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The proofs for Propositions 1 and 2 are omitted. §A provides the equivalent formulation to the
stage 1 optimization problem. The optimal processing decision z* is relegated to §B. §C illustrates
the proof for Proposition 3. The proofs for technical statements in the general “window contracts”

model and the beef market model (as summarized in Table 3) are provided in §D and §E, respectively.

A Characterization of Stage 1 Optimization Problem

Proposition A.1 The stage 1 optimization problem in (1) can be restated as TI(Q; P%,€) =

maxo< <k A(z) where A(.) is continuous and strictly concave in z. We have

AYC(2)  for 0<z<min(I(M),Q% K)

AG) A?C(z)  for min(I(M),Q%, K) < z < min(Q¢, K) )

z) =
AYS(z)  for min(QY, K) < z < min (max(I(S),QY), K)
A*%(z)  for min (max(I(S),Q%),K) <z<K,
A3C(2)  for 0<z<min(II,Q% K)
2,C : C . c
A(s) = A% (z)  for min(II,Q%,K) < z <min(Q%, K) (10)

)
)
A*5(z)  for min(Q%, K) < z < min (max(I1,Q%), K)
(z)  for min(max(/I,Q%),K) <z <K,
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for & > & and for & < &, respectively, where

APC(2) = —QY [max (min(u, P +v),u)] + (1 —w)PT[QY — 2] — coz — 1 (K — 2)? + 7"(a{ 2, a$ 2, §),
AR5 (z) = —Q° [max (min(u, PS+v ),u)] — —QY)(P° +1t) —coz— 0(z — QF) — 1 (K — 2)?
+7* ((af = a7)Q“ + a¥z, (af — aj )QC +a32,8),

1552 —Q[(b1—e)(af —af)+(b2—
(bl—e)a{—(bg—e)aé

e)(al—a§
)(aj—ag)] forj € {C,S} and IT = ;52=5

for ke {1,2,3} and I(j) = 2(bs—e)s °

B Characterization of The Optimal Processing Decision z*

Proposition B.1 For & > & (& < &), there exist 8 spot price thresholds P(') (B(')) that charac-

terizes the optimal processing decision z*. These spot price thresholds are given by

?0 - glalc +€2a + 261K —Cy — asus
l—w-—as
P ¢ 2e1K — o —
Pl(min(I(M),QC,K)) - &ag +&af +2¢ Co — QS[Ls
1—w-—as
2 [b1(af)? + ba(a$)? + 2ea{ a§ + ¢1| min(I(M), QY K)
l1—w-—oas )

[€1(b2—e)+E&2(b1—e)]s
b1 +bs—2e

b1+bo—2e

e _ o [(bba—e®)s? : c
+ 201K — ¢y — asps — 2 + 1| min(I(M),Q%, K)

P’ (min(I(M),Q°,K)) =

l—w-—as

[€1(ba—e)+Ea(bi—e)]s
b1 +bo—2e

b1 +bo—2e

+ 201K — ¢y — asps — 2 {M + 01} min(Q%, K)

P'(min(Q°,K)) =

ﬁ4(min(QC, K) = (1—as)™! [flals 4 &0a5 + 201K —co —t — 6 — aspg

l1—w-—as

—2Q% [(af —a7)(br1a} + ea3) + (a§ — a3)(b203 + ea?)]
—2[b1(a?)? + ba(af)? + 2eafas + 1] min(QY, K)] ,

P’ (min [max(QC,I(S)),KD = (1—as)™? [flaf +&a5 +20K —cg—t — 0 — asug

—2Q° [(af — a7)(bi1a} + ea$) + (a§ — a5)(b2a5 + eaf)]

?

