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Integrated Resource Allocation and Scheduling in Bidirectional Flow
Shop with Multi-Machine and COS Constraints

ZhengYi John ZHAO Hoong Chuin LAU Shuzhi Sam GE

Abstract—An IP (Integer Programming) Model is proposed
for integrated resource allocation and operation scheduling for a
multiple job-agents system. Each agent handles a specific job-list
in a bi-directional flowshop. For the individual agent scheduling
problem, a formulation is proposed in continuous time domain
and compared with an IP formulation in discrete time domain. Of
particular interest is the formulation of the machine utili zation
function - both in continuous time and in discrete time. Fast
heuristic methods are proposed with the relaxation of the machine
capacity. For the integrated resource allocation and scheduling
problem, a Linear Programming Relaxation (LPR) approach is
applied to solve the global resource allocation and fast heuristic
method is applied to solve each scheduling sub-problems. The
proposed solution is compared experimentally with that from the
IP solver by CPLEX.

Index Terms—Flow Shop Scheduling, Multiple Machine, Re-
source Allocation

I. I NTRODUCTION

A. Model abstraction

We are concerned with a system of multiple agents with each
handling a job-list. In this paper, we deal specifically withthe
setting where all job-lists are bidirectional flow shops(BiFSP)
under Critical Operation Sequencing(COS) constraints. This
model is useful for a variety of logistic applications, suchas
container terminal operation, forward and reverse logistics and
etc. TABLE I gives further details of the mapping between our
model and possible applications.

More precisely, our problem has the following characteristics:
(i) Each job has at least 3 operations executed consecutively;
(ii) The operation flow may occur in either direction,i.e. the

forward flow operation and reverse flow operation;
(iii) There are multiple renewable machines, and machines of

the same type are assumed to be exchangeable;
(iv) Machine availability is time-variant, i.e. an agent may

have different number of machines in different period;
(v) There are what we call critical operation sequencing

(COS) constraints - each job has a critical operation,
which can only begin when the previous job’s critical
operation has been completed.

In (i), the 3 operations can be conceptually seen as prepro-
cessing, transportation(or travel) and postprocessing. Character-
istic (ii) states a common feature of logistics problems, which

Part of the paper and some preliminary results have appearedin IEEE
conferences [13], [20].
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TABLE I
APPLICATIONS FORBIFSP MODEL

Sample Object Pre- Trans- Post- Critical
app. to be processing portation processing operation

Serviced
Port Container Un-stack Transport Stack from Quay

from ship to yard truck to Crane
onto truck yard by Operation

Quay Crane Yard Crane
Logis- Items Load deliver Unload from Yard

tics for from yard to truck to Operation
delivery to truck customer customer in the port

need to care about delivering goods from and to a service center.
For example, in a container terminal, the jobs are discharging
the containers from a vessel to yard and loading containers
from yard onto a vessel. Similarly, a3rd-party logistics (3PL)
provider handles delivery of goods from the port to warehouses
or customers and/or reverse direction delivery to the port.
Characteristic (iii) makes the model different from classical
single-machine flow-shop, and note that goods can be delivered
in both directions by same group of machines. Characteristic
(iv), called asMulti-Period constraint, is also different from
classical job-shop (flow-shop) problems. In (v), the presence
of COS constraints is motivated by a problem of operational
scheduling in a container terminal, where COS constraints arise
from the stacking or unstacking of heavy containers, which must
observe certain sequence. This sequence can be generalizedto
priority sequence of jobs in other applications. On the other
hand, the critical operation is usually an interface between two
parties, and it requires the most expensive machine to operate
and hence it is particularly important to sequence them back-
to-back so that the expensive machine can be fully exploited. In
this paper, we assume that the critical operation is either the first
or the last operation of each job; if the critical operation is the
first operation, we call it aForward Flow Job and otherwise,
we call it a Reverse Flow Job. In the context of a container
terminal for example, a forward flow job is to deliver a container
from the vessel to the yard, while the reverse flow is to deliver
it from a yard to a vessel.

Based on the above definition of BiFSP with multiple re-
newable machines and COS constraints,the resource allocation
problemis to allocate the multiple renewable machines to con-
tending job agents, whileschedulingis to generate a schedule
for each job agent with the allocated resources. Given the job
release time, due time, and tardiness penalty (or priority), the
objective is to minimize the weighted sum of makespan cost
and tardiness penalty. The system overview and data flow is
shown in Fig. 1.

One sample instance of our problem is described in TABLE
II. In this example, there are 4 job lists and 3 types of ma-
chines. The operation on the1st machine has strict sequencing
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Fig. 1. System Overview: Resource Allocation and Scheduling for Multiple
Agents

constraint, so the1st machine is regarded as the agent. The
2nd type of machine is for transportation and the3rd type of
machine is for postprocessing in forward jobs and preprocessing
in reverse jobs. They are resources to be shared by all the job
agents. The capacity for the2nd machine is 16 and that for the
3rd machine is 8. The start time, due time of each job is inJob
information of 4 agentspart of TABLE II, together with the
tardiness penaltyWd and makespan price factorWm, which are
metrics to denote the importance of job-lists. The job-lists of
agents 1 / 2 /3 and 4 are shown in TABLE II. Every job-list has
5 forward jobs followed by 5 reverse jobs. It is clear from the
job-list that a forward job takes operations on machines of1st,
2nd and3rd types sequentially while a reverse job’s operation
takes place on machines3rd, 2nd and1st types sequentially.

