
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

6-2011

Optimizing Sensor Data Acquisition for Energy-
Efficient Smartphone-based Continuous Event
Processing
Archan MISRA
Singapore Management University, archanm@smu.edu.sg

Lipyeow LIM
University of Hawaii at Manoa

DOI: https://doi.org/10.1109/MDM.2011.76

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Software Engineering Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
MISRA, Archan and LIM, Lipyeow. Optimizing Sensor Data Acquisition for Energy-Efficient Smartphone-based Continuous Event
Processing. (2011). 2011 IEEE 12th International Conference on Mobile Data Management MDM: 6-9 June, Lulea, Sweden. 88-97.
Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/1357

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13243671?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1357&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1357&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1357&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/MDM.2011.76
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1357&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1357&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

1

Optimizing Sensor Data Acquisition for
Energy-Efficient Smartphone-based Continuous

Event Processing
Archan Misra∗, Lipyeow Lim†

∗ School of Information Systems, Singapore Management University
† Information and Computer Sciences Department, University of Hawai‘i at Mānoa

E-mail: archanm@smu.edu.sg, lipyeow@hawaii.edu

Abstract—Many pervasive applications, such as activity recog-
nition or remote wellness monitoring, utilize a personal mobile
device (aka smartphone) to perform continuous processing of
data streams acquired from locally-connected, wearable, sensors.
To ensure the continuous operation of such applications on
a battery-limited mobile device, it is essential to dramatically
reduce the energy overhead associated with the process of sensor
data acquisition and processing. To achieve this goal, this paper
introduces a technique of ‘acquisition-cost’ aware continuous
query processing, as part of the Acquisition Cost-Aware Query
Adaptation (ACQUA) framework. ACQUA replaces the current
paradigm, where the data is typically streamed (pushed) from
the sensors to the smartphone, with a pull-based asynchronous
model, where the phone retrieves appropriate blocks of sensor
data from individual sensors, only when the stream elements are
judged to be relevant to the query being processed. We describe
algorithms that dynamically optimize the sequence (for complex
stream queries with conjunctive and disjunctive predicates) in
which such sensor data streams are retrieved by the phone,
based on a combination of the communication cost and selectivity
properties of individual sensor streams. Simulation experiments
indicate that this approach can result in 70% reduction in the
energy overhead of continuous query processing, without affecting
the fidelity of the processing logic.

I. INTRODUCTION

An increasing variety of pervasive applications are being
scripted around the use of a mobile computing device (typically
called the ‘smartphone’) as a personalized gateway for ag-
gregating and processing multiple streams of sensor-generated
data. While smartphones already have several on-board sensors
(e.g., GPS, accelerometer, compass and microphone), there are
many situations where the smartphone aggregates data from a
variety of other specific external medical (e.g., ECG, EMG,
Sp02) or environmental (e.g., temperature, pollution) sensors,
using a Personal Area Network (PAN) technology, such as
BluetoothTM, IEEE 802.15.4 or even WiFi (IEEE 802.11).
This computing paradigm is broadly referred to as a “3-
tier” monitoring architecture, with the smartphone acting as a
pervasive, mobile gateway that makes the information captured
by the PAN-connected sensors available to the backend “cloud”
logic. A major role of the smartphone in this paradigm is to
perform embedded event processing on the sensor data streams
to extract appropriate individual context in near-real time,

for use in a variety of applications, ranging from automatic
activity updates for social networking applications (e.g., [2]) to
dynamic adaptation of reporting thresholds for adaptive remote
health monitoring (e.g., [3]).

Unfortunately, the energy requirements on the smartphone
(as well as the sensors) continue to bedevil the continuous
operation of such context-extraction logic — it has been well
documented that the continuous processing of even moderate-
data rate streams (such as Sp02 or GPS) can cause commercial
smartphone batteries to be depleted in as low as 4-5 hours
(e.g., see [1]). Our work thus explores an approach to reduce
the energy footprint of such continuous context-extraction ac-
tivities, primarily by reducing the volume of sensor data that
is transmitted wirelessly over the PAN interface between a
smartphone and its attached sensors, without compromising
the fidelity of the event processing logic. More specifically,
we aim to replace the “push” model of sensor data transmission,
where the sensors simply continuously transmit their samples to
the smartphone, with a “phone-controlled dynamic pull” model,
where the smartphone selectively pulls only appropriate subsets
of the sensor data streams. This new model exploits the in-
telligent programming and data filtering capabilities becoming
commonplace on many emerging wearable sensor platforms
(e.g., the SHIMMER platform [4]), whose data storage and
transmission behavior can be programmed ‘over the air’–for
example, we can not only implement a ‘step counter’ algorithm
over the accelerometer data on a SHIMMER device, but also
dynamically adjust the algorithm’s ‘amplitude threshold’ by
sending instructions over the Bluetooth or 802.15 radios.

We believe that significant improvements in the energy
efficiency of continuous pervasive “context sensing” can be
achieved by not only intelligently pushing data filtering logic to
such programmable sensor platforms, but also by dramatically
reducing the quantity of sensor data that is actually transmitted
over the sensor-phone wireless PAN interface. In particular,
we observe that the detection of a specific activity context on
the smartphone typically involves the processing of a complex
query, consisting of multiple predicates and involving multiple
independent sensors. Accordingly, we focus on a ’dynamic pull’
model, where the event processing engine on the smartphone
dynamically modifies both the order and the segments of

2

data streams that it will request from each individual sensor.
The heart of this paper describes such dynamic pull-based
algorithms for a generic query model, where the complex
query consists of a combination of disjunctive and conjunctive
predicates over ‘tumbling window’-based stream operators.

The innovations addressed in this paper are twofold:

• We develop the algorithms to implement an ’acquisition
cost’ aware event processing paradigm, where the event
engine on the smartphone dynamically optimizes the order
in which it retrieves data streams from individual phones.
The algorithms ensure that, ideally, only a small fraction
of the sensor data tuples, judged to be relevant to (partially
executed) stream queries, are actually transferred from
the sensors to the smartphone. We specifically describe
algorithms to optimize the energy overheads of such data
processing, taking into account both the wireless transfer
cost and the query selectivity properties.

