . . . . . . . . . 58

4.6 Application in Marine Industry . . . . . . . . . . . . . . . . . . . . . . . . . . 59

ii



4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Robust Execution Strategy under Resource and Durational Uncertainties 62

5.1 Contributions and Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 Comparison with Existing Works on Resource Uncertainty . . . . . . . . . . . 64

5.4 Resource Breakdowns in RCPSP/max . . . . . . . . . . . . . . . . . . . . . . 66

5.4.1 Representation of Resource Breakdowns . . . . . . . . . . . . . . . . 66

5.4.2 Analytical Effect of Resource Breakdown . . . . . . . . . . . . . . . . 66

5.5 Chaining Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.5.1 Forward-Backward-Chaining . . . . . . . . . . . . . . . . . . . . . . . 71

5.5.2 Resource-Breakdown-Aware Chaining . . . . . . . . . . . . . . . . . . 74

5.6 Extended Robust Local Search . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.7 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.7.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.7.2 Comparisons between Chaining Procedures . . . . . . . . . . . . . . . 81

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6 Application in Service Industry Context 84

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2 Motivating Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.3 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.4 Proposed Approach to E/T Case Study . . . . . . . . . . . . . . . . . . . . . . 90

6.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.4.2 Finding sub-POS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.4.3 Expected Cost of E/T for Each Job . . . . . . . . . . . . . . . . . . . . 94

iii



6.4.4 Robust Cost for the Project . . . . . . . . . . . . . . . . . . . . . . . . 95

6.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7 Conclusion and Future Research 99

7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

A System Implementation Diagram 101

A.1 Inputs/Outputs of the System . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

A.2 Guidelines on Implementing the System . . . . . . . . . . . . . . . . . . . . . 102

iv



List of Figures

3.1 Project Instance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Example Schedule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Example of POS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 POS computed with Removed Synchronization Point . . . . . . . . . . . . . . 21

4.1 POS by Robustness Feedback Chaining . . . . . . . . . . . . . . . . . . . . . 48

4.2 Comparison of Robustness between SLA and GNLA. . . . . . . . . . . . . . . 51

4.3 Comparison of Robust Makespan. . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 Comparison of Actual Makespans and Gap between S∗ and G∗.(Lines in left

pictures from top down indicating: Computed S∗, Actual S∗ by Simulation,

Computed G∗, Actual G∗ by Simulation.) . . . . . . . . . . . . . . . . . . . . 53

4.5 Comparison of Robust Local Search Enhancements. . . . . . . . . . . . . . . . 57

5.1 Activity Duration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Overview of Local Search. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 ”Real” activity and ”Dummy” activity. . . . . . . . . . . . . . . . . . . . . . . 78

6.1 Flight catering business process as an example of a job . . . . . . . . . . . . . 87

6.2 Overview of the approach to E/T job scheduling problem . . . . . . . . . . . . 91

6.3 Example of three jobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.4 Example of sub-POS for three jobs in Figure 6.3 . . . . . . . . . . . . . . . . . 94

v



6.5 Selected instances of robust cost versus level of risk . . . . . . . . . . . . . . . 96

6.6 Instances of test cases showing the ability of algorithm to converge to a mini-

mum robust cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

A.1 System Implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

vi



List of Tables

3.1 Values of the mean and variance for the segregated variables under Uniform

and Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Comparison against CB solver(UL:Uncertainty Level). . . . . . . . . . . . . . 59

4.2 Robust Makespan Varies with σ and ε. . . . . . . . . . . . . . . . . . . . . . . 60

5.1 Effectiveness of RLSFBC on Benchmark Problems. . . . . . . . . . . . . . . . 81

5.2 Comparison of RLSMH , RLSV H , RLSMV H against RLSFBC on Benchmark

Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3 Robust Makespan with Different Breakdown Parameters. . . . . . . . . . . . . 83

vii



Acknowledgments

Foremost, I would like to thank my supervisor, Prof. Lau Hoong Chuin, for his ZhiYuZhiEn,

for his five-year guidance of my Ph.D research, for his patience, enthusiasm, motivation, and

immense knowledge, for his care about my graduate life. His rigorous academic style, piercing

insights for good research and humorous personality have a profound impact on my future work

and life.

Besides my advisor, I would like to thank the rest of my thesis committee: Prof. Pradeep

Reddy Varakantham, Prof. Cheng Shih-Fen, and Prof. Lim Yun Fong, for their time, insightful

suggestions and valuable comments.

I am fortunate to know Prof. Pradeep Reddy Varakantham as my mentor. I appreciate his

encouragement and experience sharing in doing research. I have benefited intellectually and

mentally from cooperation with him. I am also grateful to Prof. Cheng Shih-Fen for guiding

me to well organize literatures, without whom I would not have a smooth start of my research.

I would like to express my appreciation to two other cooperators, Xiaofei and Tan Karway,

for contributions to Chapter 4 and Chapter 6 of the thesis, respectively. Also sincere thanks to

all my SIS friends. Thanks for the friendship and memories.

My deepest gratitude goes to my beloved parents for their nurture and unconditional love.

Likewise, I also appreciate the help of my parents-in-law for taking care of my child during my

thesis writing. Finally, I would like to express my heartfelt gratitude to my husband, Zhangxin,

for his continuous support and encouragement. His incredible support was critical for me to

complete the thesis.

To those who indirectly contributed to the thesis, your kindness and help mean a lot to me.

Thank you very much.

viii



Dedication

I would like to dedicate this thesis to my husband, Zhangxin and son, Hanwen, for their love.

ix



Chapter 1

Introduction

1.1 Motivation

Scheduling is an important decision-making process in diverse areas such as manufacturing,

logistics and MRO, etc. as it describes guidance and pathway for successful completion of

a project. Scheduling, in general, is concerned with deciding how to commit resources over

time to perform a variety of activities in order to optimize certain criteria (minimal makespan,

minimal cost, etc.). For example in manufacturing, a schedule tells a production facility when

to make, with which staff, and on which equipment and thus scheduling results makes a major

impact on the productivity and efficiency of the production project.

Most research on scheduling typically address deterministic models with all data parame-

ters known with certainty in advance - an assumption which is hardly satisfied in real-world

scheduling environments. In general situations where problem parameters are subject to signif-

icant random perturbations due to unexpected external events such as manpower unavailability,

weather changes, machine breakdowns, etc., deterministic schedules tend to be brittle and may

become infeasible. We quote from the work by Bidot et al. [8] on real-world scheduling:

In practical applications, we have to plan or schedule with incomplete, impre-

cise, and/or uncertain data ...... as there is a high chance that such a (deterministic)

schedule will not fit the real situation that will arise.

1



This thesis seeks to bridge the gap between theory and practice in real-world scheduling and

deals with scheduling in the stochastic environment.

From the computational perspective, stochasticity adds a great deal of complexity to the

underlying deterministic scheduling problem. For example, in the infinite-resource project

scheduling problem where processing times have two possible discrete values, the problem

of computing the expected makespan (or any point on the cumulative distribution of the opti-

mal makespan), is #P-hard [24, 42]. It has also been shown that for the scheduling problem

1|stoch pj; dj = d|E[
∑

wjUj], the problem of computing a policy (i.e., execution strategy)

maximizing the probability that some job completes exactly at the deadline is PSPACE-hard

[14]. [12] considered a one-machine scheduling problem with probabilistic durations, with an

objective to capture the likelihood that a schedule yields actual performance no worse than a

given target level. This has been shown to be NP-hard even though the underlying deterministic

problem can be solved in polynomial time.

There are broadly two approaches for tackling scheduling problems in a stochastic environ-

ment. One is to adopt a hybrid of proactive and reactive methods (e.g., [57]) where an initial

baseline schedule is computed offline, which is then modified (if required) during execution

reactively based on the occurrence of external events. The second approach (e.g., [43]) is to de-

sign schedule policies that provide online decision rules such that at time t, the policy decides

which task(s) may start and which resource(s) to assign. This thesis adopt the latter approach

and focus on the computation of a robust execution strategy.

The concrete problem addressed in the thesis is the Resource Constrained Project Schedul-

ing Problem with minimum and maximum time lags (abbrev. RCPSP/max). It is a strongly

NP-hard combinatorial optimization problem; and even the decision problem of determining

whether an RCPSP/max instance has a feasible solution is NP-complete [4]. Due to its com-

plexity, local search based techniques [17] have achieved success in providing scalable solu-

tions. Taking a cue from this and the recent advancements in robust optimization, we contex-

tualize and improve upon the robust local search [38] for solving RCPSP/max problems under

data uncertainty with a risk management perspective.

As a general class of scheduling problems across a broad spectrum of industries, RCPSP/-

max covers many well-known specific problems such as Resource Constrained Project Schedul-

2



ing Problem (RCPSP), Job-shop Scheduling Problem (JSP), etc. There is a growing interest to

account for data uncertainty for solving such specific problems [26, 5, 52]. However, little

work has been done on RCPSP/max problems under uncertainty in the scheduling research.

This thesis deals with the uncertainty aspect, in particular, we aim for building robust sched-

ules for RCPSP/max where resource availabilities are subject to unforeseen breakdowns and

durations of activities are random variables.

1.2 Research Questions

The major objective of the thesis is to develop methodologies to build robust execution strate-

gies for RCPSP/max in a stochastic environment. When refereing to robustness, it is naturally

to ask three questions [1]:

(1) What behavior makes the execution strategy robust?

(2) What uncertainties must the execution strategy be robust against?

(3) Quantitatively, exactly how robust is the execution strategy?

Besides these three robustness questions, the main research questions we are interested to

address is: given only mild statistical information (such as mean and variance) of the input

uncertain data (describing stochastic durations and resource breakdowns), can we efficiently

and effectively solve RCPSP/max problems within probability guarantee? In particular, given

a level of risk (or conference) prescribed by the planner, how to find an execution strategy and

a robust objective value such that when resource and durational uncertainties are dynamically

realized, the execution strategy will result in a solution whose value is as good as the robust

value with the given level of risk (or conference).

To address these questions, we propose methods for solving RCPSP/max problems with

stochastic processing times and unfixed resource availabilities from a risk management per-

spective. More precisely, we compute an execution strategy called Partial Order Schedule

(POS) that minimizes the robust makespan. Given a level of risk 0 < ε ≤ 1, the robust

makespan is a value for which the probability of realized makespan for any schedule (derived

from POS) does not exceed it is greater than (1− ε), over all realizations of uncertainty.

3



1.3 Contributions and Structure

To the best of our knowledge, this is the first work dealing with variable durations, resource

breakdowns, and minimum/maximum time lags simultaneously in scheduling. Specifically, the

key contributions we made in this thesis are:

• We proposed Generalized Non-Linear Approximation (GNLA) as decision rule and de-

rived robust makespan expression based on GNLA. We applied a local search methodol-

ogy for generating robust execution strategy. GNLA-based fitness expression is shown

to be able to guide local search to generate more robust execution strategies than existing

method.

• We provided enhancements to local search by exploring precedence relationship between

activities and improving resource chaining based on predicted robustness of execution

strategies. Our results demonstrate performance improvement of local search.

• Besides RCPSP/max, we experimented on JSP problems with durational uncertainty and

computed the minimum robust makespan with proven probability of successful execu-

tion. We also applied the proposed model in the MRO industry to provide the planner

guidance on execution strategies.

• We developed a mechanism that translates information of resource breakdowns to (fur-

ther) duration variability of activities so that our model is able to build execution strate-

gies that hedge against both resource and durational uncertainties. To improve robust-

ness, we proposed different resource chaining procedures to obtain execution strategies

based on resource breakdown and repair distributions.

• We applied our model in the service industry context to improve service delivery by

providing the robust cost of business processes.

The rest of this thesis is organized as follows: Chapter 2 first reviews the existing studies

on RCPSP/max followed by the work on scheduling under uncertainty from four perspectives

– Generation of Generic Schedule, Generation of Flexible Schedule, Scenario-based Optimiza-

tion in Scheduling and Robust Optimization in Scheduling. We provide background and pre-

4



liminary in Chapter 3. Chapter 4 introduces our first work [20, 22] for RCPSP/max with du-

rational uncertainty, where Generalized Non-Linear Approximation (GNLA) and local search

enhancements are proposed and examined. To generate robust execution strategy under both

resource and durational uncertainties, we extend the work in [38] and evaluate the effect of

resource breakdown in Chapter 5. We then propose different chaining procedures by predicting

the effect on robustness. Finally, we apply our proposed model in a service industry context in

Chapter 6. Chapter 7 concludes the contribution of this thesis and describes possible directions

for future research.

5



Chapter 2

Literature Review

2.1 Overview

The Resource-Constrained Project Scheduling Problem with minimum and maximum time

lags, RCPSP/max, (or known as the Resource-Constrained Project Scheduling Problem with

Generalized Precedence Relations, RCPSP-GSR) is a strongly NP-hard combinatorial opti-

mization problem [4]. Compared with its specific problems like RCPSP, JSP, etc. not much

attention have been paid to RCPSP/max in the scheduling research. Branch and bound based

methods [18] and heuristic approaches [9, 53] have been shown success in solving these prob-

lems. For a survey of recent developments and new applications of RCPSP/max, one may refer

to [46].

However, to the best of our knowledge, little study has considered RCPSP/max when un-

certainty is an issue. One such paper dealing with variable durations on RCPSP/max is done

by [41], where activity durations range between given lower and upper bounds. A precedence

constraint posting approach [48] was adopted. Whereas in our work, we consider RCPSP/max

with durational uncertainty where each activity duration is modeled as a random variable with

known mean and variance values. Besides the durational perturbation, we also address resource

uncertainty where resource availabilities are subject to unforseen breakdowns. Another work

[38] solved RCPSP/max with durational uncertainty by combining techniques from robust opti-

mization with classical local search to compute an execution strategy that minimizes the robust

6



makespan. The key idea there was to apply the segregated linear decision rule [10] to represent

start times of activities and then compute an upper bound for the robust makespan, which is in

turn used for guiding the local search to find the robust execution strategy. The use of the seg-

regated linear decision rule provides for computing the fitness measure quickly. However, this

advantage comes at a price in that the fitness measure is a loose upper bound (which has the side

effect of guiding the search into bad regions). In our work, we address the issue of loose upper

bounds by proposing a new general non-linear decision rule and deriving the fitness measure

of an execution strategy irrespective of the durational uncertainty distributions.

From the perspective of methodology, research on scheduling with uncertainty has received

a growing interest in Artificial Intelligence communities [26, 2, 5, 52, 41, 8]. Broadly, one may

classify the techniques to tackle scheduling with uncertainty into two categories: Proactive

Scheduling is to design a priori schedule or a schedule policy that take into account the possible

uncertainty that may occur; Reactive Scheduling modifies or re-optimizes the baseline schedule

when an unexpected event occurs. This thesis focuses on proactive scheduling and we are

concerned with robust scheduling which aims for obtaining robust execution strategies that

maintain a high level of performance against uncertainty.

The main idea of proactive techniques is to build a global solution which hopefully does

not need to be revised at execution time. We first review two class of proactive techniques

related with our work, according to how and when the information of uncertainties can be

taken into account in generating more robust and stable schedules than they would be without

using this information [8]: 1. generating one complete generic schedule which is proved to

execute correctly in most scenarios arising during execution; 2. generating a flexible solution

in which some decisions are postponed to be made until execution. After that, we will review

the optimization techniques in OR community in solving scheduling problems.

2.2 Generation of Generic Schedule

A first method for making a generic schedule that is insensitive to online perturbations is to

produce a complete and robust schedule by taking into account all possible scenarios, i.e. a

schedule with strong controllability [56]. Rather than dealing with execution with 100% con-

7



fidence, probabilistic techniques have been proposed that build schedules with a probabilistic

guarantee against a threshold value of an optimization metric such as makespan. Another exam-

ple of such generic schedule generation is fuzzy scheduling [26]: instead of stochastic variables

and probabilistic distributions, fuzzy set scheduling use fuzzy numbers for modeling uncertain-

ties based on possibility theory; a recent work by [52] modeled uncertain durations as fuzzy

numbers and improved local search to solve the Job Shop Scheduling Problem. In the follow-

ing, we provide further details on the work related to strong controllability and probabilistic

techniques.

2.2.1 Strongly Controllable Techniques

Strong Controllability was introduced by [56] over Simple Temporal Networks with Uncer-

tainty (STNU) for which controllability is achievable in polynomial time. With the existence

of uncontrollable events that are controlled by exogenous factors, often referred to as Nature,

an STNU is strongly controllable if there exists at least one universal schedule that suits any

situation. Such schedule might be computed off-line beforehand. Strong controllability is the

strictest form of STNU. A strongly controllable network means that the schedule can be ex-

ecuted without regard to the contingent events. It is useful in applications where contingent

events cannot be observed exactly.

2.2.2 Probabilistic Techniques

Instead of generating a global solution suitable for all realizations of uncertainties, probabilistic

techniques build a schedule that has a probabilistic guarantee of a deterministic optimization

measure with respect to a threshold value, e.g., find the schedule with the highest probability

that the project makespan will not exceed a particular value.

[12] defined a β-robust schedule as one that has maximum probability of achieving a given

performance level, e.g., the total flow time is no greater than a given threshold. They presented

branch-and-bound and heuristic techniques to find a robust schedule in a one-machine manu-

facturing context that performs the best within a given confidence level. A recent approach [5]

provides techniques to compute the robust baseline schedule from a risk management perspec-
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tive, where durations of activities are modeled as random variables. Given a value 0 < α ≤ 1,

they were interested to compute a schedule with minimal (probabilistic) makespan where the

probability of successful execution is at least 1 − α over all realizations of the durational un-

certainty. The main contribution there was to derive a lower bound for the α-makespan of a

given schedule by solving a deterministic problem. They considered the Job-shop Scheduling

Problem (JSP) that represents a special case of RCPSP/max (which is the problem of interest

in this thesis).

2.3 Generation of Flexible Schedule

Another way of producing robust schedule taking into account of uncertainty is to introduce

flexibility into the schedule. The idea is that only a subset of decisions are made offline and

the rest are postponed to be made online, so that decisions are only made when information

becomes more precise and certain [8]. In the following, we discuss three subcategories of

works that deal with generating flexible schedules.

2.3.1 Dynamically Controllable Techniques

An STNU is Dynamically Controllable [56] if there exists a solution that can always be in-

stantiated incrementally based on the outcomes of contingent edges in the past. An execution

strategy using dynamic controllability is needed to produce an incremental solution based on

the subsequent revelation of contingent events. [44] proposed a pseudo-polynomial algorithm

to handle dynamic controllability of STNUs based on constraint satisfaction. Techniques were

proposed by [59], to optimize the bounds on durations of contingent edges such that the result-

ing STNU is dynamically controllable.

2.3.2 Redundancy-based Techniques

Redundancy-based scheduling is another proactive technique for scheduling. The idea is to

generate a schedule that includes the allocation of extra resources and/or time in the schedule

so that these buffers will help absorb the impact of unexpected events without rescheduling dur-
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ing execution. [13] proposed techniques for generating robust schedules based on the insertion

of temporal slacks to critical activities that are allocated on possibly breakable resources. [55]

proposed heuristics and meta-heuristics to allocate time buffers to a given initial schedule for

RCPSP and compared the performance of all algorithms with respect to the stability cost based

on simulation. [37] solved RCPSP with uncertain resource availabilities. They analytically

determined the expected duration increase an activity experiences due to resource breakdowns.

Based on this information, they used simulation-based time buffering to protect the schedule

from disruptions caused by resource unavailability. This algorithm, however, is still compu-

tationally challenging in solving large-scale scheduling problems as compared to local search,

and this approach can not handle uncertain activity durations and unexpected machine break-

downs simultaneously. This thesis is motivated by the above limitation. One contribution of

our thesis is in devising a computationally efficient approach based on robust local search that

deals with both resource and durational uncertainties in RCPSP/max.

2.3.3 Schedule Policy-based Techniques

Even with buffering, baseline schedules may become brittle in face of unpredictable execution

dynamics and get invalidated. Instead of baseline schedule, another line of work is to consider

design of good schedule policies(e.g. [43]) that provide online decision rules such that at time

t, the policy decides which task(s) may start and which resource(s) to assign. [15] applied

resource-based policies for RCPSP with uncertain durations where the decision times are de-

termined by the realization of durational uncertainty. The objective of that work is to determine

a project execution policy with minimized execution cost. Another example is the notion of

Partial Order Schedules (POS) defined by [49] which seeks to retain temporal flexibility when-

ever the problem constraints allow it and can often absorb unexpected deviation from predictive

assumptions. They considered robustness measures such as fluidity and flexibility. Generating

POS is another example of such flexible approaches: a subset of sequencing decisions are made

offline and the remaining decisions are made online by using a dispatching rule [8]. Different

methods of generating POS were compared in terms of the robustness of the resulting schedules

in the work of [50]. In this thesis, we apply the concept of POS as the execution policy.
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2.4 Scenario-based Optimization in Scheduling

Another line of work that deals with scheduling under uncertainty is based on the use of sce-

narios (scenario-based optimization). For example, [33] introduced the concept of robustness

into scheduling problems. They considered uncertain processing times and proposed methods

to generate a robust schedule based on the maximum absolute deviation between the robust

solution against all possible scenarios in a given scenario set. A shortcoming of this kind of

approach is that all scenarios are assumed to be known in advance, and that the scenario space

is usually exponentially large. Noteworthy of mention are the two notions of solution robust-

ness and quality robustness, where solution robustness (or stability) refers to the insensitivity

of actual start times, whereas quality robustness refers to the insensitivity of solution quality

(i.e. makespan) to different scenarios [26]. Another pioneering scenario-based optimization

work is by [45] which handles the tradeoff between solution robustness (if a solution remains

close to the optimal for all scenarios) and model robustness (if a solution remains feasible for

most scenarios).

