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Database Access Pattern Protection Without
Full-Shuffles

Xuhua Ding, Yanjiang Yang, and Robert H. Deng

Abstract—Privacy protection is one of the fundamental security
requirements for database outsourcing. A major threat is informa-
tion leakage from database access patterns generated by query exe-
cutions. The standard private information retrieval (PIR) schemes,
which are widely regarded as theoretical solutions, entail � �
computational overhead per query for a database with items.
Recent works propose to protect access patterns by introducing a
trusted component with constant storage size. The resulting pri-
vacy assurance is as strong as PIR, though with ��� online com-
putation cost, they still have � � amortized cost per query due to
periodically full database shuffles. In this paper, we design a novel
scheme in the same model with provable security, which only shuf-
fles a portion of the database. The amortized server computational
complexity is reduced to � ��� �. With a secure storage
storing thousands of items, our scheme can protect the access pat-
tern privacy of databases of billions of entries, at a lower cost than
those using ORAM-based poly-logarithm algorithms.

Index Terms— Database, data privacy, information security.

I. INTRODUCTION

I N database applications, a malicious database server can
derive sensitive information about user queries, simply by

observing the database access patterns, e.g., the records being
retrieved or frequent accesses to “hot” records. Such a threat is
aggravated in the Database-as-a-Service (DaaS) model whereby
a data owner outsources her database to an untrusted service
provider. The concern on potential privacy exposure becomes a
hurdle to the success of DaaS and other data oriented applica-
tions in cloud-like settings. Note that database encryption does
not entirely solve the problem, because access patterns also in-
clude the visited addresses and the frequency of accesses.

Private information retrieval (PIR) formulated in [6] is the
well-known cryptographic mechanism inhibiting information
leakage from access patterns. Modeling the database service
as a bit retrieval from a bit array in plaintext, PIR disallows a
server to infer any additional information about queries. Many
PIR schemes [2], [5], [11], [12], [14] have been proposed
with the emphasis on lowering the communication complexity

Manuscript received March 30, 2010; revised November 21, 2010; accepted
December 07, 2010. Date of publication December 20, 2010; date of current
version February 16, 2011. This work was supported in part by the Office
of Research, Singapore Management University. The associate editor coor-
dinating the review of this manuscript and approving it for publication was
Dr. Elisa Bertino.

X. Ding and R. H. Deng are with the School of Information Systems, Singa-
pore Management University, Singapore 178902, Singapore.

Y. Yang is with the Institute of Infocomm Research, Singapore 178902, Sin-
gapore.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIFS.2010.2101062

between the server and the user. Nonetheless, as pointed out by
Sion and Carbunar [17], those PIR schemes incur even more
turnaround time than transferring the entire database as a reply
to the user, because the heavy computation incurred at the
server outweighs the saved communication expense.

The computation cost can be greatly reduced by embedding
a trusted component (e.g., a tamper-resistant device) at the
server’s end. Such PIR schemes1 were initially introduced
in [9] and [10] based on the square-root algorithm proposed
in the seminal work on Oblivious RAM [8]. Compared with
the standard PIR schemes, these PIR schemes [9], [10] deal
with encrypted data records rather than bits in plaintext. The
assistance of a trusted component cuts off the turnaround time,
though the asymptotic computation complexity remains at

. In this paper,2 we follow this line of research and design
a novel PIR scheme, which requires communication
cost, runtime computation cost, and
overall amortized computation cost per query, where is the
trusted cache size.

A. Related Work

Many PIR constructions [2], [5], [11], [12], [14] consider the
unencrypted database with the main objective being improving
the server–user communication complexity, rather than server
computation complexity. The best known results are due to [13]
with communication cost. The construction is built
on the length-flexible additively homomorphic public key en-
cryption (LFAH) [7], without the support of trusted hardware.
Note that its computation cost remains as .

A notable effort focusing on computation cost reduction
without a trusted hardware is [3], where Beimel et al. proposed
a new model called PIR with preprocessing. This model uses

servers each storing a copy of the database. Before a PIR
execution, each server computes and stores polynomially many
bits regarding the database. This approach reduces both the
communication and computation cost to for any

. However, it requires a storage of a polynomial of bits,
which is infeasible in practice.

Oblivious RAM [8] was initially proposed to protect a
software’s memory access pattern. It proposed two algorithms:
a shuffle-based algorithm (a.k.a. square-root algorithm) and
a hierarchy-based algorithm. The former costs
memory access for one original data access and requires

of storage, whereas the latter has access
cost and requires storage.

1Strictly speaking, they are not PIR as defined in [6] because they handle en-
crypted data rather than the plaintext. Nonetheless, they offer the same strength
of privacy assurance as the standard PIR.

2The paper is a full version of [22].
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The shuffle-based algorithm inspired Smith et al. to design
a PIR scheme [18] with communication cost and

computation cost (i.e., server accesses) for peri-
odical shuffles, where a trusted hardware plays the role of
CPU in ORAM and caches a constant number of data. This
hardware-based PIR scheme was further investigated in [9],
[10], and [19]. The main algorithmic improvement was due to
[19], which proposed an shuffle algorithm. Therefore,
the amortized computation complexity is where the
hardware store records.