• We explicitly account for and exploit the significant trans-
mission energy savings that result from the intermittent,
scheduled use of the PAN link between individual sensors
and the phone to transfer the sensor data, as opposed
to the continuous transmission of generated sensor data
streams. Qualitatively speaking, transmitting the sensor
data in batches or ‘bursts’ allows the wireless radios to
operate on a low duty cycle, and better amortizes the
overheads of wireless packet transmission. The batched
mode of data retrieval, however, introduces an interesting
trade-off between the likely relevance of the sensor data
and the energy cost of transmitting this data.

To support these innovations, we introduce a new continuous
stream processing model called ACQUA (Acquisition Cost-
Aware Query Adaptation), which first learns the selectivity
properties of different sensor streams and then utilizes such
estimated selectivity values to modify the sequence in which
the smartphone acquires data from the sensors. The principal
focus of this paper is on the second component: namely, devel-
oping the algorithms for intelligently modifying the acquisition
sequence for supporting a generic family of complex stream
processing queries. Our goal is to effectively establish the
magnitude of the energy savings that are likely to result from
this algorithmic approach, and thereby encourage the adoption
of the ACQUA framework in future smartphone systems.

The rest of the paper is organized as follows. Section II
provides a brief survey of the related and prior work and
establishes the documented trade-off between transmission en-
ergy efficiency and data ‘batch’ size for two representative
PAN radio technologies. Section III captures the key objec-
tives and issues that the ACQUA framework must consider
and describes the component-level functional architecture of
ACQUA. Section IV provides a formal enumeration of the event
query model and the operator set that we consider. Section V
details the ACQUA sequence-computation algorithms and event
processing logic, while Section VI presents simulation-based
studies to evaluate the expected performance benefits. Finally,
Section VII concludes the paper with a discussion of open
issues that we are working to address.

II. RELATED AND PRIOR WORK

The use of complex event processing of sensor data streams
on a smartphone for detecting context on a smartphone has been
previously explored in system prototypes such as Harmoni [3]
(which used such context to dynamically change the definition
of anomalous medical states) and CenceMe [2] (which applied
rich operators on audio and accelerometer sensor streams to
identify pre-defined human activities). To further reduce the en-
ergy overheads, the MediAlly prototype [8] used such inferred
context to dynamically activate the collection of data from other
external sensors. In contrast, our ACQUA framework seeks
to optimize the data transfer during the process of context
determination itself.

The eventual solution for continuous query extraction on
smartphone is likely to employ a combination of software and
hardware innovations. Recently, the LittleRock [5] prototype
has demonstrated how the use of a special low-energy copro-
cessor can result in a two order-of-magnitude decrease in the
computational energy spent in embedded processing of on-
board sensor data streams. Our ACQUA framework can be
viewed as complementary to such hardware or system-level
innovations, as we seek to additionally reduce the communica-
tion energy overheads involved in acquiring the data wirelessly
from additional external sensors. To address the challenges of
energy-efficient continuous event processing on smartphones,
the Jigsaw continuous sensing engine [6] has recently devel-
oped a pipelined stream processing architecture that adaptively
triggers different sensors at different sampling rates to meet
the context accuracy required by different applications. Our
ACQUA framework is also complementary to Jigsaw, in that
it focuses on optimizing the retrieval of stream segments from
PAN-connected external sensors, rather than on optimizing the
sensing fidelity of on-board sensors. However, while Jigsaw
considers only extrinsic sensor properties (such as its sampling
rate), ACQUA uses both the retrieved values of the sensor data
tuples, and the intermediate query evaluation results, to alter
the data retrieval and processing pipeline.

The BBQ [11] approach is among the closest to ACQUA,
in its use of a model of the selectivity characteristics of each
sensor source to optimize the data acquisition overhead. In par-
ticular, BBQ builds a multi-dimensional Gaussian probability
density function of the sensors’ likely data values, and then
uses conditional probabilities to determine, in iterative fashion,
the next sensor whose value is most likely to resolve a given
query. ACQUA differs from [11] principally in its focus on
continuous stream queries (as opposed to snapshot queries) and
in the explicit consideration of the impact of batched acquisition
of individual streams both on the wireless acquisition cost and
the selectivity properties.

Relationship between Batching and Transmission Energy.
A key element of our contribution is the explicit capture of
the effects of batched data acquisition on the communication
energy overheads associated with real wireless PAN technolo-
gies. To study this phenomena in detail, we utilize prior work
that accurately captures the key characteristics of two specific

3

wireless technologies–WiFi (IEEE 802.11) and Bluetooth. Al-
though the transmission power and energy associated with data
transfers, as well as the link bandwidth, will be unique for
each specific technology, we believe that these two widely-
used radio technologies represent two broad classes of PAN
wireless technologies. In particular, IEEE 802.11 represents a
high-power, high-data rate PAN technology, while Bluetooth
represents a low-power, low-data rate alternative.

As we will shortly see, both of these technologies have
two distinct modes–a low-power ‘idle’ mode (where the radio
lies dormant and consumes significantly lower power) and an
’active’ mode (where the radio is actually capable of engaging
in packet transmission or reception activity). In general, let Pa
be the power consumption in active mode, and Pi (Pi � Pa)
be the power consumed in the ‘idle’ mode. Also, let B be the
transmission bandwidth (bps) of the radio link, when active.
We consider the case of a generic sensor, operating under a
sampling frequency of f Hz with a sample size of S bits
(resulting in a data generation rate, R, given by R = f ∗ S).
We consider the communication energy overhead as a function
of N , the number of sensor samples that are batched by the
sensor and then transmitted in a burst to the smartphone.
Fig 2 summarizes the key parameters associated with batched
transmission in 802.11 and Bluetooth, which we now discuss.

1) IEEE 802.11: Commercial IEEE 802.11 radios can op-
erate in two states–a normal ’active’ mode (when the radio
interface receives or transmits packets) and a Power Save Mode
(PSM), where the radio periodically wakes up to check if there
any pending transmissions or receptions. The following are two
key relevant properties associated with 802.11 hardware:

• Due to the switching characteristics of the radio hardware,
there is typically a lower bound on the minimal idle time
Thidle, below which the radio cannot enter the PSM mode
(typically, this is around 100 ms) [9].