2.5 Robust Optimization in Scheduling

A recent development in Operations Research saw the potential of applying the concept of Ro-

bust Optimization to deal with uncertainty. [6] and [7] proposed robust optimization models

where no assumptions of the underlying probability distribution of data are needed. The idea

is often to approximate data uncertainty by a tractable (convex) uncertainty set, and optimiza-

tion is performed on that set. This results in a robust counterpart formulation as a conic (such

as second-order cone) optimization problem which can be solved in polynomial time. How-

ever, only a few works have been reported in the literature on applying robust optimization

to scheduling, due mainly to a high-degree combinational nature of the problem. One such

application is the process scheduling problem in chemical engineering, such as the works by

[28] and [40]. A notable recent breakthrough in robust optimization on tractable approxima-

tion models to solve stochastic optimization problems is found by [10]. This approach, while

tractable, may still be computationally challenging in solving large-scale optimization prob-

lems as compared to local search. Motivated by the above limitations, we propose methods
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for generating the robust execution strategy with the (locally) minimum robust makespan for

RCPSP/max under the situation that activity durations are uncertain and resources are subject

to unexpected breakdowns.
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Chapter 3

Background

3.1 Definitions of RCPSP/max

3.1.1 Deterministic RCPSP/max

The RCPSP/max problem [4] consists of N activities {a1, a2..., aN}, where each activity aj

(j = 1, ...N) is to be executed for a certain amount of time units without preemption. Each

activity aj has a fixed duration or processing time dj , which is assumed to be a non-negative

real number or non-negative integer number. In addition, dummy activities a0 and aN+1 with

d0 = dN+1 = 0 are introduced to represent the beginning and the completion of the project,

respectively.

A start time schedule ss is an assignment of start times to all activities a1, a2..., aN , i.e.

a vector ss = (st(a1), st(a2), ...st(aN)) where st(ai) represents the start time of activity ai

and st(a0) is assumed to be 0. Let et(ai) be the end time of activity ai. Since durations are

deterministic and preemption is not allowed, we then have

st(ai) + di = et(ai). (3.1)

And the project makespan which is also the start time of the final dummy activity st(aN+1)

equals

st(aN+1) = maxi=1,...Net(ai). (3.2)
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Schedules are subject to two kinds of constraints, temporal constraints and resource con-

straints. Temporal constraints restrict the time lags between activities. A minimum time lag

Tmin
ij between the start time of two different activities ai and aj says that

st(aj)− st(ai) ≥ Tmin
ij (3.3)

Specially, Tmin
ij = 0 means that activity aj cannot be started before activity ai begins. A

maximum time lag Tmax
ij between the start time of two different activities ai and aj says that

st(aj)− st(ai) ≤ Tmax
ij (3.4)

Tmax
ij = 0 means that activity aj cannot be started after activity ai begins.

In this definition, time lags connect start times of two related activities, known as start-

to-start time lags. start-to-end, end-to-end, end-to-start time lags can be easily transformed

to the general start-to-start time lags for the deterministic case as given by [4]. A schedule

ss = (st(a1), st(a2), ...st(aN)) is time feasible, if all the time lag constraints are satisfied at the

start times st(ai) (i = 1, ...N).

A resource unit is reusable and available for another activity once it is no longer used by

the current activity. Each type of resource has a limited capacity, Ck (k = 1, 2..., K) units.

Each activity ai requires rik units of resource of type k where k = 1, 2..., K. Let A(t) = {i ∈
{1, 2...N}|st(ai) ≤ t ≤ et(ai)} be the set of activities which are being processed at time instant

t. A schedule is resource feasible if at each time instant t, the total demand for a resource k

does not exceed its capacity Ck, i.e.

∑

i∈A(t)

rik ≤ Ck. (3.5)

A schedule ss is called feasible if it is both time and resource feasible. The objective of the

deterministic RCPSP/max scheduling problem is to find a feasible schedule so that the project

makespan is minimized.

Example 1. In Figure 3.1, we show a simple example of a deterministic RCPSP problem which

is a special case of RCPSP/max with only precedence constraints (rather than arbitrary time
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Figure 3.1: Project Instance.

1

time

Figure 3.2: Example Schedule.
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lags) between activities for expository purposes. Each circle indicates an activity with the

number inside the circle representing the activity ID. The two numbers on top of each activity

represent the duration and the number of units of the resource required by the activity. In

this example, there are 9 activities and one type of resource, with the capacity of the resource

limited to 10. It should be noted that the activities 0 and 10 are dummy activities introduced to

have a source and sink in the dependency graph. Arrows between activities represent temporal

dependencies. A feasible schedule with makespan of 13 is represented in Figure 3.2.

3.1.2 Data Uncertainty and Robust Makespan

The duration of an activity is specified as a sum of its mean value and its deviation: d̃i = d0
i +z̃i,

where d0
i is the mean of d̃i and z̃i is the perturbation part with an expected value of 0 and

standard deviation σ. It should be noted that irrespective of its distribution type, we can always

represent d̃i as d̃i = d0
i + z̃i where d0

i is the mean and z̃i is the perturbation part with E(z̃i) = 0.

In addition, we also assume that these random variables, {z̃i}, corresponding to durational

uncertainty are independent of each other.

Similar to the deterministic RCPSP/max, the start-to-start constraints are still deterministic.

However, unlike the deterministic case, other types of constraints (end-to-start etc.) cannot be

converted into deterministic start-to-start constraints . Instead the equivalent start-to-start con-

straint is a stochastic one as shown in the following expressions for an end-to-start constraint.

It should be noted that even though the converted constraints are stochastic, our techniques will

still be applicable (with minor modifications) to all types of time lag constraints. Our robust

local search techniques depend on the computation of maximum and sum of random variables

and even with stochastic time lag constraints that remains the case. In this work, for purposes

of exposition, we present our techniques assuming the temporal dependencies are provided as

start-to-start constraints.

st(aj)− et(ai) ≤ Tmax
ij

st(aj)− (st(ai) + d̃i) ≤ Tmax
ij

st(aj)− st(ai) ≤ Tmax
ij + d̃i

16



In the deterministic setting, start time schedules can be computed and values of makespan

can be used to evaluate the performance of the schedule. However, when durational uncertainty

is involved, the project makespan becomes a random variable and the schedule is replaced by

an execution strategy. In the following sections, we introduce the Partial Order Schedule (POS)

[49], which serves as an execution strategy of the scheduling project.

Given a level of risk 0 < ε ≤ 1, the goal of our problem is to find such a strategy with a

minimum value (across all strategies) of the robust makespan. We define the robust makespan

as a makespan value where the probability that any feasible schedule (i.e. an assignment of start

times to activities) instantiated from the strategy can be completed before robust makespan is

at least 1− ε.

3.1.3 An Instance: Job-shop Scheduling Problem (JSP)

Due to the generality of RCPSP/max, this model covers many difficult special problems that has

been studied in literature, like Job-shop Scheduling Problem(JSP). The classical JSP consists

of a set of n jobs and a set of M machines. Each job Ji (i = 1, ...n) consists of a sequence

of ni operations denoted as Oij (j = 1, ...ni) which have to be processed in a given order.

For convenience, we enumerate all operations of all jobs by Ok, where k = 1, ...N and N =
∑n

j=1 nj . Each operation Ok has a positive duration denoted as dk and must be executed on

a dedicated machine denoted as Mk. Once an operation is started it must be executed for its

entire duration. No operations that require the same resource can overlap in their execution.

Thus, operations can be partitioned into two sets: job sets and resource sets. Job sets referring

to operations corresponding to a job and resource sets referring to all operations that require

the same resource.

A solution s is a total ordering of operations on each resource set, which does not conflict

with the job ordering. A path of a solution s is a sequence of operations which follows both

the job ordering and the ordering on various resource sets of the solution s. The length of a

path is equal to the sum of the durations of the operations in the path. The makespan of a

solution s make(s) is the length of the longest path. The minimum makespan of a JSP problem

is defined to be the minimum value of makespans over all solutions, i.e. mins make(s). Each
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operation Ok is associated with a start time of st(Ok) and end time of et(Ok). A schedule is

an assignment of starting times st(Ok) (k = 1, ...N ) to all operations on the machines. The

objective is to find a schedule which optimizes the total makespan (makespan is the completion

time of the last operation): maxN
k=1et(Ok), which is also the minimum value of the longest

path of all solutions. The job shop scheduling problem is a special case of RCPSP in which

resources have unary capacity and each activity (i.e. operation) consumes only one resource.

We can propagate the same notations from RCPSP/max with durational uncertainty to the

JSP with durational uncertainty, i.e. the processing time of each activity (i.e. operation) d̃Ok
is

now modeled as a sum of an expected value d0
Ok

and a random part z̃Ok
: d̃Ok

= d0
Ok

+ z̃Ok
. The

objective is to find the robust makespan with a given level of risk.

3.2 Execution Strategy: Partial Order Schedule (POS)

A Partial Order Schedule (POS) was first proposed by [49]. It is defined as a set of activities,

which are partially ordered such that any schedule with total activity order that is consistent

with the partial order is resource and time feasible. Mathematically, a POS can be represented

by a graph where a node represents an activity and the edges represent the precedence con-

straints between the activities. Within a POS, each activity retains a set of feasible start times,

which provide the flexibility to respond to unexpected disruptions. A POS can be constructed

from a given RCPSP instance via a chaining algorithm (where one such algorithm is described

below).

Example 2. Figure 3.3 provides a POS for the problem instance introduced in Example 1.

There are 10 units of the resource and that is shown on the left most side of the figure. Each

unit represents a chain. An activity can require multiple resource units and hence is shown on

multiple resource units. For instance, activity 6 is shown on resource units 4, 7 and 8. A solid

arrow between activities represents a temporal dependency provided in the original problem.

Solid arrow between activities 1 and 2 is one such example. A dotted arrow between activities

represents a temporal dependency that is introduced since both activities have to be executed

on the same resource unit. It is added to remove resource conflict. An example for this is

the dependency introduced between activity 2 and activity 6. For explanatory purposes we
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Figure 3.3: Example of POS

only consider one resource type in this example, however in the most general case, there exists

multiple resource types and a dependency diagram for every resource type.

3.2.1 Chaining Algorithms

Chaining is a procedure of dispatching activities to different resource units (henceforth referred

to as chains) based on temporal and resource feasibility. During the chaining process, each

activity can be allocated to one or more resource chains based on the number of resource

requirement of the activity. During the chaining process, once an activity is scheduled to be

executed on a resource unit, an additional edge (indicating precedence relationship) is added

between the last activity of the selected chain and this activity so as to eliminate all possible

resource conflicts.

In the following, we describe the basic chaining algorithm proposed by [49]. In this algo-

rithm, a feasible schedule is first obtained using a simple greedy heuristic. Consequently, the

POS is constructed through a chaining method as follows: First, the set of activities are sorted

according to their start times given in the feasible solution; Then, all activities are allocated

to different chains in that order, where each chain corresponds to a unit of a certain type of

resource. A chain is called available for an activity if the end time of the last activity allocated

on this chain is no greater than the start time of the activity in the feasible schedule. Once

an activity is allocated on a chain, a precedence constraint between this activity and the last

activity of the chain is posted. For those activities that require more than one unit of one or
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more types of resources, they will be allocated to a number of chains with the number equal to

the overall number of resource units required by the activity.

Example 3. Take Figure 3.3 for example. Given the schedule of Figure 3.2 as an input,activities

are first sorted according to their starting time and the sequence of activities can be presented

as: (7,1,2,8,3,5,4,6,9). The chaining procedure first picks activity 7 and randomly allocates it

to five chains to fulfill its resource requirement. The available chains are those belonging to

dummy activity 0.Thus, five chains 1 through 5 are created which posts the precedence rela-

tionship from the current last activity 0 to activity 7. Activity 7 then becomes the last activity

on those chains. Activity 1 is treated in the same way. The available chains for activity 2 are

those belonging to activity 1. Activity 2 is then randomly assigned to chain 8 through 10 and an

edge between activity 1 and activity 2 indicating precedence relationship is added. This proce-

dure continues until all activities are dispatched to chains that the number equals its resource

requirement, and finally the chained POS 3.3 is yielded. However, because the randomness of

the chaining procedure, activity 6 is allocated to chains that belong to three different activities:

activity 2, activity 1 and activity 7. This will tie together the execution of three previously unre-

lated activities: (activity 2, activity 6),(activity 1, activity 6) and (activity 7, activity 6), which

would decrease the flexibility of execution.

To reduce inter-dependencies between activities as much as possible during the chaining

procedure, [47] developed two heuristics. One direct advantage of such approaches is that

synchronization points of a solution can be reduced:

• Activities that require more than one resource units are allocated to the same subset of

chains. This is achieved by scanning the list of available chains where the last activity

in the chain : (a) requires multiple resource units; and (b) was also previously assigned

another resource unit allocated to the current activity.

• Activities with a precedence constraint defined in the original problem are allocated to

the same set of chains. This is implemented by choosing a chain that has a last activity

with precedence constraint with the current activity.

Example 4. Figure 3.4 provides the POS computed by using the above mentioned chaining

algorithm for the RCPSP problem described in Example 1. When allocating activity 6, the
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Figure 3.4: POS computed with Removed Synchronization Point

available chains are divided into two sets: {chain 10, chain 9} and {chain 8, chain7, chain6}.

The first set contains chains for which the last activity (i.e. activity 5) is already ordered in

problem definition with respect to activity 6. A chain (for example, chain 10) is randomly chosen

from this set with the last activity on it as activity 5. Then, The remaining available chains for

activity 6 is redivided into two sets: {chain 9} and {chain 8, chain7, chain6}. The first set

contains the chains with activity 5 (i.e. the last activity of the first picked chain) as the last

activity and the second set are the remaining. Activity 6 is first allocated to chains belonging to

the first subset to satisfy all remaining resource requirements. In this case, the synchronization

points caused by activities 1 and 6, activities 7 and 6 being allocated to different chains has

disappeared.

3.3 Segregated Random Variables

As given by [6], we also classify the variables in a stochastic optimization problem into 2 types:

Adjustable and Non-Adjustable variables.

Definition 1. Non-Adjustable variables are a priori decisions that must be made before the

actual realization of the uncertainty.

Definition 2. Adjustable variables (also known as recourse variables) are ’wait-and-see’ vari-

ables that can adjust themselves when part of the uncertain data become known.
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For example, in a scheduling problem such as RCPSP with uncertain task durations, the

non-adjustable variables will represent the execution policy, e.g., the POS proposed by [49],

that need to be constructed a priori, while the adjustable variables are associated with the actual

start times of the tasks, which will be set with respect to the execution policy and dynamic

realizations of uncertainty.

A random variable will be denoted by x̃ and bold face lower case letters such as x represent

vectors.

A primitive random variable z̃k is one which has zero mean. Examples of a primitive ran-

dom variable include U(−a, a) (uniform distribution between constants−a and a) and N(0, σ)

(normal distribution with mean 0 and variance σ2). As mentioned earlier, we assume that ev-

ery uncertain distribution is equal to the sum of its nominal value (mean) and its deviation,

represented by one (or possibly more) primitive random variable z̃. In a straight forward repre-

sentation, there is only one primitive random variable z̃k associated with an uncertain variable.

In the recent work by [10], each primitive random variable z̃k is represented by 2 segregated

random variables z̃+
k (read z-plus) and z̃−k (z-minus):

z̃ = z̃+ − z̃−

z̃+ = max {z̃, 0}
z̃− = max {−z̃, 0} .

(3.6)

In the following Table 3.1, we give examples of the respective values of mean µp, µm and

variance σp
2, σm

2 for the segregated variables z̃+ and z̃−.

z̃ V ar(z̃) σp
2, σm

2 µp,µm

U(−a, a) a2

3
5a2

48
a
4

N(0, σ) σ2 (π−1)σ2

2π
σ√
2π

Table 3.1: Values of the mean and variance for the segregated variables under Uniform and
Normal Distribution

The underlying assumption with the use of segregated random variables is that the mean and

variance of the individual segregated variables is provided for the random variables employed.

We are not aware of mean and variance values for segregated variables for distributions other

than normal and uniform.
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3.4 Decision Rules

3.4.1 Decision Rules for Optimization under Data Uncertainty

In optimization problems with data uncertainty, a decision rule specifies the dependence of

adjustable variables on the uncertainty parameters and the non-adjustable variables. Let z̃ and

x denote the set of primitive random variables and non-adjustable variables respectively. An

example is the linear decision rule proposed by [6], where the setting value of an adjustable

decision variable S̃(x, z̃) is assumed to be affinely dependent on a subset of the N number of

primitive random variables:

S̃(x, z̃) = c0 +
N∑

k=1

ck(x)z̃k (3.7)

where each ck(x) (1 ≤ k ≤ N ) is a coefficient derived from x.

Another example is the segregated linear decision rule proposed by [10], where each ad-

justable decision variable is assumed to be affinely dependent on a set of some N segregated

random variables
{
z̃+
1 , z̃−1 , . . . , z̃+

N , z̃−N
}

. Hence, a segregated linear decision rule has the fol-

lowing general form:

S̃(x, z̃) = c0 +
∑N

k=1

{
c+
k z̃+

k + c−k z̃−k
}

. (3.8)

As we will show below, a segregated linear decision rule allows us to easily obtain an upper

bound on a subset of random variables (see Eqn 3.16), which is not possible in the linear

decision rule proposed by [6].

Given the mean and variance for each segregated variable E(z̃+
k ) = E(z̃−k ) = µk ,

V ar(z̃+
k ) = σ2

pk and V ar(z̃−k ) = σ2
mk , we can express the expected value and variance of

any adjustable variable as:

E[S̃(x, z̃)] = c0 +
∑N

k=1

{
c+
k µk + c−k µk

}
(3.9)

V ar[S̃(x, z̃)] =
∑N

k=1

{[
c+
k σpk

]2
+

[
c−k σmk

]2 − 2c+
k c−k µk

}
. (3.10)
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3.4.2 Segregated Linear Approximation (SLA) in Scheduling

In this decision rule, the duration for each activity is defined based on the segregated random

variables introduced in Section 3.3. For an uncertain duration d̃ with mean processing time d0,

we represent d̃ as a sum of three components: its mean d0, lateness z̃+ (i.e. max{d̃ − d0, 0}),

and earliness z̃− (i.e. max{d0 − d̃, 0}),

d̃ = d0 + z̃+ − z̃−. (3.11)

For a normally distributed duration, i.e., z̃ ∼ N{0, σ}, the respective values of mean and

variance for the segregated variables can be summarized as:

E[z̃+] = E[z̃−] = σ√
2π

V ar[z̃+] = V ar[z̃−] = (π−1)σ2

2π
. (3.12)

Now we describe the computation of S̃v(x, z̃) by representing durational uncertainty for ac-

tivities using segregated random variables. Upper bounds on both the sum and maximum of

random variables are derived as linear functions of segregated variables as illustrated below:

• Sum of random variables : In the case of a project network involving k activities, any

two of which have either precedence constraints in between or competing for the same

resource units, a solution in the form of POS requires computation of the sum of activity

durations. The start time of the activity starting after the k-activity project is expressed

as:

S̃k(x, (z̃+, z̃−)) =
∑k

i=1(d
0
i + z̃+

i − z̃−i ). (3.13)

Thus, the adjustable variable S̃k a mean of
∑k

i=1 d0
i with uncertainty captured by a ran-

dom variable, which has a positive segregated component of
∑k

i=1 z̃+
i and a negative

segregated component of
∑k

i=1 z̃−i . Mean and variance of the segregated variables are

known and hence the mean and variance of S̃k are easy to compute.

• Max of random variables: Consider activities that are executed concurrently, the upper

bound on the start time of an activity starting after the parallel k-activity project net-

work in SLA is represented by a linear function of the positive segregated components of
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duration perturbations:

S̃k(x, (z̃+, z̃−)) ≤ maxi=1,...k{d0
i }+

∑k
i=1 z̃+

i . (3.14)

Thus, the adjustable variable S̃k has an upper bound on the mean of maxi=1,...k{d0
i } with

uncertainty captured by a random variable with the positive segregated component given

by
∑k

i=1 z̃+
i and no negative segregated component. Mean and variance of the segregated

variables are known and hence the mean and variance of S̃k are easy to compute.

