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Abstract – Effective communication between a person and 
a robot may depend on whether there exists a common ground 
of understanding between the two. In two experiments 
modelled after human-human studies we examined how people 
form a mental model of a robot’s factual knowledge. 
Participants estimated the robot’s knowledge by extrapolating 
from their own knowledge and from information about the 
robot’s origin and language. These results suggest that 
designers of humanoid robots must attend not only to the social 
cues that robots emit but also to the information people use to 
create mental models of a robot. 
 

Index Terms – human-robot interaction, social robots, 
humanoids, perception, dialogue 
 

INTRODUCTION 

Because people are social animals, robots that interact 
with people may be more effective communicators if they 
hold a correct theory of people’s social expectations. Do 
people’s mental models create an expectation that a robot 
knows what people know and do what people do? If so, does 
this similarity exist in all situations?  

Participants in human experiments sometimes interact 
with desktop computer applications as though they were 
interacting with people [1-3]. In these studies, people appear 
to apply well-learned conventional social schemas (such as 
gender stereotypes) and norms (such as reciprocity) when 
they respond to the interactive system. 

Social psychological research suggests at least two 
plausible theoretical explanations for people’s apparent 
social responses to computer systems. One explanation is 
that people respond automatically to the social cues emitted 
by the system, and use these cues mindlessly (that is, 
without thoughtful mental processing); they simply apply 
stereotypes and heuristics, and enact social habits [4]. If this 
explanation is correct, people may respond automatically to 
social cues emitted by a robot, and apply human-human 
social schemas and norms to these interactions. 

An alternative explanation of people’s observed social 
responses to interactive systems is that this behavior is 
partly determined by their specific mental model about how 
and why systems behave as they do. If a system looks and 
behaves much like a human being (e.g., a humanoid robot 
emits a human’s voice), their mental model of the system’s 
behavior may approach their mental model of humans, but 

this model may differ in important respects from their 
models of humans [5]. For instance, in a previous study [6], 
participants played a Prisoner’s Dilemma game involving 
real money with a real person or a computer agent. When 
the agent looked like a person, people cooperated with the 
agent at the same level as they did with the real person. 
When the agent looked like a dog, cooperation declined 
markedly, except in dog owners. A post-test survey of the 
participants suggested that participants who owned dogs had 
a mental model of the dog agent as cooperative whereas 
nonowners did not. These data suggest that mental models 
moderate people’s responses to interactive systems. 

The major difference between the two explanations is 
that the former implies people do not hold a theory or model 
about how or why robots behave. The latter explanation 
presumes people do hold such a theory. When the theory 
people hold for a robot is similar to their theories about 
people, they will interact with a robot and a person 
similarly, but if the theory people hold for a robot is 
dissimilar to their theories about people, then they will 
interact with a robot and a person differently. The first 
explanation also implies cross-task and cross-situation 
consistency if social cues are similar because these cues are 
used to generate the same social responses to a person and to 
a robot. The second explanation predicts task-specific and 
situation-specific interaction patterns, in which people’s 
responses to a robot depend on their mental model of the 
robot in the given task and social situation. People might 
have similar mental models of a person and a robot in one 
task domain such as mathematical computation, but 
different mental models of a person and a robot in another 
task domain such as learning about landmarks.  

To test which of these explanations is more valid, we 
conducted two controlled experiments in human-robot 
knowledge estimation. We asked participants to interact 
with a robot for a short time in a task domain that has been 
well established in social psychological research. 
Participants were told about a robot’s origin, and then were 
asked to estimate its knowledge of landmarks in two 
locations. Using this approach, we were able to examine the 
existence and nature of people’s mental models of robots. 

The experiments we conducted have significance for the 
design of robots and human-robot interfaces. If the first 
explanation (automatic response to social cues) is valid, then 
design should focus primarily on identifying the social cues 



that robots should emit to elicit desired social responses 
from people. If the second explanation (mental models 
direct responses) is valid, then designers also must attend to 
the information people use to create mental models of a 
robot. 