• There is a fixed, duration-independent switching energy
Eswitch spent when a radio transitions from the PSM to
the ‘active’ mode.

Accordingly, it follows that the total transmission time for the
N samples, generated over a time interval of N

f , equals N∗S
B

and the total energy Et consumed over this time interval equals:

Et =

Pi ∗ (Nf −

N∗S
B)

+Pa ∗ N∗SB + Eswitch ifNf −
N∗S
B > Thidle

Pa ∗ Nf otherwise
(1)

The second case corresponds to the situation where the ‘idle’
time for the 802.11 radio is not enough for it to switch into
the low-power PSM state. On the other hand, if the idle time is
large enough, the energy per sample progressively diminishes,
as the fixed cost of switching to a low power state is amortized
over a longer ‘idle’ time.

2) Bluetooth: Bluetooth radios typically operate in three
states: transmit, receive or sleep, each of which has a different
power consumption profile [10]. As we focus principally on

the smartphone, which primarily receives data from an external
sensor, we denote its active energy consumption Pa as the
energy spent in actively receiving data. We consider the Blue-
tooth version 2.0+ EDR and assume, for analytical tractability,
that a single sensor device attaches as a slave to the master
located on the smartphone. While the low-power mode results
in significantly low power consumption, note that there is a
latency Tswitch involved in switching from the non-associated
low-power mode to the associated-active mode. Accordingly,
any data transfer duration would consist of the total time spent
in transfer N∗S

B , plus the additional time Tswitch. Accordingly,
the total energy consumed in transmitting the sensor stream in
batches of N samples is given by:

Et = Pi∗(
N

f
−N ∗ S

B
−Tswitch)+Pa∗(

N ∗ S
B

+Tswitch) (2)

Fig. 1 plots the resulting energy overhead (energy per sam-
ple) for both IEEE 802.11 and Bluetooth (computed by using
Equations 1 and 2), as a function of the batch size N , for a
representative accelerometer sensor, with S = 192 bits/sample
and f = 100 Hz. It is clear that the choice of the batch size
N , for a given radio technology, has a significant effect on the
energy efficiency of the data acquisition process, and is thus
an important design parameter for the ACQUA framework. For
the specific accelerometer sensor considered here, the energy
overhead for 802.11-based transmissions becomes dramatically
lower when the sensor tuples are transferred in batches of 500
msecs or greater; for the Bluetooth interface, a batch duration
of 5 secs or higher is more efficient.

III. THE ACQUA FUNCTIONAL ARCHITECTURE

We now consider the key properties that the ACQUA
framework must consider, and then describe how the various
functional components of ACQUA address these key design
objectives. We first start by illustrating the basic principle of
how the acquisition energy per sensor sample (i.e., a stream data
tuple) and the selectivity characteristics of such tuples affect the
ACQUA optimization framework.

Consider a hypothetical activity/wellness tracking application
that seeks to detect an episode where an individual “walks for
10 minutes, while being exposed to an ambient temperature
(95th percentile over the 10 minute window) of greater than
80◦F, while exhibiting an AVERAGE heart rate (over a 5 minute
window) of > 80 beats/min”. Assume that this application uses
an external wrist-worn device, equipped with accelerometer
(sensor S1, sampling at 100 samples/sec), heart rate (S2,
sampling at 1 sample/sec) and temperature (S3, sampling at
1 sample/sec) sensors. We’ll address many of the precise
semantic aspects of this query later (e.g., do we use tumbling
vs. moving windows for averaging?) — for now, note that is
essentially a conjunctive query, where the context requires the
simultaneous satisfaction of three separate predicates, related
to accelerometer, HR and temperature data streams.

Assume that the probability of the accelerometer readings

4

Fig. 1. The Impact of Batched Transmissions on the Transmission Energy
Overhead per Sample. The figure plots the energy/sample for both 802.11
and Bluetooth interfaces, as a function of the batch duration, for a typical
accelerometer sensor.

IEEE 802.11 Bluetooth 2.0+EDR
Pa 947 mW 60mW
Pi 231 mW 5 mW
B 54 Mbps 1 Mbps
Eswitch 14 µJoule –
Thidle 100 ms –
Tswitch – 6 msec

Fig. 2. The Energy Overheads for IEEE 802.11g & Bluetooth Radios

Sensor Type Bits/ Channels/ Typical
sensor device sampling

channel frequency (Hz)
GPS 1408 1 1 Hz
SpO2 3000 1 3 Hz

ECG (cardiac) 12 6 256 Hz
Accelero-meter 64 3 100 Hz

Temperature 20 1 256 Hz

Fig. 3. Representative Data Rates for Some Common Sensors

indicating that the user was walking for 10 mins, denoted by
P (S1), equals 0.95; likewise, the probability of ‘95th percentile
of temp being greater than 80◦F’, P (S2), equals 0.05 and
the probability of ’AVG(HR)’ being greater than 80, P (S3),
equals 0.2. Furthermore, given the potentially different sample
sizes and transmission rates for each sensor, let us assume
that the acquisition energy costs, denoted by E(Si) are as
follows: E(S1) = 0.2 nJ/sample; E(S2) = 0.02 nJ/sample and
E(S3) = 0.01 nJ/sample.

We then observe that the choice of the best acquisition
sequence should take into account both the acquisition energy
cost and the selectivity properties. More specifically, we should
ideally retrieve the data chunk from the sensor that should
have a low acquisition cost and also a high likelihood of
helping to terminate the predicate evaluation. For the conjunc-
tive query, we note that a single ‘FALSE’ predicate implies
that the complex predicate is FALSE and that the subsequent
steps of predicate evaluation can be aborted. Accordingly, in
our formulation, we first compute the ‘normalized acquisition
cost’ (NAC) as a ratio of the acquisition cost normalized by
the ‘predicate being FALSE’ probability. Accordingly, we get
NAC(S1)=100 ∗ 0.02/0.05, NAC(S2)=5 ∗ 0.02/0.95=0.105
and NAC(S3)=10 ∗ 0.01/0.8=0.125. Based on these compu-
tations, it would follow that the best sequence of acquiring the
sensor data streams for evaluating the conjunctive query above
would be {S2, S3, S1}.