Since, in both cases (sum and max) S̃k is expressed linearly on a subset of random segregated

variables, the recursive computation is straightforward. Compared with other linear decision

rules [6], the superiority of SLA [10] lies in this ability to linearly express an upper bound

on a subset of random variables by dissecting each uncertainty into its positive and negative

components. While this approximation increases tractability and scalability, it comes at the

expense of losing accuracy.

In RCPSP/max with durational uncertainty, a decision rule specifies the dependence of ac-

tivity start times on the durational uncertainty associated with other activities. To make the

comparison with Equation 3.7, x represents the POS to be generated; each task’s start time is

associated with the adjustable variable S̃(x, z̃), where c0 represents the earliest start time of

this task under the POS, and ck(x) encodes how task k is related to this task in the POS.

In a scheduling context, the start time of an activity is dependent on the start times of the

preceding activities, i.e. Adjustable variables S̃(x, z̃) are dependent on one another. Any ac-

tivity will either start after the end of an activity (i.e. in series) or after the end of multiple

activities occurring simultaneously (i.e. in parallel). Thus, adjustable variables are functions of

other adjustable variables through the addition operator (to model serial activities) and/or the

maximum operator (to model parallel activities).

Given M number of adjustable variables, we may express its sum as an adjustable variable

in the form of a segregated linear decision rule as follows:

∑M
i=1 S̃i(x, z̃) =

∑M
i=1 c0

i +
∑N

k=1

{∑M
i=1 c+

i,kz̃
+
k +

∑M
i=1 c−i,kz̃

−
k

}
. (3.15)
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Similarly, given some set C of adjustable variables, we may also express the upper bound

on the maximum of these variables as an adjustable variable in the form of a segregated linear

decision rule:

maxi∈C{S̃i(x, z̃)} ≤ maxi∈C{c0
i }+

∑N
k=1

{
maxi∈C{c+

i,k}z̃+
k

}
+

∑N
k=1

{
maxi∈C{c−i,k}z̃−k

}
.

(3.16)

3.5 Robust Fitness Function

The makespan (start time of the dummy “sink” activity) for the RCPSP/max with durational

uncertainty is a function of non-adjustable variables x and random variables representing du-

rational uncertainty z̃ and is represented using S̃(x, z̃) for SLA and G̃(x, z̃) for GNLA. Recall

that the robust optimization problem is to find the minimum value F ∗ for which the following

probability bound is observed1:

P (S̃(x, z̃) ≤ F ∗) ≥ (1− ε) (3.17)

From the one-sided Chebyshev’s Inequality, we can obtain a bound for the robust objective

value F ∗ as a function of its expected value and variance of the adjustable fitness function, i.e.:

E[S̃(x, z̃)] +
√

1−ε
ε

√
V ar[S̃(x, z̃)] ≤ F ∗ ⇒ P (S̃(x, z̃) ≤ F ∗) ≥ (1− ε) (3.18)

Hence, we can reformulate our robust optimization problem as follows:

min F ∗

s.t. E[S̃(x, z̃)] +
√

1−ε
ε

√
V ar[S̃(x, z̃)] ≤ F ∗

(3.19)

From this model, we can now derive the robust fitness function which will be used in local

search:

Definition 3. Given 0 < ε ≤ 1 and the adjustable fitness function S̃(x, z̃) defined above, the
1We show the computation of SLA robust fitness function. By substituting S̃ with G̃, we obtain the fitness

function for GNLA.
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robust fitness function, f(x, z̃, ε), is defined as

f(x, z̃, ε) = E[S̃(x, z̃)] +

√
1− ε

ε

√
V ar[S̃(x, z̃)] (3.20)

The goal of the local search mechanism is to find a local minima of f . In addition, lo-

cal search typically requires the fitness function to be computed many times and hence it is

imperative that the computation of fitness function is efficient.

27



Chapter 4

Robust Execution Strategy under

Durational Uncertainty

4.1 Contributions and Structure

In this chapter, we provide a scalable method for solving RCPSP/max problems with durational

uncertainty. We introduce the robust local search method consisting of three key ideas:

• Introducing and studying the properties of a decision rule: General Non Linear Approxi-

mation in Section 4.2.1, used to compute start times of activities with respect to dynamic

realizations of durational uncertainty;

• Deriving the expression for robust makespan of an execution strategy based on decision

rule approximations in Section 3.5;

• A robust local search mechanism to efficiently compute activity execution strategies that

are robust against durational uncertainty in Section 4.3.

Furthermore, we also provide enhancements in Section 4.4 to local search that exploit tem-

poral dependencies between activities.

Experimental results are evaluated in Section 4.5, followed by an application in the MRO

industry in Section 4.6 and the summation in Section 4.7.
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4.2 Decision Rule for RCPSP/max with Durational Uncer-

tainty

In a scheduling context, the start time of an activity is dependent on the start times of the pre-

ceding activities, i.e. Adjustable variables S̃(x, z̃) are dependent on one another. Any activity

will either start after the end of an activity (i.e. in series) or after the end of multiple activities

occurring simultaneously (i.e. in parallel). Thus, adjustable variables are functions of other ad-

justable variables through the addition operator (to model serial activities) and/or the maximum

operator (to model parallel activities).

More specifically, the output of solving a RCPSP/max involves a POS that is represented as

a graph with activities as vertices and precedence constraints between activities as the edges.

Given a POS graph, x = (V, E), where V is the set of activities and E is the set of temporal

dependencies (an edge (u, v) represents a temporal dependency that states that activity v should

occur after activity u). For any activity v ∈ V , the decision rule for computing its start time is

defined recursively as follows:

S̃v(x, z̃) = max(u,v)∈E{d0
u + z̃u + S̃u(x, z̃)}. (4.1)

Equation 4.1 is a recursive expression that is defined as a combination of sum and maximum

on a set of random variables. It should be noted that combinations of sum and maximum of

random variables cannot be computed exactly and hence operational decision rule approxi-

mations: Segregated Linear Approximation(SLA) in Section 3.4.2 and General Non-Linear

Approximation(GNLA) in Section 4.2.1 to evaluate the recursive expression of Equation 4.1

are presented.

4.2.1 General Non Linear Approximation (GNLA)

While SLA is efficient, it can typically provide loose upper bounds on robust makespan due to

the linear approximation for computing max of random variables. In this section, we describe

General Non Linear Approximation (GNLA), which is not restricted to only affine dependen-

cies. For clarity and comparison purposes, we use G̃ to denote the start time instead of S̃ used
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in SLA.

Given the mean and variance values of duration uncertainty, we describe the approximation

involved in computing mean and variance of the sum and max of activities that will be used in

Equation 4.1. It should be recalled that irrespective of the distribution of the uncertain duration

d̃, we can always represent d̃ as d̃ = d0 + z̃, where d0 is the mean of d̃ and z̃ is the perturbation

part. Thus, E(z̃) = 0.

Sum of Random Variables

We compute sum of all stochastic durations in a serial k activity project network as follows:

G̃k(x, z̃) =
∑k

i=1(d
0
i + z̃i). (4.2)

In this case, we have a similar representation to SLA. Mean and variance of G̃k are computed

as follows:

Since {z̃i}i=1,...k are random variables with zero mean, we can then calculate the expected

value as:

E[
∑k

i=1(d
0
i + z̃i)] =

∑k
i=1 d0

i . (4.3)

Because {z̃i} are assumed to be independent of each other, the variance value is computed by

the following expression:

V ar[
∑k

i=1(d
0
i + z̃i)] =

∑k
i=1 V ar[z̃i], (4.4)

and under normal distribution where z̃i ∼ N(0, σi), we have

V ar[
∑k

i=1(d
0
i + z̃i)] =

∑k
i=1 σ2

i . (4.5)

Note that the expressions for expected value and variance in the case of serial activities are

identical to the ones used by [61].
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Max of Random Variables

For ease of explanation, we begin by considering two activities to be executed in parallel and

then extend the analysis to multiple parallel activities. In GNLA, (unlike in SLA) the max of

random variables itself is not approximated but the expected value and variance of the max are

approximately calculated.

Expected Value and Variance of Max of Two Variables

The decision rule to represent the starting time of an activity, which will begin after the

completion of two parallel activities is defined as:

G̃2(z̃) ≤ max{d0
1, d

0
2}+ max{z̃1, z̃2}. (4.6)

Note that we tighten the bound in Eqn 5.20 by replacing z̃+
1 + z̃+

2 with max{z̃1, z̃2}.

We now derive the expressions for expected value and variance of the adjustable variable,

i.e., the RHS term of Eqn 4.6. Firstly, we focus on the expected value:

E[max{d0
1, d

0
2}+ max{z̃1, z̃2}] = max{d0

1, d
0
2}+ E[max{z̃1, z̃2}]. (4.7)

In the general case, it is difficult to derive an exact expression for E[max{z̃1, z̃2}] and hence,

we provide an upper bound.

In the following Propositions 1 and 2, we compute expected value and variance for the

more general case of E(z̃) ≥ 0 (note that we assume E(z̃) = 0 for all primitive random

variables). We calculate for the more general case because it will be required in the computation

of expected value and variance for more than two random variables (next subsection).

Proposition 1. The expected value for the maximum of two general distributions, z̃1 and z̃2 with

nonnegative means is less than 1
2(E[z̃1] + E[z̃2]) + 1

2

√
V ar[z̃1] + V ar[z̃2] + (E[z̃1])2 + (E[z̃2])2.

Proof. We begin by considering the following two equalities:

max{z̃1, z̃2}+ min{z̃1, z̃2} = z̃1 + z̃2

max{z̃1, z̃2} −min{z̃1, z̃2} = |z̃1 − z̃2|.
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We now sum the above two equalities.

max{z̃1, z̃2} = 1
2
(z̃1 + z̃2 + |z̃1 − z̃2|). (4.8)

Thus, we can now compute the expected value of the maximum using the following equation:

E[max{z̃1, z̃2}] = 1
2
(E[z̃1] + E[z̃2] + E|z̃1 − z̃2|). (4.9)

In addition, by using the definition of variance, we obtain:

V ar|z̃1 − z̃2| = E(z̃1 − z̃2)
2 − (E|z̃1 − z̃2|)2 ≥ 0.

Therefore,
E|z̃1 − z̃2| ≤

√
E(z̃1 − z̃2)2

=
√

E(z̃2
1) + E(z̃2

2)− 2E(z̃1)E(z̃2)

≤
√

E(z̃2
1) + E(z̃2

2)

=
√

V ar[z̃1] + V ar[z̃2] + E(z̃1)2 + E(z̃2)2.

(4.10)

Substituting the final expression of Eqn 4.10 into Eqn 4.9 yields the bound

E[max{z̃1, z̃2}] ≤ 1
2
(E[z̃1] + E[z̃2]) + 1

2

√
V ar[z̃1] + V ar[z̃2] + (E[z̃1])2 + (E[z̃2])2.

(4.11)

Hence the proof.

Note that in this work, we assume E(z̃) = 0, thus, a tighter bound can be obtained from

Eqn 4.11:

E[max{z̃1, z̃2}] ≤ 1
2

√
V ar[z̃1] + V ar[z̃2]. (4.12)

In the special case where {z̃i} (i = 1, ...k) are normally and identically distributed, i.e.

z̃i ∼ N(0, σ), we know from the work of [11] that there is a closed form representation for the

expected value of the maximum when k = 2:

E[max{z̃1, z̃2}] = σ√
π
.
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Now we focus on deriving expressions for variance of the maximum of two general distri-

butions, i.e., V ar[max(z̃1, z̃2)].

Proposition 2. The variance for the maximum of two general distributions, z̃1 and z̃2 with

nonnegative means is less than V ar(z̃1) + V ar(z̃2) + 1
2
(E(z̃1))

2 + 1
2
(E(z̃2))

2.

Proof. From Eqn 4.8, we have

V ar[max(z̃1, z̃2)] = 1
4
V ar[z̃1 + z̃2 + |z̃1 − z̃2|]

= 1
4
(V ar[z̃1 + z̃2] + V ar|z̃1 − z̃2|+ 2COV (z̃1 + z̃2, |z̃1 − z̃2|))

≤ 1
4
(V ar[z̃1 + z̃2] + V ar|z̃1 − z̃2|+ 2

√
V ar[z̃1 + z̃2]V ar|z̃1 − z̃2|)

≤ 1
2
(V ar[z̃1 + z̃2] + V ar|z̃1 − z̃2|).

(4.13)

Firstly, we consider the following two equations.

V ar|z̃1 − z̃2| = E(z̃1 − z̃2)
2 − (E|z̃1 − z̃2|)2

V ar(z̃1 − z̃2) = E(z̃1 − z̃2)
2 − (E(z̃1 − z̃2))

2

Subtracting the second from the first yields

V ar|z̃1 − z̃2| = V ar(z̃1 − z̃2) + (E(z̃1 − z̃2))
2 − (E|z̃1 − z̃2|)2.

Now, we substitute this expression into the last term of Eqn 4.13 to obtain:

V ar[max(z̃1, z̃2)] ≤ V ar(z̃1) + V ar(z̃2) + 1
2
(E(z̃1)− E(z̃2))

2 − 1
2
(E|z̃1 − z̃2|)2. (4.14)

When no specific distribution about duration perturbation is known, we can obtain a bound

for V ar[max(z̃1, z̃2)] as:

V ar[max(z̃1, z̃2)] ≤ V ar(z̃1) + V ar(z̃2) + 1
2
(E(z̃1))

2 + 1
2
(E(z̃2))

2. (4.15)

Hence the proof.

Note that in this work, we assume E(z̃) = 0, thus, a tighter bound can be obtained from
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Eqn 4.15:

V ar[max(z̃1, z̃2)] ≤ V ar(z̃1) + V ar(z̃2). (4.16)

It is interesting to consider the special case when both random variables are normally dis-

tributed. We first state the following lemma1.

Lemma 4.2.1. If X is normally distributed X ∼ N(0, σ), then Y = |X| is half-normally

distributed, with

E(Y ) = σ
√

2
π
. (4.17)

Under normal distribution z̃i ∼ N(0, σi), since z̃1 − z̃2 is also normally distributed, and

z̃1− z̃2 ∼ N(0, σ1 +σ2), we can conclude from Lemma 4.2.1 that |z̃1− z̃2| follows half-normal

distribution with

E|z̃1 − z̃2| = (σ1 + σ2)
√

2
π
. (4.18)

Thus, if we substitute this expression into Eqn 4.14, we can express an upper bound on the

variance value for the maximum duration perturbation of two activities, when z̃i ∼ N(0, σi) as:

V ar[max(z̃1, z̃2)] ≤ (1− 1
π
)(σ2

1 + σ2
2)− 2

π
σ1σ2. (4.19)

Expected Value and Variance of Max of Multiple Variables

Extending from two to k (k > 2) parallel activities, the completion time can be upper

bounded by:

G̃k(z̃) ≤ max
i=1,...k

{d0
i }+ max

i=1,...k
{z̃i}. (4.20)

In the following, we first compute the variance value of the above RHS term and then use a

similar procedure to compute the expected value. The basic expression for variance of RHS is:

V ar[ max
i=1,...k

{d0
i }+ max

i=1,...k
{z̃i}] = V ar[ max

i=1,...k
{z̃i}]. (4.21)

To obtain the value of V ar[ max
i=1,...k

{z̃i}] for general probability distributions, we take ad-

vantage of the analysis provided for the two-parallel-activity case above. The following steps

1This can be found in statistics texts, and found online at http://en.wikipedia.org/wiki/Half-normal distribution.
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outline the overall idea:

(a) Firstly, we group the activity set {a1, ..., ak} into a couple set {C1, ..., Cd k
2
e}, where each

element Cj(j = 1, ...dk
2
e) contains two different activities Cj = {aj1, aj2} chosen from the

activity set. Note that when k is an odd, the final element in the couple set contains just one

activity.

(b) For each couple Cj , we apply the maximum operator on duration perturbations of involving

activities. Denote c̃j = max{z̃j1, z̃j2}, where z̃j1 and z̃j2 are duration perturbations of the two

activities involved in Cj , then V ar(c̃j) can be calculated based on the expression for the two-

parallel-activity case.

(c) Then we have max
i=1,...k

{z̃i} = max
j=1,...d k

2
e
{c̃j}. (Note again just one activity is contained in

Cd k
2
e when k is odd). Then, we can build another couple set from {C1, ..., Cd k

2
e}, and the same

method from steps (1) and (2) above is used to compute V ar[ max
j=1,...d k

2
e
{c̃j}] based on Eqn 4.15

and/or Eqn 4.16 and/or Eqn 4.19.

There are numerous ways (exponential in k) for generating the couple set {C1, ..., Cd k
2
e} for

k activities in parallel. Each of these couple sets can lead to different levels of tightness of

derived robust makespan. To compute the grouping which provides the best robust fitness for

random variables with generic distributions is an open problem. Instead, we focus on a heuristic

that computes the best grouping under normal distribution z̃i ∼ N(0, σi). It is obtained by

solving the following optimization problem:

max
t

∑

j=1,...b k
2
c
σj1σj2 (4.22)

where t denotes the grouping technique and is also the decision variable; {Cj} is the couple

set constructed from the activity set under grouping method t; σj1 and σj2 are the standard

deviations of data perturbation for durations of activities contained in Cj . The intuition for

employing this optimization problem is obtained from the Equation 4.19. It should be noted

that computing a tighter bound on variance implies considering the highest possible value of

the product of primitive variances. Hence, the reason for employing the optimization problem

of Equation 4.22.

Proposition 3. The solution t∗ to the optimization problem of Eqn 4.22 is obtained by ordering
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the k activities in a non-increasing order of their variance values and then grouping all two

nearest activities according to the order, i.e. Cj = {aj1, aj2}, where j = 1, ...bk
2
c and the

standard deviations are in the following order:

σ11 ≥ σ12 ≥ σ21 ≥ σ22 ≥, ...σb k
2
c1 ≥ σb k

2
c2. (4.23)

Proof. Suppose we have another grouping method t′, in which all elements in the couple set are

the same as under t∗ except two couples 2 where the ordering is different, i.e., Cm = {am1, an2}
and Cn = {am2, an1} (m 6= n), where Cm = {am1, am2} and Cn = {an1, an2} under t∗.

Without loss of generality, assume m > n and from Eqn 4.23, we have

σm1 ≥ σm2 ≥ σn1 ≥ σn2. (4.24)

Since t′ is supposed to provide a solution which is no less ( defined in Eqn 4.22) than t∗, i.e.

σ11σ12 + ... + σm1σn2 + ... + σn1σm2 + ... + σb k
2
c1σb k

2
c2

≥ σ11σ12 + ... + σm1σm2 + ... + σn1σn2 + ... + σb k
2
c1σb k

2
c2.

Therefore, we have

σm1σn2 + σn1σm2 ≥ σm1σm2 + σn1σn2,

which is equivalent to: (σm1 − σn1)(σn2 − σm2) ≥ 0.

This contradicts Eqn 4.24 (except the case where all standard deviations are equal, in which

case mixing the order does not affect anything). Thus, there exists no such t′ which is different

from t∗ by at least two couples and has better objective value. The general case that t′ has

multiple (more than two) couples different from t∗ can be easily derived from to this case (and

is omitted due to space constraints).

Hence the proof.

As for analyzing the expected value E[ max
i=1,...k

{z̃i}], we apply the same procedure employed

to calculate the variance, i.e., based on the group solution returned by the above optimization
2It should be noted that if there is an ordering change in only one couple, then the method still produces the

same solution because within a couple the variance computation does not consider the order.
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problem, we first calculate the expected value for each couple and then, get the final bound

following Eqn 4.11 and/or Eqn 4.12 and/or Eqn 4.13.

At present, we are unable to show the effectivness of our grouping heuristic (Equation 4.22)

analytically in the most general case. However, we show the intuition behind the grouping

heuristic by providing an analytical comparison3 on an example where there are four activities

(normally distributed durations) executed in parallel, i.e. z̃i ∼ N(0, σi), and we assume σ1 ≥
σ2 ≥ σ3 ≥ σ4 (no loss of generality).

The representation of makespan under our grouping heuristic (denoted as Mheu) and random

grouping (denoted as Mran) are, respectively:

Mheu = max{d0
1, d

0
2, d

0
3, d

0
4}+ max{max{z̃1, z̃2},max{z̃3, z̃4}}

Mran = max{d0
1, d

0
2, d

0
3, d

0
4}+ max{max{z̃1, z̃4},max{z̃2, z̃3}}.

(4.25)

Let us first examine mean and variance values of Mheu. From Eqn 4.12, we have

E(max{z̃1, z̃2}) ≤ 1
2

√
σ2

1 + σ2
2

E(max{z̃3, z̃4}) ≤ 1
2

√
σ2

3 + σ2
4.

(4.26)

From Eqn 4.19, we have

V ar[max(z̃1, z̃2)] ≤ (1− 1
π
)(σ2

1 + σ2
2)− 2

π
σ1σ2

V ar[max(z̃3, z̃4)] ≤ (1− 1
π
)(σ2

3 + σ2
4)− 2

π
σ3σ4.

