
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

3-2011

Modeling link formation behaviors in dynamic
social networks
Viet-An NGUYEN
Singapore Management University

Cane Wing-Ki LEUNG
Singapore Management University

Ee Peng LIM
Singapore Management University, eplim@smu.edu.sg

DOI: https://doi.org/10.1007/978-3-642-19656-0_48

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Communication Technology and New Media Commons, and the Databases and

Information Systems Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
NGUYEN, Viet-An; LEUNG, Cane Wing-Ki; and LIM, Ee Peng. Modeling link formation behaviors in dynamic social networks.
(2011). Social Computing, Behavioral-Cultural Modeling and Prediction: 4th International Conference, SBP 2011, College Park, MD, March
29-31: Proceedings. 6589, 349-357. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/1528

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13244601?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1528&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1528&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1528&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1007/978-3-642-19656-0_48
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1528&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/327?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1528&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1528&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1528&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg


Modeling Link Formation Behaviors in Dynamic
Social Networks

Viet-An Nguyen1, Cane Wing-Ki Leung2, and Ee-Peng Lim2

1 Department of Computer Science, University of Maryland,
College Park, MD, USA

2 School of Information Systems,
Singapore Management University, Singapore

Abstract. Online social networks are dynamic in nature. While links
between users are seemingly formed and removed randomly, there exists
some interested link formation behaviors demonstrated by users perform-
ing link creation and removal activities. Uncovering these behaviors not
only allows us to gain deep insights of the users, but also pave the way
to decipher how social links are formed. In this paper, we propose a gen-
eral framework to define user link formation behaviors using well studied
local link structures (i.e., triads and dyads) in a dynamic social network
where links are formed at different timestamps. Depending on the role a
user plays in a link structure, we derive different types of link formation
behaviors. We develop models for these behaviors and measure them for
a set of users in an Epinions dataset.

Keywords: Link formation behaviors, link formation rules.

1 Introduction

Social links represent a rich set of structural knowledge about the linked users
beyond their individual attributes (e.g., age, gender, etc.). At the network level,
network properties such as density, diameter, user degree distribution, etc., have
been well studied by both social and computer science researchers[6,3]. At the
micro or node level, the social links reveal a user’s preference of friends, and her
preferred way to form social links with others. Links can be further utilized in a
number of commercially interesting applications including item recommendation,
information diffusion and community discovery.

In this paper, we examine link formation behaviors of each user and derive
some models for measuring the behaviors. The link formation behaviors here are
motivated by a set of dyadic and triadic pattern rules discovered from dynamic
social network data. We define a dynamic directed social network to be a graph
G = (V, E, T, t). V is a set of vertices/nodes representing individuals in the
network. E is a set of directed edges representing social links, such as friendship
and trust links, between individuals. An element (vi, vj) ∈ E, where vi, vj ∈ V ,
is an edge from vi to vj . t : E → T is a mapping between edges and their
timestamps. Without loss of generality, we represent timestamps as T = {th|h ≥
0}, such that ∀th1 , th2 ∈ T, th1 < th2 iff h1 < h2. A graph may evolve with new
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nodes and edges joining at different time points. G can be viewed as a snapshot
of a social network taken at a certain time point th, such that G contains nodes
and edges that were formed at or before th. For simplicity, we assume that nodes
and edges are not removed after creation.

We first define a representation for link formation (LF) rules (see Section 3).
Unlike most earlier link patterns studied, we require each link formation rule to
have pre-conditional link structure formed before the consequence link. For link
formation rule, we then derive link formation behaviors based on the way a user
forms links with other users in Section 4. In particular, we introduce several link
formation behaviors including rule usage and rule confidence associated with
different link formation rules. Such behaviors can be defined at both node (user)
and instance levels. Here, an instance refers to a subgraph of users and their
links following the rule structure. We assign a score function to each behavior
so as to measure it quantitatively. We finally apply our proposed behaviors on
the Epinions data (see Section 5).

2 Related Work

There are very little work on link formation behavior modeling and analysis for
dynamic social networks. Most research in the past studied known dyadic and
triadic structures in static social networks[10]. Recently, these local structures
are extended with time order when analyzing dynamic social networks[2,8,7].
There are also new research on mining network specific local structures[4].

Leskovec, et al. studied the “edge destination selection process” based on
some simple triangle closing models[2]. The networks they have considered are
temporal but undirected networks, and the models introduced do not consider
individual’s link formation behaviors. Romero and Kleinberg, in a recent paper
[8], showed that directed closure (also known as transitivity) is used by Twitter
users in forming links with one another. A measure known as closure ratio was
introduced to measure how likely the incoming links of a user node exhibits
directed closure. Instead of examining links formed by transitivity only, this
paper covers behaviors related to a variety of link formation rules. In our earlier
paper [7], we introduced trust reciprocity related behaviors that are shown to
help predicting reciprocal trust links. This paper enlarges the behavioral study
to include other link formation rules.

