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Integrated Resource Allocation and Scheduling in Bidirection& Flow
Shop with Multi-Machine and COS Constraints

ZhengYi John ZHAO

Abstract—An IP (Integer Programming) Model is proposed
for integrated resource allocation and operation schedutig for a
multiple job-agents system. Each agent handles a specifichjdist
in a bi-directional flowshop. For the individual agent schediling
problem, a formulation is proposed in continuous time doman
and compared with an IP formulation in discrete time domain. Of
particular interest is the formulation of the machine utili zation
function - both in continuous time and in discrete time. Fast
heuristic methods are proposed with the relaxation of the mehine
capacity. For the integrated resource allocation and schading
problem, a Linear Programming Relaxation (LPR) approach is
applied to solve the global resource allocation and fast heistic
method is applied to solve each scheduling sub-problems. €h
proposed solution is compared experimentally with that fron the
IP solver by CPLEX.

Index Terms—Flow Shop Scheduling, Multiple Machine, Re-
source Allocation

|I. INTRODUCTION
A. Model abstraction

Hoong Chuin LAU

Shuzhi Sam GE

TABLE |
APPLICATIONS FORBIFSP MODEL
Sample| Object Pre- Trans- Post- Critical
app. to be processing | portation processing | operation
Serviced
Port Container | Un-stack | Transport| Stack from Quay
from ship to yard truck to Crane
onto truck yard by Operation
Quay Crane Yard Crane
Logis- Iltems Load deliver Unload from Yard
tics for from yard to truck to Operation
delivery to truck customer customer in the port

need to care about delivering goods from and to a servicercent
For example, in a container terminal, the jobs are dischgrgi
the containers from a vessel to yard and loading containers
from yard onto a vessel. Similarly, 3{¢-party logistics (3PL)
provider handles delivery of goods from the port to warelesus
or customers and/or reverse direction delivery to the port.

We are concerned with a system of multiple agents with ea@ﬁaractenstlc (i) makes the model different from clasasi

handling a job-list. In this paper, we deal specifically wi
setting where all job-lists are bidirectional flow shq@FSP)

under Critical Operation Sequencif@OS) constraints. This
model is useful for a variety of logistic applications, suah
container terminal operation, forward and reverse loggstind

e Single-machine flow-shop, and note that goods can be detiver

in both directions by same group of machines. Characteristi
(iv), called asMulti-Period constraint, is also different from
classical job-shop (flow-shop) problems. In (v), the presen
of COS constraints is motivated by a problem of operational

etc. TABLE | gives further details of the mapping between ogicheduling in a container terminal, where COS constranise a

model and possible applications.
More precisely, our problem has the following charactarsst

(i) Each job has at least 3 operations executed conseagytiv
(i) The operation flow may occur in either direction,i.eeth

forward flow operation and reverse flow operation;

(i) There are multiple renewable machines, and machiries

the same type are assumed to be exchangeable;

(iv) Machine availability is time-variant, i.e. an agent yna
have different number of machines in different period;
(v) There are what we call critical operation sequenci

(COS) constraints - each job has a critical operatior], =~ S . )
alermlnal for example, a forward flow job is to deliver a contai

which can only begin when the previous job’s critic
operation has been completed.

In (i), the 3 operations can be conceptually seen as prepro-

cessing, transportation(or travel) and postprocessihgratter-
istic (ii) states a common feature of logistics problemsjolvh

Part of the paper and some preliminary results have appeard@EE
conferences [13], [20].
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from the stacking or unstacking of heavy containers, whicistm
observe certain sequence. This sequence can be genetalized

eﬂriority sequence of jobs in other applications. On the obthe

and, the critical operation is usually an interface betwee
parties, and it requires the most expensive machine to tgpera
%nd hence it is particularly important to sequence them back
to-back so that the expensive machine can be fully exploited
this paper, we assume that the critical operation is eithefitst
or the last operation of each job; if the critical operatisrthie

:('grst operation, we call it &orward Flow Job and otherwise,

e call it aReverse Flow Job In the context of a container

rom the vessel to the yard, while the reverse flow is to delive
it from a yard to a vessel.
Based on the above definition of BiIFSP with multiple re-
newable machines and COS constraittte, resource allocation
problemis to allocate the multiple renewable machines to con-
tending job agents, whilschedulingis to generate a schedule
for each job agent with the allocated resources. Given the jo
release time, due time, and tardiness penalty (or prioribhg
objective is to minimize the weighted sum of makespan cost
and tardiness penalty. The system overview and data flow is
shown in Fig. 1.

One sample instance of our problem is described in TABLE
Il. In this example, there are 4 job lists and 3 types of ma-
chines. The operation on the&! machine has strict sequencing



TABLE Il
SAMPLE PROBLEM WITH 3 MACHINES, 4 AGENTS, EACH WITH 10JOBS

Job List Information Per Agent { Job Amount; Release Time; Due Time;