(4.27)

From Eqn 4.11, Eqn 4.15, Eqn 4.26 and Eqn 4.27, we can obtain bounds of mean and variance

values of of Mheu are 4:

E(Mheu) ≤
const + 1

4
(
√

σ2
1 + σ2

2 +
√

σ2
3 + σ2

4) + 1
2

√
(5

4
− 1

π
)
∑4

i=1 σ2
i − 2

π
(σ1σ2 + σ3σ4)

V ar(Mheu) ≤ (9
8
− 1

π
)
∑4

i=1 σ2
i − 2

π
(σ1σ2 + σ3σ4).

(4.28)

3The calculation will use the robust fitness function provided in Definition 5.21 introduced in Section 3.5.
4Note that const in Eqn 4.28 and Eqn 4.29 is max{d0

1, d
0
2, d

0
3, d

0
4}.

37



Similarly, mean and variance values of of Mran can also be calculated,

E(Mran) ≤
const + 1

4
(
√

σ2
1 + σ2

4 +
√

σ2
2 + σ2

3) + 1
2

√
(5

4
− 1

π
)
∑4

i=1 σ2
i − 2

π
(σ1σ4 + σ2σ3)

V ar(Mran) ≤ (9
8
− 1

π
)
∑4

i=1 σ2
i − 2

π
(σ1σ4 + σ2σ3).

(4.29)

From Eqn 5.21, bounds of fitness of Mheu (denoted by Fitheu) and Mran (denoted by Fitran)

can then be respectively represented as a function of RHS of Eqn 4.28 and Eqn 4.29. We then

examine the difference value between the two bounds, Fitheu − Fitran. Let us first compare

the first term of RHS of mean values in Eqn 4.28 and Eqn 4.29, since

(
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1 + σ2

2 +
√
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4)
2 − (
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2
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2
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2
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2
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3σ
2
4

(4.30)

and from Proposition 3, we have

σ1σ4 + σ2σ3 ≤ σ1σ2 + σ3σ4. (4.31)

Thus,

σ2
1σ

2
4 + σ2

2σ
2
3 − (σ2

1σ
2
2 + σ2

3σ
2
4) = (σ1σ4 + σ2σ3)

2 − (σ1σ2 + σ3σ4)
2 ≤ 0. (4.32)

From Eqn 4.31, Eqn 4.32, Eqn 4.28 and Eqn 4.29, we have that the bounds of mean and variance

values of Mheu are lower than Mran. Given the robust fitness function in Eqn 5.21, we conclude

that

Fitheu − Fitran ≤ 0 (4.33)

which is independent of ε and σ. In other words, our grouping heuristic can provide tighter

fitness bound than random grouping.
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4.3 Robust Local Search Algorithm

In [38], a robust local search method is proposed by integrating decision rule approximation

introduced by SLA in Section 3.4.2 with the robust fitness function introduced in Section 3.5

for the problems represented by RCPSP/max with durational uncertainty. In this section, we

give a detailed introduction of the robust local search algorithm and by replacing SLA with

GNLA, we can obtain a local search model guided by a new decision rule. Steps 1, 2, 5 and

6 are standard steps in a local search algorithm. Steps 3 and 4 represent our departure from

standard local search to deal with uncertainty.

1. Generate initial solution

This is usually obtained using a simple greedy heuristic.

2. Generate neighborhood of solutions

Generate a pool of neighbor solutions from the current solution.

3. Employ one of the decision rule approximations (SLA and GNLA) for all adjustable

variables and check feasibility

For each candidate solution x in the solution pool, derive the coefficients Ck(x) for each

adjustable variable. Subsequently, for each solution check constraint violation and reject

those that are not feasible.

4. Evaluate robust fitness function f

For each feasible solution x, evaluate f to obtain the robust objective values. The solution

with the lowest robust objective value is the current best robust solution.

5. Apply penalty (optional)

Some advanced local search strategies may require a penalty to be applied to prevent it

from being caught at a local minima. In the case of tabu-search for example, a tabu-list is

updated when a tabu move is applied. In the case of iterated local search, a perturbation

move will be applied to the current local minima.

6. Termination criteria

If the termination criteria is met, return the solution with the lowest robust fitness function

value else repeat the optimization cycle by determining the next move.
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Algorithm 1 provides the robust local search algorithm guided by decision rule using SLA.

By substituting S∗now, S∗min, S
∗ with G∗

now, G∗
min, G

∗, we obtain the local search algorithm using

GNLA. Given the RCPSP/max with durational uncertainty and the level of risk (0 < ε ≤ 1), the

algorithm returns the POS with the (locally) minimal robust makespan, S∗ (or G∗ by GNLA).

In essence, we perform robust local search on the neighborhood set of activity lists. An activity

list (al) is defined as a precedence-constraint feasible sequence that is used by heuristics to

generate earliest start time schedules in solving the standard RCPSP problem [30].

Different activity lists are explored by local moves. In our context, we only consider the

activity list as the sequence of activities which satisfy the non-negative minimal time lag con-

straint. Due to the existence of maximal time lag constraint in RCPSP/max, scheduling ac-

tivities to their earliest possible start time based on the order position in the activity list may

restrict the schedule so much that it may not even return in a feasible schedule. Thus, when we

schedule each activity sequentially based on order position in the activity list, we will assign

its starting time by randomly picking a time from its domain of feasible start times.

According to our experiments, this new randomized approach returns more feasible solu-

tions than the earliest start time one. After finding a feasible schedule, a POS will be generated

by applying the chaining procedure proposed by [49]. Then, the S∗ (or G∗ by GNLA) value

will be computed according to the POS. Intuitively, using the randomized approach may return

a schedule with a large baseline scheduled completion time. However, we can apply the short-

est path algorithm on the resulting POS to generate the earliest start time schedule for a smaller

makespan.

As mentioned above, it may be difficult to find a feasible schedule that satisfies minimal and

maximal time lag constraints using the activity list. In fact, we believe that in the set of all

activity lists, many may not yield a feasible schedule. We overcome this problem as follows.

We define the set of activity lists which result in feasible (or infeasible) schedules as F (or I).

We seek to design a local search algorithm with the following characteristics: a) Starting from

an activity list in I , the local search should move to an activity list in F within a short time.

b) Starting from an activity list in F , the local search should move to the activity list with the

minimal S∗(or G∗ by GNLA)value. c) We also diversify the exploration of activity lists in F by

allowing the local search to move from an activity list in F to an activity list in I , since activity
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Algorithm 1 Robust Local Search
[38]

1: Generate an activity list al randomly
2: Find a start time schedule, ss randomly according to al
3: if al ∈ F then
4: POS ← chaining(ss)
5: Compute S∗now according POS
6: Update S∗min as S∗now

7: else
8: Record the first activity a which cannot be scheduled
9: end if

10: for i ← 1 to Max Iteration do
11: if al ∈ I then
12: Shift activity a ahead in al randomly as al’
13: else
14: Select two activities b and c in al randomly
15: Swap b and c in al as al’
16: end if
17: Find randomized start time schedule ss′ according to al’
18: if al′ ∈ F then
19: POS ′ ← chaining(ss′)
20: Compute S∗ according to POS ′

21: if al ∈ I or S∗ ≤ S∗now then
22: S∗now ← S∗

23: al ← al′
24: if S∗ ≤ S∗min then
25: S∗min ← S∗

26: end if
27: end if
28: else if al ∈ I then
29: al ← al′
30: else
31: p ← rand(0, 1)
32: if p < 0.01 then
33: al ← al′
34: Record the first activity a which cannot be scheduled
35: end if
36: end if
37: end for
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lists in the F region may not be reachable from one another by simple local moves. This has

the flavor of strategic oscillation proposed in meta-heuristics research.

The detailed robust local search procedure is given in Algorithm 1. The procedure starts by

randomly generating an activity list al, which is a sequence of activities that satisfy the non-

negative minimum time lag constraint (Line 1). In Line 2, a schedule ss is produced based on

ordering of activities in the activity list al. We first perform domain reduction on the distance

graph using the Floyd-Warshall algorithm, so that the feasible range of the start time for each

activity based on the temporal constraints can be obtained. We then schedule each activity

sequentially based on the order position in the activity list. For each activity, we first pick a

start time randomly from the feasible domain and evaluate resource constraints for the duration

of the activity (i.e. check if the current resource capacity exceeds the resource amount used

by that activity). If yes, we set the start time to that activity, run the shortest path algorithm

to reduce domains for the remaining activities, and update current resource capacity due to

consumption of that activity. If the resource constraints are not satisfied, we will try to set the

start time randomly again for a prescribed maximum numbers of retries. Once the start time of

current activity is set, we proceed iteratively to the next activity according to the activity list.

In Line 4, chaining() is employed to generate a POS from a baseline schedule (section 3.2.1).

Max Iteration refers to the maximum number of iterations in the robust local search. We

apply two different types of local moves. To converge quickly to an activity list in F, the first

local move is designed to schedule the activity that is causing a temporal or resource conflict to

an earlier time. It will randomly shift ahead the first activity which cannot be scheduled in the

current activity list (Line 12). When an activity list is in F, the second local move will randomly

pick two activities and swap them in the current activity list, while satisfying the non-negative

minimal time lag constraints (Line 14-15). The move will be accepted, if it results in a smaller

or equal S∗ value (Line 18-29). To explore different activity lists, we include a small probability

to accept the move which leads to an infeasible schedule (Line 31-35). The probability to move

from an activity list in F to one in I is set at 0.01. The minimal S∗ value will be saved as S∗min.

The worst-case computational complexity analysis is given as follows. For each iteration

in local search, there are three major components: randomized schedule generation, POS con-

struction and fitness calculation. In the process of randomized schedule generation, we per-
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form domain reduction and resource checking at each iteration, and thus the complexity is

O(N · (N3 + H · K · w)) where N is the number of activities, H is the maximum planning

horizon, K is the number of types of resources, and w is the prescribed maximum number of

retries for each activity on setting the randomized start time. The POS construction process

works as follows: the set of activities are first sorted according to their start times in the gener-

ated deterministic schedule and the sorting part costs O(N · logN); then it proceeds to allocate

each activity the total units needed for each type of resource. Let maxcap be the maximum ca-

pacity among all resources. The cost for computing POS is then O(N · logN +N ·K ·maxcap).

When determining the fitness value of generated POS, we examine edge by edge to check if it

is connected in parallel or in serial with respect to its predecessors and it costs O(N + e) where

e is the number of edges in POS (e < N2). Thus, the worst-case complexity of our proposed

robust local search algorithm is O(TN · (N3 +H ·K ·w+K ·maxcap)) where T is the number

of iterations in local search.

4.3.1 Schedule Infeasibility of a Given POS

It should be noted that the fitness function, f assumes that any schedule generated by the POS,

x is always executable. However, due to durational uncertainty and the maximum time lags,

the schedule is not always executable. A direct way to measure IPr(POS) the probability of

infeasibility of the POS (i.e. probability that the POS can lead to an infeasible schedule) lies in

the computation of the probability of infeasibility of each activity ai IPr(ai), that there does

not exist a feasible start time such that all temporal constraints with respect to ai are satisfied.

IPr(POS) can be calculated as the probability that at least one activity is infeasible. How-

ever, due to temporal dependencies between activities providing a theoretical expression for

the overall probability of infeasibility is an open problem. Therefore, we propose a simulation

approach, where we simulate POS execution over multiple trials to compute this probabil-

ity eciently and approximately. As an illustration, we experimented with the benchmark J10

instances from the PSPLib [31] for RCPSP/max with additional durational uncertainty that fol-

lows a normal distribution with mean 0 and variance 1. We generated 1000 sample realizations

for the POS obtained from SLA, and check for infeasibility with respect to the original tempo-

ral (including the maximum time lag) constraints. Examples of the probability of infeasibility
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obtained by our simulation for PSP1, PSP4, and PSP13 are 0.18, 0.17 and 0.001. However, for

the other problems PSP3, PSP5 etc. the probability of infeasibility was 0, because the maximal

time lags were much larger than the variance of durational uncertainty.

4.4 Enhancing Robust Local Search

In this section, we describe two enhancements to improve the basic local search method de-

scribed in Section 4.3. Firstly, we describe ordering generation, which is a pre-processing step

used to identify precedence ordering between activities. This precedence ordering is then used

to focus the local search over activity lists. Secondly, we describe a new chaining method to

generate POS from a feasible schedule.

4.4.1 Ordering Generation

Ordering Generation is a pre-processing step that identifies precedence relationships between

pairs of activities. The key idea is that for certain pairs of activities, it is always better (with

respect to robust makespan) to have the same ordering among activities. Our goal is to identify

these pairs of activities and employ this ordering to focus the local search over activity lists and

in the chaining method used to compute POS from feasible schedule.

In deciding an ordering between a pair of activities, a and b, there are two key steps: (i)

Sample set generation: Generate two sets of m activity lists. The first set consists of m activity

lists where a occurs before b. The second set is generated by swapping activities a and b in every

activity list in the first set; (ii) Order determination: In this step, we first compute POS and its

robust makespan for all activity lists in the two sets. By comparing the robust makespan values

of corresponding activity lists in the two sets, we determine an ordering between activities. We

explain these steps in the following subsections.

For a problem with n activities, there are C2
n pairs of activities. If we are to decide the orders

between all pairs, the ordering computation needs to be implemented for C2
n times, which

is computationally expensive. Based on this observation, we first propose a Pairs-Selection

heuristic to selectively choose a certain number of activities pairs whose ordering can have a
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significant impact on the robust makespan.

The Pairs-Selection heuristic picks an activity pair: (a) If it is not precedence related in

the original problem definition; and (b) If there exists at least one type of resource, where the

total demand of both activities exceeds the resource capacity. The intuition behind picking

such an activity pair is that those two activities cannot be executed in parallel and deciding

an ordering relationship is imperative to eliminate the resource conflict. One main advantage

of the heuristic is that the number of pairs of activities that need to be ordered is significantly

reduced. Now, we describe the two steps of ordering generation below:

Sample Set Generation

We first randomly generate m activity lists as an initial sample set denoted by T . Each element

in T is an activity list represented as ali which is a sequence of all activities, where i = 1, ...m,

i.e.

T = {ali|ali = (a1, a2, ...an),∀i ∈ {1, ...m}}.

For each pair of activities (ak, al) resulting from the Pairs-Selection heuristic, we define two

sample sets represented as T ak≺al and T al≺ak . T ak≺al has all the activity lists that are in T ,

except that if an activity list has al before ak, then those activities are swapped.

T ak≺al = {alak≺al
i |i ∈ {1, ...m}},

where alak≺al
i =





(a1, a2, ..., ak, ...al, ...an) if ali = (a1, a2, ..., al, ...ak, ...an)

ali if ali = (a1, a2, ..., ak, ...al, ...an)

.

Similarly, T al≺ak can be constructed by incrementally selecting each activity list from the

initial set T with al ≺ ak and reverse the order if ak ≺ al, i.e.

T al≺ak = {alal≺ak
i |i ∈ {1, ...m}},

where alal≺ak
i =





(a1, a2, ..., al, ...ak, ...an) if ali = (a1, a2, ..., ak, ...al, ...an)

ali if ali = (a1, a2, ..., al, ...ak, ...an)

.

Thus, each activity list in the sample set T ak≺al share the same positions of all activities

except ak and al with the corresponding activity list in set T al≺ak , where al precedes ak.
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Order Determination

We then determine the activity order of each selected pair of activities based on the sample

sets obtained from last phase. For a pair (ak, al), we construct a new instance by posting a

precedence constraint ak ≺ al or al ≺ ak to the original instance, and based on the new

instance, we determine the fitness which are denoted as fak≺al
i and fal≺ak

i for alak≺al
i and

alal≺ak
i , respectively.

Note that alak≺al
i and alal≺ak

i share the same elements and the same positions except the

order of ak and al. Thus, the order of ak and al can be considered as a reason why the fitness

of alak≺al
i and alal≺ak

i differs. To decide the order of ak and al, we define an index variable

denoted as ivak≺al
that measures the percentage of samples where the one with the order ak

proceeds al wins, i.e.

ivak≺al
= −

∑
i min(

f
ak≺al
i

−f
al≺ak
i

|fak≺al
i

−f
al≺ak
i

|
,0)

m
.

We then define an Index Parameter for activities ak and al denoted as IPak≺al
as a benchmark

for the index variable ivak≺al
in determining the order of ak and al. The parameter IPak≺al

can

be prescribed by users and different values (usually larger than 50%) represent different levels

of confidence that the order of ak and al matters in causing fitness variance, and thus also

represents different controllability of ivak≺al
.

If the value of index variable ivak≺al
is larger than the value of IPak≺al

, we set the order

ak → al since there indicates a higher probability that a → b can provide better robustness than

b → a; If ivak≺al
is less than 1− IPak≺al

, we set al → ak; And in other cases, no order between

ak and al is settled.

4.4.2 Improved Chaining based on Robustness Feedback

As noted in the “Preliminaries” section, for each activity a, there may exist multiple choices

of resource chains to which it can be assigned. In addition, different chaining heuristics will

lead to POSes that can have different robust makespan values. In this section, we propose a new

chaining heuristic that dispatches activities to resource chains by predicting the improvement

in robust makespan of the generated POS.
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Algorithm 2 Robustness-Feedback Resource Chaining (Activity a, Schedule S, Order G)
1: C ← Find set of available chains, C for activity a based on S
2: P ← Collect chains from C with last activity of chain preceding a in problem
3: O ← Collect chains from C with last activity of chain ordered before a in G
4: if P 6= φ then
5: k ← Get first available chain in P
6: else if O 6= φ then
7: k ← Get first available chain in O
8: else
9: k ← Get first available chain in C

10: end if
11: Post constraint between last activity of chain k (denoted as last(k)) and activity a
12: if a requires more than one resource unit then
13: C1 ← chains in C which have last activity as last(k)
14: C2 ← C \ C1
15: for all resource units required by a do
16: choose the first available chain belonging to C1
17: if chain above is not feasible then
18: choose the first available chain belonging to C2
19: end if
20: end for
21: end if

In the latest chaining method which aims to increase flexibility as described in Section 3.2.1,

the chains are first randomly picked from a superior subset (i.e., chains where the last activity

is already ordered, or chains sharing the same last element). Since our objective is makespan-

related and time becomes a concern, we build on the work of [47] and pick the first available

chain wherever available. The updated chaining method is called Robustness-Feedback based

Resource Chaining.

Example 5. Figure 4.1 provides the POS provided by this chaining heuristic when used on

Example 1. As can be seen, compared to the POS in 3.4, the key difference is the allocation of

activity 5 and 6. With our new heuristic, it can be seen that there is more parallelism and hence

reduced robust makespan with high probability.

When employing the Ordering Generation algorithm in conjunction with the chaining

heuristic, we also consider the information about ordered pairs when allocating resource units

to an activity. The motivation is that once activity a and activity b (for example, a → b) is

ordered, there is a high probability that this precedence relationship can result in a better solu-
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1

Figure 4.1: POS by Robustness Feedback Chaining

tion. Algorithm 2 provides the pseudo code for the Robustness-Feedback Resource Chaining

heuristic with Ordering.

4.5 Experimental Evaluation

In this section, we first evaluate the scalability and quality of the execution strategies provided

by robust local search and the various enhancements introduced in this work. Secondly, to

establish a benchmark on the performance, we compare against the best known technique for

solving JSP problems with durational uncertainty. It should be noted that the robust local

search method is developed to solve RCPSP/max problems with durational uncertainty and

hence does not exploit the structure present in JSP problems. Furthermore, as described earlier,

the optimization metrics of both approaches are different.

4.5.1 Experimental Setup

We have two sets of problems that we consider and those are described in the subsections below.

Additionally, we also indicate the algorithms that are compared on each of the data sets in this
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section.

RCPSP/max with Durational Uncertainty

The problems considered for RCPSP/max with durational uncertainty were obtained by extend-

ing the three benchmark sets available for RCPSP/max problems, J10, J20 and J30 as specified

in the PSPLib [31]. Each set contains 270 problem instances with duration for each activity

ranging between 1 and 10. The maximum number of activities for J10, J20 and J30 are 10,

20 and 30, respectively. For each activity ai, we set the expected value d0
i of the stochastic

duration as the corresponding deterministic duration given by the benchmarks, and assume that

duration uncertainty is normally distributed, i.e. z̃i ∼ N(0, σ). Henceforth, we refer to J10,

J20 and J30 as these RCPSP/max problems with durational uncertainty. We run the algorithms

on problems with four different duration variabilities σ = {0.1, 0.5, 1, 2} and four increasing

levels of risk ε = {0.01, 0.05, 0.1, 0.2}.

