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Abstract. We consider a partially observable Markov decision process
(POMDP) model for improving a taxi agent cruising decision in a con-
gested urban city. Using real-world data provided by a large taxi company
in Singapore as a guide, we derive the state transition function of the
POMDP. Specifically, we model the cruising behavior of the drivers as
continuous-time Markov chains. We then apply dynamic programming
algorithm for finding the optimal policy of the driver agent. Using a sim-
ulation, we show that this policy is significantly better than a greedy
policy in congested road network.

Keywords: agent application, intelligent transportation, POMDP, taxi
service.

1 Introduction

Taxis are a major mode of transport in every urban city in the world. There were
about 24,000 taxis in Singapore, and 87,000 licensed taxi drivers, and taxis pro-
vide about 850,000 trips daily, as of April 2009. In Singapore, taxis are operated
by a small number of taxi companies. The largest taxi company, ComfortDel-
gro, operates over 15,000 taxis, and captures about 63% of the market share.
Like many congested cities in the world, people in Singapore often view taxis
as a more efficient mode of transportation compared to private cars. Statistics
released by the Singapore Land Transport Authority shows that a taxi travels
some 120,000 km a year, and more than a third of such travel is empty cruising,
which represents a wastage of resources.

Although research related to taxi services can be found in the economics,
transportation, and operation research literature, studies from the AI point of
view, however, has been lacking to our knowledge. This is an opportunity for
applied AI research, since the system resulting from the collective behavior of
the drivers can be readily modeled as a multi-agent system, with drivers acting
as rational agents towards maximizing their individual utilities. We believe that
the public transport arena offers a rich domain for application of AI concepts
and methodologies.

I. Batyrshin and G. Sidorov (Eds.): MICAI 2011, Part I, LNAI 7094, pp. 415–428, 2011.
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In this paper, we consider the specific problem of modeling and guiding taxi
driver cruising behavior in a congested city consisting of a large number of taxis
and passengers. This work is made possible by a large dataset obtained from
a large taxi operator. We model, for simplicity, the network as a graph where
nodes represent zones while arcs represent adjacency. Passengers “arrive” in
each zone as a Poisson process, while taxis are either in the state of occupied
or cruising (when no passenger is onboard and the driver is actively seeking
passengers, whether moving about or resting at a location). We are concerned
with improving the overall utilization rate by offering intelligent guidance on
its cruising behavior (i.e. deciding when and where to move from zone to zone
considering the passenger arrival processes as well as in response to the behavior
of the other drivers).

We propose a POMDP to model decision process of a taxi driver during
cruising. Our purpose in this paper is not to invent a new algorithm for solving
POMDP. Rather, motivated by the vast recent literature in AI on solving large-
scale POMDPs (see Related Works below), we choose POMDP as the modeling
framework for our problem, and present in this paper how such model is built,
and experimental results obtained. The proposed model can be embedded into a
vehicular device that guides the taxi driver to move intelligently within a highly
dynamic environment (such as in a congested city) that will maximize occupancy
and hence revenue.

2 Prelimininaries

Our system consists of:

1. A directed graph G = (V, E), representing the road network on which the
taxis operate. Each node in the graph is associated with a zone. A taxi may
move from one zone to the other following the edge linking the zones. We
assume that the graph is connected.

2. A set of n drivers indexed by i ∈ {1, ..., n}. The cruising behavior of a driver
governs its preference in choosing which zone to cruise in. In this paper, we
assume that each driver cruising behavior is independent of the others.

3. The agent driver under consideration.

The objective in this paper is to compute the best cruising policy (response) of
the agent, one that maximizes the time that the agent is occupied, given the
cruising behavior of the other drivers and a finite period (the planning horizon).
We make the assumption that all the drivers and the agent are always in op-
eration during the planning horizon. The drivers and agent constantly transit
from the cruising (the term is used interchangeably with “unoccupied”) state to
occupied state and back to cruising state.