The hierarchical algorithm also has several derivatives.
Williams and Sion [20] reduced the computation complexity
to by introducing storage at the client side.
The complexity was further improved to
in [21] by using an improved sort algorithm with the same
amount of client side storage. Recently, Pinkas and Reinman
proposed a more efficient ORAM in [15]. It achieves
complexity with client end storage. Though asymptoti-
cally superior, all these big- complexity notations carry large
constant factors. The complexity of the original ORAM has a
coefficient larger than 6000 and the complexity of Pinkas and
Reinman’s scheme has a constant factor falling between 72 and
160. Therefore, if the database is not large (e.g., ), these
hierarchy based algorithms are not necessarily more efficient
than the shuffle-based algorithms.

Caveat: The algorithms proposed in this paper belong to the
square-root algorithm [8] family, i.e., based on shuffles. A de-
tailed comparison between our scheme and the state-of-the-art
hierarchy-based ORAM [15] is presented in Section V. In addi-
tion, we stress that the “square root” complexity of the shuffle-
based ORAM and our results are completely in different con-
text. The square root solution of ORAM requires a sheltered
storage storing items, which is equivalent to using a cache
storing items at the client end in our setting. In fact, our
scheme only uses a constant size cache and when our
scheme has poly-logarithm complexity.

Roadmap: We define the system model and the security
notion of our scheme in Section II. A basic construction is
presented in Section III as a stepping-stone to the full-fledged
scheme in Section IV. Performance of our scheme is discussed
in Section V, and Section VI concludes the paper.

II. SYNOPSIS

A. System Model

The system consists of a group of users, a database mod-
eled as an array of data items of equal length denoted by

, and a database host denoted by . A trusted
component3 denoted by is embedded in . has an internal
cache which stores up to data items, . No adversary can
tamper ’s executions or access its private space including the
cache. is capable of performing symmetric key encryption/de-
cryption and pseudorandom number generation. All messages
exchanged between users and are through a confidential and
authentic channel.

3A possible implementation of the trusted component is IBM secure copro-
cessor PCIXCC [1] which connects to a host through a PCI bus.

TABLE I
TABLE OF NOTATIONS AND TERMS

A PIR scheme in this model is composed of two algorithms:
a shuffle algorithm and a retrieval algorithm. The former per-
mutes and encrypts while the latter executes PIR queries. The
scheme runs in sessions. The database used in the th session is
denoted by , which is a permuted and encrypted version of
and is also stored in ’s space. Within the session, runs the re-
trieval algorithm to execute a PIR query, which involves fetching

records to its cache. The session ends when the cache is full.
Then, runs the shuffle algorithm which empties the cache and
produces . Note that is never accessed by .

a) Notations and Terminology: To highlight the difference
between and , we use item to refer to any entry in and
use record to refer to any entry in . We say that is the index
of in , and use address to refer to a record’s position in .
A PIR query on item is denoted , and we say that
is the value of . A summary of all notations and terms used in
the paper is presented in Table I.

B. Security Model

In a nutshell, a PIR scheme prevents an adversary from infer-
ring information about queries from observation of query exe-
cutions. The transcript of protocol execution within a period is
referred to as access pattern. We use to denote an access
pattern of length . More formally, ,
where is an address of database and is the th
record in . When can be inferred from the context, we
only use to represent an access just for the sake of simplicity.

The adversary in our model is the database host which
attempts to derive information about user queries from access
patterns. Besides observing all accesses to its memory or hard
disk, can also adaptively initiates PIR queries of its choices.
Formally, we model the adversary as a probabilistic polynomial
time algorithm , which takes any access pattern as the input
and outputs the value of a target query. We allow to access a
query oracle , through which issues PIR queries arbitrarily
as a regular user and observes their executions.

Since the adversary can issue queries, we differentiate two
types of queries: and . A query is
stained if the adversary has prior knowledge of its value. For
example, all PIR queries due to ’s request to are stained
ones; and an uncompromised user’s query is clean. The notion
of security is defined as below, similar to the one in ORAM
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[8]. Namely, no polynomial time adversary gets nonnegligible
advantage in determining by observing access patterns in-
cluding ’s execution.

Definition 2.1: Let be a security parameter. Let denote
the domain of all access patterns of length . A PIR scheme
is computationally secure if and only if for any PPT , there
exists a PPT , such that for any target clean query , ,

,

where is a negligible function, and and
denote the events that and output as the value

of with the assistance of , respectively. The probability is
taken over all the internal coin tosses of the PIR scheme, , and

or .

