
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

11-2010

ARIVU: Power-Aware Middleware for Multiplayer
Mobile Games
Bhojan ANAND
National University of Singapore

Karthik THIRUGNANAM
Singapore Management University

Thanh Long LE
National University of Singapore

Duc-Dung PHAM
National University of Singapore

Akhihebbal L. ANANDA
National University of Singapore

See next page for additional authors

DOI: https://doi.org/10.1109/NETGAMES.2010.5679571

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Software Engineering Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
ANAND, Bhojan; THIRUGNANAM, Karthik; LE, Thanh Long; PHAM, Duc-Dung; ANANDA, Akhihebbal L.; BALAN, Rajesh
Krishna; and CHAN, Mun Choon. ARIVU: Power-Aware Middleware for Multiplayer Mobile Games. (2010). NetGames 2010: 9th
Annual Workshop on Network and Systems Support for Games, November 16-17, Taipei, Taiwan: Proceedings. 1-6. Research Collection
School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/648

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13243998?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F648&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F648&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F648&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/NETGAMES.2010.5679571
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F648&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F648&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Author
Bhojan ANAND, Karthik THIRUGNANAM, Thanh Long LE, Duc-Dung PHAM, Akhihebbal L. ANANDA,
Rajesh Krishna BALAN, and Mun Choon CHAN

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/648

https://ink.library.smu.edu.sg/sis_research/648?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F648&utm_medium=PDF&utm_campaign=PDFCoverPages

ARIVU: Power-Aware Middleware for Multiplayer
Mobile Games

Bhojan Anand‡, Karthik Thirugnanaman†, Le Thanh Long‡, Duc-Dung Pham‡,
Akhihebbal L. Ananda‡, Rajesh Krishna Balan†, and Mun Choon Chan‡

‡National University of Singapore and †Singapore Management University

Abstract—With the improved processing power, graphic qual-
ity and high-speed wireless connection in recent generations of
mobile phone, it looks more attractive than ever to introduce
networked games on these devices. While device features and ap-
plication resource requirements are rapidly growing, the battery
technologies are not growing at the same pace. Networked Mobile
games are a class of application, which consume higher levels of
energy, as they are naturally more computationally intensive and
use hardware components including audio, display and network
to their fullest capacities. Therefore, the main concern is the
limitation of the battery power of such portable devices to support
the potentially long-hour of game play.

In this paper we present ARIVU, a power aware middleware
that dynamically controls the energy consumption of wireless
interface based on the game and system state while maintaining
the user experience. ARIVU provides the relevant API for game
developers to easily integrate the middleware. We measure power
consumption of game play over different wireless interfaces
including 3.5G (HSPA), 802.11g and ZigBee. The middleware
is able to save up to 40% of the total energy consumed by the
wireless interfaces (802.11g and ZigBee). In addition, we show
the efficiency of ZigBee interface as potential low power interface
for networked game applications.

I. INTRODUCTION

Wireless interface, display and CPU are the major power
consuming components in modern smartphones. A wide range
of recent research focuses on power aware protocols, middle-
ware and techniques for mobile environments. Most of these
works [3], [10] try to put the mobile client’s wireless interface
in sleep mode whenever possible. They buffer the packets
addressed to the mobile client until the client wakes-up. These
schemes will work well for latency tolerable applications such
as file transfer, web surfing, email and stored media streaming.
However, for latency sensitive applications such as real-time
media streaming and networked games these schemes may
even tend to increase overall power usage [2]. Hence we pose
the following question:

How do we minimise the energy requirements of latency
sensitive applications, especially Multiplayer Mobile Games
without affecting the user experience adversely?

Self tuning middlewares suggested in previous works are
based on the network access patterns of the applications and
the application’s intent to transfer data [2]. As games intent
to transfer data continuously (20-40 pps), these schemes fail
to save significant energy. In this work we present a novel
approach which goes one level deeper and exploits the internal
behavior of the application and user type to optimise power
consumption as well as the bandwidth.