On RCPSP/max problems with durational uncertainty, we compare the robust local search

that is guided using the two decision rule approximations SLA and GNLA. Furthermore, we

also compare the different enhancements to robust local search on RCPSP/max problems with

durational uncertainty. We compare five different variants of robust local search for each deci-

sion rule approximation: (a) (GNLA) refers to basic robust local search guided by GNLA deci-

sion rule approximation; (b) (GNLA+RC) is the robust local search with the new Robustness-

feedback Chaining heuristic guided by GNLA; (c) (GNLA+) refers to the basic robust local

search with additional local search iterations, where the number of local search iterations is

determined based on the problem set (as described later); (d) (GNLA+OG) is the Order Gen-

eration heuristic on top of GNLA guided robust local search; and finally (e) (GNLA+OG+RC)

has both Order Generation and Robustness-feedback Chaining heuristics on GNLA guided ro-

bust local search.

The number of local search iterations for robust local search was set to 1000. To reduce

the stochasticity effects of robust local search, we average over 10 random executions for each

problem instance. Our code was implemented in C++ and executed on a Core(TM)2 Duo CPU

2.33GHz processor under FedoraCore 11 (Kernel Linux 2.6.29.4-167.fc11.i586).
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JSP with Durational Uncertainty

For JSPs, (GNLA) is compared against the probabilistic makespan results provided by [5]. For

the benchmark problems, we consider the instances generated using an existing generator in the

work of [60] with durations drawn uniformly from the interval [1,99]. Specifically, we focus

on three sets of probabilistic JSPs of size {4×4,6×6,10×10} (where a 4×4 problems consists

of 4 jobs consisting of 4 activities each) and for each set, three uncertainty levels {0.1,0.5,1}
are considered.

4.5.2 Comparison between SLA and GNLA

We first compare the average robust makespan of 270 problem instances obtained by robust

local search that is guided by our decision rule approximations proposed in Section 3.4.2 and

Section 4.2.1. We refer to the robust makespan computed using SLA as S∗ and using GNLA as

G∗. Figure 4.2 provides these results for all three sets of RCPSP/max problems with durational

uncertainty. In these results, we show how the robust makespan is affected by the level of risk ε

and the standard deviation σ of duration uncertainty. X-axis represents different combinations

of risk and standard deviation of durational uncertainty, as shown in the table of Figure 4.2. All

runs on every instance takes a couple of seconds and hence we do not report CPU times here.

The key observations and conclusions of interest from Figure 4.2 are as follows:

• Irrespective of the σ, as the level of risk ε increases, the robust makespan decreases

with both SLA and GNLA. Clearly, the lower risk that the planner is willing to take, the

higher is the robust value of the generated execution strategy. Our method is capable of

quantifying this trade off, which can help the planner to decide on the desired strategies.

• Irrespective of ε, as the degree of duration variability σ increases, the robust makespan

increases with both SLA and GNLA, and the value becomes more sensitive to σ when

the level of risk is constrained to a small value (e.g. ε = 0.01).

• For lower values of ε, more specifically for 0.01, S∗ provides lower values of robust

makespan than G∗. On the other hand, for higher values of ε ∈ {0.05, 0.1, 0.2}, G∗

provides superior performance to S∗. We do not yet understand the reason for drop in
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Figure 4.2: Comparison of Robustness between SLA and GNLA.
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performance for ε = 0.01, but this is observed consistently across all the RCPSP/max

benchmark problems.

For each problem instance, we also observe some monotonicity between the absolute dif-

ference of robust makespan S∗ and G∗ and risk values. When the level of risk ε takes a value

around 0.02, S∗ (SLA) has a slightly lower value than G∗ (GNLA). However, when risk be-

comes more than 0.02, the superiority of GNLA increases with higher values of risk. Figure 4.3

illustrates this on a randomly picked J10 instance with σ = 1 and σ = 2. The same pattern is

observed across all problem instances of J10, J20 and J30.
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Figure 4.3: Comparison of Robust Makespan.

Next, in Figure 4.4, we compare the quality of the execution strategies obtained by using

SLA and GNLA. More precisely, we compare the distributions of the actual makespans of

schedules computed using these decision rule approximations. For this purpose, we generate

a set of 100 samples of realizations of durational uncertainty and test with all 270 instances

of each benchmark set with different levels of risk ε = 0.2, ε = 0.1 and ε = 0.05 to obtain

the respective POS, and then compute the actual makespans of schedules derived from the

respective POS under the given realization samples. This difference between real makespans

obtained from POSs generated by two different decision rule approximations was observed

across the board in all examples of the three sets for all values of ε except 0.01. We randomly

select three problem instances from each benchmark set and present the results in Figure 4.4.

Figure 4.4 also compares the cumulative frequency distributions of the actual makespans. We

observe that GNLA provided far better realized makespans than SLA - both in absolute terms,
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(c) Results from a randomly selected J30 example with ε = 0.05

Figure 4.4: Comparison of Actual Makespans and Gap between S∗ and G∗.(Lines in left pic-
tures from top down indicating: Computed S∗, Actual S∗ by Simulation, Computed G∗, Actual
G∗ by Simulation.)
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as well as distributionally. For J20, except in 2 cases, rest of the actual makespan values

obtained by SLA were higher than the ones obtained by GNLA. Similar trends were observed

for J10 and J30.

To illustrate the difference of quality in absolute of the two upper bounds, we provide four

lines (computed S∗, actual S∗, computed G∗ and actual G∗) indicating the upper bounds com-

puted using the algorithms and in simulation over the 100 samples.

4.5.3 Comparisons between Robust Local Search Enhancements

Since, we have already shown GNLA performs better than SLA, we will only show the perfor-

mance of our enhancements over GNLA in this section. It should be noted that enhancements

over SLA provided similar results and conclusions with GNLA based enhancements outper-

forming SLA based enhancements. Since ”Ordering Generation” heuristic requires additional

rounds of robust makespan computation, we also include a benchmark called (GNLA+) (which

is GNLA plus extra iterations of local search) to make a fair comparison. To avoid the complex-

ity of considering all pairs of activities, we only consider those pairs of activities where ordering

would improve performance. We proposed the Pairs-Selection heuristic to select these pairs of

activities. The number of extra iterations of local search for the (GNLA+) benchmark is ”the

number of activity pairs picked by the Pairs-Selection heuristic” times ”the number of samples

m used in the Ordering Generation process”. The experimental results shows that the average

number of activity pairs of all 270 instances selected under the Pairs-Selection heuristic for

J10, J20 and J30 are 5, 14, and 28 respectively. In our work, we set m = 100. Thus, the

extra iterations of the (GNLA+) benchmark for J10, J20 and J30 are 500, 1400 and 2800, re-

spectively. The performance of all our enhancements is shown in Figure 4.5(a), Figure 4.5(b),

Figure 4.5(c) for J10, J20 and J30 respectively. In all the charts, ε is represented on the X-axis

and robust makespan on the Y-axis. So, lower values are better on the Y-axis.

Given below are some key observations and conclusions made from the results:

• Irrespective of the durational uncertainty, (GNLA+RC) and (GNLA+OG) provide better

robust makespan values than both (GNLA) and (GNLA+) for J10 and J30. This indicates

that the new Robustness Feedback Chaining heuristic and the Order Determination are
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(a) Results of J10
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(b) Results of J20
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(c) Results of J30

Figure 4.5: Comparison of Robust Local Search Enhancements.
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able to provide more robust partial ordered schedules for J10 and J30. This improvement

seems to increase further with more number of activities, i.e. the difference is more

obvious for instances in J30 than in J10. Furthermore, the difference is consistently

observed across all the problems. However, the improvement is not consistent for J20

and there are cases where (GNLA+RC) and (GNLA+OG) did not out perform (GNLA)

and (GNLA+). For instance in J20 problems, (GNLA+) provides better performance than

(GNLA+RC) and (GNLA+OG) for ε = 0.01 and σ = 1.5.

• The extra iterations of local search in (GNLA+) do not improve the solution quality much

for J10. However, it improves the solution quality for J20 and J30. This could be because

the optimal solution is obtained within 1000 iterations for the smaller problems.

• In most cases, (GNLA+RC+OG) provides the lowest robust makespan among all the en-

hancements. Thus, the OG and RC enhancements in combination do not degrade the

performance improvement obtained individually. In some cases, the difference is sig-

nificant such as in J10 for σ = 0.1 and ε = 0.01. On the other hand, there are cases

where (GNLA+RC+OG) does not provide the lowest robust makespan, such as in J20

for σ = 0.5 and ε = 0.01.

4.5.4 Comparisons with JSPs with Durational Uncertainty

In this section, we compare the performance of our GNLA approach (referred to as G∗) with the

best known solver for Job Shop Scheduling Problems proposed by [5] (referred to as CB). For a

fair comparison of the two approaches, we employ the Mean Normalized Makespan (MNPM)

metric defined by Beck and Wilson:

MNPM(a, L) = 1
|L|

∑
l∈L

D(a,l)
Dlb(l)

(4.34)

where L is a set of problem instances, D(a, l) is the probabilistic makespan (i.e., robust

makespan in our work) for instance l by algorithm a generated by Monte Carlo simulation,

Dlb(l) is a lower bound on the probabilistic makespan.

We denote the best MNPM values aross different algorithms reported by [5] as CB. We
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MNPM
Problem Size Problem Size Problem Size

4×4 6×6 10×10
UL=0.1 UL=0.5 UL=1 UL=0.1 UL=0.5 UL=1 UL=0.1 UL=0.5 UL=1

CB 1.023 1.046 1.128 1.021 1.073 1.168 1.024 1.101 1.215
G∗ 1.066 1.123 1.282 1.095 1.190 1.273 1.210 1.225 1.263

Table 4.1: Comparison against CB solver(UL:Uncertainty Level).

compare them with the MNPM values in our work which are obtained by replacing D(a, l)

in Eqn 4.34 with an upper bound of robust makespan from the POS generated from GNLA-

guided local search. All runs on 4×4 and 6×6 instances took less than a minute, while 10×10

instances took about 15 minutes.

Table 4.1 provides the results. The performance of our solver is comparable to CB solver

across all problem instances. This comparison illustrates that our local search mechanism is

generic (different types of scheduling problems) and is also able to provide performance on

par with near optimal approaches. While the performance is comparable, CB provides better

MNPM values than our approach due to the following key reasons: (a) Our approach does not

exploit the structure specific to JSPs (jobs consisting of a sequence of operations). We hope to

improve our approach to exploit this in the near future. (b) Our robust local search reasons with

upper bounds (due to Chebyshev inequality), which can be loose.

4.6 Application in Marine Industry

In the past decades, there has been a huge increase in the sea transportation industry, which

leads a rapid growth in the ship MRO businesses. In Singapore, an annual turnover of close to

10 billion is generated and some 100,000 workers are employed in the marine industry, which

plays a crucial part in Singapore’s economic growth. These businesses on ship repair are com-

petitive, in terms of not just price, but also time-to-delivery. A key requirement for a successful

MRO business is that meeting schedules and completing work rapidly. In this section, we ad-

dress a real RCPSP in the MRO industry in Singapore by using our proposed techniques. This

is a joint work with A*STAR Singapore Institute of Manufacturing Technology.

This problem involves assigning tasks to a set of resources with limited capacity to mini-

mize project makespan. The tasks from the data set are Set Keel Blocks into Position, Tow
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ε = 0.5 ε = 0.2 ε = 0.1 ε = 0.05 ε = 0.025
σ = 0.1 16.37 16.75 17.13 17.64 18.36
σ = 0.2 16.75 17.51 18.26 19.25 20.72
σ = 0.5 17.89 19.78 21.67 24.24 27.81

Table 4.2: Robust Makespan Varies with σ and ε.

vessel into drydock, Empty drydock, Undocking, High Pressure Washing, Grit Blasting, Paint-

ing, Renew zinc anodes, Remove/Cut/Weld Starboardside Sheet Plates, Empty Ballast Waste

and Replace Ballast Water. The limited resources are Dock Master, Drydock, Dock Engineer,

Dock Master, Rigger, Pilot Tugs, Fitter, Steel Cutter, Cutter, Welder and General Worker. To

introduce durational uncertainty, we model the stochastic duration of each task as the expected

duration set from given data plus an uncertain part following an normal distribution N(0, σ).

Given uncertain durations of tasks and precedence relationship between tasks, resource con-

sumptions and capacities, and the level of risk denoted as ε prescribed by the planner, the

objective is to output an execution strategy with robust makespan T∗, such that the probability

of realized makespan for any schedule (derived from the execution strategy) does not exceed

T∗ is at least (1 − ε), over all realizations of uncertainty. From our experiments, when no un-

certainty is involved, the optimal makespan is 16 days; With durational uncertainty, Table 4.2

shows how robust makespan T∗ varies with different sigma and epsilon. It provides the planner

candidate execution strategies according to his own attitude to risk.

4.7 Conclusion

Given a level of risk 0 < ε ≤ 1 chosen by the planner, we investigated the problem of finding

the minimum (1 − ε)-guaranteed makespan (i.e. Robust Makespan) and proposed methods to

find a schedule policy (POS) such that when uncertainty is dynamically realized, the execution

policy will result in a solution whose value is as good as robust makespan. We first put forward

a new decision rule utilized in scheduling to help specify the start times for all activities with

respect to execution policy and dynamic realizations of data uncertainty. Based on the decision

rule, new fitness function was then derived to evaluate robustness, which was finally integrated

into a local search method to produce the solution with robust makespan. Experimental results
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illustrate the improved performance of local search with the new fitness evaluation, which

provider tighter bounds on robust makespan and better partial order schedules compared to the

existing method. In the end, we applied our model to the MRO industry context and provide

the planner guidance of execution strategies based on his own attitude to risk.

For simplicity we have adopted an upper bound approach where we assume independence

among the durational uncertainties. One future work is to treat correlations between durational

uncertainties, since a task duration could be correlated with some others in real life. For ex-

ample, correlations occur when an external event is not peculiar to a single task, but more

universal, such as weather conditions, seasonal peaks. In such situations, the durational delays

are correlated in the same direction. When this occurs, the decision rules proposed in this work

break down unfortunately, since even if the covariances of pairs of duration variables are given,

it is very complex to analytically model the extent to which one duration and any combination

(resulting from SUM and MAX operators) of other durations change together. This in turn com-

plicates the analysis on the variance of the makespan variable, and hence the robust makespan.

Extending our work to handle covariances is an interesting future direction.

61



Chapter 5

Robust Execution Strategy under

Resource and Durational Uncertainties

5.1 Contributions and Structure

Following on the work in Chapter 4, in this Chapter, we take into additional consideration of

imprecise capacities of resources caused by breakdowns. Our objective is to provide robust

execution strategy for RCPSP/max problems when both the assumptions of deterministic du-

rations and fixed resource availabilities are relaxed. More specifically, the main structure and

key contributions of this Chapter are given as follows:

• Firstly, we provide the motivation to study the scheduling problem with both resource

and durational uncertainties. Building on an existing mechanism for solving RCPSP/max

with durational uncertainty in [38], we evaluate the impact of resource breakdown on an

activity’s duration in Section 5.4;

• We then propose Forward-Backward Chaining for generating execution strategies in Sec-

tion 5.5.1 with consideration of resource breakdown parameters. To improve robustness

of resulting strategies, we further propose Resource-Breakdown-Aware Chaining proce-

dure with three different metrics in Section 5.5.2. These chaining procedures computes a

resource allocation by predicting the effect of breakdowns on robustness of the generated

strategies.
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• Finally, we extend the robust local search method proposed in [38] with additional con-

siderations on the impact of resource breakdowns, so that generated execution strategies

can better absorb resource and durational uncertainties.

• Experimental results demonstrate improvements in obtaining more robust execution

strategies in Section 5.7, followed by the summation in Section 5.8.

5.2 Motivation

This work is motivated by the need to account for various kinds of disruptions in project

scheduling. In managing disruptions for project scheduling, we need to handle three categories

of disruptions [62]:

• Project network disruptions. It is possible that activities may be added or removed, or

precedence relations are revised during execution.

• Activity disruptions. For example, activity duration varies since unexpected events occur

during execution.

• Resource disruptions. That can be caused by factors like machine breakdown.

However, interruption does not usually occurs by an isolate factor, but often due to other

disturbances [19]. In this work, we study both activity disruptions and resource disruptions.

In Chapter 4, we consider the objective of minimizing robust makespan for the case of

the generalized project scheduling problem, RCPSP/max with stochastic activity durations. It

is necessary and meaningful to deal with uncertain activity duration as many uncertain events,

such as weather changes, productivity variability, etc. can affect activity duration during imple-

mentation. As a matter of fact, a large number of works on project scheduling under uncertainty

deal with activity durational variability, for example, [5, 52, 41, 20, 16, 55].

In the bad environment conditions, however, the unavailability of resources is also an un-

certain factor. As stated in [62], resource breakdowns is one of the most important sources

of disruptions in project management. The primary impact of resource disruptions is schedule

63



infeasibility. However, to the best of our knowledge, there are not as much work on project

scheduling with resource unavailability. [34, 36, 37, 35] solved RCPSP that represents a spe-

cial case of RCPSP/max, with resource disruptions due to breakdowns. They worked for the

robust schedule where robustness is measured by the weighted deviation between the planned

and the actually realized activity starting times.

Following on the work in Chapter 4, we solve RCPSP/max with BOTH durational and re-

source uncertainties in this chapter. The motivation is that activities with stochastic durations

should be considered, and at the same time, the need for dealing with unavailability of re-

source capacities due to unexpected breakdowns is very great for project schedule as well. To

the best of our knowledge, this is the first work that deals with variable durations, resource

breakdowns, and minimum/maximum time lags simultaneously in project scheduling. More

precisely, we search for robust execution strategy with the best robust makespan. Given a level

of risk 0 < ε ≤ 1, the robust makespan is a value for which the probability of realized makespan

for any schedule derived from the execution startegy does not exceed it is greater than (1− ε),

over all realizations of both resource and durational uncertainties. To obtain robust execution

strategy, we propose Forward-Backward-Chaining algorithm and Resource-Breakdown-Aware

Chaining procedures. These chaining procedures compute a resource allocation by predicting

the effect of breakdowns on robustness of the generated strategies. Finally, we apply a local

search method and compute robust execution strategy that absorb both resource and durational

uncertainties.

5.3 Comparison with Existing Works on Resource Uncer-

tainty

In the literature on project scheduling, there is not much work dealing with resource uncertainty

for resource constrained project scheduling problems. [34, 36, 37, 35] considered resource

uncertainty modeled by means of resource availabilities subject to unforeseen breakdowns for

RCPSP, which is a special case of RCPSP/max.

[34, 36, 35, 37] represent a body of work that considers what is known as the instability
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cost (or schedule nervousness) for the case of project scheduling with stochastic resource avail-

abilities, which is defined as the sum of the weighted deviations between the original baseline

schedule and the expected actual realized schedule. The instability weight reflects that ac-

tivity’s importance of being started as planned. This contrasts with our work, which aims at

minimizing the Robust Makespan that provides a proven probability of successful execution

under both resource and durational uncertainty.

[36, 37] focused on generating a predictive schedule by allocating time buffer into an initial,

unbuffered schedule to increase robustness by absorbing the impact of resource breakdowns

without rescheduling during execution. Instead of one schedule, we construct a POS that rep-

resents a set of feasible schedules and hence is more feasible than a baseline schedule. An

attractive property of POS is fast response to unexpected disruptions; a new schedule can be

quickly generated from the POS through a temporal propagation mechanism. Different from

the analytical evaluation of resource breakdown in [37], we also compute the variance of dura-

tional extension due to resource breakdowns. The preempt-resume setting in [37] would be an

interesting topic for our further research.

[34] described exact and suboptimal reactive scheduling procedures to revert online to a

feasible schedule, that respects the new constraints created by the disruption and deviates as

little as possible from the baseline schedule, so that the schedule infeasibility caused by the

disturbances can be resolved. In our work, we solve the project scheduling problems under

uncertainty from proactively. In [35], different proactive strategies were first proposed to gen-

erate robust baseline schedule with or without resource or time buffers. A list scheduling based

reactive strategy or a tabu search based improvement heuristic can then be applied to indicate

how to revert to a feasible schedule that deviates as little as possible from the original baseline.

In [35], the interrupted activity has to be restarted from scratch very time it is interrupted, while

in our work, we assume a preempt-resume setting. A possible extension of our work is to com-

bine the online techniques proposed in [34] and [35] with our methods, thereby allowing us to

implement proven robust execution strategies and good online behaviors.
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5.4 Resource Breakdowns in RCPSP/max

In this section, we first provide the representation of resource uncertainty due to unexpected

resource breakdowns and then analytically evaluate the effect of resource breakdown on activity

durations.

5.4.1 Representation of Resource Breakdowns

Similar to existing research on resource constrained scheduling [37], we assume resources are

renewable. Our approaches will compute a resource allocation for activities before project

execution and this resource assignment remains fixed until the project finishes.

For a resource unit j of resource type k, we model the time between failures as a random

variable Xjk and the time needed to repair this unit as a random variable Yjk. Suppose that both

Xjk and Yjk are exponentially distributed. Then the corresponding cumulative distributions

FXjk
(x) and GYjk

(y) are given by:

FXjk
(x) = 1− e−λjkx

GYjk
(y) = 1− e−µjky

(5.1)

where x, y ≥ 0, 1/λjk and 1/µjk are the expected value of Xjk and Yjk, respectively.