C. Protocol Overview

Recall that our predecessors [9], [10], [19] run as follows.
Before a session starts, the database is encrypted and permuted
using fresh secrets generated by . During execution, re-
trieves the requested item, say , from the database if is
not in the cache; otherwise, a random item is fetched to the
cache. When the cache is full, the entire database is reshuffled
and re-encrypted for the next session. The objective of database
shuffles is to remix the touched database entries with the un-
touched ones, so that future executions appear independent with
preceding ones. Due to the full database shuffle, these protocols
incur computation cost.

Security Intuition: Our proposed scheme is rooted at an in-
sightful observation: the full database shuffle is not indispens-
able, as long as user queries produce access patterns with the
same distribution. Note that it is unnecessary to shuffle white
records. A white record does not leak any query information
for the following two reasons. First, all records are encrypted
and therefore a white record itself does not compromise pri-
vacy. Second, since it is white, there exists no access pattern
involving it. Therefore, the observation that an encrypted record
is not touched does not help the adversary to derive any infor-
mation about (existing) user queries, which is the security goal
of PIR.

Based on this observation, we propose a new PIR scheme
which has a novel retrieval algorithm and a partial shuffle algo-
rithm. In a high level, our scheme proceeds as follows. Initially,
all database entries are labeled white. Once a record is fetched,
it is labeled black. For a query on , executes a novel twin
retrieval algorithm: if is in the cache, randomly fetches a
pair of records, black and white, respectively; otherwise, it re-
trieves the needed record and another random record in a dif-
ferent color. When the cache is full, only shuffles and re-en-
crypts all black records, which is called a partial shuffle. Intu-
itively, always spots a black and white pair being retrieved for
queries in a session. Moreover, the information collected in one
session is rendered obsolete for the succeeding sessions because
partial shuffles remove the correlations across sessions.

Fig. 1. Illustration of permutation among black records between� and� .

A challenge of this approach is how securely decides a
record’s color and securely retrieves a random record in a de-
sired color. Note that since all accesses to the database appear
random, the black records are dispersed across the entire data-
base. It is practically infeasible for an embedded trusted compo-
nent to “memorize” all state information. A straw-man solution
is that scans the database to check the colors of all records.
Nonetheless, this solution is not attractive since its linear com-
plexity totally nullifies our design efforts.

In Section III, we will present a basic PIR scheme by as-
suming that ’s cache is big enough to accommodate the needed
auxiliary data structures. In this way, we dismiss the aforemen-
tioned challenge for the time being and focus on the new twin
retrieval and partial shuffle algorithms and their security. This
facilitates an easier presentation of our full scheme in Section IV
where we will remove this storage assumption and propose a so-
lution to the mentioned challenge.

III. BASIC CONSTRUCTION

A. Basic PIR Scheme

manages a sorted array denoted by in its cache.
stores all black addresses in the ascending order. In every ses-
sion, a constant number of white records are fetched. There-
fore, the size of grows with a constant amount after each
session. At the end of the th session, generates

as the pseudorandom permutation among
black addresses for the th session. We remark that is not de-
fined upon the entire database. For two black addresses in

, s.t. , , , it implies that
contains the same item as in . We denote this relation as

. Namely, specifies the mapping between the
black addresses in and their original addresses in . An
example of and is illustrated in Fig. 1.

Initialization: chooses a pseudorandom permutation
and an encryption algorithm with a random

secret key . It encrypts and shuffles into by applying
and . This step can also be performed by a trusted au-

thority which then initializes accordingly.
Session 0. executes queries using the retrieval algo-

rithm in [19]. For , if is in ’s cache, reads
into the cache. Otherwise, retrieves a random record. After

executions, is populated with addresses and gen-
erates a secret permutation and a new
secret key . It shuffles the black records according to

while leaving the white records intact. Since all records to
be shuffled are in the cache, simply re-encrypts them using

and then writes the ciphertexts out in a batch to generate
. It deletes all data items in the cache. Note that no read ac-

cess to the database is needed during this shuffle.
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The relations among databases can now be illustrated as
. With

, , and , the record in storing can be located. For the
convenience of presentation, the tuple is always stored
together. Therefore, can determine ’s index without
further look-up. This applies for all subsequent sessions.

Session . For a user query, executes the twin-retrieval
algorithm shown in Algorithm 1. At the end of the session, it
executes the partial-shuffle algorithm shown in Algorithm 2 to
permute all black records whose addresses are stored in .

Algorithm 1 Basic Twin Retrieval Algorithm in Session .

INPUT: a query on , . OUTPUT: .

1: if not in the cache then

2: .

3: ;

4: if then

5: is black; set and read and read a
random white record;

6: else

7: is white; read a random black record and read
which stores ;

8: end if

9: else

10: read a random black record and a white record from
into the cache.

11: end if

12: return to the user.

Remark 1: is a standard binary search
function. If is , it returns , such that ; otherwise
it returns .

Remark 2: generates a random white record by repetitively
generating until returns

.

Explanation of Algorithm 1. For a query on , runs the
algorithm to fetch one black record and one white record from

. The decryption of the fetched record is performed within
T. If the needed item is in the cache, both records are retrieved
randomly. Otherwise, it fetches the requested record for and
the other one in a different color.