The above problem is abstracted from a real-world container
terminal resource management problem, where there are 4
operating quay cranes (QC, machine type 1) operating in a
berth, and prime movers (PM,2nd machine type) and yard
cranes (YC,3rd machine type) are used to discharge containers
(first 5 jobs) and load containers (next 5 jobs) between the vessel
and the yard. This can also be a case for a 3PL workflow process
involving loading, delivery and unloading.

The objective function is to minimize the sum of the weighted
tardiness penalty and makespan cost. The makespanTMS for
such a BiFSP with COS constraints is the duration between the
completion time of the last critical operation and the overall start
time of the job-list. Tardiness is defined asmax{0, TMS −D},
whereD is the due time of the job-list. Note that this definition
differs marginally from the literature [15]. For the container
terminal case, once the last container is loaded onto the ship,
the ship could leave, while the last container discharged from
the ship may still be in the midst of transportation in the yard.

The solution is presented later at Section VII-A.
We like to comment that the resource allocation and schedule

is a pre-plan and serves as a guideline for real-time dispatch. It
does not consider dynamics such as machine breaking down, or
operation time variation due to traffic congestion. Neitherdoes
it consider such cases as more resource available from other
agents, more agents with job-lists joining the system in real

TABLE II
SAMPLE PROBLEM WITH 3 MACHINES, 4 AGENTS, EACH WITH 10 JOBS

Job-list of 4 agents
Job [pij, mij ]
Id Proc-1 Proc-2 Proc-3 Note

Agent-1/2/3/4
F-1 [1, 1] [5/7/9/3, 2] [2, 3] Forward
F-2 [1, 1] [9/8/9/10, 2] [2, 3] Forward
F-3 [1, 1] [5/7/7/3, 2] [2, 3] Forward
F-4 [1, 1] [9/8/7/10, 2] [2, 3] Forward
F-5 [1, 1] [5/7/9/3, 2] [2, 3] Forward
R-1 [2, 3] [5/7/9/3, 2] [1, 1] Reverse
R-2 [2, 3] [9/8/9/10, 2] [1, 1] Reverse
R-3 [2, 3] [5/7/9/3, 2] [1, 1] Reverse
R-4 [2, 3] [9/8/9/10, 2] [1, 1] Reverse
R-5 [2, 3] [5/7/9/3, 2] [1, 1] Reverse

Job information of 4 agents
Agent-Id Start Due Makespan Late

Time Time Price Penalty
1 8:00 10:00 100 500
2 8:00 10:00 200 600
3 9:00 11:00 100 500
4 9:00 12:00 250 800

Machine capacity of resource pool
Machine type 2nd transportation 3rd post-processing
Capacity 16 8

Work load statistics for 4 agents

time. In practice, an “interface” time should be considered, i.e.
in the container terminal operation, the prime mover must arrive
at least slightly earlier than the crane carries the container to
the lane. And in this model, the return time is not explicitly
considered. The model simply assume that once a2nd machine
finished its current job, it will be available immediately for
the next job. However, it can be considered implicitly by
enlarge the2nd machine operation time to twice as much,
then it will cover the return time. Hence, a complete model to
handle transportation related flow shop problem can be designed
hierarchically as in Fig. 1:

• Stage-1 is a centralized problem forResource Allocation
and PreScheduling;

• Stage-2 is a decentralized problem forMachine dispatching
and Scheduling Adaptation;

This paper will focus on theStage-1.
The above model can be viewed as an extension to Bish’s

model [6], which considers only the vehicle dispatch problem
by assuming infinite supply of yard cranes. It is similar with
Decision problem-2 (D2) in [11], but is different in terms of
the objective functions, which are to minimize the number of
internal trucks in the yard and to maximize the utilization of
internal trucks.

B. Literature review

Solutions for the classical job shop (flow shop) problems may
be classified into 3 categories:

1) heuristics or branch-and-bound [1] [2] [3] [7] [8] and [17];
2) Lagrangian relaxation or auction approach [12] [13];
3) genetic algorithms [4] [9] [14] [16].

As for the Multi-Machine, Multi-Period problem studied in this
paper, we contribute in the exact formulation and fast heuristic
method benchmarked with standard solvers. Given that job
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TABLE III
NOTATION FOR JOBS, PROCESSESMACHINES AND CONSTRAINTS

Symbol Description
Notation for Jobs and Processes

L Total number of job-lists
Total number of agents

N l Total number of jobs in job-listl
l ∈ {1, 2, ..., L}

F Total time frames
(total number of time period)

ol
i Total number of operations for jobi

in job-list l

pl
ij Processing time of jobi operationj

in job-list l

i ∈ {1, ..., N l} and j ∈ {1, ..., ol
i}

Dl Due time of job-listl
Rl Release time of job-listl
W l

d Delay penalty of job listl
W l

m Makespan price per time of job listl
Notation for Machines

K Total number of machine types
k Machine type index,k ∈ {1, ..., K}
Mk(t) Machine utilization function in continuous time

Eachk indicates a specific machine type
T̃ Total time slot in discrete time formulation
Mkt Machine utilization function in discrete time

Eachk indicates a specific machine type
Eacht indicates a positive time slot
k ∈ {1, ..., K}, t ∈ {1, 2, ..., T̃}

Tf Partition of total time slots intoF periods
1 ≤ f ≤ F

Ck,Tf
Capacity of machinek at time frameTf

CM
k,Tf

maximum capacity constraints of
machine typek in time frameTf

for all agents
mij Mapping from jobi and operationj

to machine type
Decision Variable

Xijt Discrete decision variable for
ith job, jth operation at time slott

T s
ij Start time of operationj in job i

T e
ij Completion time of operationj in job i

TMS Makespan
completion time of last critical operation

scheduling is hard computationally, it is even harder to con-
sider resource allocation and operational scheduling jointly [5].
Almost no literature gives an integrated model. By partitioning
machine resources to Multi-Period (each has fixed number of
time-slots pre-defined as problem input), this paper gives an
integrated model, based on Pritsker’s 0-1 formulation [18].