Fig. 1. Main Architectural Components of ARIVU

II. DESIGN OF THE ARIVU POWER-AWARE
MULTIPLAYER GAME MIDDLEWARE

The component layout of the ARIVU middleware is shown
in Figure 1. ARIVU’s goal is to reduce the game client’s en-
ergy consumption by adaptively varying resource consumption
while maintaining the user’s game play experience – we do not
do server power management as the server is usually connected
to a power source. For mobile game clients, the resources that
can be adjusted to save power include the network, processor,
and display. In this paper, we will focus on reducing the
energy consumption of the wireless network interfaces. We
believe that process and display power conservation can also
be performed using the same middleware framework, but we
defer that extension to future work.

The key mechanism to reduce the power consumption of
wireless interfaces is to put the interface into sleep mode
whenever possible. The challenge is to do this without af-
fecting the game play. Therefore, the basic decision made by
ARIVU is: When and for how long can the wireless interface
be put into sleep mode without affecting game play?

An obvious answer would be to sleep when there is mini-
mum game state change and/or during unimportant, from the
player’s perspective, game events. However, in order to find
these situations, ARIVU needs to gather sufficient information
to estimate the current game state and then decide on the
appropriate action. To do this, we created three specific sub-
components of ARIVU. The Resource Data Collector (RDC)
collects the raw data that is used by the Game Action Predic-
tion Engine (GAPE) to estimate the future game state. Data
from RDC and GAPE are used by the Resource Controller
(RC) for power management. We now explain each sub-

Fig. 2. AoI - Dynamic Hexagonal Tile Visibility

component in detail.

A. Resource Data Collector (RDC)

The RDC collects four types of data: 1) Client’s area
of interest, 2) Game action data, 3) Player activity level,
and 4) Network state. Except the first item (client’s area of
interest), the rest are computed at the client side as they do
not demand more memory and computational resources and
do not adversely affect the power saving objective.

1) Area of Interest (AoI): AoI is a common technique
used in massively multiplayer games to reduce the required
bandwidth for each client. Each client receives update only
on a part of the game world in which the client is currently
engaged. In ARIVU AoI is computed at the game server and
is based on hexagonal tile visibility algorithm [5] and the
player’s environment. Each player is dynamically subscribed
to the tile in which he is currently residing. The visibility
between tiles is precomputed for efficiency reasons. A tile is
considered visible from another tile if there exists a point in
each of the two tiles that can be connected by a line segment
that does not intersect an obstacle and does not cross the
visibility radius. The visibility radius is dynamically adjusted
based on the player’s environment. For example, if the player
is in safe zone (like a sanctuary area), there won’t be any
enemy object and, the player can interact only with the friendly
objects. The interactions (such as, chatting, weapon exchange)
with friendly objects happen mostly when they are in close
proximity to the player. But, the interaction(such as, shooting)
with enemies in hostile environments may happen even when
their distance is longer. Visibility radius is set to a larger value
when the player is in hostile environment when compared to
friendly environment. The actual radius is game dependent. In
Figure 2, the visibility radius of the client ’a’ could be r1 or r2
depending on its current environment. If there is no interactive
object (other players) inside a client’s visibility radius, the
game state (AoI state) is considered non-critical for that client.

2) Game Action Data and Player Activity Level (PAL):
The game action is the current action the player is engaging in
such as walking, running, shooting, etc.. These actions closely
correlate with the amount of game-state updates required
to maintain an acceptable end-user game experience. Our
experiments and analysis about the effect of the game actions
on the game-state updates with Quake-mobile is described in
our previous work [1].

As a FPS, Quake requires players to think and act quickly
to win. However, even in this type of game, non-critical
activities such as walking (27% of the time) and hiding
(21% of the time) happen more often than important game
changing activities (that cannot experience any quality loss;
hereafter referred as critical activities) such as shooting (20%).
The Quake experiment, thus suggests that substantial power
saving, with minimal game-play impact, is achievable if we
can accurately predict the current game state.

A FPS game can be considered a worst-case scenario for our
approach as they usually have the lowest non-critical events
count (due to the fast nature of the game). On the other hand,
players in slower RPG games such as World of Warcraft,
Lineage II, and Raganarok Online, have more non-critical
actions which results in greater power saving potential.