RELATED WORK 

A. Socially Interactive Systems 
In addition to the aforementioned work by Nass and his 
colleagues on desktop computers that emit social cues, 
considerable work has gone into the creation of social agents 
and characters that appear on computer displays, e.g., [7-9]. 
In the last decade, researchers have developed physically 
embodied mobile robots, such as robotic tour guides, that 
are meant to interact socially with people [10,11].  Minerva 
used reinforcement learning to adapt appropriately [12].  
Kismet also is a robot whose purpose is to interact with 
people socially, and was developed on the model of an 
infant human [13]. Kismet emits emotional and social 
behavior to engage people. Vikia [11] and Valerie [14] are 
mobile robots that are designed for social interaction. Each 
of these robots uses social cues in speech and movement to 
create social responses among people. In an experiment, 
Bruce et al. [11] found that when Vikia had a simulated face 
and turned toward people passing by, passersby were more 
likely to respond positively to the robot. Another experiment 
on people’s social responses to robots was performed by 
Goetz, Kiesler, and Powers [15]. They discovered that 
people cooperated more with a robot whose social behavior 
was matched appropriately with a task, e.g., cheerful 
behavior when the task was fun and serious behavior when 
the task was taxing. 

Virtually all of this prior work has focused primarily on 
how the robot and its behavior can be designed (or can 
learn) to emit appropriate social cues and behavior. The 
current work focuses instead on how information emitted by 
a robot may create specific mental models of the robot in 
people who are to interact with it. To understand this 
problem, we apply previous social psychological research 
on human-human communication. 
 
B. Human-Human Communication 

How people form mental models of others is a complex 
question addressed in fields ranging from neuroscience  to 
developmental psychology [16, 17]. We are interested here 
in one aspect of the mental models people hold of robots, 
that is, their estimates of the robot’s knowledge. Knowledge 
estimation is a fundamental process in social interaction. All 
social interaction requires people to exchange information, 
e.g., their names, their goals, their emotions, etc. To 
exchange information successfully, people estimate what 
their shared common knowledge is and formulate their 
messages in respect to this shared knowledge [17]. For 
example, when strangers ask us for directions to a local 
restaurant, we estimate or determine where the strangers 
come from. If we perceive them to live in the local area, we 
also infer they know the names of local landmarks, and we 
use these names to tell them about the route to the 
restaurant. If we think they are not local, we will not use the 
names of local landmarks in referring to the route. 

To estimate their common ground, communicators must 
go through a knowledge estimation process. Clark and his 

associates, e.g., [18], proposed that people used observable 
physical and linguistic cues to infer their common ground 
knowledge, as well as information they have about one 
another’s group memberships, educational background, or 
professional identities. People are highly accurate in their 
estimates of the distribution of mundane knowledge in a 
particular population. For example, students were able to 
estimate the proportion of other students who knew the 
names of public figures [19] and landmarks [20] and the 
proportion of students who endorsed a particular set of 
values or experienced certain emotions [21]. Research also 
has shown that people’s estimates of others’ knowledge 
significantly affect how they communicate with those 
people. Thus, when participants were asked to describe 
public figures to another person, they provided descriptive 
information in inverse proportion to their estimates that the 
other person could identify the public figure [19]. 
 This work points to the possibility that when people 
interact with social robots, their behavior will be influenced 
by their estimates of the robot’s knowledge base. For 
instance, if people need to send a robot to a location and 
they assume the robot is familiar with the terrain, this 
knowledge should cause them to (a) use local landmarks to 
direct the robot, and (b) reduce the amount of information 
they give the robot (because they assume the robot already 
“knows” the area).  If people are unfamiliar with the robot, 
how would they make these estimates? The previous work 
in social cues suggests that physical, linguistic, and social 
context cues will guide these estimates. Even the robot’s 
origin, e.g., whether it is made in America or Asia, might be 
used as a cue to guide knowledge estimations. Thus, an 
American-made, English-speaking robot would be assumed 
to know better where the Empire State building is than a 
Hong Kong-made, Cantonese-speaking robot. The same 
process might be expected to affect not just people’s 
estimates of the robot’s knowledge of factual information, 
but also its beliefs or social preferences.  

METHOD 

We conducted two experiments to test the hypothesis 
that individuals’ representation of a robot’s knowledge 
would change when the origin of the robot changed.  
Chinese participants observed a robot interacting with the 
experimenter. Half of the participants saw the robot speak 
Cantonese with the experimenter (who was Chinese) and 
were told the robot was built at a robotics institute in Hong 
Kong. The other half of the participants saw the robot 
speaking English with the experimenter, and were told the 
robot was built at a robotics institute in New York. Then all 
participants saw photos of well-known and obscure tourist 
landmarks in Hong Kong and New York. They were asked 
to estimate the likelihood the robot could identify these 
landmarks. We compared participants’ estimations of the 
robot’s knowledge when the robot originated either in Hong 
Kong or New York. 

We hypothesized that the origin of the robot and 
language it used would create different mental models of the 
robot in the minds of participants such that participants 
would believe the robot built in Hong Kong had knowledge 
of Hong Kong tourist landmarks, and that the robot built in 
New York had knowledge of New York tourist landmarks. 
We also expected participants to infer that both robots 



would have greater knowledge of famous landmarks than 
obscure landmarks. 