Consider instead the disjunctive query counterpart that seeks
to detect an episode where an individual was either walking
for 10 mins OR exposed to an ambient temperature (95th

percentile over the 10 minute window) of greater than 80◦F, OR
exhibited an AVERAGE heart rate (over a 5 minute window) of
> 80 beats/min”. For such a disjunctive query, the processing
can terminate as soon as there is a single ‘TRUE’ predicate.
Accordingly, in this case, the NAC should be computed as
a ratio of the acquisition cost normalized by the ‘predicate
being TRUE’ probability. Plugging in the values from before,
we have NAC(S1)=100 ∗ 0.02/0.95=2.11, NAC(S2)=5 ∗

0.02/0.05=2 and NAC(S3)=10∗0.01/0.2=0.5. Accordingly,
the best sequence of acquiring the sensor data streams is now
{S3, S2, S1}.

The above examples illustrate how the ACQUA framework
needs to take into account both the stream’s query selectivity
properties as well as the different wireless communication costs
(acquisition costs) associated with the different sensor streams.
We next describe some of the additional real-life artifacts that
the ACQUA framework must consider.

A. Functional Requirements from the ACQUA framework

• Accommodate Heterogeneity in Sensor Data Rates,
Packet Sizes and Radio Characteristics: Sensor data
streams exhibit significant heterogeneity in terms of their
sensor data rates (the number of sensor samples/sec), the
data sizes (the bytes/sample) as well as the communication
energy costs associated with their radio interfaces. As an
illustration, Fig. 3 lists the data rates and sample sizes
associated with a number of well-known medical and non-
medical sensor streams. The communication energy costs
will depend not just on the sensor type, but also on the
specific wireless radio implementation on the embedded
sensor device platforms. The ACQUA framework must
thus be capable of incorporating different sensor data
rates and wireless transmission characteristics in the query
optimization framework.

• Adapt to Dynamic Changes in Query Selectivity Prop-
erties: To apply ACQUA, it is extremely important to have
correct estimates for the query selectivity properties of
different data streams. However, we need to keep in mind
that these selectivity properties are not only individualized,
but also vary dramatically over time due to changes in an
individual’s activity. For example, the likelihood of HR
samples exceeding 80 might be very low when a person is
engaged in sedentary office activity, but will be very high
when the person is walking or working out in the gym.
Accordingly, the ACQUA framework must be capable of

5

using context to accurately predict (albeit statistically) the
selectivity characteristics of different sensor streams.

• Take into Account other Objectives Besides Energy
Minimization: Operating with a heterogeneous set of
sensors implies that energy minimization, while important,
might not be the only objective of interest to a user of
ACQUA. For example, it is possible that one of the N
sensors might have very little battery capacity–in such
a case, to extend the overall operational lifetime of the
context detection activity, it might be more prudent to
preferentially retrieve and process data from an alternative
sensor, even though the selectivity characteristics of the
alternative sensor may not be the highest.

• Support Multiple Queries and Heterogeneous Time
Window Semantics: Sensor-based context extraction is
becoming an intrinsic feature of a variety of smartphone
applications that may be executing concurrently. Different
applications may specify distinct predicates over a shared
set of sensor streams–for example, the accelerometer sen-
sor may be used to both evaluate step-counts in a wellness
monitoring application and to understand the user’s current
mode of transport in a separate social networking appli-
cation. The query predicates would differ not just in their
predicate logic, but also in the time windows over which
the stream query semantics are expressed. Accordingly,
ACQUA must support a unified application-independent
query representation framework and sequential data ac-
quisition capability that is able to optimize the evaluation
sequence across all concurrently executing stream queries.

B. The ACQUA Architecture

Fig. 4 shows the ACQUA functional architecture for support-
ing the energy-efficient, dynamically varying, sequential data
retrieval from different sensor streams. The figure describes the
logically distinct components of the ACQUA architecture — as
such, a specific implementation may implement multiple func-
tional components separately or as a single sub-system (e.g., the
SelectivityTracker component may be implemented either on
the smartphone itself or on a backend ‘cloud’ component).

The heart of the ACQUA framework are the Stream Selectiv-
ity Tracker (SST) and the Adaptive Stream Retrieval Subsystem
(ASRS) components. The SST is responsible for computing
and establishing the selectivity properties of different sensor
streams–in effect, computing the likely probability distribution
of the values of each individual stream elements. To compute
these values, ACQUA requires the SST to interface with
the embedded Stream Processing Engine (SPE) to obtain the
empirical observations of how the stream elements (individu-
ally or time-windows) satisfy different query predicates. The
ASRS component is responsible for dynamically computing
the sequence in which different (batches of) stream elements
are retrieved by the smartphone from the locally-connected
sensor. Note that the Stream Processing Engine (SPE) and the
Sensor Data Adapter are pre-existing and non-ACQUA specific
components needed to perform the basic functionality of a)

Fig. 4. Functional Component-Level Architecture of the ACQUA Framework.

performing the appropriate query execution on the incoming
data streams and b) interfacing with the sensor to retrieve the
appropriate sensor samples. The Query Specification Subsystem
is another ACQUA component that is responsible for receiving
the various query specifications (associated with multiple ap-
plications) and for compiling them into a common Predicate
Evaluation Graph. This graph is the data structure used by
the ASRS algorithms to determine the preferred sequence in
which data is pulled from individual sensor streams–the formal
model for this graph will be presented shortly (in Section IV).
To algorithmically determine the best evaluation sequence, the
ASRS also requires the knowledge of the energy per sample
profile associated with different sensor devices and radios–it
receives these specifications from the corresponding Sensor
Data Adapter. As mentioned before, the ACQUA framework
requires some degree of embedded data processing and storage
capability on each individual sensor. In particular, the sensor-
resident ACQUA components include the Data Cache, which
acts as a temporary local repository for the stream tuples
that may or may not be eventually pulled by the smartphone,
and the Selective Data Transmitter, which is responsible for
receiving requests for specific subsets of the stream tuples and
for transmitting (in batches) these requested subsets.