5.4.2 Analytical Effect of Resource Breakdown

Our approach in this work is to increase the durations of activities to account for resource break-

downs. Extending on existing research [37], we will now analytically measure the impact of

resource breakdowns on an activity’s duration. Given that we have a fixed resource assignment

to each activity, we can precisely translate a resource breakdown as delay in the activity it has

been assigned. Note that since we also consider the activity to already have an innate duration

variability, this adds further variability to the activity. (We will consider both in section 5.6).

Where we depart from [37] in our analysis is that we consider a more general case, i.e., even

in the same resource type, we allow different mean time to failures and repair times for differ-

ent resource units. Furthermore, for computing robust makespan, we also need to measure the
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variance in addition to the mean values of the resulting duration variability.

We first assume that resource breakdowns can only occur during activity execution. For

simplicity, we assume only one resource unit can break down at any one time. Whenever a

resource unit breaks down, it will be immediately sent for repair before it becomes available

again. In the meantime, the activity corresponding to the resource unit is interrupted and has

to wait for the resource to be repaired. It can resume from the point where execution was

interrupted. Note that throughout the lifetime of an activity, there may be multiple interruptions

and we assume that any two interruptions are independent from each other.

We use the following notation in this section:

• d̃i: random variable representing the real duration of activity ai under interruptions due

to resource breakdowns

• d0
i : deterministic duration of activity ai when no interruption occurs

• δi: random variable representing total delay time of activity ai due to resource break-

downs

• Ni: random variable representing number of interruptions due to resource breakdowns

throughout the lifetime of execution for activity ai

• Ti: random variable representing the minimum time to failure over all resource units

allocated to activity ai

• Rij: random variable representing the time that activity ai waits before it resumes (i.e.

the repair time of the corresponding failed resource) at the jth interruption

• Xjk: random variable representing the time to failure for the resource unit j of resource

type k, Xjk ∼ EXP (λjk)

• Yjk: random variable representing the repair time for the resource unit j of resource type

k, Yjk ∼ EXP (µjk)

• Mk: random variable representing the minimum time to breakdown of all resource units

of resource type k needed by activity ai, Mk = minX1k, X2k, ...Xrikk
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We first model the duration variability of an activity ai due to resource breakdowns as:

d̃i = d0
i + δ̃i (5.2)

t
0
id

(a) In deterministic environment.

 

1iR
iiNR2iR

{ {{

 

(b) Interrupted by resource breakdown.

Figure 5.1: Activity Duration.

The duration of activity ai in the deterministic as opposed to an uncertain environment (due

to resource breakdowns) are shown pictorially in Figure 5.1. According to definitions, we have

the following relationships:

δ̃i = ΣNi
j=0Rij (5.3)

where Ri0 equals to zero, which represents the case that no resource breakdown occurs during

the execution of activity ai. For simplicity, due to the independence relationship we assumed

before, we henceforth rewrite Rij as Ri. Then, from equation 5.3, we can calculate the mean

value of δ̃i as follows:

E(δ̃i) =
∑∞

j=0 j ∗ E(Ri) ∗ P (Ni = j)

= E(Ri) ∗ E(Ni)
(5.4)

To compute the variance of δ̃i we need the following Lemma:

Lemma 5.4.1. [51] Let X1, X2, ...XN be independent and identically distributed random vari-

ables with the same mean E(X) and variance V ar(X). The sum has the type

T =
∑N

i=1 Xi

where N is a random variable with a finite mean and variance and Xi are independent of N.

Then the variance value of T is

V ar(T ) = [E(X)]2V ar(N) + E(N)V ar(X).
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From Lemma 5.4.1, the variance of δ̃i can be calculated as:

V ar(δ̃i) = [E(Ri)]
2V ar(Ni) + E(Ni)V ar(Ri). (5.5)

Hence, to determine the values of E(δ̃i) and V ar(δ̃i), we need to calculate the mean and

variance values of Ni and Ri. The detailed mathematical derivation will be shown in the fol-

lowing subsections.

Number of Interruptions.

In this subsection, we analyze the random variable Ni describing the total number of interrup-

tions due to resource breakdowns experienced by activity throughout its execution.

Lemma 5.4.2. [27] Let X1, X2, ...Xn be independent exponential random variables with pa-

rameters λ1, λ2, ...λn, respectively. Then the minimum of these random variables follows an

exponential distribution; that is,

min{X1, X2, ...Xn} ∼ EXP (
∑n

i=1 λi).

During execution, activity ai is interrupted as soon as one of these resource units allocated

to ai breaks down, and thus, Ti describing the time to failure of activity ai can be shown as the

minimum time to failure over all of these resource units:

Ti = min{X11, X21, ..., Xri11, ..., X1K , X2K , ..., XriKK}. (5.6)

We then rewrite Ti as:

Ti = min{M1,M2, ..., MK} (5.7)

where Mk represents the minimum time to failure of resource type k allocated to activity ai.

Since Xjk ∼ EXP (λjk), using Lemma 5.4.2, we then have,

Mk ∼ EXP (
∑rik

j=1 λjk) (5.8)
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Similarly, following equations 5.7, 5.8 and Lemma 5.4.2, we can see that Ti is also expo-

nentially distributed with the parameter
∑K

k=1

∑rik

j=1 λjk, so that

E(Ti) = 1/
∑K

k=1

∑rik

j=1 λjk (5.9)

Lemma 5.4.3. [27] Suppose the time between consecutive occurrences of arrivals follows an

exponential distribution with parameter λ. Let X(t) be the number of occurrences by time t,

then X(t) follows a Poisson distribution with parameter λ ∗ t.

Using Lemma 5.4.3, Ni representing the number of interruptions of activity ai during its exe-

cution, follows a Poisson distribution with the mean number of occurrences given by d0
i /E(Ti):

Consequently, the mean and variance values of Ni are both d0
i /E(Ti), i.e.

E(Ni) = V ar(Ni) = d0
i

∑K
k=1

∑rik

j=1 λjk (5.10)

Total Vacancy Time.

Lemma 5.4.4. [37] Let X and Y be independent random variables that are both exponentially

distributed, respectively with parameter λ and µ. The probability that X will be smaller than

Y is then:

P (X < Y ) = λ/(λ + µ)

Let Pjk denote the probability that the interruption for activity ai is caused by the resource

unit j of resource type k. That is, among all resource units used by activity ai, this resource unit

has the smallest time to breakdown. Then Pjk can be calculated as:

Pjk = P (Xjk < minl=1,...K;i=1,...ril;(i,l) 6=(j.k)Xil) (5.11)

From equation 5.11 and Lemma 5.4.4, we can rewrite:

Pjk =
λjk

λjk+
∑

l=1,...K;i=1,...ril;(i,l) 6=(j.k) λil
=

λjk∑K
l=1

∑ril
i=1 λil

(5.12)

Since we assume that only one unit of resource is allowed to break down at a time, we can

70



calculate the mean and variance values of Ri describing the vacancy time for ai to wait once

interrupted as:

E(Ri) =
∑K

k=1

∑rik

j=1 PjkE(Yjk)

V ar(Ri) = E(R2
i )− E2(Ri)

=
∑K

k=1

∑rik

j=1 PjkE(Y 2
jk)− E2(Ri)

=
∑K

k=1

∑rik

j=1 Pjk(V ar(Yjk) + E2(Yjk))− E2(Ri)

(5.13)

Here, the random variable Yjk represents the time needed to repair for the resource unit j of

resource type k once broken. Since we assume that Yjk ∼ EXP (µjk), then we can obtain:

E(Yjk) = 1/µjk

V ar(Yjk) = 1/(µjk)
2

(5.14)

Therefore, from equations 5.4, 5.5, 5.10, 5.13 and 5.14, the mean and variance values of the

stochastic part of duration can be derived as:

E(δ̃i) = d0
i

∑K
k=1

∑rik

j=1
λjk

µjk

V ar(δ̃i) = d0
i

∑K
k=1

∑rik

j=1
2λjk

(µjk)2

(5.15)

5.5 Chaining Heuristics

5.5.1 Forward-Backward-Chaining

In this section, we discuss a new chaining procedure Forward-Backward-Chaining (FBC) that

produces a POS and a resource assignment that takes into account resource breakdowns.

Resource Ranking Heuristic

Given that the distributions of breakdown and repair time vary across resource units, it is clear

that different choices of resource assignments to activities will have different effects on robust-

ness. In this section, we ignore the effects of repair time and focus instead on the breakdown

distribution instead. A desirable property is to have an optimal resource assignment to activi-
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ties such that the maximal (or other metrics such as sum of) probability of breakdown over all

activities is minimized. However, even such a simple case involving two activities on a given

breakdown distribution can be proven to be NP-hard via a reduction from Partition Problem.

In the following, we propose a heuristic to establish a ranking among resource units accord-

ing to their breakdown (or reliability), which will be used by the chaining procedure subse-

quently in assigning resources to activities.

Given two arbitrary resource units with the time to breakdown denoted as X and Y whose

cumulative distribution are F and G, respectively. If at any time x, the probability of breakdown

at or before time x is lower under F than under G, then intuitively X is a preferred resource

choice over Y . This intuition leads us to apply the concept of Stochastic Dominance [39],

which is a form of stochastic ordering used commonly to establish the order of preference

between two random variables. The canonical form of stochastic dominance is the first-order

dominance which we use in this work:

Definition. Let X and Y denote two random variables whose cumulative distributions are F

and G, respectively. X stochastically dominates Y , denoted by XDY , if and only if F (X) ≤
G(X) for all x.

This stochastic dominance definition implies that if XDY then F must be below G for the

whole range of x. Thus in our context, we can have the following proposition.

Proposition 4. Let X and Y denote the time to breakdown of two resource units whose cumu-

lative distributions are F and G, respectively. Assume that X and Y, the two random variables,

are exponentially distributed with the following parameters:

X ∼ EXP (λ)

Y ∼ EXP (µ)

Then X stochastically dominates Y (XDY), if and only if λ < µ.

Algorithm

Various chaining algorithms have been proposed in the literature (e.g. [49]) to generate a POS

based on a baseline schedule. According to our experiments, the robust makespan is highly
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correlated with the deterministic makespan. In the section, we propose a new iterative forward-

backward chaining procedure which is capable of producing good deterministic makespans. To

cope with resource breakdowns, this procedure also incorporates the greedy resource assign-

ment heuristic based on the resource ranking described above.

Suppose that all resource units have been ranked according to non-increasing order of relia-

bility. The following FBC procedure will return a POS and resource assignment R. The variable

used in this function are all local variables.

Algorithm 3 FBC(S)
1: Improved ← True
2: calculate deterministic makespan MK based on S
3: set V ∗ ←∞
4: while Improved do
5: (POS ′, R′) ← Forward-Chaining(S)
6: calculate robust makespan V ∗′ based on (POS ′, R′)
7: if V ∗′ < V ∗ then
8: POS ← POS ′, V ∗ ← V ∗′ , R ← R′

9: end if
10: calculate new baseline scheduleS based on POS ′

11: (POS ′, R′) ← Backward-Chaining(S)
12: calculate robust makespan V ∗′ based on (POS ′, R′)
13: if V ∗′ < V ∗ then
14: POS ← POS ′, V ∗ ← V ∗′ , R ← R′

15: end if
16: calculate new baseline scheduleS based on POS ′

17: calculate deterministic makespan MK ′ based on S
18: if MK ′ < MK then
19: Improved ← True
20: else
21: Improved ← False
22: end if
23: end while
24: return (POS, R)

Let chainkp represent the chain associated with unit p of resource type k, and Rijk store the

index of the resource unit of resource type k that is assigned as the jth resource unit to activity

i. The detailed Forward-Chaining function which returns a POS and resource assignment R is

given as follows,

Selectchain is a greedy resource assignment heuristic that selects the index p of the first

73



Algorithm 4 Forward-Chaining(S)
1: sort activities by start times in S, ties broken randomly
2: initialize all chains with dummy activity a0

3: for i = 1 to N do
4: for k = 1 to K do
5: for j = 1 to rik do
6: p ← Selectchain(ai, rk)
7: al ← last(chainkp)
8: Rijk ← p
9: add precedence constraints between al and ai to POS

10: end for
11: end for
12: end for
13: return (POS,R)

available chain of resource type k where the ending time of the last activity al on the chain

is earlier than the start time of activity ai. Since the resource units are already sorted in non-

increasing order of reliability, it will thus pick the most stochastically reliable resource units

to be assigned to the activity. Backward-Chaining is similar to Forward-Chaining except the

activities are instead sorted according to finish time and start chaining backward. Note that

similar to the Forward-Backward Improvement (FBI) algorithm of [32] for RCPSP, each call

of the forward or backward chaining function will only result in a better or equal makespan.

5.5.2 Resource-Breakdown-Aware Chaining

)(δ
δ

Var

)E(

λ µ

ε

Figure 5.2: Overview of Local Search.

We provide a simplified overview of our robust local search in Fig 5.2 to motivate the need
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for resource assignment heuristics in this section. Typically, there exist multiple feasible re-

source assignments for every activity during the chaining procedure (for constructing a POS). It

should be noted that different assignments can lead to different execution strategies (or POSs),

each with a different level of robustness (or equivalently robust makespan). In Section 5.5.1,

resources are firstly ranked based on the mean value of the time to breakdown (λ) and activities

are greedily allocated to the first available resource based on that order. However, such a greedy

assignment is not sensitive to resource breakdown and repair distributions. Therefore, we build

on the latest chaining technique for POS [47] by proposing heuristics for assigning activities to

resource chains (or units) based on the breakdown (λ) and repair (µ) distribution parameters.

A key observation in this regard is the dependence of Equation 5.21 on the terms λ
µ

and λ
µ2 .

This implies that expected value and variance of robust makespan are dependent directly on

uncertainty parameters relevant to resource breakdowns. Based on this observation, we propose

our chaining algorithm called Resource Breakdown Aware Chaining. Intuitively, we will assign

longer duration activities to more reliable resources, where the reliability is characterized by

either of the three heuristics:

• Mean heuristic (MH), where reliability is defined by λ
µ

• Variance heuristic (VH), where reliability defined by λ
µ2

• Mean and Variance heuristic (MVH), where reliability is a combination of λ
µ

and λ
µ2 .

An analytical proof of the effectiveness of MVH for a simple two activity case is provided

as follows.

Example 6. Consider two activities that are to be executed in parallel (within a POS). Duration

for an activity i is represented as d̃i = d0
i + l̃i− ẽi+ δ̃i, where i = 1, 2 and d0

1 > d0
2. Furthermore

for simplicity, let us assume two units of one resource type and the resource consumption for

each activity is one. unit. We assume that further that λ1/µ1 < λ2/µ2 and λ1/µ
2
1 < λ2/µ

2
2.

According to the decision rule SLA, the makespan for the two activity network is upper

bounded by: max{d0
1, d

0
2}+ l̃1 + l̃2 + δ̃1 + δ̃2. We have two resource assignments:

• Assignment 1: assign activity 1 to resource unit 1 and activity 2 to resource unit 2
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• Assignment 2: assign activity 2 to resource unit 1 and activity 1 to resource unit 2.

We now show that assigning activities according to MVH can provide lower robust

makespan. The values of robust makespan following assignment 1 and 2 are denoted as S∗1

and S∗2 , respectively. We then have,

S∗1 = max{d0
1, d

0
2}+ E(l̃1) + E(l̃2) + d0

1

λ1

µ1

+ d0
2

λ2

µ2

+

√
1− ε

ε

√
V ar(l̃1) + V ar(l̃2) + d0

1

2λ1

µ2
1

+ d0
2

2λ2

µ2
2

S∗2 = max{d0
1, d

0
2}+ E(l̃1) + E(l̃2) + d0

1

λ2

µ2

+ d0
2

λ1

µ1

+

√
1− ε

ε

√
V ar(l̃1) + V ar(l̃2) + d0

1

2λ2

µ2
2

+ d0
2

2λ1

µ2
1

(5.16)

Given d0
1 > d0

2, λ1/µ1 < λ2/µ2 and λ1/µ
2
1 < λ2/µ

2
2, we have,

d0
1

λ1

µ1
+ d0

2
λ2

µ2
< d0

1
λ2

µ2
+ d0

2
λ1

µ1
,

d0
1

2λ1

µ2
1

+ d0
2

2λ2

µ2
2

< d0
1

2λ2

µ2
2

+ d0
2

2λ1

µ2
1

(5.17)

Thus, S∗1 < S∗2 .

Algorithm 5 provides the pseudo code for resource breakdown aware chaining. Line 4 -

Line 8 and Line 20 - Line 29 constitute the chaining technique [47] introduced in Section 3.2.1

that aims to improve the flexibility (or parallelism). We improve this chaining procedure to

incorporate sensitivity to resource breakdowns in lines 9-18. Depending on the exact heuristic

employed, the last activity in a resource chain (or unit) is swapped so that a longer duration

activity is scheduled on a more robust resource.

5.6 Extended Robust Local Search

We now extend the robust local search method with additional considerations on the impact of

resource breakdowns to the robust makespan of a given POS. First, we revise the segregated

linear decision rules introduced in Section 4.2. The idea is to be able to separate the effects of
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Algorithm 5 Resource Breakdown Aware Chaining, RBAC (Activity a, Schedule S, Heuristic
h)

1: C(a) ← Find set of available chains, C(a) for activity a based on S
2: U(a) ← Find set of unavailable chains, U(a) for activity a based on S
3: P (a) ← Collect chains from C(a) with last activity of chain preceding a in problem
4: if P (a) 6= φ then
5: k ← Get an available chain in P (a)
6: else
7: k ← Get an available chain in C(a)
8: end if
9: Let b denote the last activity of chain u

10: if ∃ u ∈ U(a), k ∈ C(b),dura > durb then
11: if h = ”MH”, λk/µk > λu/µu then
12: swap activity b onto chain k, k ← u
13: else if h = ”VH”, λk/µ

2
k > λu/µ

2
u then

14: swap activity b onto chain k, k ← u
15: else if h = ”MVH”,λk/µk > λu/µu, λk/µ

2
k > λu/µ

2
u then

16: swap activity b onto chain k, k ← u
17: end if
18: end if
19: Post constraint between between last activity of chain k (denoted as last(k)) and activity a

20: if a requires more than one resource unit then
21: C1(a) ← chains in C(a) which have last activity as last(k)
22: C2(a) ← C(a) \ C1(a)
23: for all resource units required by a do
24: choose an available chain belonging to C1(a)
25: if chain above is not feasible then
26: choose an available chain belonging to C2(a)
27: end if
28: end for
29: end if
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the innate duration variability and the delay due to resource breakdown. For this purpose, we

introduce two notions: a real activity and a dummy activity. For each activity ai, we divide it

into a ”real” activity a′i and a ”dummy” activity a
′′
i as illustrated in Figure 5.3. Thus, duration

tt {  { {

Figure 5.3: ”Real” activity and ”Dummy” activity.

of an activity is a sum of duration of its real part and the duration of the dummy part. i.e.

d̃i = d̃′i + δ̃i, where the duration of its dummy activity is modeled as δ̃i. We then model the

duration of the real part as:

d̃′i = d0
i + z̃i = d0

i + l̃i − ẽi (5.18)

where the segregated random variables l̃ and ẽ represent the distributions of the lateness and

earliness, respectively.

In a scheduling context, an activity will either start after the end of an activity (i.e. in se-

ries) or after the end of multiple activities occurring simultaneously (i.e. in parallel). Now we

describe the computation of S̃ ′v(x, z̃, δ̃) (compared with S̃v(x, z̃) under only durational uncer-

tainty in Section 4.2) by representing both resource and durational uncertainties for activities:

• Serial Activities: The start time of the activity starting after the k-activity project is

expressed as:

S̃ ′k(x, z̃, δ̃) =
∑k

i=1(d
0
i + δ̃i + z̃+

i − z̃−i ). (5.19)

Mean and variance of the segregated variables z̃+ and z̃− are known, and mean and

variance of variation δ̃i can be computed according to Eqn 5.15, hence the mean and

variance of S̃ ′k can be easily computed.

• Parallel Activities: Consider activities that are executed concurrently, the upper bound

on the start time of an activity starting after the parallel k-activity project network is
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represented as follows:

S̃ ′k(x, z̃, δ̃) ≤ maxi=1,...k{d0
i }+

∑k
i=1 z̃+

i +
∑k

i=1 δ̃i. (5.20)

Similarly, mean and variance of the segregated variables are known, and mean and vari-

ance of variation δ̃i can be computed according to Eqn 5.15, hence the mean and variance

values of upper bound of S̃ ′k are easy to compute.

Based on the segregated linear decision rule under both resource and durational uncertain-

ties, the robust fitness function which will be used in local search can defined as follows:

Definition 4. Given 0 < ε ≤ 1 and the adjustable fitness function S̃ ′(x, z̃, δ̃) defined above, the

robust fitness function, f ′(x, z̃, δ̃, ε), is defined as

f ′(x, z̃, δ̃, ε) = E[S̃(x, z̃, δ̃)] +

√
1− ε

ε

√
V ar[S̃(x, z̃, δ̃)] (5.21)

We are now ready to present our improved Robust Local Search which is capable of handling

resource and durational uncertainties. The goal of the local search mechanism is to find a local

minima of robust makespan S
′∗. The detailed description of our Robust Local Search with

Resource Breakdown Aware Chaining and MVH heuristic (RLSMV H) is presented as follows

in Algorithm 6.