Job-list of 4 agents

MakespanPrice; TardinessPenaIty;_ CanceIP_enalty; Qperations{ Operation Job [pij7 sz}
Amount PerJob; Duration; MachineRequirement} } Id Proc-1 Proc-2 Proc-3 Note
I Y Agent-1/2/3/4
/ F-1 @I | [B/7973, 2] 2. 3] Forward
[ F-2 1, 1] [9/8/9/10, 2] 2, 3] Forward
[ F-3 1, 1] [5/71713, 2] [2, 3] Forward
. ‘ Decomposed F-4 [1, 1] [9/8/7/10, 2] [2, 3] Forward
Total Problem-1: M\h/\ Problem-2- F5 LI | 577973, 2] [2.3] | Forward
vachine || |Resource Allocation | Quora pe, Dispatching and R-1 [2,3] | [B/77973, 2] 11, 1] Reverse
and PreScheduling Agent Scheduling R2 [2,3] | [9/8/9710, 2] L, 1 Reverse
; R-3 [2, 3] [5/71913, 2] [1, 1] Reverse
Adaptation
/ | R-4 2, 3] | [978/9710, 2] T, 1] Reverse
- }) {T R-5 2. 3] [5/77973, 2] T, 1] Reverse
Machine Residue ' Job information of 4 agents
other systems hine f ; Agent-Id Start Due Makespan Late
chineé irom other Time Time Price Penalty
systems il 8:00 10:00 100 500
2 8:00 10:00 200 600
Fig. 1. System Overview: Resource Allocation and Schedulor Multiple 3 9:00 11:00 100 500
Agents 4 9:00 12:00 250 800
Machine capacity of resource pool
Machine type 274 transportation 374 post-processing
constraint, so the** machine is regarded as the agent. The [ Capacity 16 8
274 type of machine is for transportation and th% type of Work Toad statistics for 4 agents

machine is for postprocessing in forward jobs and prepicgs

in reverse jobs. They are resources to be shared by all the job

agents. The capacity for t#¢ machine is 16 and that for thetime. In practice, an “interface” time should be consideiiesl

37? machine is 8. The start time, due time of each job i9@D in the container terminal operation, the prime mover mustear

information of 4 agentgart of TABLE II, together with the at least slightly earlier than the crane carries the coataia

tardiness penaltji’; and makespan price fact®r,,,, which are the lane. And in this model, the return time is not explicitly

metrics to denote the importance of job-lists. The jotslist considered. The model simply assume that ong&%amachine

agents 1/ 2 /3 and 4 are shown in TABLE Il. Every job-list hafinished its current job, it will be available immediatelyrfo

5 forward jobs followed by 5 reverse jobs. It is clear from ththe next job. However, it can be considered implicitly by

job-list that a forward job takes operations on machines*df enlarge the2"? machine operation time to twice as much,

274 and 374 types sequentially while a reverse job’s operatiothen it will cover the return time. Hence, a complete model to

takes place on machings?, 2"¢ and 1% types sequentially. handle transportation related flow shop problem can be dedig
The above problem is abstracted from a real-world containgierarchically as in Fig. 1:

terminal resource management problem, where there are 4 giage-1 is a centralized problem fResource Allocation

operating quay cranes (QC, machine type 1) operating in & and PreScheduling

berth, and prime movers (PM*? machine type) and yard , Stage-2 is a decentralized problem fidachine dispatching

cranes (YC3"¢ machine type) are used to discharge containers gnq Scheduling Adaptation

(first 5 jobs) and load containers (next 5 jobs) between tksele

and the yard. This can also be a case for a 3PL workflow procesa_he above model can be viewed as an extension to Bish's
involving loading, delivery and unloading.

The objective function is to minimize the sum of the weightegIOOIel [6], which considers only the vehicle dispatch prable

: y assuming infinite supply of yard cranes. It is similar with
B s Do, RESSON obl-2 (52 [L1] ot 5 et i e of
L " . hé objective functions, which are to minimize the number of
completion time of the last critical operation and the ollestart . . - A
. . . . ' internal trucks in the yard and to maximize the utilizatioh o
time of the job-list. Tardiness is defined asx{0, Th\ys — D}, .
whereD is the due time of the job-list. Note that this definitior{nternal trucks.
differs marginally from the literature [15]. For the comtar
terminal case, once the last container is loaded onto th® shB. Literature review
the ship could leave, while the last container dischargethfr
the ship may still be in the midst of transportation in thedyar
The solution is presented later at Section VII-A.
We like to comment that the resource allocation and schedulel) heuristics or branch-and-bound [1] [2] [3] [7] [8] and 17
is a pre-plan and serves as a guideline for real-time dibpsttc ~ 2) Lagrangian relaxation or auction approach [12] [13];
does not consider dynamics such as machine breaking down, o) genetic algorithms [4] [9] [14] [16].
operation time variation due to traffic congestion. Neittlees As for the Multi-Machine, Multi-Period problem studied ihi$
it consider such cases as more resource available from otpaper, we contribute in the exact formulation and fast Is¢iari
agents, more agents with job-lists joining the system il remethod benchmarked with standard solvers. Given that job

This paper will focus on th&tage-1

Solutions for the classical job shop (flow shop) problems may
be classified into 3 categories:



TABLE Il

NOTATION FORJOBS, PROCESSESVIACHINES AND CONSTRAINTS Before formulation, one has to estimate a proper time unit
Ur € R, with which the continuous time domain is discretized
Symbol | Description to T € N time slots. Different from scheduling problem is
Notation for Jobs and Processes that, this total time period/T" must hold all the operation
L %zg: nﬂmg:: g; fgbélrﬁés time of L job-lists. It is from the earliest starting time to the
i Total number of jobs in job-list latest c0r~npllet|on t|me. There is a partition of total timeikon
le{1,2,.. L} {1,2,..,T} into F time frames{7; : 1 < f < F'}, such that
F Total time frames U?ZITf ={1,2,...,T} andT;1 N Ty2 = ¢,Vf1 # f2.
(total number of time period) We list scheduling problem formulation both in discrete
o Total number of operations for job time domain and in continuous time domain. The comparison
, in job-list? __ _ is for readers’ clearly understanding the actual meaning of
Dij il::lr(j):t?jissltn? time of job operation; the constraints, which is useful for the proposition. Ndtatt
ic{1,...,N'}Yandj € {1,..., 0} the integrated formulation for. resource aIIocat|on. prables
D Due time of job-list] actually based on and very similar to the schquhng pr_oblem
yod Release time of job-list except that machine quotd, 7, becomes a decision variable
W} Delay penalty of job list here. The formulation in continuous time domain could also
WL Makespan price per time of job ligt be done similarly, but here we only focus on the discrete
Notation for Machines time domain, which is actually implemented in the final sim-
K Total number of machine types ulation in our experiments. Operational precedence caimstr
k Machine type indexk € {1, ..., K'} is represented byoprecr, Where equality means that there