-2 [bl(al) + ba(a5)? + 2eai a3 + c1] min [max(QC 1(9)),K]],

(ble — 62)82

b1 + by — 2e

P’ (min [max(Q“,1(9)),K]) = (1—as)™! -[51(1)2 ;fj_:fi(;e_ e)ls +201K —cop—t— 0 — asug
biby — €2)s?
) % + ¢1 | min [maX(QC,I(S)),K]} ,
ﬁ7 - (1 o Ozs)il [El(bQ glei“ib’f.i(l;le* 6)} S —co—t— §— aspg — 2 |:
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s+ 201 K — ¢y — ozs,us

P’ =

l1—w-—as

3 C
Pl(min(II,Q°, K)) = o5+ 201K — co — asps — 2 [bas? + 1] min(I1,Q ,K)’

l—w-—as
[£1(b2—e)+&a(bi—e)]s o o [ (biby—e?)s? . c
PP (min(I1.Q°.K)) = b1+bs—2e + 201K —co —asps — 2 [ bi+bo—2e +Cl] min(/7,Q 7K)7
1—w-—as

Pimin(Q°, K)) = P’(min(Q7, K)),

P4(m1n(QC7 K) = (1- as)_l [Egs + 201K —cog—t—0 —asus — 2 [bgs2 + cl] min(QC, K)} ,
£5(min[ QC I7), ] = (1—as)™? [528+201K—Co—t—(5—048/1,5—2[b282+01] min [maX(Q I1) KH,
P%(min [max( Q. I1), K]) = (1-as) E1b2 —¢) + Galby — €] s +2c1K —cp—t—6—asug

b1 + by — 2e
2\ 2
_9 [m —1-61] min [max(QCJI),K] ,
T~ P

where in ﬁk(y) (P*(y)), for k € {1,2,3,4,5,6}, the argument y refers to the last term in the
definition of the thresholds on the right-hand side.

For &€ € Q', the unique optimal processing decision z* is characterized by

0 if PS>P
x (l—w—as)(FO—PS) .. 50 S < Bl - c
Zlvc - 2[bl(af)2+b2(a2c)2+2ealcazc+61} Zf P >P° 2P (mln(Q ’K))
7 ={ min(QC, K) if P (min(QC, K)) > PS > P (min(Q°, K))

* : P*(min ¢ K))—P%)(1—as . 4 . -9
1,8 = mln(QC, K) + 2[(1)1(1(115)2-(3)2(ag)))2+2e(3igags+c)1] ¢ (mm(Q07 K))> PPz P (E)
5

K if P (K)> PS.

For & € O?, the unique optimal processing decision z* is characterized by

0 if PS>P°
. (1—w—as)(P°—P%) ., 0 s 5l Ao
Zlvc - 2[b1(a?)2+b2(a20)2+2ea10a20+c1} Zf P >Pp Z P (Q )
Q° if P(Q°)>PS>P Q)
Z* — N _ c (ﬁ4(QC)—Ps)(1—a5) . —4 c S —5
ZLS - Q + 2[b1gaf)2+b2(a25)2+2ealsazs+c1] Z‘f P (Q ) > P = P (I(S))
- s ) — — _
5 =1(8) + EUEN-7)(1as) if P°(1(S))=P°(I(S))>PS>P'
2[W+Cl]
K if P> PS.
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For & € O3, the unique optimal processing decision z* is characterized by

0 if PS>P°
. _ (1—w—as)(P°—P%) . 50 g 5l
21,0 = 2[b1(alc)2+b2(a§)2+26af(lg+(il} ’Lf P >P°>P (I(M))
—w—as) (P2 _ps P —2 =3, .
o =10 + Sy s T if P(I(M) =P (I(M)) > PS > P (min(Q°, K))
o = b1 +bgy—2e TC1

min(Q%, K) if ﬁg(min(Qc,K)) > PS> ?G(min(QQK))

-6 . R —
25 = min(QC, K) + @I -PI0es) i T (min(QC, K)) > P9 > P

2[ SRR+

K if P> PS.