3 Link Formation Rules

Link Formation rule (LF-rule) is designed to describe an observable social effect
facilitating or affecting the formation of a link from a certain node vi to another
node vj , where vi and vj are called the start node and the end node of a LF-rule
respectively. A LF-rule captures two important constraints. The first constraint
is a certain pre-condition link structure related to the start node and/or the end
node. The second constraint is the temporal constraint that the link from the
start node to the end node must be formed after the pre-condition is formed.
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Our LF-rules consist of dyadic and triadic structures which have long been
recognized as interesting structures for understanding and predicting the dynam-
ics of large, complex networks [5,1,9,8]. Figure 1 depicts five LF-rules (labeled
r1 to r5) constructed from basic dyadic and triadic structures, which are the
building blocks of local structures. In each LF-rule, the nodes labeled as s and
e respectively correspond to its start node and end node. Recall that the (s, e)
link (shown in blue in Figure 1) in a LF-rule is required to be formed later than
other links in the same rule.

s e

r1

s e s e s e s e

r4r3r2 r5

Fig. 1. LF-rules based on basic dyads and triads, including reciprocity (r1), common
out-neighbor (r2), transitivity (r3), common in-neighbor (r4) and cycle (r5)

Hence, the LF-rule set R in this study consists of the above five rules, i.e., R =
{r1, · · · , r5}. As we are interested in link formation behaviors caused by local
structural effect instead of some non-local (e.g., preferential attachment) and
out-of-network (e.g., users already know each other before joining the network)
effects, we focus on links formed with users within two-hop distance. Hence,
users within two-hop distance apart must satisfy the pre-condition(s) of at least
one of the given rules.

4 Link Formation Behaviors

Given the LF-rule set R, we characterize individual nodes by their Link For-
mation behaviors (LF-behaviors), which describe the extent to which the nodes
follow specific LF-rules in forming links. Consider that vi takes on the role of start
node, we can derive two LF-behaviors that corresponds to the usage and confi-
dence of a rule rl. We therefore define the following two kinds of LF-behaviors:
rule usage and rule confidence.

To define the rule usage and confidence as measurable behaviors, we first
introduce some important notations. Given an input dynamic social network
G = (V, E, T, t), an instance of the LF-rule rl is a subgraph in G that: (a) is
isomorphic to the graph of rl; and (b) has the consequence edge formed after
the pre-condition link structure. The set of instances of rl with vi and vj taking
the start node and end node roles respectively is known as the instance set of
(vi, vj) w.r.t. rl, and is denoted by Rl

ij . The instance set of start node vi w.r.t.
rl, Rl

i∗, is defined as ∪jRl
ij . The node set of vi w.r.t. rl, URl

i∗, is defined as
{vj |Rl

ij �= φ}. We define the instance of the pre-condition of rl as a subgraph in
G that is isomorphic to the pre-condition link structure of rl. The set of instances
of pre-condition of rl with vi and vj taking the start node and end node roles
respectively is known as the pre-instance set of (vi, vj) w.r.t. rl, and is denoted
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by Pl
ij . The pre-instance set of vi w.r.t. rl Pl

i∗ is therefore defined as ∪jPl
ij . The

pre-node set of vi w.r.t. rl, UPl
i∗, is defined as {vj |Pl

ij �= φ}.
We define the rule usage at node level, rule usage at instance level, rule confi-

dence at node level, rule confidence at instance level behaviors of a user vi w.r.t.
rule rl in Equations 1, 2, 3, and 4 respectively.

NUsagel
i∗ = |URl

i∗|/
∑

rk∈R
|URk

i∗| (1) Usagel
i∗ = |Rl

i∗|/
∑

rk∈R
|Rk

i∗| (2)

NConf l
i∗ = |URl

i∗|/|UPl
i∗| (3) Conf l

i∗ =
∑

j

|Rl
ij |/

∑

j

|Pl
ij | (4)

The rule usage at node level in Eq 1 reveals the proportion of users vi has links
to are based on rule rl. Note that it is possible that vi may link to a user vj

using different link formation rules, i.e., URl
ij ∩URk

ij �= φ for rl �= rk. The rule
usage at instance level in Eq 2 measures the proportion of vi’s rule instances are
based on rule rl. Multiple rule instances based on a rule can be associated with
a link from vi to another user vj , as there can be multiple instances of the rule’s
pre-condition occurring before the (vi, vj) link.

The rule confidence at node level in Eq 3 measures the proportion of users
vi has connections to based on rule rl are subsequently linked from vi directly.
The rule confidence at instance level in Eq 4 measures the proportion of vi’s
pre-condition instances based on rule rl are subsequently linked from vi directly.
NConf l

i∗ may not be equal to Conf l
i∗ except for reciprocity rule which has one

pre-condition user instance corresponding to one pre-condition graph instance.