ARIVU currently captures the following game events for
RPG games (game events are captured only on the client):
Idle, Attacking, Moving, Accessing Menu, Dead, Chat (Text or
Voice), Trading, Item Interaction (Interacting with items in the
environment), Interacting with other avatars, Interaction with
NPC (Non-playing character).

RDC also collects the Player Activity Level in a separate
routine. PAL is defined as the number of keyboard or mouse
(or other UI devices) activities per second. Higher PAL rates
indicate more critical actions.The effect of PAL on game state
is described in more detail in our previous work [1].

3) Network State: The network state comprises of the
the round trip time (RTT), available bandwidth, and packet
drop rate between the client and the server. In our current
implementation, we only consider the RTT using ping probes.
If the network state is good and there is a steady low-jitter
stream of update packets between the client and server, it is
possible to sleep (and save energy) without affecting the game-
play quality as the client will still receive enough packets when
it wakes up.

B. Game Action Prediction Engine (GAPE)

GAPE attempts to predict the game action for the next few
frames using historical data and game environment provided
by RDC. GAPE data is used by resource controller for micro
power management as described in next section. We observed
that the historical game action data and game environment
tend to correlate quite well with the player’s future game
actions. We first filter the actions by environment where the
player is currently in, then we take the past n actions of the
player and do linear prediction of the next game action as
shown below.

GameAction(i+1) =w j ∗GameAction(i− j); f or j = 0 to n−1

where, w0 > w1 > w2 > w3 > w4 >wn−1 to ensure that
older events carry less weight. Through set of experiments
with players of different skill levels we found that past 5
actions are sufficient to achieve more than 90% accuracy. We
currently use initial weights of 1

2 , 1
4 , 1

8 , 1
16 and 1

16 for w0
to w4 respectively so that ∑ j w j = 1. The weights can be
dynamically adjusted using the prediction error to improve

the prediction accuracy. We defer this weight tuning to future
work. If the predicted game action is critical, then the game
state is important

C. Resource Controller (RC)

The resource controller (RC) follows client/server archi-
tecture. A key consideration for the RC is determining how
long to sleep the wireless network interface. RC has two
levels of power management: Macro Level (has larger sleep
duration) and Micro Level (sleep duration is limited). These
are explained below.

1) Macro Power Management: At the macro level, the
server side RC makes power management decision and sends
sleep command to the client. It’s decision relies on client’s
current AoI state, network data and the position of all players
provided by the RDC.

First it checks the client’s AoI state. If AoI state is not
critical, it estimates the Potential Sleep Duration (PSD)
using on the following algorithm.
Algorithm: Potential Sleep Duration (PSD)
for each entity i do

//get current proximity of all interactive entities
currentProximityi = getEuclideanDistance(currentClient,entityi);

// adds current value to history and removes oldest value
pastProximityi.add(currntProximityi);

//get n nearest entities; we are interested only on n nearest entities
interestingEntities1...n = getNearest(n entities);

for each interestingEntity j do

// compare the historical proximity to determine new relative
// velocity (bi directional). entities coming closer or going away?
relativeVelocity j = calculateRelativeVelocity(pastProximity);

//calculate potential sleep time. That is, s1 or s2 in Figure 2
PSD = (currentProximity j −AoI Visibility Radius)/relativeVelocity j;

//return the PSD of the entity which is expected to reach the client’s AoI
Visibility Radius first
return smallest(PSD1..n)

The algorithm finds the nearest n interactive entities and
estimates the time required for them to reach the current
client’s AoI. The smallest these reach-time values is set as
the PSD. The PSD is the safest duration and there is very less
chance for important game state changes during this period.

Computing Euclidean distance requires a square root op-
eration, which even on modern computers is expensive. As
our computation is concerned only with comparing distances,
comparing square of Euclidean distances is equivalent com-
paring the distances. Hence, we compute square of Euclidean
distances to all other players using the formula below and
pick the n nearest players. For these n nearest players we
compute the actual distance. Distance2 = (X2 +Y 2 +Z2) - for
three dimension; Distance2 = (X2 +Y 2) - for two dimension;
where, X,Y and Z are abs(x1−x2), abs(y1−y2), abs(z1− z2);
(x1,y1,z1) and (x2,y2,z2) define the position of the client and
an interactive entity.