For & € O%, the unique optimal processing decision z* is characterized by

0 if PS> p°
G if P°> PS> PUII)
R e e if PMII)=PX(II) > PS > P*(min(Q°, K))
o — o[ R ]
min(Q, K) if P*(min(Q, K)) > P¥ > P°(min(Q“, K))
6 . C S
25 ¢ = min(QC, K) + E@IP-PI0es) jp p(iin(QC, K)) > PS> PT
o[ Gt te]
K if PT> PS5,

For &€ € Q°, the unique optimal processing decision z* is characterized by

0 if PS> P°
—w—as 0_pS .
Z30 = % if P’>P%>PY(Q°)
Q° if PHQ%) > P% > PYQ°)
Z* = 4/.~CY\_ pS —as .
s = Q0+ B TIUzes) yp pQO) > PS> P(IT)
s =1+ Getles) oy P = P > P2 1
b1 +bp—2e ‘1]
K if P"> PS5,

For & € O, the unique optimal processing decision z* is characterized by

0 if PS>p°
%0 = Lty if P> PS> P(min(Q°, K))
" =< min(Q%, K) if P'(min(Q¢, K)) > P% > P*(min(Q%, K))
5,5 = min(QC, K) + EnGRIOEI0es) i pl(min(Q7, K)) > P > P'(K)
K if P°(K)> PS.

C Characterization of the First-Order Condition at Stage 0

Proof of Proposition 3: Using Proposition B.1, we can characterize the expected profit E[TTI(Q%)]
for Q€ < K and Q° > K. Let f(£1,&) denote the density function of é’l = (&,&). We define
I*(QC, &) for k = 1,..,6 such that E[II(Q°)] = Y0_, E[II*(Q%,&)|€ € QF|Pr{€ € OF}. For
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example, for Q€ < K, we have IT1'(Q°,£) = Jp0 ABC(0) dF ( 155 ) + fPFO(QC)Al’C(ziC) dF(P%) +
o (< )Alc(Qc) dF (P%) +fP (Q° | AVS (2 ) dF (PY) )4 IO ALS(K) aF(PS). TH(QC, ) for
the other regions can be estabhshed in the same manner, and is omitted. For Q¢ > K, we have
02 = Q5 = (), and we obtain

JE[IQC)] _

505 _E [max (min(u, PS4 ), z)] FE[PS(1—w)] <0 (11)

by assumption. For Q¢ < K, we analyze each 2 an separately. We only provide the characterization
for € € Q! the rest can be established similarly. We obtain 2 8QC =

o0

E [max (min(u, PS4 v), l)] + /

s [PS(1 — w)} dF (P%)
P(Q°)

_|_

PHQY) . - g
/74 [5101 + €205 + A& — &) + 201K — o + as(PS — pg)
P7(Q%)

—2(Q9)[b1(a?)? + ba(a3)? + 2eaf a3 + 1 + (A)*(by + by — 2¢) + 2A[(by — e)a — (ba — €)a3]]] dF(P%)
Al(by — e)ay — (ba — e)ag]

[b1(ay)? + ba(a3)? + 2eaias + c1]

{glaf + &a5 + 261K — ¢o — asps — PI(1 — as) —t — 6 — 2AQC[(by — e)af — (by — e)aQ]” dF(P%)

(N - .
+ /*5 [Ps+t+5+A[§1§2]2QC(A)2[b1+b22@]
P (K)

PY(K) o
+ / {PS +t4+ 6+ Al — & —2Q° (A)?[by + by — 2¢] — 2AK|[(by — e)ay — (by — e)az]} dF(P%)
0
To establish the concavity of E[II(QY)], we obtain %&%S)] =50 fm anz E)f(fl’ £5)dE dEs.
From (11), we have %&%j)] = 0; hence E[II(Q®)] is concave for Q© > K. For Q¢ < K, for con-
cavity, it is sufficient to prove that % <0 for k=1,..,6. For ée Q', we obtain % =

PH(Q)
/7 —2[b1(a?)? + ba(a)? + 2eafa3 + 1 + (A)%(by + ba — 2¢) + 2A[(by — €)al — (b2 — €)a5]] dF(P®)
P(QO)

LG (biba — €2)(af + a$)? + (by + by — 2€)c o [P ~
+ — [2(A)2 22 1 To Ltz l}dFPS—i—/ —2(A)%(by+by—2e)dF(P%) < 0.
/135(K) [ (2) bi(a7)? + ba(a3)? + 2eajas + c1 (P7) 0 (A)(br+bo=2¢)d P (P7)

The other regions can be established in the same manner, and the proof is omitted. Combining all

0%, we have 62?([57(0%20)] < 0 for Q¢ < K; hence E[II(QY)] is also concave for Q¢ < K. It is easy to

establish that E[TI(Q%)] is kinked at Q¢ = K. Therefore it is not differentiable at Q¢ = K. It is

easy to establish that %‘gc)] > %@C” ot Therefore E[TI(Q)] is globally concave.