A partially observable Markov decision process for a single agent can be de-
scribed as a tuple 〈S, A, T, R, Ω, O〉, where:

– S is a finite set of states of the system,
– A is a finite set of actions of the agent,
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– T : S ×A → �(S) is the state transition function, where we write T (s, a, s′)
for the probability of ending in state s′, given that the agent is in state s
and takes action a,

– R : S × A → R is the reward function, where R(s, a) is the expected reward
for taking action a while in state s,

– Ω is a finite set of possible observations the agent can receive,
– O : S ×A → �(Ω) is the observation function, where we write O(s, a, o) for

the probability of making observation o after the agent took action a in the
current state s.

The agent maintains an internal belief state b ∈ �(S) that described its belief of
the current state of the system based on its previous observations, actions and
the initial belief state b0. A t-step policy tree is a perfect |Ω|-ary tree of depth
t describing completely the agent’s possible actions for the next t steps. Each
node in the tree specifies an action with the root as the starting action, and
each branch specifies a possible observation and the corresponding child node
specifies the next action to be taken.

3 Related Works

As an integral part of public transportation system of an urban city, taxi services
have been extensively studied from the economics (see [11,14,12]), transportation
and operation research (see [13,10]) point of views. In the economics literature,
research has been conducted to gain insights into the nature of the demand and
supply of taxi services, their interaction and the resulting market equilibrium.
The economic consequences of regulatory restraints, such as entry restriction
and price control, have been examined as well. In operation research literature,
quantitative models have been built to capture driver’s movement behavior,
passenger’s searching behavior, and the competitive nature of the drivers.

POMDP is a modeling framework used for agent planning in partially observ-
able stochastic domains [7]. It has been used in AI robotics and planning. The
majority of these studies concentrate on finding a scalable algorithm to solve the
model (e.g. [3,4,6,8,9]), while some focus on looking at special cases of POMDP
for which efficient algorithm might be found. Research into its multi-agent coun-
terpart have become active in recent years, both in competitive setting [5] and
non-competitive setting ([1,2]).

4 POMDP Model for Single Cruising Agent

In this section, we present our model for a taxi cruising decision process. First
and foremost, it should be noted that two models are proposed for cruising be-
havior. For the agent driver under consideration, we use a POMDP to model
its decision process from which we derive its optimal cruising behavior. The be-
havior of each of the other drivers in the system is modeled by the continuous
time Markov chain (see Section 4.2). In this sense, the behavior of these drivers
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are ”static” in that they do not change in reaction to the behavior of the agent
or the other drivers. A more dynamic model would be the partially observable
stochastic game (POSG), where each driver is modeled as a POMDP. Given the
current state of research [5], POSG is much more complicated and computation-
ally inhibiting in our context where we are interested to model a large number of
drivers. Hence in this work, we focus on a single POMDP. Henceforth, to avoid
confusion, we will use the term “driver” to refer specifically to a driver who is
not the agent under consideration.

4.1 System States

At any point of time, there are n taxis operating (excluding the agent con-
sidered). A state of the system consists of the state of the agent and each
of these taxis. Specifically, a state of the system is described by a tuple s =
〈ω, L, D, (δi), (li), (hi), (di)〉, with 1 ≤ i ≤ n, where:

– ω = 1 if the agent’s taxi is occupied, and ω = 0 otherwise (i.e. cruising),
– L ∈ V is the current location zone of the agent,
– D ∈ V ∪ {0} is the destination zone of the passenger if the agent’s taxi is

occupied, D = 0 otherwise,

and for each driver i:

– δi = 1 if the taxi is occupied, and δi = 0 if it is currently cruising,
– li ∈ V is the current location zone of the driver,
– hi contains the path history of the driver if it is occupied, that is, the sequence

of zones starting with the zone from which the passenger is found to the
current location zone of the driver. If the taxi is unoccupied, hi is empty.

– di ∈ V ∪ {0} if the destination zone of the passenger if the taxi is occupied,
di = 0 otherwise.

To simplify notations, we will omit the subscripts of a variable when we consider
the vector value of the corresponding variable. For example, l = (l1, ..., ln), and
d = (d1, ..., dn).