M, (t) | Machine utilization function in continuous timg
Eachk indicates a specific machine type

T Total time slot in discrete time formulation
M Machine utilization function in discrete time
Eachk indicates a specific machine type
Eacht indicates a positive time slot
ke{l,.,K}te{l1,2,.,T}

is no-wait between consecutive operations. Machine cgpaci
constraint is represented by inequaljtyf ac 4ap. COS constraint
is represented by inequality-os.

A. Decision variables

T; Partition of total time slots intd” periods In discrete time domairt, € {1,2,...,7} is used to represent
1<f<F each time slot. A binary decision variable Jééjt for job-list
Cy, 14 Capacity of maching: at time frame7; agentl, I € {1,2,...,L}.
Cir, maximum capacity constraints of _ o
machine typek in time frame7; 1 if agent/'s operationj in job i starts
for all agents Yl by time ¢ inclusively:
M Mapping from jobi and operatiory gt 0 if agentl’s operation;j in job i
to machine type has not yet started time at
Decision Variable
Xt Discrete decision variable for Machine quota allocated to job-listfor each typek at time
it" job, j*" operation at time slot frame7;.
T Start time of operationy in job ¢ : '
Ty Completion time of operatios in job Crr, €N le{l,2,., L} ke {l,2,.. . K}, fe{l,2,.. . F}
Tys Makespan

completion time of last critical operation

B. Decision parameters
« Partition of total time horizon{1,2,...,T} into F time

scheduling is hard computationally, it is even harder to-con ~rames,{7; : 1 < f < F7}, all the agents observe the
sider resource allocation and operational schedulingljo[B]. same time partition; .

Almost no literature gives an integrated model. By pamiig ~ * Pijo! € 11,2, L} € {1,2,.., N}, j € {1,2,..., 03}
machine resources to Multi-Period (each has fixed number of Prlocessmg time of operatignin job 7 for job-list /;
time-slots pre-defined as problem input), this paper gives a * 2! € {1,2,...,L}: Due time of job-list/;

integrated model, based on Pritsker's O-1 formulation [18] ~ * Wg: Delay penalty of job-list; o
« W! : Makespan price per time for job-ligf

. C,i”Tf: Maximum capacity constraints of machine type
[l. RESOURCEALLOCATION PROBLEM FORMULATION- in time frame7;
CENTRALIZED APPROACHINTEGER

PROGRAMMING(RESALLOC-IP) C. Integrated minimization model in discrete time domain

TABLE IIl gives the notations in this paper. There are The model is to minimize the sum of the weighted makespan
multiple job-listsi € {1,2,..., L}, and all of them are sharingcost and tardiness penalty (15) under the constrain(6),
the same pool of resources. Assume each job-list is repexber(17), (18), (19), (20), (21), (22), (23), (23)
by an agent. And each job list has its own start time, due time,Constraints{ (16), (17), (18), (19)} are just extended from
delay penalty, and makespan price. The problem is to abboc#hat in scheduling problem to a system with multiple job @gen
resources to each agent and then schedule each job-listheithConstraint (20) states that" job-list's 1°* job’s 1°* operation
allocated resources. cannot start until the job-list is released. Constraint) (&htes



ScheGen-IP:minimize » " Wi (1 = Xnon.) + > Wa(l = Xnon.1) 1)
t t>D*PN,oN
subject t0: X — X, 141 <O, Vi, gt € {1,2,..,T —1}. 2)
_ Xigt — Xij—1,t—p; ;1 it t>pij1 _ . )
fopPrECE = { Xi i it < pro s = 0,Vi,j €{2,...,0:}. (3)
if ¢ > pi; Xij —Xi,-’,i,.
guacar(X)= > 9§ tggz_; g(ij:f it=pi) }—Ok,ff < OVte Ty Vk e {1,2,.., K} )
i,jimg;=k
Xijr o — Xi1,47 Dt ) if t>pgi- 1,55 1}
_ 2J50 Ji—1 i=1,57 Ji—1 < ;.
gcos { Xopo < Py ) } < 0,Vi (5)
X0 € {0,1} Vi, j,t € {1,2,..,T}. (6)
minimize WmTnms + Wamax{0, T;s — D} @)
subject to: fprEEM = Tis Te + pij 0,Vi,j. (8)
foprece =T, ;1 —T;; = 0,Vi,j>2. (9)
guacap(t) = Mx(t) — Crr;, < 0OVteTpke{l,2,., K} (10)
gcos = T = iil’jal < 0,vie{l,2,...,N—1} (12)
Ti,j?* -Tvus < 0,Vi (12)
T > 0 (13)
S > 0 (14)
L
ResAlloc-IP: minimizez W) - Z (1= XNoont) + Wi - Z (1= XN.on.t) (15)
1>1 t>Dl—pl, t
SON
subject t0: X}, — X! 41 <0, Vi,i,j,t € {1,2,...,T —1}. (16)
— X! if ¢>pl,_ ..
¢ = pht T I LtpL Pt = 0,Y,i,j€{2,..,0i}. 17
fOPRECE { th?’ |f tSpé’jfl } ) P2} { ) 70} ( )
l if > pi; (th X iepi) I
X) = : i i wit=pij) Lot < o0Vl,teT;Vke{l,2 . K} (18
gmacap(X) ‘ Z k{ if Spﬁj Xm kT S ! { }(18)
i,j:my =k
le t thl i t—pr 4w if ¢ >pli71 j*
glCOS _ l] Jio1tTPLi-1,5Y ) . l{ J7 1} < 0,Vi,l. (19)
XZ] ot |ft§p{171]* 1}
X, = OV (20)
Lr o= LVLijg (21)
L
Y Ciz, < il VTpk (22)
1>1
X1 €{0,1} Vi,i,j,t € {1,2,....,T}. (23)
Ciz, €N, vk, Ty (24)