II. RESOURCEALLOCATION PROBLEM FORMULATION-
CENTRALIZED APPROACHINTEGER

PROGRAMMING(RESALLOC-IP)

TABLE III gives the notations in this paper. There are
multiple job-lists l ∈ {1, 2, ..., L}, and all of them are sharing
the same pool of resources. Assume each job-list is represented
by an agent. And each job list has its own start time, due time,
delay penalty, and makespan price. The problem is to allocate
resources to each agent and then schedule each job-list withthe
allocated resources.

Before formulation, one has to estimate a proper time unit
UT ∈ R, with which the continuous time domain is discretized
to T̃ ∈ N time slots. Different from scheduling problem is
that, this total time periodUT T̃ must hold all the operation
time of L job-lists. It is from the earliest starting time to the
latest completion time. There is a partition of total time horizon
{1, 2, ..., T̃} into F time frames,{Tf : 1 ≤ f ≤ F}, such that
⋃F

f≥1Tf = {1, 2, ..., T̃} andTf1

⋂

Tf2 = φ, ∀f1 6= f2.
We list scheduling problem formulation both in discrete

time domain and in continuous time domain. The comparison
is for readers’ clearly understanding the actual meaning of
the constraints, which is useful for the proposition. Note that
the integrated formulation for resource allocation problem is
actually based on and very similar to the scheduling problem,
except that machine quotaCk,Tf

becomes a decision variable
here. The formulation in continuous time domain could also
be done similarly, but here we only focus on the discrete
time domain, which is actually implemented in the final sim-
ulation in our experiments. Operational precedence constraint
is represented byfOPRECE , where equality means that there
is no-wait between consecutive operations. Machine capacity
constraint is represented by inequalitygMACAP . COS constraint
is represented by inequalitygCOS .

A. Decision variables

In discrete time domain,t ∈ {1, 2, ..., T̃} is used to represent
each time slot. A binary decision variable isX l

ijt for job-list
agentl, l ∈ {1, 2, ..., L}.

X l
ijt =















1
if agent l’s operationj in job i starts
by time t inclusively;

0
if agent l’s operationj in job i

has not yet started time att
.

Machine quota allocated to job-listl for each typek at time
frameTf .

Cl
k,Tf

∈ N , l ∈ {1, 2, ..., L}, k ∈ {1, 2, ..., K}, f ∈ {1, 2, ..., F}

B. Decision parameters

• Partition of total time horizon{1, 2, ..., T̃} into F time
frames,{Tf : 1 ≤ f ≤ F}, all the agents observe the
same time partition;

• pl
i,j , l ∈ {1, 2, ..., L}, i ∈ {1, 2, ..., N}, j ∈ {1, 2, ..., oi}:

Processing time of operationj in job i for job-list l;
• Dl, l ∈ {1, 2, ..., L}: Due time of job-listl;
• W l

d: Delay penalty of job-listl;
• W l

m: Makespan price per time for job-listl;
• CM

k,Tf
: Maximum capacity constraints of machine typek

in time frameTf ;

C. Integrated minimization model in discrete time domain

The model is to minimize the sum of the weighted makespan
cost and tardiness penalty (15) under the constraints{ (16),
(17), (18), (19), (20), (21), (22), (23), (24)}.

Constraints{ (16), (17), (18), (19)} are just extended from
that in scheduling problem to a system with multiple job agents.
Constraint (20) states thatlth job-list’s 1st job’s 1st operation
cannot start until the job-list is released. Constraint (21) states
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ScheGen-IP:minimize
∑

t

Wm(1 − XN,oN ,t) +
∑

t>D−pN,oN

Wd(1 − XN,oN ,t) (1)

subject to:Xijt − Xi,j,t+1 ≤ 0, ∀i, j, t ∈ {1, 2, ..., T̃ − 1}. (2)

fOPRECE =

{

Xi,j,t − Xi,j−1,t−pi,j−1
if t > pi,j−1

Xi,j,t if t ≤ pi,j−1

}

= 0, ∀i, j ∈ {2, ..., oi}. (3)

gMACAP (X) =
∑

i,j:mij=k

{

if t > pij (Xijt − Xi,j,t−pij
)

if t ≤ pij Xijt

}

− Ck,Tf
≤ 0, ∀t ∈ Tf ,∀k ∈ {1, 2, ..., K} (4)

gCOS =

{

Xi,j∗
i

,t − Xi−1,j∗
i−1

,t−p{i−1,j∗
i−1

}
if t > p{i−1,j∗

i−1
}

Xi,j∗
i

,t if t ≤ p{i−1,j∗
i−1

}

}

≤ 0, ∀i. (5)

Xijt ∈ {0, 1} ∀i, j, t ∈ {1, 2, ..., T̃}. (6)

minimize WmTMS + Wd max{0, TMS − D} (7)

subject to:fPREEM = T
s
ij − T

e
ij + pij = 0, ∀i, j. (8)

fOPRECE = T
e
i,j−1 − T

s
ij = 0, ∀i, j ≥ 2. (9)

gMACAP (t) = Mk(t) − Ck,Tf
≤ 0, ∀t ∈ Tf , k ∈ {1, 2, ..., K} (10)

gCOS = T
e
i,j∗

i
− T

s
i+1,j∗

i+1
≤ 0, ∀i ∈ {1, 2, ..., N − 1}. (11)

T
e
i,j∗

i
− TMS ≤ 0, ∀i (12)