4.2 A Model for Driver Cruising Behavior

We model the driver cruising behavior as a continuous time Markov chain, which
consists of a set of states where the transition time from one state to another is
exponentially distributed. The legitimacy of exponential distribution has been
verified from a real trace of taxi data of a large Singapore taxi operator for one
month on the Singapore road network (see Section 6.1).

The set of all possible states of a driver is given by
{C1, ..., C|V |, O1, ..., O|V |}, where state Cj (j ∈ V ) corresponds to the driver
being in zone j and cruising for passengers; while state Oj (j ∈ V ) corresponds to
the driver being in zone j and currently delivering a passenger to its destination.
The following are the sets of parameters which govern the transitions between
the states:
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– {λjk}j,k∈V , where λjk is the rate of transition from state Cj to state Ck.
This set of parameters describes the cruising behavior of a driver. In our
model, we assume that the drivers are uniform, i.e., have the same cruising
behavior.

– {πj}j∈V , where πj is the rate of transition from state Cj to state Oj . This
set of parameters describes the rate of finding a passenger in a zone, and is
dependant upon the number of drivers cruising in the zone (see equation 1).

– {π′
j}j∈V , where π′

j is the rate of transition from state Oj to state Cj . This set
of parameters describes the rate of finding the dropoff point of a passenger
in its destination zone.

– {ρjk}j,k∈V , where ρjk is the rate of transition from state Oj to state Ok.
This set of parameters describes the congestion rate of the road network.

Together, these sets of parameters constitute the Q-matrix of the Markov chain,
which describes the chain completely. As mentioned previously, we assume that
the drivers operate independently of each other. Each zone j ∈ V has a constant
passenger arrival rate μj . When a passenger arrives in a zone, it will be randomly
picked up by one of the drivers cruising in the zone. In other words, for every
j ∈ V , we have:

πj =
μj

(1 − ω) · α(L, j) +
∑n

i=1[(1 − δi) · α(li, j)]
, (1)

as the rate of finding a passenger in zone j, where α(j, k) = 1 if j = k, and
α(j, k) = 0 otherwise.

Fig. 1. Example: The figure on the left shows a network of 3 nodes, while the figure
on the left shows the corresponding Markov chain describing the behavior of a driver

An example of the Markov chain on a simple 3-node network is given in
Figure 1. Two useful quantities for our modeling that can be derived from the
Markov chain are: (1) The probability of leaving a state after t time has passed
which is given by 1 − exp {−(

∑
outgoing rate) · t}, and (2) The probability of

moving from one state to the other with transition rate λ which is given by:
λ/

∑
outgoing rate. In the example of Figure 1, the probability of leaving the

state C1 after one unit of time has passed is 1 − exp{−(λ12 + λ13 + π1)}, with
the probability of going to state O1 given by π1/(λ12 + λ13 + π1).
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4.3 Actions and State Transition Function

Next, we define the actions of the agent and derive the state transition function
T for the POMDP. We do this by discretizing the continuous Markov chain
into periods of one minutes, where each period corresponds to one step of the
POMDP. The state transition function T can be separated into two independent
components as follows:

T (s, a, s′) (2)
= Pr[〈ω′, L′, D′, δ′, l′, h′, d′〉|〈ω, L, D, δ, l, h, d〉, a]
= Pr[ω′, L′, D′|ω, L, D, δ, l, a] · Pr[δ′, l′, d′|ω, L, δ, l, d] .

Consider the first term of the right hand side of Equation 2. The actions available
to the agent depend on the state of the agent.
Case 1: ω = 0. In the unoccupied state, the agent may take one of the following
actions in a step: (a1) continue cruising in the current zone, or (a2) make an
attempt to move to an adjacent zone. In the unoccupied state, the agent may
have the chance of getting a passenger as well. Given that ω = 0 and the agent
takes action a1, the following may happen in one step: (1) The agent doesn’t
find any passenger, or (2) The agent manages to find a passenger with k as the
destination zone. In both cases, the location of the agent doesn’t change. The
following gives the probability of each of these cases respectively:

Pr[0, j, 0|0, j, 0, δ, l, a1] = e−πj ,

Pr[1, j, k|0, j, 0, δ, l, a1] = (1 − e−πj ) · γjk ,

where γjk is the probability of a passenger’s destination zone being in k given
that its starting zone is j. On the other hand, if the agent chooses a2 and make
an attempt to move to an adjacent zone z, one of the following may occur: (1) A
passenger is found, and the agent stays in the current location, (2) No passenger
is found, and the agent manages to move to zone z, or (3) No passenger is found
and the agent stays in the current location. The following gives the probability
of each of these cases respectively:

Pr[1, j, k|0, j, 0, δ, l, a2 → z] =
πj · γjk

πj + ρjz

(
1 − e−(πj+ρjz)

)
,

Pr[0, z, 0|0, j, 0, δ, l, a2 → z] =
ρjz

πj + ρjz

(
1 − e−(πj+ρjz)

)
,

Pr[0, j, 0|0, j, 0, δ, l, a2 → z] = e−(πj+ρjz) .

Case 2: ω = 1. In the occupied state, the action of the agent is determined
(denoted by a3). When it is not in the destination zone of the passenger, it will
make an attempt to move to an adjacent zone along the shortest path from the
current zone to the destination zone. And when it is in the destination zone of
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the passenger, it will try to find the dropoff point within the zone. For the former
case, the following are its success and failure probabilities respectively:

Pr[1, z, k|1, j, k, δ, l, a3 → z] = 1 − e−ρjz ,

where z is the next zone in the shortest path from j to k, consequently:

Pr[1, j, k|1, j, k, δ, l, a3 → z] = e−ρjz .

And for the later case, its success and failure probabilities are given by:

Pr[0, k, 0|1, k, k, δ, l, a3 → k] = 1 − e−π′
k ,

and:
Pr[1, k, k|1, k, k, δ, l, a3 → k] = e−π′

k

respectively.
Consider the second term of the right hand side of Equation 2. Assuming

independence among the drivers, we have:

Pr[δ′, l′, d′|ω, L, δ, l, d]

=
n∏

i=1

Pr[δ′i, l
′
i, d

′
i|δi, li, di, ω, L, δ−i, l−i, d−i] ,

where the −i subscript denotes a vector without the i-th element. Each driver
behavior is modeled as an independent Markov chain as described in Section 4.2.
In the unoccupied state, in one step of the POMDP, the following may occur:
(1) No passenger is found, and the driver continue to cruise in the same zone,
(2) No passenger is found, and the driver moves to an adjacent zone, or (3) A
passenger is found in the current zone. The following are the probability of each
of these events respectively:

Pr[0, j, 0|0, j, 0, ...] = exp

⎧
⎨

⎩
−

⎛

⎝
∑

z �=j

λjz + πj

⎞

⎠

⎫
⎬

⎭
,

Pr[0, k, 0|0, j, 0, ...] =
λjk∑

z �=j λjz + πj

⎡

⎣1 − exp

⎧
⎨

⎩
−

⎛

⎝
∑

z �=j

λjz + πj

⎞

⎠

⎫
⎬

⎭

⎤

⎦ ,

Pr[1, j, k|0, j, 0, ...] =
πj · γjk∑

z �=j λjz + πj

⎡

⎣1 − exp

⎧
⎨

⎩
−

⎛

⎝
∑

z �=j

λjz + πj

⎞

⎠

⎫
⎬

⎭

⎤

⎦ .

In the occupied state, the behavior of a driver is similar to that of the agent.
The driver will attempt to move the the next adjacent zone in the shortest path
to the destination zone. Once in the destination zone, the driver will try to find
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the exact dropoff point of the passenger. The following probabilities are derived
similarly to those of the agent:

Pr[1, j, k|1, j, k, ...] = e−ρjz ,

where z is the next zone in the shortest path from j to k, and:

Pr[1, z, k|1, j, k, ...] = 1 − e−ρjz .

Similarly:
Pr[1, k, k|1, k, k, ...] = e−π′

k ,

Pr[0, k, 0|1, k, k, ...] = 1 − e−π′
k .