For a game with m interactive entities, the algorithm takes
O(m2) time to find the nearest n entities. To make it scalable

TABLE I
POWER CHARACTERISTICS OF DIFFERENT INTERFACES

Interface Current (mA) Mode Switch Penalty
ON SLEEP Current (mA) Latency (ms)

old 802.11b 600 10 900 875
new 802.11b 300 6 350 625

802.11g 260 4 280 300
802.11g* 260 4 280 60

3.5G(HSPA) 201 8 300 1500
ZigBee 50 2.5 52 8

* - using atheros chipset; Current - Current Consumed
for Massively Multiplayer Games (MMOGs), RC uses interac-
tion recency as the key strategy. RC maintains list of recently
interacted entities for each client in Most Recent Interaction
Table (MRIT) of size m× p, where m is number of clients
and p is number of interactive entities a client is interested in.
Each table row i maintains identification of p most recently
interacted players with client i. For each client RC computes
and compares the distance with only p other clients or entities.
Here the tradeoff is, as p grows the accuracy increases at the
cost of computation.

The server side RC sends two types of messages to the
RC client - A sleep message with PSD and a AoI state
message with AoI STATE CRITICAL flag. On receiving
sleep message the client side RC computes the Effective
Sleep Duration (ESD) as given below and puts the wireless
interface into sleep mode. As described in our previous work
[1], there are two constraints for sleep duration: maximum
sleep duration that a game can tolerate (using techniques
such as Dead Reckoning) and minimum sleep duration that
is really required to save energy (due to mode switch power
cost and mode switch latency of the wireless interface). Our
measurements on the average current consumption in ON and
SLEEP states for various wireless interfaces along with the
corresponding mode switch penalties are presented in Table I.
//Computing Effective Sleep Duration (ESD)

if (PSD < minSleepDuration)
ESD = 0;

elseif (PSD > maxSleepDuration)
ESD = maxSleepDuration;

else
ESD = PSD;

2) Micro Power Management: At the micro level, RC relies
on PAL value and data from GAPE. It is fully implemented
at the client side. The client side RC invokes micro level
power management once it receives AoI STAT E CRIT ICAL
message from the server RC. Micro power management is
based on the notion that the clients may not always interact
when they are in each other’s AoI visibility radius. If the
predicted game action state is not important and PAL level
is low then the ESD is set to minSleepDuration otherwise
0. The wireless interface is put into sleep mode for ESD
time. Note that as the mode switch penalties (Table I) are
very low for modern interfaces (Atheros WiFi and ZigBee),
minSleepDuration is very low (<= 100ms) for these inter-
faces. Hence, GAPE prediction errors due to swift change in
actions will not adversely effect the playability of the game.

In both macro and micro power management cases the client
ensures that it receives at least one complete update before the

Fig. 3. Server Side Additional Memory and CPU

TABLE II
CLIENT SIDE IMPACT

Metric MW Enabled MW Disabled Overhead
Current Drawn
by CPU(mA) 213.39 207.29 6.1
Memory Used(KB) 2294.6 2293.1 1.5

next sleep to avoid longer inconsistencies.

D. Building ARIVU

The entire Middleware has been written in the Java Pro-
gramming Language, and compiled to the JVM on the server
side and Androids Dalvik VM on the clients side. The code
size of the game is 7340 lines (Server 3285 + Client 4055)
and ARIVU increases the size only by 1237 lines (Server 930
+ Client 307).

It is important when designing server side computations,
to take care that they do not add too much load so that
the increased latency becomes noticeably large. The chart in
Figure 3 shows that the load added by the middleware is linear
or lower as the number of players increase. Average additional
processing latency due to the middleware is less than 8ms for
20 player in a Intel Core 2 Duo (2.26 Ghz) server which is,
relatively much smaller when compared to wireless network
latency.