T
s
ij ≥ 0 (13)

T
e
ij ≥ 0 (14)

ResAlloc-IP: minimize
L
∑

l≥1











W
l
d ·

∑

t>Dl−pl
N,oN

(1 − X
l
N,oN ,t) + W

l
m ·
∑

t

(1 − X
l
N,oN ,t)











(15)

subject to:Xl
ijt − X

l
i,j,t+1 ≤ 0, ∀l, i, j, t ∈ {1, 2, ..., T̃ − 1}. (16)

f
l
OPRECE =

{

Xl
i,j,t − Xl

i,j−1,t−pi,j−1
if t > pl

i,j−1

Xl
i,j,t if t ≤ pl

i,j−1

}

= 0, ∀l, i, j ∈ {2, ..., oi}. (17)

g
l
MACAP (X) =

∑

i,j:mij=k

{

if t > pl
ij (Xl

ijt − Xl
i,j,t−pij

)

if t ≤ pl
ij Xl

ijt

}

− C
l
k,Tf

≤ 0, ∀l, t ∈ Tf ,∀k ∈ {1, 2, ..., K} (18)

g
l
COS =

{

Xl
i,j∗

i
,t − Xl

i−1,j∗
i−1

,t−p{i−1,j∗
i−1

}
if t > pl

{i−1,j∗
i−1

}

Xl
i,j∗

i
,t if t ≤ pl

{i−1,j∗
i−1

}

}

≤ 0, ∀i, l. (19)

X
l
11,Rl−1

= 0, ∀l. (20)

X
l

ij,T̃
= 1, ∀l, i, j. (21)

L
∑

l≥1

C
l
k,Tf

≤ C
M
k,Tf

,∀Tf , k. (22)

X
l
ijt ∈ {0, 1} ∀l, i, j, t ∈ {1, 2, ..., T̃}. (23)

C
l
k,Tf

∈ N , ∀k, Tf (24)

that all jobs must be finished at the end. Constraint (22) states
the sum of machine quotas by all job-lists should be within the
capacity limit. This constraint links allL scheduling problems
together. So by relaxing this constraints, the problem could be
decentralized.

III. C OMPARISON WITH CONTINUOUS TIME DOMAIN

FORMULATION

• T s
ij : start time of operationj in job i;

• T e
ij : completion time of operationj in job i;

• TMS , Makespan: completion time of last critical operation.

In continuous time domain, the decision variables are just
{T s

ij, T
e
ij : i, j} and TMS . Although the formulation cannot

be solved by any available solvers, a feasible solution can
be given by the heuristics. Especially, the construction of
machine utilization is useful in decentralized approach [13] to
solve the resource allocation problems when different agents
have different time slot units.Machine Capacityconstraint is
represented by Inequality (10) with theδ function.

Mk(t) =
∑

mij=k

∫ t

0

[δ(t − T s
ij) − δ(t − T e

ij)] dt

where in continuous time domaint ∈ R, δ(t− T ) is a positive
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infinite pulse at time point defined by parameterT :

δ(t − T ) =

{

0 ∀t ∈ (−∞, T ) ∪ (T,∞)
∞ if t = T

And the energy or area of the functionδ(t − T ) with axis t is
unit step up at time pointt = T .
∫ t

−∞
δ(t − T ) dt =

{

1 if t > T,

0 if t < T.

The above function is not continuous in nature, which makes
the machine utilization function still theoretically unsolved
yet. However, a look-up table based method will be proposed
later to implement the above machine utilization function,then
scheduling problem can be solved by the heuristic methods.

It is clear thatgMACAP (t) in continuous time formulation
is replaced with gMACAP (X) in discrete time domain.
From ( 27) to (30), we can see that a set of scheduling
{

(T s
ij , T

e
ij)|i = 1, 2, ..., N ; j = 1, 2, ..., oi

}

will be the param-
eter of functiongMACAP (t), while in discrete time domain
{

Xijt ∈ {0, 1}|i = 1, 2, ..., N ; j = 1, 2, ..., oi; t = 1, 2, ..., T̃
}

with constraints by (2) is corresponding to a set of scheduling.
Critical Operation Sequencingis formulated by Inequality

(11), notingj∗i is a critical operation for each job and it has
strict precedence dependency among jobs.

IV. I MPLEMENTATION OF MACHINE UTILIZATION

FUNCTION

It is a key issue to construct the machine utilization function
both in discrete time and in continuous time, because the
function will be used in heuristic methods.

A. Implementation in continuous time domain

The above formulation makes use of theδ(t) function, which
is only available in close form formulas. It is equivalent tothe
following window functions.

Mk(t) =
∑

mij=k

wij(t)

wij(t) =







0 if t ≤ T s
ij

1 if T s
ij < t ≤ T e

ij

0 if t > T e
ij

In terms of implementation, a look-up table is generated given
a set of schedule{(T s

ij , T
e
ij)|i = 1, ..., N ; j = 1, ..., oi}. For

each machine typek, first form a cell matrix of 2 by 2 for each
job i and operationj whose machine type isk. Then for each
type of machine, a setT se

k is constructed which contains all
such cell matrix related withmij = k.