A. Participants 
 In Experiment 1, 60 Hong Kong students (19 males, 41 
females; average age 21.15) from the University of Hong 
Kong participated in this study to fulfil part of a course’s 
requirement.   
 In Experiment 2, 48 participants, 15 male and 33 
female, average age 21.35, from the University of Hong 
Kong participated in the study. All were native Chinese and 
they had resided in Hong Kong for average 20.22 years.  
They received US$6 as payment. 

B. Procedure 
The stimuli and procedure  used in this study were 

adapted from Lee & Chiu [22]. Lee and Chiu presented 
photographs of 14 landmarks to Hong Kong undergraduates 
and asked them to estimate the likelihood that the landmarks 
could be identified by Hong Kong undergraduates or 
undergraduates from New York. Participants saw landmarks 
that were famous and judged them to be familiar to 
everyone (e.g., the Statue of Liberty and the Great Wall of 
China). Other landmarks were thought to be more familiar 
to those living in Hong Kong (e.g., Hong Kong Cultural 
Center) or to those living in New York (e.g. Lincoln 
Center). Still other landmarks were judged unfamiliar to 
both Hong Kongers and New Yorkers (e.g., Kwoloon Wall 
City Park and the Dakota). In the Lee and Chiu study, 
students could accurately gauge others’ knowledge of 
landmarks. Furthermore, their estimates influenced how 
they communicated when they were asked to describe the 
landmarks to another person. For instance, if they thought 
the person already knew a landmark, they spent less time 
describing the landmark to him or her.  

In the current experiments, we asked participants to 
estimate the likelihood that a robot made in New York or 
Hong Kong would know and recognize landmarks in these 
cities. Half of the participants (HK condition) were told that 
the robot was built at a robotics institute at the Hong Kong 
University of Science & Technology and the other half of 
the participants (US condition) were told that the robot was 
created  at a robotics institute in a university in the United 
States (Columbia University). Participants were shown 
pictures of these universities. 

 

 
Fig. 1. Robot viewed in experiment. 

 

All further instructions and stimuli were presented on a 
Powerbook G3 computer using the program, Power 
Laboratory.  Participants were told that the aim of the 
research was to investigate how people communicate with 
robots. They were told they would make some judgments of 
a robot. The robot, they were told, was equipped with 
various speech recognition and speech production functions. 
It could understand English, Cantonese, and 16 other 
European and Asian languages. It could answer questions 
posed in speech or typing. We said field studies had 
demonstrated that the robot was effective in encoding and 
decoding different human languages.  

In the US condition, participants were shown a video of 
the Pearl robot ambulating, and then approaching and 
interacting with the experimenter [23]. The robot and the 
experimenter, who could be identified as Chinese (like the 
participants), interacted with one another in English. In the 
video, the experimenter was seated with her back facing the 
camera. The script was tailored in such a way that it was 
synchronized with the lip movements of the robot. 
Participants in the HK condition received the same set of 
instructions except that in the video, the experimenter and 
the robot interacted in Cantonese, a dialect commonly used 
in Hong Kong. The robot’s English speech synthesis was 
implemented using Cepstral's Theta (www.cepstral.com) 
and the Cantonese speech synthesis was implemented using 
CUTtalk (http://dsp.ee.cuhk.edu.hk/speech/cutalk/). 

Participants in both conditions then completed the 
knowledge estimation task. First they viewed the set of 14 
landmarks once. Next they were asked to view the 
landmarks one by one, and identify the landmarks 
themselves. Next they were asked to estimate the likelihood 
using a rating scale from 0% likelihood to 100% likelihood 
that the robot could identify each landmark. The order of 
presentation of the landmarks was randomised for each 
participant.  

 
Fig. 2. Experimenter with robot, as seen by participants. 

 
The knowledge estimation procedure in Experiment 2 

was a replication of that in Experiment 1 with one 
exception. To avoid the possibility that some students in 
Hong Kong might not recognize Columbia University, we 
changed the identity of the U. S. university from Columbia 
University to New York University. 