Note that once a record becomes black, it stays in black
forever. searches to determine the color of the requested
record. If it is white, directly uses its image under to read
the data, since it has never been shuffled. Otherwise, uses
and looks up to locate its present address in . After
queries, the cache is full, where half entries are black and half
are white, meaning that they are newly retrieved. Note that
now has entries with newly added ones during
the th session.

Algorithm 2 Basic Partial Shuffle Algorithm executed by at
the end of th session,

INPUT: with black records. OUTPUT:

1: secretly generate a random permutation
, and a new key .

2: for do

3: / Increase , until the corresponding item is not in
cache. Fetch /

4: while TRUE do

5: ; ;

6: if in the cache, ; else break;

7: end while

8: / We need to translate the record addresses across
different permutations /

9: ,
;

10: ,
;

11: fetch as .

12:

13: / Write to with either or the right one in the
cache /

14: if then

15: write into ;

16: else

17: Insert into the cache.

18: ; .

19: Retrieve from the cache and write to
.

20: end if

21: ;

22: end for

23: encrypt and write the remaining records in the cache
to accordingly, securely eliminate . Quit the
th session.

Explanation of Algorithm 2. The partial shuffle is to remix
up all black records whose addresses are in . For each partial
shuffle, a new permutation is selected so that all black records
are assigned to addresses randomly chosen from . Note that
the reshuffle process also re-encrypts them so that the server is
unable to link any black record’s old address and new address.

Essentially, it is to permute those black records in into
according to . fills in

following the address sequence: and so on. The
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record written into may be available in ’s cache;
and if not, it can be found in . In the latter case, the record
can be located through an address lookup, which in a high level

view is through . Note that since
and are defined in different domains due to the growth of ,
the algorithm has to make necessary address adjustment as in
Steps 13 and 14. The adjustment is done by calculating which
is the number of white items in the cache making the difference.

In order to prevent the server from knowing whether the
record to write is from the cache or fetched from , al-
ways retrieves one record from . Therefore, if the record is
from the cache, finds the next black address whose
preimage under is not in the cache (as shown in the while
loop) and fetches it into the cache.

B. Security Analysis

Our analysis is to show that the PIR scheme presented above
satisfies Definition 2.1. Intuitively, we show that the adversary
gets negligible advantage by obtaining the transaction scripts
which is computationally indistinguishable from a random
string of the same length. We begin with a definition of ideal
implementation which dismisses those attacks on the permuta-
tions and encryptions.

Definition 3.1 (Ideal Implementation): An implementation
of Algorithms 1 and 2 is said to be an ideal implementation
if all permutations are true random permutations
on their respective domains and is information theoretically
secure.

Let be the random variable denoting the script recording all
accessed database addresses for retrieval during the th session,
and let be the random variable denoting the script recording
all accessed database addresses for partial shuffle at the end of
the th session. Lemma 3.1 shows that the partial shuffle in an
ideal implementation is uniform, in the sense that after the par-
tial shuffle, all black records are uniformly remixed. Thus, all
black records appear indistinguishable to . Then, Lemma 3.2
proves that at any time, the access patterns for all query execu-
tions have the identical distribution. Finally, we prove in The-
orem 3.1 that the basic PIR scheme (without an ideal implemen-
tation) satisfies Definition 2.1.

Lemma 3.1 (Uniform Shuffle): For an ideal implementation,
Algorithm 2 at the end of the th session performs a uniform
shuffle on all black records. Namely, ,

,

(1)

where the probability is over all the random coin tosses in gen-
erating permutation and in query executions.

Proof: We prove the lemma by an induction on the session
number.

I. . In the end of the session 0, all black records
are in the cache and are written out to directly from the
cache. Thus, no matter what is in use, remains the same.
Therefore, when is a true random permutation, the proba-
bility holds for all

.

II. Suppose that (1) holds for , i.e.,

after the th session. We now consider the th session.
Let denote the set of white addresses touched and turned
into black during the th session. We use to denote the new
version of the black address array at the end of the th session.
To simplify the presentation, let ,

, and . Note
. We proceed to prove that (1) also holds for ,

i.e.,

for all .
For the ease of presentation, we use to denote

. Fur-

ther, we define and as

and
. Since and

are true random permutations, has no effect
in determining whether . Thus,

. Since
is generated based on , we have .

We will evaluate with this formula by distinguishing
in the cache and not in the cache.

Define and .
Note that and . Thereafter,

For , the adversary obtains no information about ’s
new address in as it is written out directly from the cache,
which is independent from the access patterns. Therefore, for all

, . We have

(2)

In addition, since either or , we have

We evaluate using (2) in two exclusive cases. I) cor-
responds to a white record retrieved during the th session; II)

corresponds to a black record retrieved during the th
session.