T se
k =

{[(

T s
ij

1

)

,

(

T e
ij

−1

)]

:

}

1 ≤ i ≤ N, 1 ≤ j ≤ oi andmij = k (25)

The above 2-by-2 matrix can also be viewed as a 2-by-2
mapping, from time to pulse. The start timeT s

ij maps to a unit
positive pulse 1, while the end timeT e

ij maps to a unit negative
pulse -1.
Considering all the machine typesk ∈ {1, 2, ..., K}, the total
number of above cell matrices is

∑i≤N

i≥1 oi.
Specially for flow shop, there isoi = K, ∀1 ≤ i ≤ N , and the
total number of cell matrices for each type of machine is exactly

N . For normal job shop problems sometimes with redundant
machines or operations, one has to count

∑

mij=k 1 for each

machine typek. There are
(

2
∑

mij=k 1
)

=
(

∑

mij=k 2
)

time
points mapping to either 1 or -1.
Next, we form a mapping matrix of 2 byN for flow shop
problem, (or 2 by

(

∑

mij=k 2
)

in general job shop problem)
by sequencing all cell matrices together.

Tk =
[

T se
k (1) T se

k (2) · · · T se
k (N)

]

(26)

Note thatTk is ordered by job and operation. The lookup table
should be sorted by time, which is simply done by sorting
the matrix sequence in ascending order of the first row. Each
element of the second row will follow the original mapping
element in the first row. The following pseudo-code instruction
will formulate this sorting process:

[T ord
k , Index] = sort(Tk(1, :)) (27)

T ord
k (1, :) = T ord

k . (28)

T ord
k (2, :) = Tk(2, Index) (29)

Then,

Mk(t) =
∑

j:T ord
k

(1,j)≤t

T ord
k (2, j) (30)

Hence, (25) to (30) give the complete implementation of ma-
chine utilization function in continuous time domain. For on-
line programming where numerical error might happens for
improper rounding, an infinitesimal valueǫ could be added in
(25), which will be replace by (31).

T se
k =

{[(

T s
ij + ǫ

1

)

,

(

T e
ij

−1

)]

:

}

1 ≤ i ≤ N, 1 ≤ j ≤ oi andmij = k (31)

B. Implementation of machine utilization function in discrete
time domain

Given a set of binary variable{Xijt ∈ {0, 1} : 1 ≤ i ≤
N, 1 ≤ j ≤ oi, 1 ≤ t ≤ T̃} under the constraints by (2). The
machine utilization function could be directly constructed by
the first part of (4)

Mkt(X) =
∑

i,j:mij=k

{

if t > pij (Xijt − Xi,j,t−pij
)

if t ≤ pij Xijt

}

,

∀k ∈ {1, 2, ..., K} (32)

However, it may be more convenient and explicit to be trans-
formed to the expression in continuous time.

T s
ij = t∗ − 1 ⇔ Xij,t∗ = 1 andXij,t∗−1 = 0 (33)

T e
ij = T s

ij + pij (34)

Then equations{(31), (26), (27), (28), (29), (30)} could be used
to construct the machine utilization functionMk(t). Because
of discrete time domain,{(T s

ij, T
e
ij) : i = 1, 2, ..., N ; j =

1, 2, ..., oi} are all positive integers, the problem of rounding
error does not exist here. Furthermore, the following procedure
could be used to build the machine utilization function.
Machine Utilization Function in Discrete Time Domain

1: Initialization Mk(t) = 0, k = 1, 2, ..., K, t = 1, 2, .., T̃
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2: Construct Machine Utilization Function, For i =
1, 2, ..., N ; j = 1, 2, ..., oi

i) k = mij .
ii) For t = T s

ij , T
s
ij + 1, ..., T e

ij − 1

Mk(t + 1) = Mk(t + 1) + 1;

The operation oft+1 is because the discrete time slot variable
t starts from 1, while the continuous time variableT s

ij starts
from 0.

C. Solution equivalence between discrete time formulationand
continuous time formulation

Proposition: The solution to Continuous Time Formulation
is equivalent to the Discrete Time Formulation, under the
following conditions:

• Job-lists are bidirectional flowshop, and reverse-flow jobs
are always following forward-flow jobs.

• For reverse flow jobs, the critical operation is the job’s last
operation (post-processing)

Proof: Note the definition ofXijt shows that

Xi,j,t∗−1 == 0 ∩ Xi,j,t∗ == 1

m

T s
ij = t∗ − 1, ith job’s jth operation starts at time slott∗.

According to Eqn. (2) or non-preemptive assumption, comple-
tion time of N th job’s oth

N operation is

UT

∑

t

(1 − XN,oN ,t) + pN,oN

Because the reverse job’s last operation is the critical operation
and reverse-flow jobs are always following forward-flow jobs,
makespan of such job-list is always the completion time of the
last job’s last operation, which isN th job’s oth

N operation. The
makespan cost for discrete time formulation is

Wm · UT

(

∑

t

(1 − XN,oN ,t) + pN,oN

)

= WmUT · pN,oN
+ UT ·

(

∑

t

Wm(1 − XN,oN ,t)

)

Hence, the1st term WmTMS in continuous time domain
objective function (7) is related with the first term of discrete
time domain objective function (1) by a positive factorUT and
an offsetWmUT · pN,oN

.
Similarly, we can see that the tardiness penalty for discrete

time formulation is

Wd · UT

∑

t>D−pN,oN

(1 − XN,oN ,t)

= UT ·
∑

t>D−pN,oN

Wd(1 − XN,oN ,t)

The2nd termWdmax{0, TMS−D} in continuous time domain
objective function (7) is related with the2nd term of discrete
time domain objective function (1) just by a positive factorUT .

For the overall objective function, sum of the weighted
makespan cost and tardiness penalty for discrete time formu-
lation is

WmUT · pN,oN
+ UT ·

(

∑

t

Wm(1 − XN,oN ,t)

)

+UT ·
∑

t>D−pN,oN

Wd(1 − XN,oN ,t)

Note that function (1) is exactly the same as
(

∑

t

Wm(1 − XN,oN ,t)

)

+
∑

t>D−pN,oN

Wd(1 − XN,oN ,t)

SinceUT > 0 andWmUT ·pN,oN
> 0 are all fixed positive pa-

rameters given in the job-list information, to minimize function
(1) is equivalent to minimize function (7).