This completes the description for the state transition function of the POMDP.
It should be noted that all other transitions that are not defined in this section
have zero probability of occurring.

4.4 The Complete Agent POMDP Model

We define the rest of the components of the POMDP here. The agent’s reward
function R is simply a binary function that return 1 if the agent is in occupied
state and 0 in the unoccupied state, i.e, R(s, a) = 1 if ω = 1 and R(s, a) = 0
otherwise. This models the objective of the agent to be in the occupied state
as long as possible. Following the data that we have for the taxi movement in
Singapore, the agent may observe the state s of the system in each step of the
POMDP, except for the destination zone of the passenger of the occupied drivers,
that is, the agent may observe the variables ω, L, D, δ, l, h completely, but not
the variable d. The observation function, therefore, is given by:

O(〈ω, L, D, δ, l, h, d〉, a, o) =
∑

d′

T (〈ω, L, D, δ, l, h, d〉, a, 〈o, d′〉) .

This completes the definition of the POMDP model.

5 Solving the Finite Horizon POMDP Model

Next, we present our solution method to compute the optimal T -horizon policy
for the POMDP model. We apply the standard dynamic programming algorithm
[7] for solving general POMDP. The main difference is the representation of the
belief state. Given the specific nature of the agent’s observation function, we are
able to represent its belief state as a set of trees (see below).

5.1 Agent Belief State

A belief state b is a probability distribution over S. In our case, since the agent
observes the state of the system completely except for the destination zone of
occupied drivers, its belief state is reduced to a probability distribution over
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{V ∪ {0}}n, which is all the possible value for vector d. We let b(d) denote the
probability assigned to the destination vector d by belief state b. The agent starts
with the initial belief state b0, and in each step of the POMDP, it computes a new
belief state b′, based on the old belief state b, an action a, and an observation o.
The new degree of belief in a destination vector d′, can be computed as follows:

b′(d′) = Pr[d′|b, a, o]

=
n∏

i=1

Pr[d′i|b, a, 〈ω′, L′, D′, δ′, l′, h′〉]

=
n∏

i=1

Pr[d′i|b, δ′i, h′
i] .

It is obvious that if δ′i = 0, then d′i = 0 with probability 1. For the case when
δ′1 = 1, the value of Pr[d′i|b, δ′i, h′

i] for each i is computed as follows. When
there is only one element in the path history h′

i, i.e. h′
i = (j), then for all

k ∈ V , Pr[k|b, 1, j] = γjk. When there is more than one element in h′
i, where

h′
i = (j, ..., z), we first construct a shortest path tree with the zone j as its

root. This tree would contain all the nodes in V (assuming that the network is
connected). Then, consider the subtree with z as its root, and let Vj,z be the set
of all the zones in the subtree. For every zone k ∈ Vj,z , we have:

Pr[k|b, 1, (j, ..., z)] =
b(k)

∑
k′∈Vj,z

b(k′)
,

while the probability is zero for the rest of the zones outside the subtree. This
computation process is illustrated in Figure 2.

Fig. 2. Example of the agent’s belief regarding the destination zone of an occupied
driver, which is represented by a shortest path tree. The number in the node represents
the probability of having that node be the destination zone, with empty node denoting
zero probability. The tree is updated as new observation is received.
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5.2 Dynamic Programming for POMDP

The first step in solving a POMDP by dynamic programming is to convert it
into a completely observable Markov decision process (MDP) with the set of
states S = �(S), i.e. the set of all possible beliefs about the state. In this
paper, we focus on computing the optimal policy for T -horizon planning given
an initial belief state of the system b0. When T = 1, the agent can take only
a single action. When T = 2, it can take an action, make an observation, then
take another action based on the observation made. In general, the agent’s t-
step policy can be represented by a tree. The root of the tree specifies the
first action. The resulting observation determines the edge to be followed from
the root, which determines the next action to be taken. A t-step policy tree,
therefore, is a perfect |Ω|-ary tree of depth t. The next step, is to find the value
function, that gives the value of a policy, given an initial belief state. We can
then use the value function to directly determine the optimal policy. Let Vpt(b)
be the value function denoting the value of executing the t-step policy pt, given
the belief state b. Since:

Vpt(b) =
∑

s∈S

b(s)Vpt(s) , (3)

where Vpt(s) is the value of executing the policy pt in the state s, the next step
is to find the value of a policy given a state of the system. This is given by:

Vpt(s) = R(s, a(pt)) + (4)
∑

o

O(s, a(pt), o)
∑

s′

T (s, a(pt), s′)Vo(pt)(s′) ,

where a(pt) denotes the action associated with the root of the policy tree pt,
and o(pt) denotes the subtree (a (t − 1)-step policy tree) of pt, whose root can
be obtained by following the edge associated with observation o, from the root
of pt. Given an initial belief state b0, the optimal T -step policy is then given by:

Π∗(b0) = arg max
pT

VpT (b0) .

Notice from equation 3 that, associated with each t-step policy pt is a vector of
|S|-dimension. We call this the value vector of the policy and denote it by Vpt . A
single value vector Vpt is enough to compute Vpt(b) for different values of b. The
general dynamic programming algorithm for POMDP proceeds in T iterations,
where each iteration consists of two steps.

In the first step of iteration t, the algorithm is given a set P t−1 of (t− 1)-step
policy trees computed from the previous iteration, and the corresponding set of
value vectors V t−1. It then computes the new sets P t and the corresponding
V t as follows. First, a set of t-step policy trees, P t

+ is created by generating
every possible t-step policy tree that makes a transition, after the initial ac-
tion and observation, to the root of some t-step policy tree in P t. Note that
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|P t| = |A||P t−1||Ω|. The value vector for each of the new t-step policy tree can
then be computed from equation 4, and stored in the set V t

+.
In the second step, the set P t

+ is pruned by removing policy trees that need not
be considered because they are dominated by some other policy trees in the set.
Specifically, a policy tree pt with the corresponding value vector Vpt is dominated
if for all b ∈ S there exists another policy qt ∈ P t \ pt such that Vqt(b) ≥ Vpt(b).
This test of dominance is implemented using linear programming. If pt is removed
from P t

+, then the corresponding value vector Vpt is removed from V t
+ as well.

The resulting set, P t and V t, are then sent to the next iteration of the algorithm.

6 Experimental Results

6.1 Extracting Driver Cruising Behavior from Historical Data

In order to derive the state transition function, we first analyze a real trace of
historical data of a large Singapore taxi operator for one week on the Singapore
road network. For this purpose, we obtained a dataset from a local taxi operator,
which consists of a detailed information of each taxi in each second interval - its
speed, its status (passenger on board, free, offline, etc), current position (given
in latitude-longitude coordinate).

We first divide the Singapore’s road network into 88 logical zones (see for in-
stance http://www.onemap.sg/index.html) and derive a mapping function from
lat-long coordinates to the respective zone number. The information we need to
extract from the dataset is the distribution patterns of the cruising. From the
information extracted, we observe that for a randomly chosen 500 drivers and
over all the zones, the following random variables are close to being exponentially
distributed: (1) cruising time of an unoccupied taxi in a zone before moving to
adjacent zone without finding any passenger, (2) time taken by the taxi moving
from zone to zone while occupied, and (3) time taken to find the exact place
in the destination zone to drop the passenger off. The frequency histograms for
these random variables can be seen in Figure 3. This provides the motivation
for us to model the driver cruising behavior as a continuous time Markov chain.

6.2 Simulation

To evaluate the quality of the POMDP policy, we compared it with two other
policies, namely random and greedy. The random policy is to choose a ran-
dom zone within its neighborhood to move to. The greedy policy, when unoccu-
pied, is to move to a zone (among its current and adjacent zones) that has the
least number of cruising taxis. Note that the random policy provides the lower
bound benchmark. Any method that seeks to improve the agent cruising policy
should at least perform better than a random policy. The question is whether
the POMDP is more intelligent compared to the myopic greedy policy.