To rule out the alternative explanation that differences 
in estimations of knowledge of the robot were due to 
differences in the robot’s perceived technical sophistication, 
we also asked the participants to rate the performance of the 
robot on three dimensions: its understanding of human 



speech, its ability to talk, and its ability to communicate 
with people.  Participants judged the robot’s performance on 
three 7-point rating scales from 1 (poor) to 7 (excellent). 
Participants in Experiment 1 rated the robot’s speech 
production and communication with humans similarly in the 
two conditions, but participants in the HK condition rated 
the robot’s recognition of human speech more highly than 
did the participants in the US condition (t(28)=-3.24, p<.05).  
Participants in Experiment 2 did not rate the robots 
differently in any of the three dimensions. Because the 
knowledge estimation results of Experiment 1 and 2 were 
identical, we have some assurance that differences in 
knowledge estimates for the robots built in the two countries 
were not caused by differential perceptions of the robots’ 
technical sophistication. 

RESULTS 

To recap, participants saw four groups of landmarks: 
landmarks familiar to people from both cultures, landmarks 
familiar to people who live in the U.S., landmarks familiar 
to people who live in Hong Kong, and landmarks unfamiliar 
in both cultures. For each participant, we averaged their 
estimations for each group of landmarks to create four 
average scores. Using the MANOVA technique, we tested 
statistically whether participants’ estimations of the robot’s 
knowledge was affected by the country of origin of the robot 
(between subjects) and the familiarity of the landmarks in a 
culture (within subjects). The analysis was a 2 (US 
condition versus HK condition) X 2 (Familiar versus 
Unfamiliar to Hong Konger) X 2 (Familiar versus 
Unfamiliar to New Yorker) MANOVA using each 
participant’s four average scores.  

 

A. Experiment 1 Results 
The results of Experiment 1 showed first that 

participants extrapolated from their knowledge of people to 
estimate the robot’s knowledge. Landmarks thought to be 
familiar to people living in Hong Kong were estimated to 
have an average 83% likelihood of being recognized by the 
robot as compared with just 48% likelihood if the landmarks 
were unfamiliar to people living in Hong Kong (F [1, 28] = 
132, p < .05). Likewise, landmarks thought to be familiar to 
people living in New York were estimated to have an 
average 76% likelihood of being recognized by the robot as 
compared with just 55% likelihood if the landmarks were 
unfamiliar to people living in New York (F [1, 28] = 61, p 
< .05). Thus familiar landmarks were estimated to be more 
likely to be known by the robot than unfamiliar landmarks, 
regardless of where it was created.  

A second result was a Condition X Familiar versus 
Unfamiliar to New Yorker interaction (F [1,28] = 17, p 
< .05). When participants were told that the robot was made 
in New York, they estimated the robot to be on average 77% 
likely to know the landmarks that were familiar to New 
Yorkers but only 46% likely to know landmarks that were 
unfamiliar to New Yorkers. By contrast, when participants 
were told that the robot was made in Hong Kong, they made 
no such differentiation (76% for landmarks familiar to New 
Yorkers versus 63% for landmarks unfamiliar to New 
Yorkers). 

 

B. Experiment 2 Results 
The results of Experiment 2 were similar to those of 

Experiment 1. First, participants thought the robot was more 
likely to identify landmarks that were familiar to people 
living in Hong Kong (F [1, 41] = 110, p < .0001 and 
landmarks familiar to New Yorkers, (F [1, 41] = 58, p 
< .0001. Also, there was a significant Condition X Familiar 
versus Unfamiliar to New Yorker interaction (F [1, 41] = 9, 
p < .01. When the participants were told that the robot was 
made in New York, they estimated the robot to be 80% 
likely to know the landmarks that were familiar to New 
Yorkers   and just 61% likely to know the landmarks that 
were unfamiliar New Yorkers (t [20] = 6.6, p < .05). When 
the participants were told that the robot was made in Hong 
Kong, they also differentiated their estimates, but the 
difference was smaller than that found in the US condition 
(80% for familiar landmarks and 71% for unfamiliar 
landmarks, t [22] = 7.1, p < .05). 

In sum, participants estimated the knowledge of the 
robot based on what they knew about people. They expected 
the robots to know more of the landmarks that were famous 
in both countries and less likely to know the landmarks that 
were unfamiliar to people in both countries. Also, the origin 
of the robot influenced their estimations. An American robot 
made in New York was perceived as more likely to know 
famous New York landmarks than obscure New York 
landmarks. A Chinese robot made in Hong Kong was 
perceived (significantly so only in Experiment 2) as more 
likely to know famous Hong Kong landmarks than obscure 
Hong Kong landmarks.  