V. SCHEDULING HEURISTIC METHODSBASED ON

MACHINE CAPACITY CONSTRAINT RELAXATION

The basic concept of the proposed heuristic methods are
very much similar to those in [7], while ours are different in
following aspects:

• There is no-wait within consecutive tasks of a job;
• Our heuristic methods are suitable for both continuous time

(i.e.pij ∈ R+) and discrete time problems (i.e.pij ∈ Z+);
• Ours are suitable for both constant machine capacity and

period-dependant capacity.

A. Construction heuristic method(CH)

CH1: Schedule theIth job based on the partial schedule ofI−1
jobs, it can be scheduled under the constraints{(8), (9),
(11), (12), (13), (14)} in continuous time domain, or
constraints{(1), (2),(3), (5), (6)} in discrete time domain.

CH2: If T s
I1 < 0, shift time of all jobs{(T s

ij , T
e
ij) : 1 ≤ i ≤

I, 1 ≤ j ≤ K = oi} to right by |T s
I1|.

CH3: Construct machine utilization functionaccording to equa-
tions{(31), (26), (27), (28), (29), (30)} in continuous time
domain.

CH4: While there is any violation in machine capacity,
maxt Mkt > Ck,Tf

, ∃Tf , k ∈ {1, 2, ..., K}

CH4-a: Shift Ith job schedule by 1 slot in discrete time
domain, or shift it to nearest time point in continuous
time domain.

CH4-b: Construct machine utilization functionaccording to
equations{(31), (26), (27), (28), (29), (30)} in con-
tinuous time domain.

CH4: loop

B. Repair heuristic method(RH)

RH1: Construct an initial schedule with infinite resource capacity
(i.e. considering only the constraints{(8), (9), (11), (12),
(13), (14) } in continuous time domain, or constraints
{(2), (3), (5), (6)} in discrete time domain) and setTMS .
Initialize t = 1.

RH2: while t < TMS

RH2-a: Construct themachine utilization functionaccording
to equations{(31), (26), (27), (28), (29), (30)} in
continuous time domain.
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RH2-b: While there is any violation in machine capacity at
time t, Mkt > Ck,Tf

, t ∈ Tf , ∃k ∈ {1, 2, ..., K}

RH2-b1: Construct theviolation job set, which contains all
such jobs that use machinek at time t

RH2-b2: G = Mkt − Ck,Tf
;

RH2-b3: Within theviolation job set, find the job who is the
Gth latest in the job list;

RH2-b4: Shift this job such that next time slot starts its
operation using machinek;

RH2-b5: Shift all following jobs according to the constraints
{(8), (9), (11)};

RH2-b6: UpdateTMS ;
RH2-b7: Construct themachine utilization functionaccord-

ing to equations{(31), (26), (27), (28), ( 29), ( 30)
} in continuous time domain.

RH2-b: loop
RH2-c: t = t + 1;

RH2: loop
Note that the above algorithms can also use the discrete

time domain machine utilization function (see section IV-B).
Heuristic RH is usually used in Lagrangian relaxation approach
to repair the feasibility and get an upper bound estimation of
makespan [20].

VI. RESOURCEALLOCATION SOLUTION BY L INEAR

PROGRAMMING RELAXATION

When the problem size grows larger, solving the Integer Prob-
lem becomes intractable, even with commercial solvers. In this
section, we present an approach based on the combination of
Linear Programming Relaxation (LPR) and scheduling heuristic
(CH), which yields an average solution quality within 120%
optimality in less than 2% of run time compared with running
ResAlloc-IP model on the CPLEX solver.

A. Formulation of linear programming relaxation

The LPR formulation is simply to relax the integer constraints
thereby resulting in a linear program. The formulation is as
follows.

ResAlloc-LPR

minimize (15)

subject to: Inequality(16)

Equality(17)

Inequality(18)

Inequality(19)

Equality(20)

Equality(21)

Inequality(22)

0 ≤ X l
ijt ≤ 1, ∀l, i, j, t ∈ {1, 2, ..., T̃}.

Cl
k,Tf

≥ 1, ∀k, Tf .

With sparse matrix technique and interior point methods, the
linear problem could be solved in polynomial time, i.e. much
faster than the integer problem (ResAlloc-IP).

The complete solution procedure (Heuristic LPR-Rounding)
is described as follows:

B. Heuristic LPR-Rounding

1) Formulating (ResAlloc-LPR) and solve it.
2) Get the solution ofCl

k,Tf
, which should be floating real

numbers. And round them to the nearest integer.
3) Calculate the overall machine usage by

∑L
l≥1 Cl

k,Tf
.

4) for every machine typek ∈ {1, ..., K} and every time
frameTf : 1 ≤ f ≤ F

5) if there is any violation in machine typek, calculate this
excess demandEDk,Tf

=
∑L

l≥1 Cl
k,Tf

− CM
k,Tf

.
a) Calculate the priority of all the job agents at time

frameTf , according to [19].
b) find the job agent with the lowest priority and simply

reduce its demand byEDk,Tf

6) end if
7) loop for
8) With the feasible allocation solution{Cl

k,Tf
: 1 ≤ k ≤

K, 1 ≤ f ≤ F}, solve the scheduling problem. It can
be done either by solving a smaller ScheGen-IP problem
instance or by applying a fast heuristic method (which
could be either CH or RH in Section V).