A fully functional ACQUA-based stream processing frame-
work will require the implementation and integration of all
these subsystems. The focus of this paper is, however, princi-
pally on the ASRS algorithms that determine the optimal data
acquisition sequence, and on understanding the likely benefits
of such selective retrieval of sensor data. Accordingly, for the
rest of this paper, we will focus on the study of the ASRS
algorithms, and implicitly assume the a-priori availability of
the a) stream selectivity statistics, b) the predicate evaluation
graph and c) the wireless radio cost models.

IV. THE STREAM-ORIENTED QUERY MODEL

We now focus on the basic ASRS algorithms for acquisition-
cost-aware query processing. We first need to mathematically
rigorously define the types of queries that we consider.

6

Query Specification and Representation. For this paper,
we consider complex stream queries that are expressed as
arbitrary conjunction or disjunction predicates over a set of
stream-oriented SQL aggregate (e.g., MAX or AVG) or user-
defined (e.g., determining the Fourier coefficients) functions,
defined over a time-window of each individual sensor stream.
Mathematically, an individual query specification Q can be
formally expressed as:

Q ::= Predicate | (Q AND Q) | (Q OR Q)
Predicate ::= AggFunc (SExp, w) CmpOp Const |

NOT Predicate
SExp ::= StreamName |

StreamExp ArithmeticOp Numeric

where AggFunction can be any SQL aggregate function or
user defined function applied over a time window (t − w, t)
of stream values (t being the current time), CmpOp can be
any comparison operator such as {>,<,=}, Const denote a
constant of any appropriate type, StreamName uniquely iden-
tifies a stream, ArithmeticOp denotes an arithmetic operator
{+,−,÷,×}, and Numeric denote a numeric constant.

All such queries are compiled into a uniform Query Tree
representation, such that the root of the query tree represents
the entire set of concurrent query predicates, an internal node is
associated with a boolean conjunction or disjunction operator.
and a leaf node is associated with a predicate. This query
tree provides us the unifying application-independent query
representation framework; hence, the specific ASRS algorithms
are defined in terms of such a query tree. Fig. 5 illustrates the
query trees for the following three example queries:

Q1: AVG(A, 5)<70 AND (MAX(B, 4)>100 OR C<3),
Q2: (AVG(A, 5)<70 AND MAX(B, 4)>100) OR

(C<3 AND Speed(D, 2) < 1.0),
Q3: (AVG(A, 5)<70 AND MAX(B, 4)>100) OR

(C<3 AND MIN(B, 7) < 80),

Query Q2 illustrates a query involving a user defined function
for computing the average speed over the last two seconds
of the values of stream D. Stream D could be displacement
samples in the x, y, z axes from an accelerometer. Query Q3
illustrates a query where stream B appears in two predicates
with different window sizes.

Evaluation Period ω. In this paper, we consider queries defined
over tumbling windows of the individual sensor data streams.
Formally, this implies the notion of a ‘time shift’ value ω(Q)
associated with a query Q, such that the query is evaluated
repeatedly at the time instants t = (ω, 2ω, 3ω, . . .). Note
that the time-shift value ω is distinct from the time windows
associated with the individual predicates and operators of the
query Q. For example, a specific query may be be defined
to perform an AV G(5) operation (i.e., an average of the last 5
seconds worth of sensor data with ω = 7; in this case, the query
would be evaluated at t = 0 over the stream tuples belonging to

the time window (−5, 0), and then again at time t = 7 over the
time window (2, 7). Fig. 6 illustrates this relationship between
the query time shift value, the predicate time windows and the
individual stream tuple-generation rates–the first three figures
illustrate different cases for the query Q1 (Fig. 5(a)), while the
fourth figure illustrates the evaluation for query Q3 (Fig. 5(c))
with ω = 5.

An important consequence of this evaluation mode is the
fact that the stream tuples needed for the evaluation of the
query at a particular time instant may or may not be distinct
from the tuples needed at a subsequent time instant. Consider
query Q3 for the evaluation schedule in Fig. 6(d). Suppose each
stream is associated with a buffer and the buffers are initially
empty. At time t = 7, suppose the evaluation of Q3 requires
the retrieval of the data elements A : (2, 7], B : (3, 7], C :
(6, 7]. Now, at time t = 12, suppose MAX(B, 4) > 100 is
evaluated first and is false; we need proceed to evaluate the
right subtree of the top OR node (in Fig. 5(c)). Note now that
the evaluation of MIN(B, 7) < 80 requires the stream tuples
B : (5, 12). However, a subset of this required set of tuples has
already been previously acquired–only the samples B : (7, 12]
need to be acquired. This example illustrates that, even with
tumbling window queries, the acquisition cost for a particular
sensor stream may be different at different evaluation instants,
depending upon the data tuples that may have been acquired
during prior event processing.

V. THE ASRS SEQUENTIAL RETRIEVAL ALGORITHM

Having formally defined the semantics of our query, we now
proceed to define the algorithm for computing the preferred data
retrieval and evaluation sequence. For purposes of simplifying
the exposition, we make the following two assumptions in this
section: a) Each unique sensor stream in the query tree is asso-
ciated with a single ‘tumbling window’ value, even though the
same window of the sensor data can appear in multiple nodes of
the query tree and be associated with multiple predicates, and
b) The unique sensor-specific ‘tumbling window’ value defines
the basic batch size in which the smartphone’s Sensor Data
Adapter retrieves data from each sensor.

Algorithm 1 defines the high-level logic of query evaluation.
Intuitively, following the approach discussed in Section III, the
algorithm first computes the lowest expected cost of evaluating
different portions of the query sub-trees, and thereby determines
(using the recursive Algorithm 2 CALCACQUISITIONCOST) the
optimal sequence for retrieving the data from the different sen-
sor streams. Subsequently, the actual query is evaluated using
the recursive Algorithm 3 EVALUATEQUERY, which essentially
follows the specified sequence to evaluate the sub-trees. As
mentioned previously, the actual retrieval of data tuples for a
given stream needs to consider the relevant tuples that have
already been retrieved (at prior instants or while processing
other parts of the query tree): Line 3 in Algorithm 3 achieves
this by adjusting the window of data tuples that are actually
retrieved from the corresponding sensor.