K-
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By using the definitions of P('), ?(') and zE".), for Q¢ < K, we obtain

OE[II(Q)]

aq° = —-E {max (mln(u PS4+ v) ﬂ (12)
+ E[(1-w)PS+(1-w—as)(P(QF) - ps)+|56912]Pr{56912}
+ E[(1—w)P%+ (1 —w—as)(P(Q°) — P)T|€ € Qa4 Pr {56934}
+ E[(I—W)PS—I—(I—W—as)( 1( ) ps)ﬂéGQSG]PT{EGQ%}
PYQY) ~ )
- E /O [(ﬁ4(QC) - P51 - as)} dF (P%)
7( c) *( )
+/Pj(lj 2AN(25 5 — Q¥)dF(P®) + /OP 3 2AL(K — Q°)dF(P%)|& € Q| Pr {5 € Ql}
PYQY) . _ i )
- E /psu(s» [(P4(QC) - P91 - as)] dF (P%)
e (1(5))
+/P1:(ch 20h(2 5 — Q)AF (P?) +/0 ’ 2AK(1(S) — QF)dF(P%)|& € Qu| Pr {g c QQ}
PS(QY) N L )
-0 /0 [(Pﬁ(Qc) — P71 O‘S)} dF(P®)|& € Qa4 | Pr {5 € Q34}
PHQY) ~ L )
- E [/0 [(P'(Q7) = P)(1 - as)| dF (P)| & € Q6| Pr{& e Qs

where h = (by —e)a; — (by — e)a5. From (11), we have %@C)] <0 for Q° > K; hence Q" < K.

Since E[IT(Q®)] is concave function, Q¢" = 0 if 8E[gc(2% ) lo+ <0. Q" = K if &E(g{é@g ) |- > 0.
Otherwise QC* is the solution to the first order condition as depicted in (12).The equivalence between
(12) and the optimality condition in (4) can be obtained after standardizing PS as g + zog, and

using the identities of the standard normal distribution. m

D Proofs for the “Window Contracts” Model
Proof of Proposition 4: We have V(Q%) = 216:1 Eg []Elss [H%QQE, ps)} ‘f € Ql] Pr{€ e Ql}.
We define G(I,u) = E {max (min(u, PS4 ), l)} . For a given Q% we can separate V (Q%) as follows:

6
V(QF) = ~G(Luw)Q° + us(1 - w)Q7 + > Bg [Bps [o(Q7,&,P9)]|Ec ] Prige 0} (13)

1=1
where the first term is the expected contract procurement cost, the second term is the expected rev-

enues from spot sales, and the remaining terms denote the additional expected profit from processing
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over spot sale. For Q° < K, we have in Q' region, Eps[IIg] = [p0 [—c1K?] dF(P%)
50
+ /Pl(QC) [—e1 K%+
(€107 + &a5 + A& — &) + 201K — co — asps — P5(1— ¢ — as)]?

dF(P%)
4[b1(a7)? + ba(a5)? + 2eafas +c1 + (A ) (b1 + by — 2¢) + 2A[(by — €)a; — (by — e)a5]]

Q) 5
+ L [_PS(1 —w)QY — 1 K? + Q6107 4 &205 + A(E1 — &) 4 2e1 K — ¢o + as(PS — ug)]
P(QC)

—(Q9)?[br(a?)? + b2(a3)? + 2eaTa3 + 1 + (A)? (b1 + bz — 2¢) + 2A[(by — e)a; — (b2 — €)a3]] AF (P¥)
PYQ%) o N
s [T [P —wQ0 QO 1+ 6) — e+ QAT — 6] — QAP + 12— 2]
P°(K)
[§1a1 + &a5 4+ 261K — ¢g — asps — PS(1 — as) —t — 6 — 2AQC[(by — e)a? — (by — e)a5])?
Alb1(a?)? + ba(a3)? + 2eai a3 + c1]

dF(P%)

P (K) . .
+ / [~ P5(1 = w)QC + QE(PS + 1+ 6) + QUAEr — &] — (Q7)2(A)[b + ba — 2¢]
0
K[&1ay 4 &a5 — o — asps — PS(1 — as) —t — 6 — 2AQ%[(by — e)ai — (by — €)a3]]

—K?[bi(a7)? + ba(a5)? + 2eat a5]| dF(PF).