When designing such systems there is always the question
of memory use on the server. To be truly scalable to large
numbers of clients the incremental memory use per client
should be optimized and be as low as possible. The chart
in Figure 3 shows that the memory use of the middleware is
small enough(1.5KB per player) that it will not be a problem.

On the client side the main concerns are power consump-
tion and to a lesser degree, memory use. These should be
minimized to be usable on a smartphone. Table II shows us
that the memory use and power consumption incurred by using
the middleware is small enough to be feasible.

Table I, shown above, compares the relative strengths with
respect to current consumption in ON and SLEEP modes. Here
we can see, from the current consumption stand point, Zigbee
is the best interface to use. Among the commercial interfaces:
3.5G shows some promise, however time taken to turn on
(from sleep state) is over 1.5 seconds, and thus infeasible for
our purpose. Wifi on the other hand is a very suitable interface
to use when we want to save power while gaming.

III. TESTING METHODOLOGY

In this section, we describe the hardware and software
components as well as the process used to evaluate ARIVU.

Fig. 4. Armageddon Test Game

A. ARIVU Variants

We developed three variants of ARIVU. They differ in
their performance and intrusiveness level (i.e., how much
of the existing game client and server logic needs to be
modified). We present the relative performance of each variant
in Section IV-A. The three variants are:

1 Full: This is the full implementation of ARIVU, de-
scribed in Section II, and includes all the client and server
components. This variant requires the most changes to
the game code to interface with ARIVU (using the APIs
provided).

2 Secured: This is a variant of ARIVU that only imple-
ments the client-side changes (GAPE value and PAL).
This variant may be more appealing to game companies
initially as it is more secure and will not modify the server
code – minimising the possibility of bugs or security
holes entering the most ”mission-critical” component of
the game.

3 Blackbox: In this variant, we make no changes to the
client or server game components and easiest to deploy.
It uses only PAL and network data.

In all the three modes the developer can set AGGRES-
SIVE LEVEL which defines the level of aggressiveness in
saving power. Higher value for AGGRESSIVE LEVEL re-
sults in more power saving by trading-off quality. This can be
exposed to the end-user as a tunable knob.

B. Test Game

To test ARIVU, we developed a simple Android-based RPG
game, called Armageddon (screenshots shown in Figure 4).
Armageddon is not a fully developed commercial game,
but it has all the basic features of a RPG game including
player movement within and across maps, fighting battles
with monsters, and in-game communication and collaboration
between players. The main goals of the game are to explore
the various maps and to kill the enemies discovered. It has
two main locations - friendly town areas and hostile areas
containing monsters. The effective AoI visibility radius for
friendly environment is 125 pixels and hostile area is 250
pixels.

We developed our own game instead of using a commercial
game as we needed to tweak the parameters of the game
precisely to test specific aspects of ARIVU. In particular,
by building our own game, we are able to tweak the game

Fig. 5. Testbed Used for Experiments

interaction parameters so that we can simulate both role-
playing as well as first-person shooting games — our basic
game is an RPG while a variant that involves a lot of fighting
closely in hostile area simulates a FPS game.

C. Testing Environment and Devices

Figure 5 shows the testbed used for our experiments. The
game clients are connected through wired network and differ-
ent wireless networks to the game server. We used a variety
of Android phones (HTC Magic, HTC Dream, and Google
Nexus One phones) as game clients. To obtain accurate power
measurements, we used a custom made cell phone test borad, a
high-speed multifunction Data Acquisition Equipment (DAQ)
USB-6251 and a Signal Conditioning Equipment (SC-2345)
from National Instruments (NI).

D. Testing Scenarios

Our test scenarios were designed to show the following:
1 Base Effectiveness: What is the potential power savings

achievable by the three different variants (Section III-A)
of ARIVU? In addition, what is the effect on game quality
of each variant? We present these results in Section IV-A.

2 Effect of Game Type: How effective is ARIVU in
saving power for different game types? We show the
results for this experiment in Section IV-B.