7

C<3MAX(B,4)>100

ORAVG(A,5)<70

AND

(a)

Speed(D,2)<1.0 AVG(A,5)<70 MAX(B,4)>100 C<3

AND AND

OR

(b)

MIN(B,7)<80AVG(A,5)<70 MAX(B,4)>100 C<3

AND AND

OR

(c)

Fig. 5. Query trees for three example queries.

AVG(A,5)

0 5 10 15 20 25
time

* * * * * * * * * *

* * * * * * * * * * * * * *

* * * ** * * * ** * * * ** * * * ** * * * ** * **C

MAX(B,4)

(a) Q1 : ω=5

AVG(A,5)

0 5 10 15 20 25
time

* * * * * * * * * *

* * * * * * * * * * * * * *

* * * ** * * * ** * * * ** * * * ** * * * ** * **C

MAX(B,4)

(b) Q1 : ω=3

C

0 5 10 15 20 25
time

* * * * * * * * * *

* * * * * * * * * * * * * *

* * * ** * * * ** * * * ** * * * ** * * * ** * **

AVG(A,5)

MAX(B,4)

(c) Q1 : ω=7

*

* * * * * * * * * * * * *MAX(B,4)

* * * ** * * * ** * * * ** * * * ** * * * ** * **C

0 5 10 15 20 25
time

* * * * * * * * * * * * * *

*

* * * * * * * * *AVG(A,5)

MIN(B,7)

(d) Q3 : ω=5

Fig. 6. Relationship between query evaluation period, predicate time windows, and stream rates. An asterisk denotes a sampled tuple of a particular stream at
a particular time. The rounded rectangles denote the sample or the time window of samples required in the evaluation at each evaluation event.

Algorithm 1 PROCESSQUERY(q, P, ω)
Input: Query tree q, probability P of each subquery evaluating to
true/false, evaluation period ω
Output: Alert Stream

1: loop
2: t← current time
3: CALCACQUISITIONCOST(q, t, P, C)
4: if EVALUATEQUERY(q, t, P, C) = true then
5: output alert tuple
6: sleep ω seconds

Algorithm 2 CALCACQUISITIONCOST(q, t, P, C)
Input: Query tree q, current time t, probability function P , data
acquisition cost function C(·)
Output: Updates cost function C(·)

1: if q is a predicate node then
2: let s be the stream that q operates on, w be the window size

of q, ts be the latest time the buffer for s was updated.
3: C(q) ← Calculate cost for acquiring the samples in time

interval (max(t−w, ts), t] for stream s using Eqn 1 or Eqn 2.
4: else
5: CALCACQUISITIONCOST(q.left, t, P, C)
6: CALCACQUISITIONCOST(q.right, t, P, C)
7: if q.op = AND then
8: C(q)← Eqn. 3
9: else

10: C(q)← Eqn. 4

Algorithm 2 CALCACQUISITIONCOST computes the acqui-
sition cost of evaluating a query subtree according to the evalu-
ation sequence determined by NAC. At a query tree node with
an AND operator, we recursively calculate the data acquisition
cost of the left and right subtrees (henceforth denoted by L
and R respectively). The NAC for L and R are then computed

using the probability of L and R evaluating to true or false.
The order of evaluation (LR or RL) is completely determined
by the NAC and we can now calculate the acquisition cost for
the current node as,

C(q) =

P (q.left)× [C(q.left) + C(q.right)]

+P (¬q.left)× C(q.left) if LR
P (q.right)× [C(q.left) + C(q.right)]

+P (¬q.right)× C(q.right) if RL
(3)

A similar analysis can be applied for a query node with an OR
operator, resulting in a acquisition cost of,

C(q) =

P (¬q.left)× [C(q.left) + C(q.right)]

+P (q.left)× C(q.left) if LR
P (¬q.right)× [C(q.left) + C(q.right)]

+P (q.right)× C(q.right) if RL
(4)

We note that the calculation is dependent on the probability
function P (·) for each node in the query tree evaluating to true
or false. These probabilities can be obtained statically from
historical executions or more dynamically by keeping counters
for the truth value of the evaluation of each query tree node.

The recursion ends when a predicate node is reached. A
predicate node is associated with a stream and the cost of
evaluating a predicate node is calculated using Eqn 1 or Eqn 2
depending on the transmission type (802.11 or Bluetooth),
assuming the current state of the buffer associated with the
stream. No actual data acquisition occurs in this computation.
The result of CALCACQUISITIONCOST is that the acquisition
cost function C(·) is now updated for each node in the query
tree based on the current snapshot of the buffers for all the
dependent streams. We are now ready to evaluate the query

8

Algorithm 3 EVALUATEQUERY(q, t, P, C)
Input: Query tree q, current time t, probability function P , data
acquisition cost function C(·)
Output: Truth value of q

1: if q is a predicate node then
2: let s be the stream that q operates on, w be the window size

of q, ts be the latest time the buffer for s was updated.
3: Acquire the samples in time interval (max(t − w, ts), t] for

stream s.
4: Update C(·) if s is used in multiple predicates
5: truthval ← evaluate predicate q
6: return truthval
7: else
8: if q.op = AND then
9: leftshortcircuits← P (¬q.left)

10: rightshortcircuits← P (¬q.right)
11: shortcircuitval← false
12: else
13: leftshortcircuits← P (q.left)
14: rightshortcircuits← P (q.right)
15: shortcircuitval← true
16: evalorder ← (q.left, q.right)
17: if C(q.left)

leftshortcircuits
> C(q.right)

rightshortcircuits
then

18: evalorder ← (q.right, q.left)
19: for all q′ ∈ evalorder do
20: truthval← EVALUATEQUERY(q′, t, P, C)
21: if truthval = shortcircuitval then
22: return truthval
23: return ¬shortcircuitval

using the updated cost function C(·) and the probabilities
function P (·) for each node in the query tree.