Case I. is white. Since is white until the
th session, its corresponding record at must be in the

cache. Therefore, for , , and .
Thus, we have

Case II. is black Note that there are attacks
whereby allows the adversary to know that for some

, . We consider two subcases below.
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Case II.A. The adversary knows by
issuing tainted queries. Therefore, for ,
since must be in the cache. In addition, for

and , as only is the matching one.
Therefore, since , we have

Case II.B. The adversary does not know any satis-
fying . (Note that the adversary may
still know using a tainted query.)

If , is not involved in the th session. It means
that do not affect the probability .
Therefore, by the induction assumption, for , .

If , is involved in one of the queries executed
in the th session. For those and is white be-
fore the th session, we have because is black.
For those and is black, because is informa-
tion theoretically secure, does not give the adversary any
advantage to determine whether . Therefore,

. By
the induction assumption on , we have
if and is black in Case II.B. Note that there are exactly

such black ’s Therefore, we have

Combining all the cases above, we have proved that when
, all , . With I and

II, we conclude the proof of the lemma.
Lemma 3.2 (Uniform Access): Let be the random variable

for a clean query. Let be the two-dimensional random
variable for the black and white addresses accessed in the twin
retrieval algorithm for . Let denote the access pattern when

is executed. Then, in an ideal implementation,
,

.
Proof: Without loss of generality, suppose that is exe-

cuted at the th session. We prove the theorem by examining
the cases when and .

I: . The theorem clearly holds as is a random per-
mutation of based on . Therefore, for each instance of on

, its image on is uniformly distributed. is always 0.
II: . According to Algorithm 1, for a query , a black

record and a white record are read. Let denote the set of
indexes of all items in the cache, and denote the set of in-
dexes whose corresponding records are black records and not
presently in the cache, and , which is
the set of indexes whose corresponding records are white. To
prove the theorem, it is sufficient to demonstrate that for any

, remains the same in
the following cases covering all possibilities of .

• Case (0) . Both and are randomly retrieved. So

• Case (1) . reads the corresponding black record
and a random white record from . Due to Lemma 3.1,
the corresponding record could be in any position in with

the same probability. Therefore, .
is a random retrieval, which is independent of . There-

fore,
.

• Case (2) . reads a random black record and the
corresponding white record from . The position of the
white records is determined by . Therefore,

. is a random retrieval inde-
pendent from . Therefore,

.
By combining all the cases above, we complete the proof.
Note that the ideal implementation is infeasible in practice.

Given the limited resource has, all permutations are pseu-
dorandom rather than true random, and is semantically se-
cure only against a PPT adversary. Therefore, we prove below
that under a practical implementation where and
are computationally secure, our PIR scheme consisting of Algo-
rithms 1 and 2 is computationally secure. The proof is based on
a series of games [16] between an adversary and a challenger
who simulates the setting with respect to our scheme.

Theorem 3.1 (Main Theorem): The proposed PIR
scheme satisfies Definition 2.1. Namely, for a database

and any using pseudorandom permu-
tations and a semantically secure encryption ,
for any PPT adversary against our scheme (Algorithm 1
and 2), there exists a PPT , such that for any target clean
query , for any , for any access pattern ,

where is a negligible function. The probability is taken over
all the internal coin tosses of Algorithm 1, Algorithm 2, , and

or .
Proof: In the proof, we do not differentiate access patterns

for query execution or for partial shuffle.
Game 0. Game 0 is defined as the attack game between and

the challenger. Game 0 is conceptually equivalent to attack
against our scheme without an ideal implementation. In partic-
ular, the challengers sets up the system and simulates using
pseudorandom permutations and a semantically
secure encryption scheme . queries to run tainted queries.

observes all access patterns for all queries.
At certain point, asks for a challenging query denoted .

The challenger randomly sets , where , and
executes the query. observes its execution. Then continues
to query and to observe the access pattern. After totally ob-
serving a polynomial number of database accesses ,
halts and outputs . wins Game 0 if . We de-
fine to be the event that . Note that

.
Game 1. We transform Game 0 into Game 1 with the

following changes. Instead of using pseudorandom permuta-
tions , the challenger uses true random permutations

, which are on the same respective domains. All
others remain the same as in Game 0.

Let be the event that in Game 1. We claim that
, where is the advantage for any

PPT adversary in distinguishing between a pseudorandom per-
mutation and a random permutation over the same permutation
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domain. This can be easily proven by using a distinguisher at-
tacking the pseudorandom permutation generator by interpo-
lating between Game 0 and Game 1. To determine whether a
family of permutations are true random or not, the distinguisher
applies them in Game 0 and Game 1 and observes ’s success
probabilities in two games.

Game 2 We transform Game 1 into Game 2 with the
following changes. Instead of using a semantically secure
encryption , the challenger uses an information theoretically
secure encryption algorithm . All others remain the same as
in Game 1.

Let be the event that in Game 2. We claim that
, where is the advantage of a PPT

adversary in distinguishing and , i.e., breaking the semantic
security of . Similar to the proof in Game 1, our claim here can
be proven by constructing a distinguisher which is given oracle
accesses to either or and interpolates between Game 1 and
Game 2.