The LPR-Rounding heuristic method serves to decompose the
overall problem into subproblems to be solved with one schedul-
ing heuristic methods. If the underlying scheduling heuristic
method is CH (resp. RH), we name the overall algorithm as
LPR-Rounding-CH(resp.LPR-Rounding-RH); if the scheduling
heuristic method is greedy algorithm, [6], we name itLPR-
Rounding-Greedy.

VII. E XPERIMENTAL RESULTS

We first provide a detailed comparison of our approach
against existing approaches on the sample problem provided
in Section I. Then, we present comprehensive experimental
results for both the scheduling problem as well as the integrated
resource allocation and scheduling problem. The benchmarkis
done both in run time and solution quality. All the experiments
were performed on a Pentium IV CPU with 3GHz and 1GByte
memory. We chose CPLEX 10.0 for solving IP problems and
MOSEK (from http://www.mosek.com) for linear problems.

A. Comparison on sample problem

On the sample problem in Section I, one period is one hour.
We compare the ResAlloc-IP model, Auction Approach [13]
(a distributed algorithm based on Lagrangian Relaxation) and
the LPR-Rounding-CH approach. The comparison is done on
run time, total cost and average makespan for 4 agents and the
result is in TABLE IV. We can see that LPR-Rounding-CH is
comparatively nearer to optimal and the run time is fastest of
all approaches.

Fig. 2 gives the operation scheduling for ResAlloc-IP solu-
tion. Lower part of TABLE IV presents the resource allocation
for each agents for ResAlloc-IP solution.

B. Comparison of scheduling solutions, heuristic methods vs
ScheGen-IP

Next, we present experiments’ result to compare the
makespan derived from the heuristic methodsCH, RH, Greedy
algorithm in [6] and ScheGen-IP model. The common setting
is as following:
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TABLE IV
SOLUTION COMPARISON FOR SAMPLE PROBLEM INTABLE II

Total cost and solution time comparison
Cost per agent Total Solution

1 2 3 4 cost time (sec)
ResAlloc-IP 175.0 266.7 450.0 750.0 1641.7 203.4

Auction Approach 500.0 800.0 450.0 604.2 2354.2 69.6
LPR-Rounding-CH 450.0 266.7 450.0 729.2 1895.8 6.2

Makespan comparison
Makespan per agent (hour) Average

1 2 3 4 makespan
ResAlloc-IP 1.8 1.3 2.4 3.0 2.1

Auction Approach 2.5 2.5 2.4 2.4 2.4
LPR-Rounding-CH 2.4 1.3 2.4 2.9 2.3

Solution by ResAlloc-IP
Agent-Id Bid (Machine 2, Machine 3)

1st Period 2nd Period 3rd Period
8:00 - 9:00 9:00 - 10:00 10:00-11:00

1 (6, 2) (2, 2) (0, 0)
2 (9, 2) (0, 2) (0, 0)
3 (1, 2) (9, 2) (0, 3)
4 (0, 0) (4, 2) (5, 2)

subtotal (16, 6) (15, 8) (5, 5)

Solution by LPR-Rounding-CH
Agent-Id Bid (Machine 2, Machine 3)

1st Period 2nd Period 3rd Period
8:00 - 9:00 9:00 - 10:00 10:00-11:00

1 (4, 2) (3, 2) (1, 0)
2 (9, 2) (0, 2) (0, 0)
3 (2, 2) (8, 2) (1, 2)
4 (0, 0) (4, 2) (3, 1)

subtotal (15, 6) (15, 8) (5, 3)

Fig. 2. MIP Solution for Sample Problem – agent’s scheduling

• 20 jobs are executed on 3 types of machines;
• Machine capacity isC1 = 1, C2 = 4, C3 = 2;
• Critical operation is on1st machine type;
• Forward jobs followed by reverse jobs;
• Processing time on1st machine is taken as unit, and on

3rd machine is 2.

For the travel time, it alternately switches between two values
(short, long). The mean value is set at 12. The (short, long)
pairs are selected to be{[12, 12], [10, 14], [8, 16], [6, 18], [4,
20]}. The reverse job percentageReverseJobRatiospans from
{0, 25%, 50%, 75%, 100%}. Hence, a total of 25 job lists
are generated for experiment. Fig. 3-(b) gives the comparison
result. It shows that none of the heuristic methods works always
better than the others, while in most of the casesCH is the
best among all heuristic methods. Specially for pureForward
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Fig. 3. Comparison on 25 job lists between heuristic methodsand ScheGen-IP
model

Fig. 4. Solution time comparison between scheduling heuristics and ScheGen-
IP model

Flow Jobswith small variance in processing time, the heuristic
method could achieve real optimal solutions. Generally, greedy
algorithm performs worse whenTravel Time Variancegrows
larger.

Next, the run times forCH, RH and Greedy algorithm are
compared with more experiments. We measure run time for
solution to job-lists with{20, 40, 60, 80, 100} jobs. The mean
transportation time is 12 units. The average run time forCH, RH
and Greedy algorithm are compared. The result is in Fig. VII-B.
From the figure, it is clear that the Greedy algorithm is the
fastest, whileRH is slowest. However ScheGen-IP model is
even much slower. It take 1 minute for 20 jobs, and around 40
minutes for 40 jobs.
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TABLE V
PROBLEM SETTING AND SOLUTION COMPARISONS FOR FIRST5 GROUPS OF EXPERIMENTS