The actual acquisition of sensor data and the evaluation of
the predicates occur in the recursive Algorithm 3 EVALUATE-
QUERY. The base case occurs at the predicate (leaf) nodes
of the query tree. The required data tuples are retrieved from
the dependent stream if they are not already in the stream
buffer (Line 3). In queries where a particular stream is involved
in multiple predicates, a data acquisition may change the
acquisition cost of another predicate on the same stream. Line 4
updates the cost function C(·) for the query tree nodes affected
by the stream buffer update. Finally, the predicate is evaluated
and the truth value returned.

For the recursive case, EVALUATEQUERY computes the NAC
of the query node’s left and right subtrees using C(·) and P (·).
The subtree with the lower NAC is recursively evaluated first.
If the truth value of the evaluation results in a short circuit,
the other subtree need not be evaluated and hence no data is
acquired for the that subtree.

VI. PERFORMANCE EVALUATION AND RESULTS

We now describe the result of simulation-based studies to
quantify the performance gains (in terms of the reduction
in energy overheads) of our proposed ACQUA algorithms.
Our studies are conducted using a Perl-based simulator which
accepts as input both a query tree and probability distributions
on the values of individual data streams. Synthetic traces of

sensor-generated data tuples were then generated to reflect the
probability distributions and fed into the simulator, which then
applied the algorithms of Section V to compute the sequence
of data that would be actually retrieved by an ACQUA-based
implementation. Results are presented by averaging over 5 one-
hour long traces and also include the 95% confidence intervals.

To quantify our performance gains, we compared three
different evaluation algorithms:

1) Naive: The naive retrieval algorithm requires each sensor
to simply upload (in batched mode) its generated stream
tuples to the SPE. Accordingly, while this algorithm uti-
lizes batched transmission to reduce the energy overheads
associated with the use of the PAN wireless interface, it
does not exploit the selectivity properties to reduce the
amount of sensor data that is actually needed by the SPE.

2) ASRS-dynamic: The ASRS-dynamic algorithm corre-
sponds to the procedure described in Section V and
requires the dynamic modification of the acquisition cost
functions after each data retrieval and evaluation, to
account for both the stream tuples already present in
the smartphone buffer and the already-resolved (‘short-
circuited’) query subtrees.

3) ASRS-static: While this algorithm’s logic is broadly sim-
ilar to ASRS-dynamic, it computes an optimal sequence
only once (at the beginning of the simulation) based
on the selectivity characteristics and the communication
costs, and then applies the EvaluateQuery() procedure
to evaluate the query tree at successive ‘time shift’
instants. Accordingly, it does not perform the dynamic
update of NAC values, based on the dynamically evolving
state of the query processing state.

While Naive helps to quantify the performance gains expected
from our sequential acquisition strategy, ASRS-static helps us
to isolate and understand the performance gains that arise from
the dynamic consideration of the evolving query state.

Given our focus on understanding the expected benefits of
our proposed ASRS algorithms, we focus on a single, relatively-
simple but representative query:

Generate an alert if ((AV G(SP02, 5sec)<98%) AND
((SPREAD(Accel, 10sec)<2g) AND
(AV G(HR, 10sec)<75))) OR
((AV G(SPO2, 5sec)<95) AND
((SPREAD(Accel, 10sec)>4g) AND
(AV G(HR, 10sec)>100))).

Intuitively, this query generates alerts either if the user’s Sp02
values drop below 98% while the user is resting, or if the
Sp02 values drop below 95% while the individual is engaged in
vigorous activity (e.g., running). The accelerometer and Sp02
sampling rates and data sizes are adapted from Fig. 3, while
the heart rate sensor has a sampling frequency of 0.5 Hz and a
sample size of 32 bits. We experimented with both 802.11 and
Bluetooth-based wireless transmission models. The underlying
data traces are generated using the normal distribution N(µ, σ)
(with appropriate truncation to avoid underflow below 0 or

9

(a) Total Energy (Bluetooth) (b) Total Energy (WiFi)

(c) Total Bytes of Sensor Data (Bluetooth) (d) Total Bytes of Sensor Data (WiFi)

Fig. 7. Comparative Energy (Joules) and Data (bytes) Overheads, with ω = 10secs.

overflow above 100%) on each of these sensors as follows:
Sp02 as N(96, 4), HR as N(80, 40) and Accel as N(0, 10).

A. Evaluation with a Fixed Time-Shift Value for Each Stream

Figures 7(a) and 7(b) plot the total data acquisition energy
(in Joules, over the 1 hour evaluation duration) for each of
the three strategies, for the case of Bluetooth and 802.11-based
PAN technologies respectively. These results correspond to a
query with a time-shift value of ω = 10secs. It is easy to
see that our approach of sequential retrieval and evaluation of
individual sensor streams, while taking into account their re-
spective acquisition costs and selectivity characteristics, results
in significant energy savings, compared to the naive approach
where the data is pushed (albeit in batches) from each sensor.
In particular, for 802.11 based transmissions, ASRS-static and
ASRS-dynamic result in∼ 50% and∼ 70% reduction in energy
overheads compared to the Naive scheme. For Bluetooth-based
data transfers, the energy reductions are equally dramatic, with
ASRS-static and ASRS-dynamic both achieving ∼ 70% savings
in energy overheads.

The results also demonstrate the benefits of ASRS-dynamic:
by taking the dynamic state of a query and the contents of the
data buffer into account, this approach is able to further reduce
the energy overhead, compared to the static counterpart. The
gains are, however, not as dramatic for the Bluetooth interface
(even though ASRS-dynamic has significantly lower variance
than ASRS-static)–this is most likely due to the non-negligible

Tswitch overhead in Bluetooth, which implies that Bluetooth
does not provide as great an advantage for very short-sized
data transfers compared to larger batch sizes. The figures thus
reveal that the relative performance of the algorithms depend
significantly on the fine-grained features of the PAN radio
technology, implying that the ACQUA algorithms need to be
carefully tailored to the characteristics of the specific PAN
technology adopted.

Figures 7(c) and 7(d) similarly plot the total data overhead
(in bytes). While the ASRS algorithms clearly require an order-
of-magnitude less communication than the Naive counterpart,
it is interesting to note that the energy savings are not directly
proportional to the communication overheads. For example,
with Bluetooth, ASRS-dynamic requires about 50% fewer bytes
of sensor data than ASRS-static, but has only a ∼ 10% lower
energy overhead.