Therefore, we have . Thus, the
theorem can be proved by proving ,
which is equivalent to prove that in an ideal implementation of
our proposed PIR scheme, .
By the conditional probability formula, it is equivalent to prove
that , . Fix any session , we
prove it by an induction on .

I: When , our target is to prove that
, . Note that

. Consider . There
are two cases:

• The record corresponding to is in . Therefore,
, due to the initial permutation;

due to random access.
• The record corresponding to is in . Therefore,

, due to random access;
due to the initial permutation.

Thus, in both case for
both cases. Obviously, for all

. Consequently,
.

II: (induction assumption) For
. We then prove that .

Without loss of generality, let , where
is the th database read. Therefore, to

prove , it is sufficient to prove
due to the con-

ditional probability formula. By the induction assumption, it is
sufficient to prove . We prove
this by considering three exclusive cases for .

1) occurs after the th database access;
2) is the query for the th database access;
3) occurs prior to the th database access.
We proceed to prove that the above equation holds for all three

different cases.
Case 1) Obviously, and are independent of .

So, .
Case 2) Note that

, where
is the query corresponding . Due to Lemma
3.2, ,

. Therefore,
.

According to the induction, , we
have

Case 3) Let be the random variable for the query which
generates . Considering all possible values
of , denoted by , we have

. Note that
since

is determined by and according to our
PIR algorithm. Therefore,

. Since
is independent of and ,

thus

Hence, for all three cases,
, which proves that

. Thus, we conclude with
.

IV. CONSTRUCTION WITHOUT STORAGE ASSUMPTION

In this section, we consider the scenario that does not have
the capability for storing whose size grows linearly to the
number of queries. is therefore maintained by . Note that
unprotected accesses to may leak information about the black
records looks for, and consequently compromise query pri-
vacy. A straightforward solution is to treat as a database,
and to run another PIR query on it. Nonetheless, the cost of
this nested PIR approach seriously counteracts our efforts to im-
prove the computational efficiency.

We devise two tree structures denoted by and stored
in to facilitate ’s accesses on black and white records, re-
spectively. We also retrofit the previous twin-retrieval and par-
tial-shuffle algorithms such that the accesses to and are
oblivious, since all accesses to and appear uniformly to
for all query executions.

A. Auxiliary Data Structures

Here we only describe the data structures and the involved
algorithms. Their construction and the security analysis are pre-
sented in the subsequent sections.

1) Management of Black Records: maintains two arrays:
and , recording black addresses as in Section III. The latter

array is for to acquire session related information. When a
session starts, and are identical. During the session, only
is updated with every database access as in the previous scheme,
and is not updated. In the beginning of a session, overwrites

with which has more elements.
2) Management of Permutation: Recall that is a result of

a partial shuffle under the permutation .
The permutation can essentially be represented by pairs of
tuples , where is the item’s index in and

is the corresponding record’s address in . se-
lects a cryptographic hash function with a secret key and a
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Fig. 2. Illustration of �, where the black address array � � ��� ������ �	

and the permutation can be represented as (7,32),(11,50),(32,11),(50,7). � �
��� ������ ���� ���� �� ����	� ������, �� ����� ��������
�� ������ �����	��, and ����� �� � ���	� �� � ���� �� � ����� ��.
The shadows in � implies that all nodes are encrypted.

CPA secure symmetric key encryption scheme with a secret key
, where the encryption and decryption functions are denoted by

and , respectively. We use to denote .
Therefore, the permutation can be represented by a 2-tuple list

, sorted under
values, i.e., . Let be a complete
binary search tree with randomly assigned inner node
and with being the leaves such that an inner node stores

satisfying that is larger than the plaintext stored in its
left child and smaller than the plaintext of its right child. Here-
after, we refer to the plaintext stored in and as keys as they
are used for numerical comparison.

Fig. 2 depicts one toy example of with four leaves.
We design three algorithms on : random-walk, targeted-

walk , and secure-insert as described below.
• Random-walk: Starting from the root of , fetches a

node from into the cache, and secretly tosses a random
coin such that both of its child nodes have the same proba-
bility to be fetched in the next level. The process is repeated
until a leaf node is fetched.

• Targeted-walk : Starting from the root of , fetches
a node from into its cache and gets its key by decryption.
If is less than or equal to the key, fetches its left child;
otherwise, it fetches the right child. The process is repeated
until a leaf node is reached.

• Secure-insert where has been sorted under
values: The same as the regular insertion algorithm

to a sorted list, except that all comparisons are performed
within ’s cache after decryption, and that are
inserted into instead of in plaintext.

The random-walk algorithm implements fetching a random
black record, whereas the targeted-walk algorithm performs
a real binary search. Both algorithms walk from the root of
downwards to a leaf node, i.e., an entry in . These two algo-
rithms are used during query execution whereas secure-insert
is used in constructing .