5.7 Experimental Evaluation

In this section, we compare the quality of the execution strategies generated by our robust local

search approach with the new chaining algorithms against robust local search with existing

chaining algorithms.

5.7.1 Experimental Setup

The problems considered for RCPSP/max with resource and durational uncertainties were ob-

tained by extending the three benchmark sets available for RCPSP/max problems, J10, J20 and
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Algorithm 6 RLSMV H

1: rank resource units in non-increasing order of reliability (by stochastic dominance)
2: initialize activity list AL
3: set i ← 0; S

′∗ ←∞
4: while i < MaxIteration do
5: generate baseline schedule S according to AL
6: initialize the POS
7: for all i ≤ N do
8: call RBAC(ai, S, ”MVH”) to add to (POS,R)
9: end for

10: calculate robust makespan V according to (POS,R)
11: if S < S

′∗ then
12: set S

′∗ ← S,and update AL and R
13: end if
14: i ← i + 1
15: apply local move on AL to generate new AL
16: end while
17: return S

′∗

J30 as specified in the PSPLib [31]. Each set contains 270 problem instances with duration

for each activity ranging between 1 and 10. The maximum number of activities for J10, J20

and J30 are 10, 20 and 30, respectively. For each activity ai, we set the fixed part d0
i of the

stochastic duration as the corresponding deterministic duration given by the benchmarks, and

assume that duration uncertainty is normally distributed, i.e. z̃i ∼ N(0, σ). We set σ = 0.1

and run the algorithms on four increasing levels of risk ε = {0.01, 0.05, 0.1, 0.2}. As for the

resource uncertainty, we set λ and µ each randomly picked from one of the intervals, respec-

tively: 1/λ ∈ {[5, 15], [15, 25], [25, 35]}, µ ∈ {[1, 2], [2, 3], [3, 4]}. Intuitively, these represent a

decent range of values for number of breakdowns and the time for repair.

We compare the robust local search with different chaining procedures: a) (RLSMH) is the

robust local search with mean heuristic chaining ; b) (RLSV H) is the robust local search with

variance heuristic chaining; c) (RLSMV H) is the robust local search with combined mean vari-

ance chaining; d) (RLSFBC) refers to the robust local search with Forward-Backward Chain-

ing; e) (RLS) refers to the robust local search with random Chaining.

The number of local search iterations for robust local search was set to 1000. To reduce

the stochasticity effects of robust local search, we average over 10 random executions for each

problem instance. Our code was implemented in C++ and executed on a Core(TM)2 Duo CPU
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Set Algorithm ∆LB% NOpt% NFeas% S∗ CPU

J10
RLSFBC 0.00 100 100 46.3 0.20
RLS 0.16 93.6 100 46.6 0.14

J20
RLSFBC 4.83 70.1 100 75.2 0.92
RLS 9.35 40.1 100 78.3 1.20

J30
RLSFBC 12.31 47.6 100 98.4 2.30
RLS 19.63 20.54 99.5 103.8 4.87

Table 5.1: Effectiveness of RLSFBC on Benchmark Problems.

2.33GHz processor under FedoraCore 11 (Kernel Linux 2.6.29.4-167.fc11.i586).

5.7.2 Comparisons between Chaining Procedures

To test the performance of our proposed chaining procedures, we compare the average robust

makespans of 270 problem instances under different levels of risk.

In Table 5.1, we compare the performance of RLSFBC with RLS where ε is set to 0.05. We

observe that not only is a better robust makespan achieved for all the test sets by RLSFBC , but

also our approach obtains much better results in terms of deviation from lower bound (∆LB%),

percent of optimal solution found (NOpt%). RLSFBC is also faster computationally than RLSL

on the J20 and J30 test sets. We also like to remark that RLSFBC and their algorithm are the

only algorithms to our knowledge which can find all feasible solutions for J10, J20 and J30 test

problems.

Table 5.2 shows how different chaining procedures and risk levels ε affect the robust

makespan over different data sets, each of which are generated randomly with 1/µ and λ set to

[5,15] and [1,2], respectively. While we considered one set of values for 1/µ and lambda, we

observed similar results for other range of values. Here are the key conclusions:

• Irrespective of problem scale, as the level of risk ε increases, the robust makespan de-

creases with all four algorithms. This is an expected result, where the lower risk that

the scheduler is willing to take, the higher is the robust value of the generated execution

strategy;

• Irrespective of problem scale and level of risk, our proposed methods (RLSMH ,RLSV H

and RLSMV H) can provide better robust makespan than [21]. This indicates that consid-
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Problem Sets Algorithms ε = 0.01 ε = 0.05 ε = 0.1 ε = 0.2

J10

RLSMH 87.37 91.74 97.69 122.14
RLSV H 87.11 91.55 97.59 122.41
RLSMV H 86.70 91.12 97.11 121.75
RLSFBC 90.13 94.60 100.68 125.67

J20

RLSMH 280.27 286.48 294.91 329.61
RLSV H 273.27 279.41 287.76 322.06
RLSMV H 263.92 270.02 278.31 312.37
RLSFBC 328.68 334.93 343.42 378.27

J30

RLSMH 327.73 335.15 345.23 386.69
RLSV H 336.56 343.91 353.89 394.97
RLSMV H 318.29 325.58 335.50 376.27
RLSFBC 353.58 360.97 371.01 412.21

Table 5.2: Comparison of RLSMH , RLSV H , RLSMV H against RLSFBC on Benchmark Prob-
lems.

ering robustness chaining in improving robustness of generated execution strategy;

• Irrespective of problem scale and level of risk, RLSMV H performs better than

RLSMHand RLSV H , but we do not see any superiority between RLSMH and RLSV H .

Effect of Breakdown Parameters on Robustness

We now show the effect of different breakdown parameters on robustness of generated execu-

tion strategies. We consider all the values of µ and λ shown in Table5.3. While the risk level ε

is set to 0.2 for these results, similar results were observed for other epsilon values as well.

The key conclusion is that the robust makespan increases when λ increases, and it decreases

when µ increases. Since mean and variance parts of the resource uncertainty increase when λ

increases according to equation 5.15, while the values decrease when µ increases.

5.8 Conclusion

In this work, we provided a scalable architecture for solving RCPSP/max problems with du-

rational and resource breakdown uncertainties. The major contribution of the paper is the Re-

source Breakdown Aware Chaining procedure with three different metrics (MH, VH and MVH)
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Problem Sets µ ∈ [1,2] µ ∈ [2,3] µ ∈ [3,4]

J10

[5,15] 86.70 64.61 57.73
1/λ ∈ [15,25] 59.21 52.54 50.17

[25,35] 54.18 49.92 48.30

J20

[5,15] 263.92 112.96 96.48
1/λ ∈ [15,25] 97.82 85.79 82.14

[25,35] 88.54 81.23 78.83

J30

[5,15] 318.29 201.99 133.19
1/λ ∈ [15,25] 133.55 112.94 106.20

[25,35] 116.78 105.91 102.52

Table 5.3: Robust Makespan with Different Breakdown Parameters.

to obtain execution strategies based on resource breakdown and repair distributions. Further-

more, we have provided formal mechanisms for (i) predicting the effect of resource breakdowns

and repairs on robust makespan; (ii) suggesting more robust resource allocations. Experimental

results illustrate improved robustness of execution strategies with the new chaining technique.

There are two key assumptions that we hope to relax in future work:

• Firstly, we have assumed exponential distributions for times between resource break-

downs and repair times once resources breakdown. An immediate relaxation of this

assumption would be to address RCPSP/max with only mean and variance of resource

uncertainty (rather than any specific distribution). Furthermore, the general non-linear

decision rule we proposed in Section 4.2.1 that contributes for computing schedules with

respect to execution strategy and realizations of uncertainty would also be applied for

generating robust execution strategies.

• While we consider different resource allocations during the chaining procedure,the re-

source assignment will remain fixed during execution once it is generated. We hope to

relax this using the online approaches contributed by [34].
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Chapter 6

Application in Service Industry Context

6.1 Introduction

In service industry such as airlines, health-care and financial institutions, timely delivery of

product (goods and services) is of utmost importance in gaining customers’ confidence and

goodwill. While JIT has been an established concept in lean manufacturing, it is also widely

applicable in the service industry (where jobs should be completed to fulfill customers’ orders

in a timely fashion against a backdrop of dynamism and uncertainty in the environment). The

notion of timeliness means that the jobs are completed neither too early (thereby minimizing

holding cost and maximizing agility) nor too late (minimizing delays and customer waiting

time).

In this chapter, we study the problem of timely service delivery in an operational environ-

ment that is inherently uncertain. The broad research question is - can we obtain a policy on

apriori (proactive) resource assignment to jobs that is robust in response to events such as a

demand surge? We seek a rigorous modeling of uncertainty parameters and a computationally

efficient approach to find solutions that are robust against such uncertainties. More precisely,

we will look at a job scheduling context where we need to find robust solutions that are JIT. In

Scheduling terminology, the JIT concept is often studied as the well-known earliness/tardiness

(E/T) scheduling problems. A rich collection of scheduling problems in the service industry is

given in [58].
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While there is a rich literature in dealing with E/T problems (mostly in manufacturing con-

texts), they mainly deal with deterministic problems on single-machine or parallel machines.

Baker and Scudder [3] provided a comprehensive survey on the different variations of determin-

istic E/T problems. In a deterministic setting, it is meaningful to seek a schedule (an assignment

of start time of each task to a machine) that optimizes an objective function (such as makespan).

However, in a dynamic operational environment particularly in a service company where we

need to cope with the presence of uncertainties realistically, a schedule is potentially brittle

against uncertainty (such as durational uncertainty).

To hedge against uncertainty, a widely adopted technique known as the Critical Chain was

proposed by Goldratt [23] for project management. The idea was derived from Theory of

Constraints. A critical chain is the longest sequence of both precedence and resource-dependent

tasks in a project, and the idea is to insert project buffer time to the end of a critical chain to

protect the project completion date, as well as feeding buffer time that hedges against resource

contention of a task on a non-critical chain with a task on a critical chain should the former gets

delayed. While buffering is an intuitive notion that is fairly simple to implement, the question

is how much to buffer. In a typical critical chain approach, the size of the buffer increases

linearly with the length of the chain with which it is associated, and in [25], it was reported that

the resulting makespan based on critical chain can be twice as long compared to the scheme

proposed by the authors’ approach.

In Operations Research, stochastic programming and simulation techniques are commonly

used to handle uncertainty - both of which require high computational budget typically (for

large-scale problems) and rely heavily on statistical distributions. These are overcome with

techniques from Artificial Intelligence and Economics. A survey by Herroelen and Leus [26]

review these fundamental approaches for scheduling under uncertainty. More recently, the

notion of robust optimization has been proposed that makes use of mild statistical information

to find tractable solutions for optimization problems under uncertainty [6].

A recent approach that combines robust optimization with heuristic search to manage un-

certainty proactively is based on the idea of robust local search [38]. In applying to project

scheduling with resource constraints, [21, 22] proposed computationally efficient schemes for

finding an executable strategy (or policy) that hedges against durational and resource uncer-
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tainties. More precisely, by making use of mild statistical information (means and variance)

they proposed a computationally efficient scheme to generate a partial-order schedule (POS)

(i.e. an execution policy) and a ”robust” makespan guaranteeing that the schedule subsequently

executed against all possible realizations of uncertainty will have a makespan of that value with

a probability of 1− ε, where ε ∈ [0, 1].

In this chapter, we adopt the idea proposed in the abovementioned works to study the prob-

lem of E/T scheduling under durational uncertainty. We term our problem as Dynamic E/T

Job Scheduling Problem. We believe this problem, though somewhat stylized in nature, is ca-

pable of modeling many of problems arising from job assignment in the service industry. We

see many real-life business process scenarios that are plagued with both E/T and duration un-

certainty considerations. One such application is in the production and delivery of perishable

goods, such as flight catering business. A job in flight catering business includes multiple op-

erations such as cooking for hot dish, cold dish, preparation of beverages and special meals,

assembly of items and packing. An early completion of job results in holding costs and possi-

ble inaccuracy but a late completion of job will have severe impact on flight schedule, loss of

customer satisfaction and potential disruption to other flights (if food is borrowed from another

flight). The study of uncertainty is important as passenger load (paxload) is dynamic due to

ticket sales and check-ins. The airlines update the caterer on the paxload as late as within 40

minutes before the flights departure. As paxload changes, the durations required to perform

some operations such as assembly and packing could vary.

In our work, we aim to find a schedule policy with the least robust cost of E/T under duration

uncertainty. Our contribution in this work is three-fold. Firstly, under a stochastic setting, we

provide an analytical method to evaluate the expected cost of E/T for each job as well as for all

jobs for a given schedule. Secondly, we show that with the use of a executable strategy, we can

gain greater visibility into a job completion time. Finally, we propose the use of an efficient

local search method in search of a time-and-resource-feasible schedule that gives the minimum

robust cost for all jobs in the project for a given risk level ε.

The organization of the rest of the work is as follows: Section 6.2 describes a business

process of a service provider that motivates our work. Section 6.3 provides a formal definition

of the problem. Section 6.4 provides the detailed description about our approach to solve the
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Figure 6.1: Flight catering business process as an example of a job

problem. Section 6.5 shows the experimental results for our method. Finally, Section 6.6

presents a conclusion to this work.

6.2 Motivating Case Study

The Dynamic E/T Job Scheduling Problem is motivated by business processes observed in real

world. Typically, E/T concept is predominantly used in supply chain management to produce

goods just-in-time to reduce inventory (holding) cost. However, here we present a business

process as a case study that E/T scheduling can be applied and form an important aspect of

providing quality services. For ease of illustration, simplified version of the actual process is

provided here. We shall then use the case study as the basis for our proposed solution.

A airport terminal service provider receives orders from their customers (the various airlines)

to supply in-flight food and beverages to the flights departing from the airport. The orders are

made in advance to the service provider. Each order is a job that the provider must be able to

fulfill before the estimated departure time (ETD) of the flights, i.e., the due date of each order.

Each job consists of a series of operations (in sequence or in parallel) in order to complete

the job. A simplified business process of the catering job is provided in Figure 6.1. In a job,

the operations include preparation of ingredients, hot dishes, special meals (e.g. vegetarian,

diabetic meals), beverages, tray assembly and finally loading into truck or moved to staging

area. Each operation within the job requires use of one or more types of limited resources and

may also require more than one unit of each type of resource. For example, preparation of hot

dishes may require multiple cooks and stoves.

Based on all the orders received, the provider plans and schedules the jobs in advance.
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However, such a process is subjected to highly dynamic business environment as the orders

can be amended during the job execution due to changes in business demand. The preparation

of food begins three days in advance based on initial planned order. However, the airline may

amend the order as it approaches the ETD due to changes in passenger load (paxload). Paxload

is highly dynamic in the last few days and even hours due to last minute bookings, cancellations

and check-in information. The paxload information may arrive at the provider as late as 40

minutes before the ETD! Such amendment of orders affects the duration of the operations in

the job and this is the source of uncertainty that we will deal with in this work.

To further complicate matters, these jobs should complete as close to the due-dates as pos-

sible. Early completion of jobs imposes risk to freshness of the products and also occupies

staging area and limited resources such as tray tower. Late completion of job is highly detri-

mental as it may cause flight delays and hence risking the loss of customer’s goodwill. The

challenge for the provider, not only is to be able to complete the jobs just-in-time but also have

an executable strategy for handling jobs in this dynamic environment. The above discussion

paves a need for our study of E/T job scheduling under duration uncertainty.

6.3 Problem Definition

We formalize the Dynamic E/T Job Scheduling problem as follows: A project consists of n

independent jobs j1,...,jn, where each job j represents an instance (or case) of the business

process with a due date Dj (jobs have distinct due dates), a set of operations Ojh, where hj

denotes the hth operation of job j; and a precedence constraint PR matrix of size Ojh × Ojh

to provide flexibility to allow parallel operations in the job. Each operation Ojh has processing

time pjh ε R+ and has resource requirements RQjhk for resource type Rk. The processing time

is subject to uncertainty by a random variable z̃, i.e. p̃jh = p0
jh + z̃. p0

jh denotes the deterministic

duration.

We are given a set of k type of resources, which any of its members of type k are capable of

executing the same task. Each type of resource is denoted by Rk. Each resource Rk has capacity

RCk. The resources are subjected to constraint
∑

jhεat

RQjhk ≤ RCk ∀t, k, where resource usage

for each resource type k does not exceed the capacity at any point of time during the execution

88



of the set of activities in which at is the set of active activities at time t.

We define cost of earliness or tardiness, Tj ε R+ to measure the penalty that a job can

incur if it is completed before or after it’s due date Dj . We obtain Tj from two functions,

an earliness function Wj and lateness function Yj . This model of using Wj and Yj functions

supports both common and distinct cost functions problems. We assume that both functions

can be estimated or obtained from historical data. Let C̃j be the variable completion time of

job j due to uncertainties.

1. If job j completes before its due date, then T̃j = Wj(Dj − C̃j)

2. If job j completes on or after its due date, then T̃j = Yj(C̃j −Dj).

Since each project contains j jobs, the E/T cost of a project, T̃j is also the sum of the E/T

costs of all jobs.

T̃ =
∑
j∈J

T̃j (6.1)

The goal is to find an execution policy for the project with a given risk level ε ∈ [0, 1], the

policy yields the minimum robust E/T cost T ∗
min, such that there is a probability of (1− ε) that

the actual cost is less than or equals to T ∗.

T ∗ = E[T̃ ] +
√

1− ε/ε

√
V ar[T̃ ] (6.2)

We highlight the uniqueness of our problem with respect to various standard problems in

the literature. With respect to Resource-Constrained Project Scheduling Problem (RCPSP),

our problem includes an additional structure of a job which links a series of activities (or op-

erations) together and has a due date. Our problem also differs from a standard Job-Shop

Scheduling (JSP) problem as the jobs has due dates, and each operation within the jobs may

require one or more units of k types of resources. The standard JSP, on the other hand, in-

volves only single unit of a single resource in each operation. In addition, our work differs

from standard E/T scheduling (comprehensive survey found in [3]) as we takes into consider-

ations, duration uncertainty in dynamic environment as compared to deterministic problems.

Although scheduling under uncertainty has been studied in RCPSP and JSP (in [21, 22, 38] and
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[5] respectively), these works are concerned with completing project in shortest possible time

and do not have earliness considerations that is important to service timeliness.

6.4 Proposed Approach to E/T Case Study

In this section, we show our proposed approach in solving the Dynamic E/T Job Scheduling

problem for the case-study described in section 6.2. First, some assumptions/characteristics are

given as follows.

• The mean and variance of the processing time uncertainty of each operation Ojh takes

normal distribution N(0, σjh).

• The earliness and tardiness cost functions are known or can be derived from historical

data. Both functions are step functions with respect to discrete time of completion of

a job. We model the cost functions with step functions because penalty costs such as

holding cost of the goods are usually incurred hourly or daily, and not continuously in

time. In extreme case where the cost of earliness and tardiness is continuous, we are still

able to apply our method by using discrete approximation.

• All activities are non-preemptive. Resources assigned to a specific operation work for

the entire operation duration.

• Late completion of jobs has more severe penalty compared to early completion of jobs,

i.e. function Y has a steeper slope than function W . This assumption reflect practical

situation where loss of customer satisfaction is more detrimental than holding cost. We

use this as a guide to our search algorithm and also minimize the amount of tardiness.

• Operations in all jobs are of equal priority. Search algorithm may decide to place the

operations in any sequence as long precedence constraints between operations are pre-

served.
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6.4.1 Overview

Figure 6.2 shows an overview of our approach to solve the Dynamic E/T Job Scheduling prob-

lem. We propose a local search algorithm that searches for a POS that gives minimum robust

E/T cost, T ∗
min.

Jobs

Partial Order Schedule (POS)

Iterative

*
min

PR Precedence constraints
Resources

Resource Capacity
R esource ReQmt

Processing time

For each job j

Inputs

Local 
Search 

Algorithm

Output

Figure 6.2: Overview of the approach to E/T job scheduling problem

Algorithm 7 shows the detailed algorithm for our local search function. We first randomly

form an initial activity list(AL) and obtain an initial schedule S (Line 01-02). Schedule S can be

obtained either by a standard scheduling heuristic such as serial schedule generation scheme (no

idle time inserted) or any E/T scheduling methods with inserted idle time [29]. With schedule

S, forward-backward-chaining (FBC) is applied to obtain a POS for the schedule (Line 03).