B. Evaluation under Varying Time-Shift Values

We also experimented with different values of the ‘time
shift’ window ω, i.e., by altering the frequency with which
our ‘tumbling window’ query is evaluated. Figure 8 shows the
energy overheads for the three algorithms for three different
values of ω = {5sec, 10sec, 20sec}, for the case of IEEE
802.11-based sensor data transfers; ω = 3 implies an overlap
of time windows of successive evaluation instants. (Results for
Bluetooth-based transfers are qualitatively similar and omitted
due to space constraints.) It is interesting to observe that

10

Fig. 8. Comparative Energy Overheads, under varying ω values, for 802.11-
based Data Transfers

the relative gains are fairly independent of ω. In particular,
when ω = 20, there is no overlap between the evaluation
window and the ‘time shift’ values; accordingly, the evaluation
at a subsequent instant always starts with an empty buffer of
data tuples. Nonetheless, the ASRS-dynamic algorithm is able
to outperform the static variant, by better adapting its data
acquisition sequence to take account of the intermediate query
evaluations state (i.e., by eliminating data acquisition for those
sub-trees that have already been ‘short-circuited’).

VII. CONCLUSION AND FUTURE WORK

In this paper, we have motivated the ACQUA framework
for energy-efficient continuous evaluation of complex queries
over sensor-generated data on a smartphone. The key to the
ACQUA framework is the sequential retrieval of subsets of data
tuples from each individual stream, with the preferred sequence
being determined by considering both the query selectivity
properties of the individual data stream and the sensor-specific
energy overheads incurred by the sensor in transmitting the data
over a PAN wireless network to the smartphone. We described
two algorithms that both consider in detail the transmission
costs arising from batched transmission of sensor data tuples–
while ASRS-static determines an optimal retrieval sequence
once when the query is submitted for execution, ASRS-dynamic
re-evaluates the optimal retrieval sequence at each evaluation
instant, taking into consideration the state of both the stream
buffers and the partially evaluated query. Our results on syn-
thetic traces indicate that the ACQUA approach can result
in ∼ 70% reduction in the energy overheads of continuous
query processing, without any degradation in the fidelity of the
processing logic.

We conclude by emphasizing that the overall ACQUA effort
is very much work in progress and encompasses two orthogonal
threads. The algorithms presented in this paper assume the
availability of the selectivity statistics for each sensor stream.
At a systems level, we are working to implement the ACQUA
components on an Android-based smartphone platform, with
special focus on online-learning algorithms to estimate the
selectivity statistics from the history of sensor-generated data.
Subsequently, user studies with real-life sensor traces will

be used to quantify the performance gains of the ACQUA
framework using real-life, instead of currently-used syntheti-
cally generated, sensor traces. On an algorithmic level, we are
working to define the algorithms to include additional query
semantics, such as the support of sliding window queries and
on techniques to further improve the dynamic computation of
the cost functions, given the characteristics of the data tuples
already available in the system buffer (for example, while the
probability of AV G(S5, 10) > 40 may be generically 0.8, the
probability at a specific instant should be different if 8 out of
10 samples in that evaluation window are already buffered and
are all observed to be less than 10).

REFERENCES

[1] S. Gaonkar, J. Li, R. Roy Choudhury, L. Cox and A. Schmidt, Micro-
Blog: Sharing and Querying Content through Mobile Phones and Social
Participation, Proceedings of ACM Mobisys’08, June 2008.

[2] E. Miluzzo, Sensing Meets Mobile Social Networks: The Design, Im-
plementation and Evaluation of the CenceMe Application., Proceedings
of ACM Conference on Embedded Networked Sensor Systems (SenSys
’08), November 2008.

[3] I. Mohomed, A. Misra, M. Ebling and W. Jerome, Context-Aware
and Personalized Event Filtering for Low-Overhead Continuous Remote
Health Monitoring, IEEE WoWMoM 2008, June 2008.

[4] The SHIMMER sensor platform http://shimmer-research.com.
[5] B. Priyantha, D. Lymberopoulos and J. Liu, Enabling energy efficient

continuous sensing on mobile phones with LittleRock, Proceedings of
IPSN, April 2010.

[6] H. Lu, J. Yang, Z. Lu, N. Lane, T. Choudhury and A. Campbell, The
Jigsaw Continuous Sensing Engine for Mobile phone Applications, Pro-
ceedings of ACM Conference on Embedded Networked Sensor Systems
(SenSys ’10), November 2010.

[7] J. Liu and L. Zhong, Micro Power Management of Active 802.11
Interfaces, Proceedings of ACM Mobisys’08, June 2008.

[8] A. Roychoudhury, B. Falchuk and A.Misra, MediAlly: A Provenance-
Aware Remote Health Monitoring Middleware, 8th IEEE International
Conference on Pervasive Computing and Communications (PerCom),
March2010.

[9] F. Dogar, P. Steenkiste and D. Papagiannaki, Catnap: Exploiting High
Bandwidth Wireless Interfaces to Save Energy for Mobile Devices,
Proceedings of ACM Mobisys’10, June 2010.

[10] K. Jang, T. Lee, H.Kang and J. Park, Efficient Power Management Policy
in Bluetooth, IEICE Transactions on Communication, August 2001.

[11] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and W. Hong,
Model driven data acquisition in sensor networks, in Proceedings of
VLDB. Margan Kaufmann Publishers Inc., 2004, pp. 144155.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	6-2011

	Optimizing Sensor Data Acquisition for Energy-Efficient Smartphone-based Continuous Event Processing
	Archan MISRA
	Lipyeow LIM
	Citation

	Introduction
	Related and Prior Work
	IEEE 802.11
	Bluetooth

	The ACQUA Functional Architecture
	Functional Requirements from the ACQUA framework
	The ACQUA Architecture

	The Stream-Oriented Query Model
	The ASRS Sequential Retrieval Algorithm
	Performance Evaluation and Results
	Evaluation with a Fixed Time-Shift Value for Each Stream
	Evaluation under Varying Time-Shift Values

	Conclusion and Future Work
	References