that all jobs must be finished at the end. Constraint (22pstatn continuous time domain, the decision variables are just
the sum of machine quotas by all job-lists should be with th(7}%, 77 : 4,j} and Ths. Although the formulation cannot
capacity limit. This constraint links all. scheduling problems be solved by any available solvers, a feasible solution can
together. So by relaxing this constraints, the problemad@ be given by the heuristics. Especially, the construction of
decentralized. machine utilization is useful in decentralized approacsj ftb
solve the resource allocation problems when different &gen
have different time slot unitdMachine Capacityconstraint is

represented by Inequality (10) with tlefunction.

Z/ (t—1T5) —o(t—1T)) dt

m”‘_k}

II. COMPARISON WITHCONTINUOUS TIME DOMAIN
FORMULATION

o T35 start time of operatior in job i;
135;: completion time of operatiopi in job ;
« Tys, Makespan: completion time of last critical operationwhere in continuous time domaine R, §(¢t —

T) is a positive



infinite pulse at time point defined by paramefér N. For normal job shop problems sometimes with redundant
5(t—T) = 0 Vi€ (=00, T)U(T,00) machines or operations, one has to codnf, _, 1 for each

e9) ift=T . .
And the energy or area of the functidt — 7) with axist is "achine typés. There are<12 2y =k 1) = (Zmu:k 2) time
unit step up at time point — T. points mapping to either 1 or -1.

. 1 ift>T, Next, we form a mapping matrix of 2 by for flow shop
[l ot =T)dt = { 0 ift<T problem, (or 2 by(Zmij:k 2) in general job shop problem)

The above function is not continuous in nature, which makgg sequencing all cell matrices together.

the machine utilization function still theoretically urhsed To=| Tpe() Tpe(2) -+ TEE(N) | (26)
yet. However, a look-up table based method will be proposed
later to implement the above machine utilization functitren Note that7,, is ordered by job and operation. The lookup table
scheduling problem can be solved by the heuristic methods.should be sorted by time, which is simply done by sorting
It is clear thatgy;acap(t) in continuous time formulation the matrix sequence in ascending order of the first row. Each
is replaced with gyracap(X) in discrete time domain. €lement of the second row will follow the original mapping
From ( 27) to (30), we can see that a set of schedulifement in the first row. The following pseudo-code instiarct
{(T{}vnej”i =1,2,...,N;j=1,2, ._.,Oi} will be the param- will formulate this sorting process:

eter of functiongyracap(t), while in discrete time d(3ma|n [T,g””d,lndex] — sort(Tu(1,:)) 27)

{Xijt c{0,1}i=1,2,..,N:j = 1,2, .05t =1,2,..., T . -
. . . . . T, = T (28)
with constraints by (2) is corresponding to a set of scheduli ol
Critical Operation Sequencings formulated by Inequality 7y(2,0) = Ti(2, Index) (29)
(11), notingj; is a critical operation for each job and it hasrpan
strict precedence dependency among jobs. ’
Mi(t)=" ) T"2.) (30)
IV. | MPLEMENTATION OF MACHINE UTILIZATION T (1,5)<t

FUNCTION Hence, (25) to (30) give the complete implementation of ma-

Itis a key issue to construct the machine utilization fuoreti chine utilization function in continuous time domain. Far-o
both in discrete time and in continuous time, because thige programming where numerical error might happens for

function will be used in heuristic methods. improper rounding, an infinitesimal valuecould be added in
(25), which will be replace by (31).
A. Implementation in continuous time domain — TS+ T, '
The above formulation makes use of #(¢) function, which ko= 1 "\ -1 '
is only available in close form formulas. It is equivalentthe 1<i<N,1<j<o;andm;; =k (31)
following window functions.
Mi(t) = Z wi; (t) B. Implementation of machine utilization function in deter
Mok time domain
0 if ¢t <T5 Given a set of binary variabléX;;; € {0,1} : 1 < i <
wi(t) = 1 Ty <t<Tj N,1 < j <o;,1 <t <T} under the constraints by (2). The
0 if ¢+> TS ' machine utilization function could be directly construttey
the first part of (4)
In terms of implementation, a look-up table is generatedmiv ift>m (X — X
. ) _ pij  (Xije ivjt—pis)
a set of scheduld (7}, T5)li = 1,...,N;j = 1,...,0;}. For kt(X) = Z { it t<pi Xije ! },

each machine typg, first form a cell matrix of 2 by 2 for each b,jimij =k
job i and operatiorj whose machine type ik. Then for each vk e {1,2,..., K} (32)

type of machine, a sef,;** is constructed which contains alljgwever, it may be more convenient and explicit to be trans-

such cell matrix related withn;; = k. formed to the expression in continuous time.
77@:{|:( le )( f{ )} :} Ty = t'—1e X =1andX;j-—1 =0 (33)
1<i<N,1<j<o; andmi; =k (25) TG = Tj+pij (34)

The above 2-by-2 matrix can also be viewed as a 2-byl#1en equationg(31), (26), (27), (28), (29), (3@)could be used
mapping, from time to pulse. The start tirii maps to a unit to C(_)nstruct _the machme utilization functiaWy (¢). Because
positive pulse 1, while the end tini; maps to a unit negative Of discrete time domain{(773,753) : i = 1,2,..,N;j =

pulse -1. 1,2,...,0;} are all positive integers, the problem of rounding
Considering all the machine typdse {1,2,..., K}, the total error does not exist here. Furthermore, the following pdoce
number of above cell matrices Elg\f 0;. could be used to build the machine utilization function.