The main quality measure we used is the number of
important packets that were either dropped or missed their
deadlines as a result of the various power saving techniques. In
all the scenarios, we varied the number of players in the game
from 3 to 18 players to understand the effects of increasing
the player density. Among these 6 are human players and the
rest are bots. The map size for RPG and FPS variants is the
same.

Due to lack of space we skip our analysis and results on
efficiency of individual components of ARIVU . The results
focus only on total power saving achieved by ARIVU while
maintaining the quality of the game play and scalability of
the server. There is a tradeoff between game quality and p
(number of interactive entities the client is interested in) in
MRIT based scalability enhancement. The results are shown
for p = 5 entities.

Fig. 6. Percentage of Power Saved (RPG game)

Fig. 7. Drop Rate of Important Packets (RPG game)

IV. RESULTS
A. Results: Base Effectiveness

In the experiment, we consider two main factors: (%)
of power saved and (%) of important packet lost. Loss of
important packets is used to measure quality of the game.
A packet is important for a client if when the packet is
transmitted, there is at least one interactive object within its
AoI with which there is at least one interaction. The results of
3 different modes are depicted in Figure 6 and Figure 7. These
figures need to be considered together. When more information
about the game state is available, ARIVU scores high in both
the amount of power saved and quality of game play.

In full mode, the amount of power saved ranges from
40 to 35%. As ARIVU has necessary information about the
game state the quality of the game play is guaranteed. Full
mode is not highly affected by the false-positive errors of
GAPE prediction as most of the power saving opportunities
are contributed by macro power management algorithm. Full
mode is relatively more sensitive to player density (number of
players in the map). In secured mode the amount of power
saved is close to values of full mode but the drop rate of
important packets is very high. This is because secured mode
depends only on the client side game action data. In blackbox
mode the drop rate is close to the values of secured mode
but, the the power saved is less than secured mode. The high
drop rate of secured and blackbox modes can be reduced by
decreasing the value of AGRESSIVE LEVEL. These results
prove that, we can save power while guaranteeing the quality
of the game play when more information about the game
is available. Making more information available to ARIVU
middleware increases security risk. We have plans to tackle
security risks in our future work.

B. Results: Game Type Effects

The above results are based on slow speed RPG games.
We evaluate the results for high speed shooting games (such

Fig. 8. Percentage of Power Saved (FPS game)

Fig. 9. Drop Rate of Important Packets (FPS games)

as Quake) by increasing the movement speed and densities
of interactive objects in the game by 3 times and 5 times
respectively. The results are depicted in Figure 8 and Figure
9. The results are similar to RPGs, except that the amount of
power saved is lower due to the nature of the game play (player
density and movement speed are high). These results shows
that our algorithm can work well for high speed shooting
games as well which is another extreme test case (worst case)
for ARIVU.

V. RELATED WORK
There is a rich body of related work in the area of power

conservation and interest management.
Power Conservation. Mobile devices today comes with vari-
ous power management features for its processor, LCD display
and wireless interface. Previous works present different tech-
niques for wireless interface power management such as, better
link utilization and throughput [8], using proxies to allow
clients to sleep [3], and looking for statistical correlations
that allow power savings [1], [10], [11]. In our work, we
apply the lesson and techniques derived from these past works
to the context of latency-critical interactive games. Dynamic
voltage and frequency scaling is increasingly being used to
reduce the CPU energy requirements in embedded and real-
time applications – which maintains the application’s real-time
characteristics [9], [12], [13]. Accurately predicting run-time
workload is the key for successfully using these techniques.
These methods have also been applied to games [6], [7]. We
apply some of those lessons in the design of ARIVU.
Interest Management. There are various algorithms for de-
termining AoI [4], [5]. They are either distance based or
visibility based technique for improving scalability. We use a
combination of both techniques by taking their good features.