Eps [H%_)] for the other € regions can be characterized in a similar fashion. By using the normal-

ity assumption of P°, we obtain G(l,u) = [u—i—as (L (w) —L (w)ﬂ where L(z) =

os gs

2®(z) + ¢(z) is the standard normal loss function, and ®(.) and ¢(.) is cdf and pdf of standard

. . . . . / _ .G _
normal random variable, respectively. Using the identity ¢ (z) = —z¢(z), we obtain Pes— =
o (s ) — o (M= ). Tt follows that 250 > (<)0 if g + v < 552 (s +v > 552); and
G (1,u)

_ . _ l4u _ _
o =0if us+v="F*orl=wuorl— —oo,u — 0.

We now analyze the effect of og on the expected value from processing over spot sale. We have

26: Eg [Eps [H%(QC,E, ps)} ‘ée Qz} Pri€ e} =Epe 26: [Hl (Q°, &, PS) ‘5 c Ql} Pri€ e 0}
=1 =1

Let E 55 [¥(P%)] denote the right-hand side term. We use the following result from Miiller (2001):

~g =S
Lemma D.1 Let P° (P" ) to have a normal distribution with mean g (1g) and standard deviation

os (as). If ps = pg and o5 < 0, then, PS < ES in the convex order, i.e. E[f(P%)] < E[f(ES)]

for any convex function f.

For convexity of W(P%) in P, it is sufficient to show that each IIL is a convex function of P*. We

will only provide the proof for Q' region, i.e. II§. The same result for the other regions can be
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proven in a similar fashion. We obtain

0 if PSe[P’ o0)
1 (as+w—1)ELEDip ps e [P(QC), P
oIl ' _ —
ope = | (as+w-1)Q° it PS e [P'Q°),P'(Q) (14)
Q7 — (1 —as) D it PS e [P'(K).P'(Q7))
wQC — (1 — as)K if PSel0,P’(K))
where f1, hq, f2, ho are given by
f(PY) = &ai 4 &as + A6 — &) + 20K —cg — asps — PS(1 —w — as) (15)
hi = bi(a})? +by(a5)? 4 2eafas + 1 + A%(by + by — 2e) + 2A[(b1 — e)ay — (by — €)a5]
f2(PS) = &a7 + &a5 + 20K —cg — asps — PI(1 —as) —t — 6 — 2AQ° (b1 — e)a; — (by — €)a5]
hy = by(ad)? +by(a3)? + 2eafas + c1.

From (14), it can be easily established that II is convexly decreasing in P° by using g L=

2 - 2
% > 0, ad% = (15}?25) > 0 and the fact that I is a smooth function of P?, i.e. left-hand

side and right-hand side derivative at boundaries in (14) are equal. This concludes the proof. ®

Proof of Proposition 5: The correlation parameter « only affects the expected value of processing

_ 1
over spot sale in (13). For Q! region, we obtain GIE%OEH@] =

P’ B S B PQY) 5
[ [s(P* — us) f;(}i )] dF(P®) +/ [s(P* — pg)QC] dF (P%) (16)

PH(Q%)

P*(QC)

?4((20) DS fQ([}S) D P DS D
o, BT P an (P [T P K] ar (P

S S
where f1,hq, fo, ho are given in (15). Observe that fléf; ) = 21 o % = 27 5. Thus, using