1=

Specially for flow shop, there is; = K,V1 < i < N, and the Machine Utilization Function in Discrete Time Domain

total number of cell matrices for each type of machine is #xac 1: Initialization My (¢t) =0,k =1,2,.... K, t =1,2,..,T



2: Construct Machine Utilization Functign For ¢ = For the overall objective function, sum of the weighted

1,2,..,N;5=1,2,...,0; makespan cost and tardiness penalty for discrete time formu
i) k=m. lation is
i) Fort= 75T +1,.,T5 — 1
]\/[k(t+1):Mk(t+1)+1, WmUT'pN70N+UT' ;Wm(l_XN,oN,t)

The operation of+1 is because the discrete time slot variable
t starts from 1, while the continuous time varialil§ starts
from 0.

HUr- > Wa(l = Xnop )

t>D—PN,oN

Note that function (1) is exactly the same as

C. Solution equivalence between discrete time formuladioo <Z Win(1 — XN,ON,t)> + Z Wa(l = Xnont)
t

continuous time formulation t>D—pN,on

Proposition: The solution to Continuous Time FormulationSinceUr > 0 andW,,,Ur - pn,o, > 0 are all fixed positive pa-
is equivalent to the Discrete Time Formulation, under th@meters given in the job-list information, to minimize @ion
following conditions: (1) is equivalent to minimize function (7). [ ]

« Job-lists are bidirectional flowshop, and reverse-flow jobs V. SCHEDULING HEURISTIC METHODS BASED ON
are always following forward-flow jobs. '

« For reverse flow jobs, the critical operation is the job'd las MACWNE CAPACITY CONSTRAINT RELA).(A.HON
operation (post-processing) The basic concept of the proposed heuristic methods are

very much similar to those in [7], while ours are different in

Proof: Note the definition ofX;;; shows that . i
- following aspects:

X . —— 0 N X —=—1 « There is no-wait within consecutive tasks of a job;
7,7,t*—1 1,7,t* .. . . .
0 « Our heuristic methods are suitable for both continuous time
. s " _ _ (i.e.p;; € R") and discrete time problems (ig,; € Z);
=t -1, """ job's j* operation starts at time slét. , Ours are suitable for both constant machine capacity and

: ) _ period-dependant capacity.
According to Eqgn. (2) or non-preemptive assumption, comple

ion ti th igh's oth ian i
tion time of N job’s oy operation is A. Construction heuristic method(CH)

Ur Z (1= Xn.ox.t) +PNoon CH1: Schedule thé'” job based on the partial scheduleof 1
7 jobs, it can be scheduled under the constraii(®, (9),
i o » ] (11), (12), (13), (14)} in continuous time domain, or
Because the reverse job’s last operation is the criticataijms constraints{(1), (2),(3), (5), (6)} in discrete time domain.

and reverse-flow jobs are always following forward-flow jog o. |t Ts, < 0, shift time of all jobs{(T,7¢) : 1 < i <

makespan of such job-list is always the completion time ef th 1,1<j < K = o0;} to right by |T%,]. v

last job’s last operation, which iy job's ‘_’5\7 operation. Thecy3: Construct machine utilization functioaccording to equa-

makespan cost for discrete time formulation is tions {(31), (26), (27), (28), (29), (30} in continuous time
domain.

) CH4: While there is any violation in machine capacity,

Wm'UT (1_XN,0 7if)'i'pN.,o
<Z " " maxy My >Ck7Tf,37},k€{1,2,...,K}

t

CH4-a: Shift I** job schedule by 1 slot in discrete time
= WnUr - pyoy +Ur- ZWm(l — XNont) domain, or shift it to nearest time point in continuous
t time domain.

CH4-b: Construct machine utilization functioaccording to
equations{(31), (26), (27), (28), (29), (3Q)in con-
tinuous time domain.

Hence, thel®* term W,,Tus in continuous time domain
objective function (7) is related with the first term of dist
time domain objective function (1) by a positive facléy and

an offset,,Ur - pn.ox - CH4: loop
Similarly, we can see that the tardiness penalty for discret

time formulation is B. Repair heuristic method(RH)
RH1: Construct an initial schedule with infinite resourcpaeity
Wa-Ur Y (1= Xnon,t) (i.e. considering only the constrain{¢8), (9), (11), (12),

t>D—pN.oy (13), (14) } in continuous time domain, or constraints
= Ur- Z Wa(l = Xnont) {(?_), (3), (5), (6} in discrete time domain) and s&},s.
5D pron Initialize ¢t = 1.

RH2: whilet¢ < Tvs
The2"? termWymax{0, Thss — D} in continuous time domain RH2-a: Construct thenachine utilization functioraccording
objective function (7) is related with thg”¢ term of discrete to equations{(31), (26), (27), (28), (29), (30)in
time domain objective function (1) just by a positive factor. continuous time domain.