VI. FUTURE WORK AND CONCLUSION
The basic results on our efforts in building a complete

generic middleware to manage overall system power con-

sumption while playing massively multiplayer online mobile
games is presented in this paper. Through macro and micro
power management modules ARIVU tries to capture both
longer possible sleep times and shorter ones for efficient
power management. As ARIVU gathers information about the
game state based on already existing information (eg. AoI,
Game Actions, Player’s Positions, Interactions) in the modern
game implementations, these games need very minimum level
modifications to use ARIVU middleware. We are currently
enhancing our middleware to manage CPU and LCD-display
power consumption to achieve higher integrated power effi-
ciency. For example, when game state is not important the
number of frames rendered by the CPU/GPU per second
can be reduced. We are planing to test our middleware on
different types of commercial games and improve our power
management techniques, algorithms and API library to make
it more generic for all types of mobile games.

REFERENCES

[1] Anand, B., Ananda, A. L., Chan, M. C., Long, L. T., and Balan, R. K.
Game action based power management for multiplayer online games.
Proceedings of the 1st ACM SIGCOMM Workshop on Networking,
Systems, and Applications on Mobile Handhelds (MobiHeld), Barcelona,
Spain, Aug. 2009.

[2] Anand, M., Nightingale, E. B., and Flinn, J. Self-tuning wireless network
power management. Proceedings of the 9th International Conference on
Mobile Computing and Networking (Mobicom), San Diego, CA, Sept.
2003.

[3] Anastasi, G., Passarella, A., Conti, M., Gregori, E., and Pelusi, L. A
power-aware multimedia streaming protocol for mobile users. Proceed-
ings of the International Conference on Pervasive Services, Santorini,
Greece, July 2005.

[4] Bharambe, A., Douceur, J., Lorch, J. R., Moscibroda, T., Pang, J., Se-
shan, S., and Zhuang, X. Donnybrook: Enabling large-scale, high-speed,
peer-to-peer games. Proceedings of ACM Conference on Applications,
technologies, architectures, and protocols for computer communications
(SIGCOMM), Seattle, WA, USA, Aug. 2008.

[5] Boulanger, J.-S., Kienzle, J., and Verbrugge, C. Comparing interest
management algorithms for massively multiplayer games. NetGames
’06: Proceedings of 5th ACM SIGCOMM workshop on Network and
system support for games, page 6, New York, NY, USA, 2006. ACM.

[6] Gu, Y. and Chakraborty, S. A Hybrid DVS Scheme for Interactive 3D
Games. IEEE Real-Time and Embedded Technology and Applications
Symposium, 2008.

[7] Gu, Y. and Chakraborty, S. Power Management of Interactive 3D Games
Using Frame Structures. VLSI Design, 2008.

[8] Meyer, M., Sachs, J., and Holzke, M. Performance evaluation of a tcp
proxy in wcdma networks. Proceedings of the Eighth Annual ACM/IEEE
International Conference on Mobile Computing and Networking (MO-
BICOM), 2002.

[9] Poellabauer, C., Singleton, L., and Schwan, K. Feedback-based dynamic
voltage and frequency scaling for memory-bound real-time applications.
Proceedings of the 11th IEEE Real Time and Embedded Technology and
Applications Symposium (RTAS), 2005.

[10] Wei, Y., Chandra, S., and Bhandarkar, S. A statistical prediction-based
scheme for energy-aware multimedia data streaming. Proceedings of the
Wireless Communications and Networking Conference (WCNC), Atlanta,
GA, Mar. 2004.

[11] Yang, S.-R. Dynamic power saving mechanism for 3g umts system.
ACM Mobile Networks and Applications, 12(1):5–14, 2007.

[12] Yuan, W. and Nahrstedt, K. Practical voltage scaling for mobile
multimedia devices. Proceedings of the 12th Annual ACM international
conference on Multimedia, 2004.

[13] Zhu, Y. and Mueller, F. Feedback edf scheduling exploiting dynamic
voltage scaling. Proceedings of the IEEE Real-Time and Embedded
Technology and Applications Symposium, 2004.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	11-2010

	ARIVU: Power-Aware Middleware for Multiplayer Mobile Games
	Bhojan ANAND
	Karthik THIRUGNANAM
	Thanh Long LE
	Duc-Dung PHAM
	Akhihebbal L. ANANDA
	See next page for additional authors
	Citation
	Author

	tmp.1544144898.pdf.OK6HA