Proposition B.1, (16) can be written as Eps {Z*(ISS)S(]BS - MS)} where Z* is the random vari-

able that denotes the optimal processing decision. Since P is normally distributed, we have
Ess [Z* (P%)s(P® — us)} = sosE [Z*(us + z0g)z] where the second expectation is taken over the
standard normal random variable. As follows from Stein’s Lemma, for a differentiable function g
and a standard normal random variable z, we have E[g(z)z] = E[g (z)] (see for example, Rubinstein
(1976)). By using this identity, we obtain
P’ PHQ%)
(1 —w— . —(1— .
E[Z* (s + 205)2] = / U =w=as) pps) +/ —0=9%) sy < o
ﬁl(QC) 2h1 FS(K) 2h2

as a < 177‘“ The desired result follows as this argument also holds for the other Q() regions. m
Proof of Proposition 6: As can be observed from (13), the comparison of V(Q®) with window

contract and forward contract reduces to the comparison of the expected contract procurement cost

G(l,u). We define H(F) = G(F — 7,F + 1) — F as the cost differential between the window and
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forward contract for 7 < F. We obtain g—% = (f*%;’*“s) — ¢ (ﬂ%;f”s) < 0. By using
d(2) = ¢(—2) and ®(z2) = 1 — ®(—=2) for the standard normal distribution, it is easy to establish
that H(us + v) = 0. Therefore, if F' > ug +v (F < pg + v), the expected cost of window contract
is higher (lower) than the forward contract. As follows from (12), the type of the contract only
affects the expected marginal procurement cost G(I,u) of C-input in the optimality condition. Since
V(Q°) is a concave function of QC, it follows that Q" is lower (higher) with the window contract
if > pus+v (F < ps+v). Itis easy to establish that the expected spot procurement at the

optimal solution depends on the contract type only through the optimal volume of C-input, and is

decreasing in Q€”. This concludes the proof. m

E Proofs for the Analytical Statements in Table 3

We only provide the proof for the impact of p¢ and o¢ on the expected profit by using the assumption
that all the probability mass of £ is located in Q' region. The proof for the impact of og follows
from Proposition 4, and the proof for ug and p; can be obtained using a similar technique. In
each of the proofs, we will demonstrate the impact on V(Q®) for Q¢ < K. This also implies
the same effect on the expected optimal profit V*(Q€"). For notational convenience, we define
T(€) = Eps [T15(QC, €, P5)] so that V(@) = B¢ [1(§)].

Proof of p¢ effect on V(Q®) : We use the following result result from Miiller (2001):

Lemma E.1 Let £ (é} to have a bivariate normal distribution with mean p (p) and covariance

matriz X (X). If p = p, é andg have the same marginal distributions, ¥i; < X5, thené < g mn

the supermodular order, i.e. E[f(€)] < E[f(€)] for any supermodular function f.

Since we have symmetric o, it follows from Lemma E.1 that increasing p¢ leads to another bivariate
normal distribution that is preferred over é’ in the supermodular order. It is sufficient to show that

2
Y (&) is supermodular in &. To prove supermodularity, it is sufficient to show gga(g > 0. We obtain

02 (€) /PO afa§ ~ g /P4(Qc) afas ~ g
= dF(P°) + dF(P°) >0
851852 Fl(QC) 2h ( ) FS(K) 2ho ( )

where h; and hg are as defined in (15). This concludes the proof. m

Proof of o¢ effect on V(Q) : We use the following result result from Miiller (2001):

Lemma E.2 Let £ @) to have a bivariate normal distribution with mean p () and covariance
matriz 3 (X) with o¢, = 0¢, = 0¢ (0¢, = 0¢ = 0¢). If p = p, and o¢ < o¢ then € < € in the
convez order, i.e. E[f(€)] < E[f(é)] for any convex function f.

To prove the result, as defined in V(Q¢) = Eg {T(é)}, it is sufficiently show that Y(§) is jointly
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convex in €. We obtain

—0 =4, C
0?7 (&) /P afal - PR™) 4505 -
= dFPS+/ LL dF(P%) >0,
23 PlQc) 2M #) (k) 2h2 ")
—0 —4 C
927 (&) /P a§a¥ - PHRY g5as -
= dFPS+/ 22 JF(P%) >0
23] Pl 2M () (k) 2h2 ")

where hy and hy are as defined in (15) and

PY) *Y(E)  (*TON ([T . Q)
o 083 < 06:&; ) = (s4) (/Pl(QC)dF(P )> (/}35(K) dF(P”) | >0.

Hence, Y (&) is jointly convex in &. This concludes the proof. m
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