RH2-b: While there is any violation in machine capacity aB. Heuristic LPR-Rounding

timet, My; > Cr1;,t € 75,3k € {1,2,..., K}

1) Formulating ResAlloc-LPR) and solve it.

RH2-b1: Construct theiolation job set which contains all  2) Get the solution ofj}C 70 which should be floating real
such jobs that use machireat time¢ numbers. And round them to the nearest integer.
RH2-b2: G = Myt — Cy,15; 3) Calculate the overall machine usage By , Ci,-
RH2-b3: Within theviolation job setfind the job who is the  4) for every machine typé € {1,..., K} and every time
G*" latest in the job list; frame7; : 1< f<F
RH2-b4: Shift this job such that next time slot starts its 5) if there is any violation in machine tyge calculate this
operation using machink; excess deman#i Dy, 7, = ZlL>1 ct 7 - C]iqu_
RH2-b5: Shift all following jobs according to the constrigin a) Calculate the priority of all lthe job égents at time
{(8), (9), (11}, frame 77, according to [19].
RH2-b6: Updatelys; o _ b) find the job agent with the lowest priority and simply
RH2-b7: Construct thenachine utilization functioraccord- reduce its demand b Dy, 7
ing to equationg(31), (26), (27), (28), ( 29), ( 30) 6) end if o
} in continuous time domain. 7) loop for
RH2-b: loop 8) With the feasible allocation solutiofiC%  : 1 < k <
RH2-c: ¢t =1+ 1; K,1 < f < F}, solve the scheduling problem. It can
RH2: loop be done either by solving a smaller ScheGen-IP problem

Note that the above algorithms can also use the discrete

time domain machine utilization function (see section IV-B
Heuristic RH is usually used in Lagrangian relaxation applo
to repair the feasibility and get an upper bound estimatibn
makespan [20].

VI. RESOURCEALLOCATION SOLUTION BY LINEAR
PROGRAMMING RELAXATION

instance or by applying a fast heuristic method (which
could be either CH or RH in Section V).

The LPR-Rounding heuristic method serves to decompose the
Bverall problem into subproblems to be solved with one sohed
ing heuristic methods. If the underlying scheduling hdigis
method is CH (resp. RH), we name the overall algorithm as
LPR-Rounding-CHresp.LPR-Rounding-RM if the scheduling
heuristic method is greedy algorithm, [6], we nameLRR-

When the problem size grows larger, solving the Integer ProRounding-Greedy

lem becomes intractable, even with commercial solvershik t

section, we present an approach based on the combination of

Linear Programming Relaxatioh®R) and scheduling heuristic

VIl. EXPERIMENTAL RESULTS
We first provide a detailed comparison of our approach

(CH), which yields an average solution quality within 120%gainst existing approaches on the sample problem provided
optimality in less than 2% of run time compared with runningy Section 1. Then, we present comprehensive experimental

ResAlloc-IP model on the CPLEX solver.

A. Formulation of linear programming relaxation
The LPR formulation is simply to relax the integer consttgin

results for both the scheduling problem as well as the iateglr
resource allocation and scheduling problem. The benchimark
done both in run time and solution quality. All the experirtsen
were performed on a Pentium IV CPU with 3GHz and 1GByte

thereby resulting in a linear program. The formulation is dgemory. We chose CPLEX 10.0 for solving IP problems and

follows.
ResAlloc-LPR
minimize (15)
subject to: Inequalityi6)
Equality(17)

Inequality(18)

Inequality(19)

Equality(20)

Equality(21)

Inequality(22)

0< XL, <1,V,i,5,te{1,2,..,T}.

Ciz, > 1,Vk, Ty

MOSEK (from http://www.mosek.com) for linear problems.

A. Comparison on sample problem

On the sample problem in Section I, one period is one hour.
We compare the ResAlloc-IP model, Auction Approach [13]
(a distributed algorithm based on Lagrangian Relaxation) a
the LPR-Rounding-CH approach. The comparison is done on
run time, total cost and average makespan for 4 agents and the
result is in TABLE IV. We can see that LPR-Rounding-CH is
comparatively nearer to optimal and the run time is fastést o
all approaches.

Fig. 2 gives the operation scheduling for ResAlloc-IP solu-
tion. Lower part of TABLE IV presents the resource allocatio
for each agents for ResAlloc-IP solution.

B. Comparison of scheduling solutions, heuristic methosls v

With sparse matrix technique and interior point methods, ttfcheGen-1P
linear problem could be solved in polynomial time, i.e. much Next, we present experiments’ result to compare the

faster than the integer problerRésAlloc-1P).
The complete solution procedurkl€uristic LPR-Rounding
is described as follows:

makespan derived from the heuristic meth@t$, RH, Greedy
algorithm in [6] and ScheGen-IP model. The common setting
is as following:



TABLE IV £EE|2 Makespan
SOLUTION COMPARISON FOR SAMPLE PROBLEM INTABLE II 21223
212|2(2 o IS = © g 5
Total cost and solution time comparison E I ° ° ° ° ° °
Cost per agent Total Solution BlER|Ee © o
1 2 3 ;) cost | time (sec) E|=|=l=]- S
ResAlloc-IP 175.0 | 266.7 | 450.0 | 750.0 | 1641.7 203.4 j‘ i f i s =
Auction Approach 500.0 800.0 450.0 604.2 2354.2 69.6 i : : : i = 11 (%
Lpr-Rounding-cr | 450.0 | 266.7 | 450.0 | 729.2 | 18958 | 6.2 el S cal S
Makespan comparison CHEEEE 2882 s =
Makespan per agent (hour) Average BEEEIEES %%;i 7 5
1 2 3 Z makespan BRBESS g 4 )
ResAlloc-IP 1.8 1.3 2.4 3.0 2.1 22|18 § g
Auction Approach 25 2.5 2.4 2.4 2.4 RIBIR|S|S = =
LPR-Rounding-cH | 2.4 1.3 2.4 29 2.3 j f f S 8 R § = 5‘_,|
Solution by ResAlloc-TP olelatee g = s
Agent-1d Bid (Machine 2, Machine 3) slg=l== o 5 3 =
15 Period 274 Period 37 Period HEHBEE 2 g =
8:00 - 9:00 9:00 - 10:00 10:00-11:00 HEIRREREE = % >
1 6, 2) @, 2) ©, 0 HEEEERS S8 15}
2 ©,2 ©,2 (0,0 =TS &8° 3
3 @2 ©,2 ©,3) TElEE S =
4 (0, 0) 4,2 5, 2) zlel=(d[= 5 o
subtotal (16, 6) (15, 8) (5, 5) SIR[B|S[< 3 3
Solution by LPR-Rounding-CH i 5
Agent-Id Bid (Machine 2, Machine 3) B a
157 Period 274 Period 37d Period slelz|zl pu
8:00 - 9:00 9:00 - 10:00 10:00-11:00 SETE TN \ a
1 4,2 (.2 (1,0 HHEEI \
2 ©, 2 ©,2) ©,0) STEIETET \
3 2.2 (C) T2 ST ’
4 0, 0) 4, 2) 3, 1)
subtotal (5, 6) 5, 8) (.3 Fig. 3. Comparison on 25 job lists between heuristic mettasdsScheGen-1P
model
12 icaiog 1 "wem :
m o ———— L ———— ComputationTime (in second)
54 W28 e 2 B 7 B 2
% 5 METh2A 7T%A i Eg B2 126 ] T -8 . [ L L L — L L L |35 57
P el L = = t ‘
77%“‘23 - 2] 27’%&5 - ||6 218516
] 10 1 F3 (] 2 B B g 1 12 4 1618 S
time slot (Colour Group s process) time slot (Colour Group is process) 0 O RH
Agent-3 Agent- 4 o]
: — £ mCH
L E%BQMGQ [: L [ TX TP @m\ H =]
) ﬁz@gs ﬁu . . *@w}u = O Greedy
: e i i o © ‘
3 b i s JEx) et
] [Mﬂw i NE_—:‘ ‘ 2 wa? =) . lg 0 5 0 15 il 2% E1l k3 0
[T 2= (7 20 40 60 80 100
R I T T RH 14703 6.0083 126728 21,8516 35.8387
e o Gep ) e S o G o) cH 0.856 2.5964 58722 10.0645 15.697
Greedy 0.0166 0.021 0.026 0.0371 0.0469

Fig. 2. MIP Solution for Sample Problem — agent’'s scheduling
Fig. 4. Solution time comparison between scheduling héesisand ScheGen-

IP model
« 20 jobs are executed on 3 types of machines;
« Machine capacity i€€; = 1,0y, =4,C3 = 2;
« Critical operation is on ¢ machine type; Flow Jobswith small variance in processing time, the heuristic
« Forward jobs followed by reverse jobs; method could achieve real optimal solutions. Generallgedy
« Processing time on** machine is taken as unit, and oralgorithm performs worse whefiravel Time Variancegrows
374 machine is 2. larger.

For the travel time, it alternately switches between twaigal  Next, the run times folCH, RH and Greedy algorithm are
(short, long). The mean value is set at 12. The (short, longgmpared with more experiments. We measure run time for
pairs are selected to B¢12, 12], [10, 14], [8, 16], [6, 18], [4, solution to job-lists with{20, 40, 60, 80, 10pjobs. The mean
20]}. The reverse job percentagreverseJobRatiepans from transportation time is 12 units. The average run timeCef RH
{0, 25%, 50%, 75%, 100% Hence, a total of 25 job lists and Greedy algorithm are compared. The resultis in Fig. B/II-
are generated for experiment. Fig. 3-(b) gives the comparisFrom the figure, it is clear that the Greedy algorithm is the
result. It shows that none of the heuristic methods worksigéw fastest, whileRH is slowest. However ScheGen-IP model is
better than the others, while in most of the ca€d#$ is the even much slower. It take 1 minute for 20 jobs, and around 40
best among all heuristic methods. Specially for peoeward minutes for 40 jobs.



TABLE V
PROBLEM SETTING AND SOLUTION COMPARISONS FOR FIRSS GROUPS OF EXPERIMENTS

Problem Settings Solution Comparison

Grp Total Processing time on machine Machine capacity Job Average Optimality v.s. CPLEX
No. | For | Rev | mach. Ist - 2nd - 3rd - 4th - 5th Ist - 2nd - 3rd - 4th - 5th| Sequence | (Obj. Value) v.s. CPLEX in 1 houry S.able
type LPR LPR Obj. p.cent
-Grd. -CH CPLEX Comp. Time
1 10 10 3 1-Var-2-NA-NA 4-24-16-NA-NA For — Rev | 139.8% | 118.5% 114.3% 50.0 %
2 20 0 3 1-Var-2-NA-NA 4-24-16-NA-NA For — Rev 114% 108% 107.0% 100.0%
3 10 10 3 [1,2] - Var - [1,5] - NA - NA 4-24-16-NA-NA For — Rev 137% 128% 106.0% 60.0 %
4 10 | 10 5 [1,2] - Var - [1,5] - [6,9] - [5,9] 4-24-16-16-16 | For > Rev | 199% | 165% 101.4% 50.0 %
5 10 10 4 [1,2] - Var - [1,5] - NA - NA 4-24-16 - NA-NA Mixed 600% 118% 103.8% 100.0%