Problem Settings Solution Comparison
Grp Total Processing time on machine Machine capacity Job Average Optimality v.s. CPLEX
No. For Rev mach. 1st - 2nd - 3rd - 4th - 5th 1st - 2nd - 3rd - 4th - 5th Sequence (Obj. Value) v.s. CPLEX in 1 hour S.able

type LPR LPR Obj. p.cent
-Grd. -CH CPLEX Comp. Time

1 10 10 3 1 - Var - 2 - NA - NA 4 - 24 - 16 - NA - NA For → Rev 139.8% 118.5% 114.3% 50.0 %
2 20 0 3 1 - Var - 2 - NA - NA 4 - 24 - 16 - NA - NA For → Rev 114% 108% 107.0% 100.0%
3 10 10 3 [1,2] - Var - [1,5] - NA - NA 4 - 24 - 16 - NA - NA For → Rev 137% 128% 106.0% 60.0 %
4 10 10 5 [1,2] - Var - [1,5] - [6,9] - [5,8] 4 - 24 - 16 - 16 - 16 For → Rev 199% 165% 101.4% 50.0 %
5 10 10 4 [1,2] - Var - [1,5] - NA - NA 4 - 24 - 16 - NA - NA Mixed 600% 118% 103.8% 100.0%

C. Comparison of integrated allocation and scheduling solu-
tions

Final is the experiments’ result on the integrated allocation
and scheduling problem. We performed 6 groups of
experiments. The first five groups focus on the optimality
comparison with our IP model, and the last one focuses on run
time comparison between LPR-Rounding-CH and an Auction
Approach proposed in [13], since the IP model is unable to
return solutions due to the large-scale nature of the problem
instances.

The design of our experiments is similar to that in [9], while
details are shown in TABLE. V.

The first 5 groups of experiments focus on comparison of
optimality. Precisely, the common setting among these groups is
listed as follows, while the differences are shown in TABLE.V

• Each group consists 10 problem instance.
• In each problem instance, there are 4 agents;
• One period is equal to 40 TimeSlots;
• All 4 agents start their jobs at the same time;
• Tardiness penalty and makespan price are the same for

every agent, makespan price is 100 per period, tardiness
penalty is 500 per period.

In TABLE. V, the notation[a, b] means uniform distribution
betweena and b, while Var means a variable processing time
under uniform distribution of some range. The ranges are
different for different cases within each group of experiments.
For → Revmeans forward jobs are always proceeding reverse
jobs in one job-list. A summary of our results is shown at
Solution Comparisoncolumns in TABLE. V.

Further notes about this table is following:

• Solution comparison is done between LPR-Rounding-CH
and LPR-Rounding-Greedy. The percentage is their so-
lution objective value divided by ResAlloc-IP solution
objective value and ResAlloc-IP is solved by CPLEX.
Because the problem is large, we just obtain the best
feasible solution within 1 hour.

• We tried the LP solver by both MOSEK and SEDUMI. Al-
though MOSEK is around two times faster than SEDUMI
(solved within 2 minutes), their results are almost the same.

• The problems with 3 machine , i.e. group-{1, 2, 3, 5},
can be solved by MOSEK in 1 minute. While 5 machine
problems, i.e. group-4, need about 2 minutes.

• The table mainly shows the comparison between LPR-
Rounding-CH and LPR-Rounding-Greedy [6].

• Besides comparing LPR-Rounding-CH and LPR-
Rounding-Greedy, we further compare them with CPLEX

Solution time comparison between LPR-Rounding-CH and Auction
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Fig. 5. Comparison on solution time between auction’s approach and ResAlloc-
IP Solution

solution within comparable times, i.e. 1 minute for
group-{1, 2, 3, 5} or 2 minutes for group-4.

From the five groups of experiments, we can see that solutions
by LPR-Rounding-CH perform consistently better than that by
LPR-Rounding-Greedy. Specially, the Greedy algorithm seems
to be more sensitive to variation of the COS constraints, while
CH heuristic method is less sensitive (or more robust).

We found that such problemBiFSP with 3 machine and 10
forward and 10 reverse jobs is just, sort of, solvable boundary
for CPLEX. Which means, some can be solved while some
cannot. Further, CPLEX just cannot give a solution for 20
forward and 20 reverse jobs.

For the 6th group of experiments, we focus on solution
time comparison between LPR-Rounding-CH and an Auction
Approach on large-scale problems. We are unable to use CPLEX
to solve them when each agent has such problem instances as
more than 20 forward jobs and 20 reverse jobs. The resulting IP
modelResAlloc-IPfor the problem has more than 56K integer
variables, 113K constraints and 333K non-zeros in the matrix.
CPLEX failed to obtain a feasible solution within 5 hours.
Instead, we compare both the solution quality and run time
between LPR-Rounding-CH and an auction approach, which
return feasible solutions within 20 minutes.

Five problem instances have been generated, the common
setting is similar as previous five groups, while the difference
among 5 instances is the total number of jobs in the job-lists.
We have [Number of forward jobs + Number of reverse jobs]
as a pair, then [10 + 10] is the setting for the first instance, [20
+ 20], [30 + 30], [40 + 40] and [50 + 50] for the subsequent
instances respectively. The results are shown in Fig. 5. From the
results, we see that the solution by LPR-Rounding-CH is faster
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than the Auction Approach, when the problem size is smaller
than [40 + 40] jobs. Beyond this size, auction is faster.

VIII. C ONCLUSION AND FURTHER RESEARCHDIRECTIONS

This paper offers a new perspective to a new variant of the
BiFSP with multiple machine capacity and COS constraints.
We rather benchmark the proposed solution approach against
existing approaches (IP and Greedy) than declare any best
solutions. Continuous time domain formulation is more useful
in resource allocation scenario than in schedule generation, for
different agents may have different time slot units. The theo-
retical meaning for COS constraints is that optimal sequencing
may not lead to global optimal scheduling.
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