 
 

TABLE I 
MEAN (SD) ESTIMATES OF A ROBOT’S KNOWLEDGE  
OF LANDMARKS IN HONG KONG AND NEW YORKa 

Landmarks   

Likelihood a 
robot created 
in New York 
would know 
the landmark 

(NY 
condition)  

Likelihood a 
robot created 
in Hong Kong 
would know 
the landmark 

(HK 
condition)   

Experiment 1 

Familiar to people in Hong 
Kong and New York 

92% 89% 

Familiar only to people in 
Hong Kong 

64% 83% 

Familiar only to people in New 
York 

58% 57% 

Unfamiliar to people in Hong 
Kong and New York 

34% 48% 

Experiment 2 

Familiar to people in Hong 
Kong and New York 

89% 89% 

Familiar only to people in 
Hong Kong 

77% 88% 

Familiar only to people in New 
York 

68% 69% 

Unfamiliar to people in Hong 
Kong and New York 

49% 56% 

aEstimates varied from a 0 to 100% likelihood that the robot would know 
the landmark. 
 
 
 
 



C. Comparison with Human-Human Results 
To compare the results of these experiments with 

research  on people’s estimates of other people’s knowledge, 
we correlated the mean estimated identification rates of the 
landmarks in this study with the results of  the Lee and Chiu 
study [ xx] of participants’ estimates of a real person’s 
knowledge (rather than a robot’s knowledge) . We found the 
results were highly correlated,  r = .85 in the HK condition 
and r = .76 in the NY condition. These data strongly suggest 
that participants in our experiment used their knowledge of 
people as an anchor for estimating the robot’s knowledge. 

Figure 3 shows the results across three studies. 

 

Fig. 3. Mean estimates of a person’s or a robot’s knowledge of landmarks 
in three studies. (Landmarks varied in their familiarity to residents of New 
York and Hong Kong.) The first 2 sets of bars represent data from a 
human-human study [22]. The rest of the data are from the experiments 
reported in this paper.  

 
It is immediately apparent from the data in Figure 3 that 

the relative judgements were similar across studies. 
Surprisingly, though, the robot was estimated to have even 
higher overall knowledge of landmarks than a person was 
across all conditions, suggesting that people have high 
estimates of a robot’s knowledge of facts if it is a humanoid 
and speaks a human language. 

DISCUSSION 

A. Programming vs. Learning? 
 Our results indicate that given minimal information 
about a robot (languages it speaks; where it was created), 
people developed a predictable mental model of the robot’s 
knowledge in an entirely different domain (tourist 
landmarks). Just as they do for people and animals [16], 
they made inferences about the robot’s internal knowledge 
state and extrapolated to predict its competencies.  
 The data do not tell us how participants justified these 
extrapolations. Did they believe that the Hong Kong (or 
New York) engineers who built the robot also put 
information about tourist landmarks into a database 
accessible to the robot? Did they believe the robot in Hong 
Kong (or New York) had direct experience with landmarks? 
Or did they believe that when the robot learned languages it 
also learned about names and places? Research suggests that 
any or all of these could be true. When considering other 
people and animals, we humans reflect on hidden causes of 
observed behavior, make attributions as to the traits, 
experiences, or reasons for this behavior, and extrapolate to 

new situations [16]. These tendencies are well established 
neurologically, and are likely triggered automatically by our 
observation of machines that have human attributes and 
move and speak purposefully [24]. If so, then mental models 
can exist with an assortment of post hoc meta-reasoning 
about these models. In other words, we may strongly 
believe, “this robot knows all about New York,” with only a 
few weak hypotheses about how the robot could have 
attained this state. 

B. Future Work  
This work is at an early stage. An important research 

question we need to address is whether and how people’s 
mental models affect how they actually interact with robots. 
As noted above, when we communicate with another 
person, our mental model of the other person’s knowledge 
influences how we talk to that person. It does not necessarily 
follow, however, that if we hold the same mental model of a 
robot’s factual knowledge as we hold of a person’s 
knowledge, that our behavior will be the same in both 
situations. That is, people may not interact with a robot in 
the same way as they do with a person, even if they have an 
identical estimate of the robot’s and the person’s factual 
knowledge. We think behavioral similarity depends in part 
on people’s assumptions of the robot’s social knowledge, 
such as its theory of (human) mind [25]. 

When a robot does not convey cues about its social 
knowledge then people might infer it lacks this knowledge 
of them. Because communication is a two-way street, people 
must not only identify their common ground with others, 
but, as well, understand what others assume about them. We 
do not yet know what cues will lead to people having a 
symmetric theory or model of their understanding of a robot 
and a robot’s understanding of them. We suspect this 
knowledge derives from actual interaction, as we 
implemented in [26]. Research on whether and how to 
achieve basic social symmetry and mutual common ground 
will be important in establishing truly effective human-robot 
interaction.   
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