5 Link Formation Behavior Analysis of Web of Trust

5.1 Dataset

We conduct an experimental study on the Epinions dataset available at
http://www.trustlet.org/wiki/Extended Epinions dataset. Epinions con-
tains a directed and time-stamped Web of Trust (WOT) with trust edges. About
69% of edges come with an initial timestamp of 2001/01/10 (t0), which repre-
sents all timestamps on t0 or prior to t0. The formation date and order of all
edges formed after t0 are known. As temporal information is important in char-
acterizing LF-behaviors, we discarded an edge (vi, vj) with timestamp t0 unless
both users vi and vj were involved in at least one edge formed after t0. As we are
interested in users with sufficient link formation history, we require each user vi

to creating at least 20 out-links and in-links. There are 1295 users meeting this
selection criteria.

Figure 2 shows the distribution of outdegree of our users. Note that these
out-links may be created to users more than two hops away but such links are
the minority. On average, more than 90% of the out-links are directed to users
within two-hop away which is shown in Figure 2(b). This also illustrates the
dominance of local structural effect in forming links.
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Fig. 2. Statistics of Outlinks

5.2 Link Formation Behavior Distribution

We first examine the distribution of LF-behavior scores among users. Figure 3
shows the rule usage behaviors scores of all users ordered from highest to lowest
score values. The values on the x axis are the rank positions of users. For different
rules, the same rank may refer to different users.
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Fig. 3. Distribution of Rule Usage Behaviors

Figure 3 shows that common out-neighbor, transitivity, and common in-
neighbor are the rules mostly used among the users. This is followed by cycle and
reciprocity rules. Based on node level rule usage behavior values in Figure 3(a),
most users have about 24% of their links formed involving each of these three
rules. On average, users have only 18% and 8% of their links formed using cycle
and reciprocity respectively. Similar observations can be made for the instance
level rule usage behaviors (see Figure 3(b)) except that the proportions of using
reciprocity and cycle are even lower. These behavior scores suggest that users
may either have less distinctive opportunity or confidence to use the reciprocity
and cycle rules. The exact reasons are revealed in Figure 4.
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Figure 4 shows that users have relatively higher confidence for using reci-
procity rule compared with other rules. On average, users have 19% confidence
for this rule but not more than 5% confidence for other rules at the node and
instance levels. With this, we conclude that users have low usage for reciprocity
because of less distinctive opportunity instead of low confidence. While users may
have more links formed with common out-neighbor, transitivity, and common
in-neighbor rule, their confidence of using these rules is actually very low.
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Fig. 4. Distribution of Rule Confidence Behaviors

5.3 Node Level vs. Instance Level Behaviors

Figures 5 and 6 depict the scatterplots of users’ behavior scores at node and
instance levels. Each figure has x and y axes representing the node and instance
level behaviors respectively, and each point represents a user’s node and instance
level behavior scores. From the two figures, some interesting observations are:
(1) The behavior scores at node and instance levels are well correlated. Hence,
when a rule is used often for linked users, it is likely that the rule is also used
often for the link formation structures involving the linked users; (2) Except
for reciprocity, the behavior scores at node level tend to be smaller that the
corresponding scores at instance level. This shows that for triadic rules, users
usually form multiple pre-condition instances before actually forming the direct
link.
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5.4 Stability of User Behaviors

Next we would like to examine the stability of user behaviors over time. The
rule usage and rule confidence of each user defined in Equations 1 to 4 can be
computed at different time points where URl

i∗, UPl
i∗, Rl

i∗ and Pl
i∗ contain the

corresponding set of users and instances up to the given time. For simplicity, we
compute for each user his/her behavior scores every time the user creates an out-
link (instead of for every possible time point). Thus, given a user for each type of
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behavior there is a time series of scores. Given a series of user behavior scores,
we split it into 10 equal partitions and obtain a sub-series of scores at each
splitting time. Each series of behavior scores of a user now is characterized by
11 representative values x0, x1, · · · , x10.

For each partition i ∈ [1, 10] we compute the relative change as xi−xi−1
xi−1

.
Figure 7 shows the average relative changes over all users for different behavior
scores. As we can see, the average relative changes of all behavior scores decrease
as time increases which shows that the users tend to follow the behaviors defined
by our rules more consistently over time. In the case of rule confidence, the sta-
bility is even more obvious after the 1st partition. Thus, our proposed behavior
scores can be used to effectively characterize how users form links in dynamic
social networks which is useful in various tasks including user clustering and link
prediction.

6 Conclusion

In this paper, we introduce a set of link formation behaviors derived from a set
of link formation rules for dynamic social networks. Using an Epinions dataset,
we show that active users have their links formed using rules with different rule
usage and confidence behaviors. Reciprocity rule may not enjoy high usage but
most users have relatively higher confidence using it. The node and instance
level behaviors are found to be correlated. We further find the behaviors become
more stable as users establish more links. With this knowledge, we believe that
link behaviors can be a part of user profile which can be useful in social network
applications such as link prediction and recommendation. This will also be the
direction for our future research.
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