3) Management of White Addresses: We need to manage
those white records as well. The black addresses virtually di-
vide into white segments, i.e., blocks of adjacent white
addresses. We use an array denoted by to represent the white
segments. An entry in has three fields, i.e.,
representing the th white segment which starts from the address

and contains entries with being the th white

TABLE II
EXAMPLE OF �. ���
 IS 	 ��		
, WHICH IS A CIPHERTEXT OF �
� � � WHERE


 � �� � � 	
��		.	 ��		
 IS WHITE BEFORE BEING RETRIEVED, AND IT

BECOMES THE FIFTH BLACK RECORD IN 	

address in the database. Namely, .
Since does not hold any secret information, it is managed and
stored by . Nonetheless, similar to the security requirement of

, the notion of PIR also requires that the server cannot distin-
guish whether ’s access to is for a random white record or
one requested by a query. utilizes to fetch white records in
the following two ways.

• Random-search: generates . Then it
runs a binary search on for the th white record in ,
which stops at satisfying .
It computes and fetches the th
record from .

• Targeted-search: runs a targeted search for given an
index whose corresponding address is white. runs a
binary search on for the address . The search stops
at satisfying . Then,
fetches the th record from . Note that the only
purpose of this search is to prevent the adversary from
distinguishing whether a white record is randomly selected
or not.
a) Management of Cache: We need to store more infor-

mation in the cache. First, we define the term BIndex for black
records. For a black address , its BIndex is iff ,
namely its rank . The cache is organized as a table denoted by

whose format is shown in Table II.
The entries in are sorted under their fields. Suppose

that fetches a record storing . It inserts a new
entry into , where the , and

; is set to “ ” if was black;
otherwise is set to “ .” In our example shown in
Table II, ’s image in is currently the fifth black record in
the database.

B. The Scheme

We are now ready to present the full scheme without the as-
sumption of ’s storage for . The scheme consists of Algo-
rithm 3 for query executions and Algorithm 4 for the partial
shuffle. In the high level, these two algorithms shares the same
logic as Algorithms 1 and 2 in Section III-A. The differences
are mainly on how to locate the black and white records needed
by protocol execution and how to construct .

1) Twin Retrieval: The main challenge of the retrieval
algorithm is to obliviously and efficiently determine a queried
record’s color and to generate the proper random address.
The basic idea of Algorithm 3 is to utilize to determine a
record’s color by searching for the corresponding ciphertext.
If it is black, the search process outputs its exact location;
otherwise, it outputs a random black record. To ensure that a
leaf can only be retrieved once, stores the intervals for those
retrieved leaves into a temporary set . For a binary search
tree, each leaf has a corresponding interval determined by the
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two adjacent inner nodes in an in-order traversal. Thus, whether
a leaf is retrieved depends on whether the searching key falls
into the leaf’s interval. Note that these two inner nodes are
on the path from the root to the leaf. If the leaf is its parent’s
left/right child, the recorded ancestor is the nearest one such
that the leaf’s is the right/left offspring.

More specifically, differentiates three scenarios. In the first
scenario (Line 2), the queried record is in the cache. In this case,
it fetches a random black and white pair. In the second scenario
(Line 8), the queried record is not in the cache and the expected
search path has been walked previously, which indicates that the
queried record is white. Therefore, performs a random walk
in to avoid repeating the path. In the last case (Line 11),
performs a targeted walk to search for ciphertext . There are
two possible outcomes: the leaf node matches , indicating that
the desired record is black; or the leaf does not match, indicating
that the record is white.

Algorithm 3 The General Twin Retrieval Algorithm in Session
, executed by .

INPUT: a query on , , key , set , whose root is .
OUTPUT: .

1: ;

2: if then

3: / the data item is in the cache /

4: random-walk; .

5: random-search which returns , go to Line 17;

6: end if

7: ;

8: if satisfying then

9: random-walk; ; go to Line 15;

10: end if

11: targeted-walk ; ;

12: if then

13: random-search which returns . / the queried
record is black. /

14: else

15: targeted-search for . Then . / the queried
record is white. /

16: end if

17: where are the plaintext of
leaf ’s parent node and one of its ancestors on the
path and .

18: read the and . After decryption, create two
new entries for them accordingly. Note that the BIndex
is empty for the time being.

19: return to the user.

2) Partial Shuffle: The partial shuffle algorithm shown in Al-
gorithm 4 is the same as Algorithm 2 with two main differences.
First, uses to look for a suitable black record to shuffle out
(Line 7), rather than repetitively visiting . Therefore, for every
write to the new database, only has one access for and one
for the old database (Line 11). Second, this algorithm has to con-
struct and . When populating the black entries in the new
database (Lines 15 and 20), secure inserts the mapping rela-
tion into . Note that it is which is inserted
into sorted . The concurrence of constructing and filling the
new database does not leak information, since -values of are
exactly the addresses in array .