We simulated both passengers ”arrivals” and drivers movement on the net-
work. The passenger arrival in each zone is implemented as a Poisson process. As
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Fig. 3. Observations from Real Dataset

a passenger appears in a zone, it joins a FIFO queue associated with the zone. If
there are some taxis cruising in the zone, the passenger at the head of the queue
is removed and assigned to a randomly chosen taxi. The average time spent in
the queue models the average time spent by passengers waiting for a cruising
taxi. We are interested in the utilization rate of the single agent driver in the
network. The movement of all other drivers follows the continuous-time Markov
chain model. When entering a zone in the cruising state, a passenger might be
assigned to the driver, and it enters the occupied state. Otherwise, a set of ex-
ponentially distributed random variables is instantiated, one for each adjacent
zone according to the corresponding rate in the Markov chain. The driver will
wait for the smallest value of the instantiated random variables before moving
to a zone following the edge associated with the random variable. While waiting,
a passenger may still be assigned to the driver, in which case, it enters the oc-
cupied state instead. For initialization, we allow the system to run without the
agent for a small time interval to reach a stable state. After a stable state has
been reached, we freeze the system and save its configuration. Then, the agent
driver to be tested is inserted to the system in a randomly chosen zone before
resuming the simulation. The same agent is inserted to the same configuration
several times before the average result is collected.

We performed our experiments on two sets of different network topologies and
settings. First, on small grid networks. The parameters of the simulation are as
follows. The average time between two passenger appearances in each zone is set
at 0.5 minutes. The destination zone of a passenger are uniformly distributed over
all the zones. During simulation, the agent accesses the state of the system every
minute and decides on an action to take. The metric for comparison between the
random, greedy and POMDP agents is the percentage of the 20-minute period
when it was in the occupied state. Table 1 shows the results on different sizes
of network, while the number of drivers was kept constant at 20. As shown in
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the table, the improvements are more significant on a congested network (larger
taxi-to-zone ratio) than on a sparse network. This is intuitive, as competition
among the taxi drivers is fiercer on a congested network, and the agent with
better cruising policy will generally perform better.

Table 1. Results of small grid networks

2 × 2 3 × 3 4 × 4 5 × 5

POMDP agent 41% 72% 81% 85%
greedy agent 22% 61% 75% 80%
random agent 17% 51% 66% 71%

The second set of experiments is performed on a real 15-node network that
models the congested central business district of Singapore and its surrounding
zones (Figure 4). The arrival rate of passengers in each zone is derived from
the real dataset discussed above. We consider only passengers with origins and
destinations within these 15 zones, and restrict the cruising area of the drivers to
be within these zones as well. Similar to the first set, the agent, in the unoccupied
state, accesses the state of the system every minute and decides on the action to
take. The number of drivers operating in the area is set to be 250. We simulate
2 hours of real time operations. As shown from the result, the POMDP agent
performs significantly better than the greedy agent.

% of time occupied

POMDP agent 84%
greedy agent 75%
random agent 66%

Fig. 4. Results of restricted area of Singapore

7 Future Works

We are aware of several limitations of the current model and its solution method.
First is the issue of scalability. This is an inherent problem in practically all
POMDP models for planning, and ours is no exception. It is thus interesting
to see if the problem structure can be exploited for a more aggressive pruning
strategy. It is also worthwhile to explore approximate solutions (for example by
eliminating policy trees that are approximately dominated in the pruning step),
to understand the trade-off between the quality of sub-optimal policies and the
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gain in computation time. The second is the extension to multi-agent system. A
possible extension is to consider a scenario where every taxi driver is equipped
by a tool, telling them the optimal cruising policy, given the current state of the
system and the policy of the other drivers. Information might be shared publicly,
and each driver observe the state of the system completely, including the policy
of the other drivers, or it might be kept private, and each agent has to guess the
policy of the other drivers. The interesting questions are: What is the optimal
policy of a driver in this case? What is the resulting state of the system if every
agent execute its optimal policy, and how do we characterize equilibrium?
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