Line 05-09 shows how we obtain the expected E/T cost E(T̃ ) for the entire project. For each

job j, we find the sub-POS involving the activities in the jobs (details in section 6.4.2). The

use of sub-POS is required to compute the expected cost of E/T for each job since the the

completion time of the job also depends on the consumption of resources by activities in other

jobs. The cost of E/T for job j is computed using earliness and lateness functions (Wj and Yj

respectively) (Line 07) and the expected E/T cost of the project is the sum of E(T̃j) for all jobs

(Line 08). We then calculate the robust cost for the project T ∗
now based on equation 6.2 (Line
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10).

Line 11-21 is the local search algorithm in which we perform the search over MaxIteration.

Line 12 to 15 show that we replace POSmin and T ∗
min whenever we find one that gives a

smaller robust cost of E/T. Lines 16 − 17 shows the local search moves where two operations

are randomly selected for swap to produce a new activity list AL′. We then repeat the search

process using the new activity list AL′ (Lines 18−21). At the end of MaxIteration, we select

the POS (execution policy) that provides the minimum robust E/T cost for the project.

Algorithm 7 Algorithm to find POS with minimum robust E/T cost
1: Randomly form an initial activity list AL
2: Find a schedule S randomly according to AL
3: POS ← Chaining(S)
4: T ← 0
5: for each job j do
6: POSj ← FindSubPOS(POS, j)
7: Tj ← ComputeExpectedETCost(POSj, αj, βj)
8: T ← T + Tj

9: end for
10: Compute robust cost T ∗

now

11: for i = 1 to MxIteration do
12: if T ∗

now ≤ T ∗
min then

13: T ∗
min ← T ∗

now

14: POSmin ← POS ′

15: end if
16: Randomly pick two operations a and b from AL
17: Swap a and b in AL as AL’
18: Find a schedule S ′ according to AL’
19: POS ′ ← FBC(S ′)
20: Find T ∗

now

21: end for
22: Output a POSmin with T ∗

min

6.4.2 Finding sub-POS

Our approach relies on use of sub-POS to find the expected cost of E/T of each job. The

sub-POS for job j (i.e., POSj) consists of all the operations in the job as well as the other

preceding operations from other jobs in the main POS that job j depends on due to sharing of

the common pool of resources. Illustrating with an example, figure 6.3 shows an example of
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Algorithm 8 Algorithm to find sub-POS for job j
1: Given a POS and job j
2: Find the activity a that represents the last operation of job j
3: Add a to POSj

4: Begin Function addPredecessorOf(a)
5: Vector v ← get predecessors of a
6: if v is not empty then
7: for all elements e in v do
8: add e to POSj

9: chain e to a
10: addPredecessorOf(e)
11: end for
12: else
13: exit function addParents
14: end if
15: endFunction
16: Return POSj

three jobs and its operations. Suppose the operations are translated to activities numbered 1 to 8

and has a possible POS represented in Figure 6.4. The sub-POS for jobs j1, j2 and j3 consist of

activities (1,4,7,2,8,3), (1,4,7,2,8,5,3,6), (1,4,7,2,8) respectively. This is obtained by using the

last operation of each job and working backwards recursively to include any preceding activity

(parent) in the POS to be included in the sub-POS. An algorithm for determining the sub-POS

is shown in Algorithm 8.

1

2

3

Figure 6.3: Example of three jobs

The use of sub-POS provides greater visibility to scheduling as one gain visibility to the

dependencies on other operations (of another job). This is particularly important in applications

whereby one would like to anticipate and be able to update airlines (i.e., customers) the status

of the order and also be able to plan for the next chain of activities, e.g. dispatching service.
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POS1

POS2POS3

Figure 6.4: Example of sub-POS for three jobs in Figure 6.3

6.4.3 Expected Cost of E/T for Each Job

The cost of E/T of a job depends on whether job completes before or after the job due date, Dj

and in the dynamic environment, the job completion time C̃j is variable. We first consider a

simple model where the cost functions are linear functions of the differences between job due

date and completion time.

In such a situation, we have two mutually exclusive cases which either C̃j lies before or after

due date. We could model the expected cost of E/T each job, E(T̃j) by

E(T̃j) = P (C̃j ≤ Dj) ∗ α(Dj − C̃j) + (1− P (C̃j ≤ Dj)) ∗ β(C̃j −Dj) (6.3)

Similarly, this probabilistic model is also applicable for other continuous cost functions such

as quadratic earliness and lateness cost functions:

E(T̃j) = P (C̃j ≤ Dj) ∗ α(Dj − C̃j)
2 + (1− P (C̃j ≤ Dj)) ∗ β(C̃j −Dj)

2 (6.4)

For a special case when cost functions are step functions, then equation can be written as:

E(T̃j) = P (C̃j ≤ t1) ∗ Cost(Cj ≤ t1) +
5∑

i=2

P (ti−1 ≤ Cj ≤ ti) ∗ Cost(ti−1 ≤ Cj ≤ ti)+

(1− P (C̃j < t5)) ∗ Cost(C̃j ≥ t5)

(6.5)
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6.4.4 Robust Cost for the Project

To evaluate each execution policy (represented by the POS) for a given risk level, we compute

T ∗
min computed based on Equation 6.2. Using this fitness function, we aim to achieve, as the

output of search process, an execution policy that takes uncertainty into considerations and yet

provide a minimum robust cost of earliness and tardiness.

6.5 Experimental Results

In this section we will present the experimental results of applying the local search algorithm to

solve the E/T scheduling problem with durational uncertainties. We run our search algorithm

based on problem instances derived from the benchmark sets for RCPSP/max J10 as specified

in the PSPLib. We used the activity durations, resource requirements and resource capacities

from the benchmark sets. For each instance, we added the layer of jobs, added due dates for

each jobs and changed the time-lag parameters to suit the requirements of our test. For each

test instance, we have 4 jobs and each job has either 2 or 3 operations. Each operations requires

1 or more units of k types of resources. 5 different types of resources are used.

For each operations Ojh, we set the expected processing time pjh of the stochastic duration

as the corresponding deterministic duration given by the benchmarks and assume that duration

uncertainty z̃jh is normally distributed with mean 0. We run the algorithm across 4 increasing

levels of risk ε = 0.01, 0.5, 0.1, 0.2 and 4 different local search iterations MaxIteration = 50,

100, 250, 500. To reduce the possible effect of random factors during the search process on

final results, we average over 5 random executions for each problem instance.

In our tests, we used linear costs functions similar where factors α and β are set to 0.5 and 0.8

respectively. We used simulation technique to obtain the probabilities required for computation

of expected cost for each job. We achieved this by providing 100 actual realizations of the

instance for each POS generated by the algorithm. The expected cost of the project E(T̃ ) is

then obtained from summation of expected cost of the jobs and the variance of the E/T cost of

the project V ar(T̃ ) is derived through the simulation. The robust E/T cost T ∗ for each POS is

then calculated based on 6.2.
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Firstly, we present the results of sensitivity test on the effect of the risk level ε on the robust

cost. Figure 6.5 shows 5 selected instances from our test results with 250 local search iterations.

We observe that the robust cost decreases as the level of risk increases. This is important to

the planner as a decision maker on which strategy to adopt to improve the service quality in

his organization, i.e., an policy that yields lower robust cost by taking a higher risk or vice

versa. The experiments also show that this results is consistent with different instances of the

problems.
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Figure 6.5: Selected instances of robust cost versus level of risk

Next, we evaluate the effectiveness of our algorithm by executing the experiment using

different cycles of local search.Figure 6.6 shows 5 selected instances from our test results with

ε = 0.2. The results shows that with 250 iterations of local search, the algorithm is able to

provide a good convergence to minimum robust cost.

In our experiment, we also observe that POS that yields the minimum robust cost is not

necessarily the same POS that yields the minimum expected cost of the project. We observe

that the POS giving the minimum robust cost may have a higher expected cost as oppose to

another policy with the minimum expected cost. We would like to highlight the value of robust

considerations. Suppose the risk level is 0.2. In robust scheduling, we are finding a policy that

gives the cost of at most T ∗
min with probability of 0.8. However, if we search for minimum

expected cost of the project, if the variance of the project cost is high, we may end up with
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Figure 6.6: Instances of test cases showing the ability of algorithm to converge to a minimum
robust cost

higher total cost over all realizations of the project. As such, the policy provided by the robust

scheduling provide the hedge against adversity and hence valuable to the decision makers.

6.6 Conclusion

We have shown in this chapter, an approach to evaluate the robust cost of earliness and lateness

for a JIT project with duration uncertainty. We discussed that E/T job scheduling problem

under uncertainty is an important consideration as it has many possible applications in real-

life business processes in improving service delivery. We proposed a local search algorithm in

search for a schedule with minimum robust E/T cost for all jobs in the project. By using the

concept of partial order schedule (POS), we also provide an executable strategy as a guidance

to react to uncertainty. In addition, we show that we could add visibility to service provider by

having the ability to compute the job completion time for each job.

Going forward, this work provides many potential for future work. It would be realistic to

explore the possibilities of grouping of jobs that are similar in nature. In the example of flight

catering business, to allow the operations to fulfill the orders that require similar products to be

processed together. The former has interesting real-life application that imposes a maximum
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duration between start and expected end time of a job. The latter is applicable to uncertainty

such as flight delay (hence delay of the catering job is required). We could also extend our

work to include more studies on how to improve the search algorithm by applying heuristics

such as tabu-search.
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Chapter 7

Conclusion and Future Research

To the best of our knowledge, this thesis is the first work dealing with stochastic durations,

resource breakdowns, and minimum/maximum time lags simultaneously in project scheduling.

In this final chapter, I will conclude by describing the progress made in terms of development

of various algorithms and its application to in service industry domain. I will also suggest some

future research directions that could provide the next steps along the path.

7.1 Conclusion

The aim of this thesis has been to propose methods for scheduling RCPSP/max problems under

uncertainty. Given a level of risk 0 < ε ≤ 1 chosen by the planner, data uncertainties mod-

eled by stochastic activity durations and uncertain resource availabilities, we investigated the

problem of finding the minimum robust makespan for RCPSP/max and extended local search

methods to find the robust schedule strategy (POS) such that when uncertainty is dynamically

realized, the execution strategy will result in a solution whose value is as good as the robust

makespan. We first put forward General Non-linear Approximation as a decision rule utilized

in scheduling to help specify the start times for all activities with respect to execution policy

and dynamic realizations of data uncertainty. Based on the decision rule, fitness function can

be derived to evaluate robustness, which was finally integrated into a local search method to

produce the solution with robust makespan [20, 22]. We then applied our model to the MRO
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industry context and provide the planner guidance of execution strategies. To count for the

effect of resource breakdown, we proposed different chaining procedures to obtain execution

strategies based on both resource breakdown and repair distributions [21]. Experimental re-

sults illustrate our proposed methods can generate robust execution strategies efficiently and

POS can can absorb both resource and durational uncertainties. With enhancement techniques,

local search can produce provider tighter bounds on robust makespan and better POSs. In ad-

dition, we applied our model in the service industry context and evaluated the robust cost of

real-world business processes [54].

7.2 Future Research

Following the investigations described in this thesis, we summarize the avenues of future re-

search as follows.

• Considering Project Network Disruptions: In real scheduling environment, there are

possible scenarios that activities may be added or removed, or temporal constraints may

be revised. However, this thesis focuses on a deterministic structure of the project net-

work. Due to the practical importance, it is therefore desirable to extend our method-

ologies to modeling and solving project scheduling problems with activity disruptions,

resource disruptions and project network disruptions at the same time.

• Integrating Reactive mechanisms with Robust scheduling approaches: In this the-

sis, we solve project scheduling problem from the perspective of proactive scheduling

and obtain robust execution strategy offline. Our future research efforts aim at intergrad-

ing robust local search models with reactive scheduling mechanisms, implementing the

obtained execution strategy and evaluating its online behavior.
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Appendix A

System Implementation Diagram
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Figure A.1: System Implementation.
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A.1 Inputs/Outputs of the System

• Inputs of the System:

– Deterministic RCPSP/max Problem Instance

– Mean and Variance Values of Durational Uncertainty for Each Activity

– Exponential Distributions for Time between Failures and Repairing Time (once

Failed) of Each Resource

• Outputs of the System:

– Robust Makespan

– Robust Execution Strategy that can Achieves Robust Makespan

A.2 Guidelines on Implementing the System

The following provides guidelines on implementing the system in Figure A.1.

1. Deterministic Problem

This is the Resource-Constrained Project Scheduling Problem with minimum and maxi-

mum time lags, or RCPSP/max, in a deterministic setting without uncertainty.

2. Durational Uncertainty

Durations of activities are modeled as stochastic variables with known values of means

and variances for the uncertain part.

3. Resource Uncertainty

The time between breakdowns and the time needed to be repaired (once it breaks down)

for each resource follow exponentially distributions.

4. Level of Risk

A risk value between 0 and 1 prescribed by the planner.
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5. Execution Strategy

Partial Order Schedule, or POS.

6. Robust Makespan

The minimum fitness value of all POSs generated by local search.

7. Robust Execution Strategy

The POS with the minimum fitness value.

8. Activity List

An activity list is a sequence of activities that satisfy the non-negative minimal time lag

constraint defined in the deterministic problem. The system performs local search on

activity lists. Optionally, the information on orders of activity (output of the process of

Ordering Determination) can also be used to focus local search on activity lists.

9. Baseline Schedule

A baseline schedule is an assignment of start times to all activities that satisfy temporal

constraints and resource constraints defined in the deterministic problem. A baseline

schedule can be produced based on an activity list.

10. Ordering Determination

This is an optional process that exploits the precedence ordering between activities. The

output of the process is activity pairs with precedence ordering.

11. Chaining Procedure

The inputs of the chaining procedure are:

• A baseline schedule generated from the deterministic problem;

• Orders of pairs of activities generated from the process of Ordering Determination

(optional);

• Breakdown parameters under resource uncertainty.

The outputs of the process are:

• POS constructed from that baseline schedule;
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• Resource allocations for each activity.

Three chaining procedures are proposed in this work: Robustness-Feedback Resource

Chaining (see Algorithm 2), Forward-Backward-Chaining (see Algorithms 3 and 4) and

Resource-Breakdown-Aware Chaining (see Algorithm 5).

12. Decision Process

The inputs of the decision process are:

• Execution strategy;

• Durational uncertainty;

• Further durational uncertainty due to resource breakdowns.

The outputs of the process are:

• Representation of start times for each activity;

• Representation of makespan which is a random variable in a stochastic scheduling

environment.

Decision process computes the start times of activities with respect to execution start-

egy and dynamic realizations of data uncertainty. Two decision rules can be applied:

Segregated Linear Approximation (SLA) in Section 3.4.2 and General Non Linear Ap-

proximation(GNLA) in Section 4.2.1.

13. Analytical Evaluation of Resource Breakdown

The inputs of the process of analytical evaluation of resource breakdown are:

• Exponential distributions for the time between failures and the repairing time of

each resource;

• Resource assignment for each activity.

The outputs of the process are:

• Mean and variance values of durational perturbations for each activity due to re-

source breakdowns and repairs during the execution of that activity.
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14. Robust Fitness Evaluation

The inputs of process of robust fitness evaluation are:

• Representation of makespan (as a random variable) of POS, derived from the pro-

cedure of decision process;

• Robust fitness function (see Eqn 5.21);

• A level of risk between 0 and 1 prescribed by the planner.

The output of the process is:

• Fitness of that POS, a value that any schedule instantiated from that POS can finish

before the fitness value within probability guarantee.
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[52] Inés González Rodrı́guez, Camino R. Vela, Jorge Puente, and Alejandro Hernández-
Arauzo. Improved local search for job shop scheduling with uncertain durations. In Pro-
ceedings of International Conference on Automated Planning and Scheduling (ICAPS),
2009.

[53] Tristan B. Smith. An effective algorithm for project scheduling with arbitrary temporal
constraints. In In: Proceedings of the 19 th National Conference on Artificial Intelligence.
(2004, pages 544–549, 2004.

109



[54] Kar Way Tan, Na Fu, and Hoong Chuin Lau. Improving service through just-in-time
concept in a dynamic operational environment. In Hawaii International Conference on
System Sciences (HICSS), pages 1–9, 2011.

[55] Stijn Van de Vonder, Erik Demeulemeester, and Willy Herroelen. Proactive heuristic
procedures for robust project scheduling: An experimental analysis. European Journal of
Operational Research, 189(3):723–733, 2008.

[56] Thierry Vidal and Helene Fargier. Handling contingency in temporal constraint networks:
from consistency to controllabilities. Journal of Experimental and Theoretical Artificial
Intelligence, 11:23–45, 1999.

[57] Stijn Vonder, Erik Demeulemeester, and Willy Herroelen. A classification of predictive-
reactive project scheduling procedures. Journal of Scheduling, 10(3):195–207, 2007.

[58] Christos Voudouris, G. Owusu, R. Dorne, and D. Lesaint. Service Chain Management.
Springer-Verlag, Berlin, 2008.

[59] Benjamin W. Wah and Dong Xin. Optimization of bounds in temporal flexible planning
with dynamic controllability. IEEE International Conference on Tools with Artificial In-
telligence, 0:40–48, 2004.

[60] Jean.-Paul. Watson, Laura Barbulescu, L. Darrell Whitley, and Adele E. Howe. Contrast-
ing structured and random permutation flow-shop scheduling problems: Search-space
topology and algorithm performance. INFORMS Journal on Computing, 14:98–123,
2002.

[61] Christine Wei Wu, Kenneth N. Brown, and J. Christopher Beck. Scheduling with uncer-
tain durations: Modeling beta-robust scheduling with constraints. Computers and Opera-
tions Research, 36:2348–2356, 2009.

[62] G Zhu, Jf Bard, and G Yu. Disruption management for resource-constrained project
scheduling. Journal of the Operational Research Society, 56:365–381, 2005.

110


	Singapore Management University
	Institutional Knowledge at Singapore Management University
	2012

	Robust Execution Strategy for Scheduling Under Uncertainity
	Na FU
	Citation


	1 Introduction
	1.1 Motivation
	1.2 Research Questions
	1.3 Contributions and Structure

	2 Literature Review
	2.1 Overview
	2.2 Generation of Generic Schedule
	2.2.1 Strongly Controllable Techniques
	2.2.2 Probabilistic Techniques

	2.3 Generation of Flexible Schedule
	2.3.1 Dynamically Controllable Techniques
	2.3.2 Redundancy-based Techniques
	2.3.3 Schedule Policy-based Techniques

	2.4 Scenario-based Optimization in Scheduling
	2.5 Robust Optimization in Scheduling

	3 Background
	3.1 Definitions of RCPSP/max
	3.1.1 Deterministic RCPSP/max
	3.1.2 Data Uncertainty and Robust Makespan
	3.1.3 An Instance: Job-shop Scheduling Problem (JSP)

	3.2 Execution Strategy: Partial Order Schedule (POS)
	3.2.1 Chaining Algorithms

	3.3 Segregated Random Variables
	3.4 Decision Rules
	3.4.1 Decision Rules for Optimization under Data Uncertainty
	3.4.2 Segregated Linear Approximation (SLA) in Scheduling

	3.5 Robust Fitness Function

	4 Robust Execution Strategy under Durational Uncertainty
	4.1 Contributions and Structure
	4.2 Decision Rule for RCPSP/max with Durational Uncertainty
	4.2.1 General Non Linear Approximation (GNLA)

	4.3 Robust Local Search Algorithm
	4.3.1 Schedule Infeasibility of a Given POS

	4.4 Enhancing Robust Local Search
	4.4.1 Ordering Generation
	4.4.2 Improved Chaining based on Robustness Feedback

	4.5 Experimental Evaluation
	4.5.1 Experimental Setup
	4.5.2 Comparison between SLA and GNLA
	4.5.3 Comparisons between Robust Local Search Enhancements
	4.5.4 Comparisons with JSPs with Durational Uncertainty

	4.6 Application in Marine Industry
	4.7 Conclusion

	5 Robust Execution Strategy under Resource and Durational Uncertainties
	5.1 Contributions and Structure
	5.2 Motivation
	5.3 Comparison with Existing Works on Resource Uncertainty
	5.4 Resource Breakdowns in RCPSP/max
	5.4.1 Representation of Resource Breakdowns
	5.4.2 Analytical Effect of Resource Breakdown

	5.5 Chaining Heuristics
	5.5.1 Forward-Backward-Chaining
	5.5.2 Resource-Breakdown-Aware Chaining

	5.6 Extended Robust Local Search
	5.7 Experimental Evaluation
	5.7.1 Experimental Setup
	5.7.2 Comparisons between Chaining Procedures

	5.8 Conclusion

	6 Application in Service Industry Context
	6.1 Introduction
	6.2 Motivating Case Study
	6.3 Problem Definition
	6.4 Proposed Approach to E/T Case Study
	6.4.1 Overview
	6.4.2 Finding sub-POS
	6.4.3 Expected Cost of E/T for Each Job
	6.4.4 Robust Cost for the Project

	6.5 Experimental Results
	6.6 Conclusion

	7 Conclusion and Future Research
	7.1 Conclusion
	7.2 Future Research

	A System Implementation Diagram
	A.1 Inputs/Outputs of the System
	A.2 Guidelines on Implementing the System