5

C. Comparison of integrated allocation and scheduling solu® Solution time comparison between LPR-Rounding—CH and Auction

tions

hnzzl ‘ ‘

50 + 50 ]10036.8
Hzaoe./

40 + 40 4527.2

30 +

Final is the experiments’ result on the integrated allarati
and scheduling problem. We performed 6 groups o
experiments. The first five groups focus on the optimality
comparison with our IP model, and the last one focuses on run
time comparison between LPR-Rounding-CH and an Auction  2° -
Approach proposed in [13], since the IP model is unable té
return solutions due to the large-scale nature of the proble®
instances.

umrer of Jobs

+ Rev)

B Auction A

B LPR-Rou

10 +

2000 4000 6000 8000 10000 12000

10 + 10 20 + 20 30 + 30 40 + 40 50 + 50

‘AuCLion Approgch 122.1 680.4 1560.1 2309.7 3122.4
The design of our experiments is similar to that in [9], whilgza-rounding-du so.s Sl L Aas0.8 [ 49212 1 100368
) A olution time (in sec)
details are shown in TABLE. V.
The first 5 groups of experiments focus on comparison @f. 5. Comparison on solution time between auction’s apghieand ResAlloc-
optimality. Precisely, the common setting among thesemgdsl P Solution
listed as follows, while the differences are shown in TABME.

« Each group consists 10 problem instance. solution within comparable times, i.e. 1 minute for
« In each problem instance, there are 4 agents; group{1, 2, 3, § or 2 minutes for group-4.

« One period is equal to _40 TimeSlots; _ From the five groups of experiments, we can see that solutions
- Al 4. agents start their jobs at the same time; k% LPR-Rounding-CH perform consistently better than that b
» Tardiness penalty and mz;kespan price are _the same Lé’R—Rounding—Greedy. Specially, the Greedy algorithmsee
every age”t’ makequn price is 100 per period, tardlnefasoe more sensitive to variation of the COS constraints|evhi
penalty is 500 per period. CH heuristic method is less sensitive (or more robust).
In TABLE. V, the notation|a,b] means uniform distribution  \We found that such probleiFSPwith 3 machine and 10
betweena andb, while Var means a variable processing timgorward and 10 reverse jobs is just, sort of, solvable bonnda
under uniform distribution of some range. The ranges af§r CPLEX. Which means, some can be solved while some
different for different cases within each group of expemtse cannot. Further, CPLEX just cannot give a solution for 20
For — Revmeans forward jobs are always proceeding reverggward and 20 reverse jobs.
jObS in one JOb'IlSt A summary of our results is shown at For the 6th group of experimentg\/e focus on solution
Solution Comparisorcolumns in TABLE. V. time comparison between LPR-Rounding-CH and an Auction
Further notes about this table is following: Approach on large-scale problems. We are unable to use CPLEX
« Solution comparison is done between LPR-Rounding-Clid solve them when each agent has such problem instances as
and LPR-Rounding-Greedy. The percentage is their smore than 20 forward jobs and 20 reverse jobs. The resulBng |
lution objective value divided by ResAlloc-IP solutionmodelResAlloc-IPfor the problem has more than 56K integer
objective value and ResAlloc-IP is solved by CPLEXvariables, 113K constraints and 333K non-zeros in the matri
Because the problem is large, we just obtain the beSPLEX failed to obtain a feasible solution within 5 hours.
feasible solution within 1 hour. Instead, we compare both the solution quality and run time
« We tried the LP solver by both MOSEK and SEDUMI. Al-between LPR-Rounding-CH and an auction approach, which
though MOSEK is around two times faster than SEDUMieturn feasible solutions within 20 minutes.
(solved within 2 minutes), their results are almost the same Five problem instances have been generated, the common
« The problems with 3 machine , i.e. groygft; 2, 3, 3, setting is similar as previous five groups, while the differe
can be solved by MOSEK in 1 minute. While 5 machinamong 5 instances is the total number of jobs in the job-lists

problems, i.e. group-4, need about 2 minutes. We have [Number of forward jobs + Number of reverse jobs]
o The table mainly shows the comparison between LPRs a pair, then [10 + 10] is the setting for the first instan26, [
Rounding-CH and LPR-Rounding-Greedy [6]. + 20], [30 + 30], [40 + 40] and [50 + 50] for the subsequent

o Besides comparing LPR-Rounding-CH and LPRinstances respectively. The results are shown in Fig. Snkhe
Rounding-Greedy, we further compare them with CPLEXesults, we see that the solution by LPR-Rounding-CH isefast
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than the Auction Approach, when the problem size is smallen20] z. J. zhao et al., Bidirectional flow shop schedulinghwitulti-machine
than [40 + 40] jobs. Beyond this size, auction is faster. capacity and critical operation sequencing,Froceedings 1SIC’2007,

VIII.

International Symposium on Intelligent Contr@007, pp.446-451.
C ONCLUSION AND FURTHER RESEARCHDIRECTIONS

This paper offers a new perspective to a new variant of the
BiFSP with multiple machine capacity and COS constraints.
We rather benchmark the proposed solution approach agai~<* ZhengYi John ZHAO (S97-ME01-MS02)BEng,

existing approaches (IP and Greedy) than declare any b
solutions. Continuous time domain formulation is more ukef
in resource allocation scenario than in schedule generdto
different agents may have different time slot units. Theothe
retical meaning for COS constraints is that optimal sequngnc
may not lead to global optimal scheduling.
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