The construction of is also straightforward. Since is
built as a complete binary search tree with being the leaves,
its topology of is calculated when is ready. Thus, can
scan and build : between two adjacent nodes, randomly
picks in the domain of and builds an inner node storing

. Then, based on the computed tree topology, sets the
pointers for its two children, which could be inner nodes or leaf
nodes.

Algorithm 4 Partial Shuffle Algorithm executed by at the
end of th session,

Input: Output: , and

1: scan and assign BIndex for each entry in . Specifically,
for every , if , s.t.

, then set .

2: generate a secret random permutation
, and a new encryption key and hash key .

3: for do

4: ;

5: / Increase , until the corresponding item is not in
cache. Then, fetch from . /

6: while TRUE do

7: if , ; else break;

8: end while

9: / We need to translate the record addresses across
different permutations /

10: and ,
;

11: fetch , and then fetch as .

12: / Write to and update /

13: if then

14: Re-encrypt into ;

15: secure-insert ;

16: else

17: insert a 4-tuple ' into .

18: find satisfying .
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19: Re-encrypt and insert the
result to .

20: secure-insert );

21: end if

22:

23: end for

24: write the remaining records in the cache to and
assign accordingly; securely discard .

25: scan and construct based on .

C. Security Analysis

Our security analysis below focuses on the new security is-
sues caused by using the auxiliary data structures. First, we
prove that the adversary’s observation on a path of targeted-
walk does not reveal any information about the query. Note that
for a binary search tree, a leaf node exactly represents one search
path. We describe the obliviousness of targeted-walk using the
following lemma.

Lemma 4.1: For any given and constructed as above,
for a search path ending at resulting from targeted-walk
on a query , for all

and .
Proof: To prove the lemma, it is sufficient to prove

. Without loss of generality, sup-
pose that an in-order traverse of shows to the adversary that

Therefore, it appears to the adversary that is exactly
the probability that , which de-
pends on the hash function and the decryption function

. Under the random oracle model, is uniformly
distributed in ’s domain. Therefore, is determined
by . Since are uniformly dis-
tributed and the adversary has no information about
as every is only chosen once in query execution,

for all .
Lemma 4.2: Suppose that is a true-random permutation

over . For any given , for all white item , the search
path generated by the targeted search for has the same dis-
tribution as a random search, where the probability is computed
over the coin tosses of and in random search.

Proof: The proof is very straightforward. Since is a true
random permutation, is a random position among all white
records. Thus, has the same distribution as
which is just the rank of a random white record. Therefore, the
two binary searches above result in the identical distribution.

The two lemmas above show that the independent executions
of those component algorithms for auxiliary data structures do
not leak information to the adversary. Next, we prove that Al-
gorithm 3 and Algorithm 4 remain as oblivious though auxil-
iary data structures are accessed within their executions. In plain

words, we show that an adversary does not observe more useful
information in executing Algorithms 3 and 4 than in executing
Algorithms 1 and 2.

Lemma 4.3: The accesses to auxiliary data structures
in Algorithm 3 are oblivious.

Proof: For all queries, only and are
accessed. In addition, the black addresses stored in are known
to the adversary. Thus, accesses to do not give the adversary
any advantages.

By Lemma 4.2, we have shown that for all queries, the ac-
cesses to in executing Algorithm 3 have the identical distri-
bution. Furthermore, the trace of searching on does not leak
extra information to the adversary. This is because the entire
is known to the adversary. For a binary search, the leaf deter-
mines the search path. Therefore, since the adversary observes
the access to a white address in the database, it can generate the
same trace as does.

The adversary also observes a retrieved black record and a
search path from either targeted-walk or random-walk. Since
the accessed black record’s address can be inferred from the
root-to-leaf walk in , we only evaluate whether a tree walk
leaks more query information than the touched black address.
According to Lemma 4.1, the execution of targeted-walk in Al-
gorithm 3 has the identical distribution for all queries. In addi-
tion to that, random-walk has the same path distribution as tar-
geted-walk since every leaf node still has the same probability
to be fetched. Therefore, neither tree walk algorithms leaks in-
formation about the query except the address of the black record
to retrieve.

To summarize, the accesses to in Algorithm 3 do
not leak more query information to the adversary than in
Algorithm 1.

Lemma 4.4: The accesses to auxiliary data structures
in Algorithm 4 are oblivious.

Proof: Algorithm 4 performs a full scan of . Since
only contains black addresses which can be derived from data-
base access pattern, the full scan of does not leak extra in-
formation. The algorithm also reads in Line 11. This does
not leak extra information, since the adversary can find by
observing that is fetched.

The construction of (including ) involves a comparison
between the keys stored in two nodes. Although the adversary
gets the topology of which reveals the order of all keys, the
construction process does not leak more information than it-
self. In fact, leaks no more information to the adversary than
she has observed. The -values in are exactly the same as
those in , which can be easily obtained by observing the data-
base retrievals. All other information in are the ciphertext of
keys. Although shows the order of all keys, it does not expose
the permutation used in the partial shuffle. This is because all
keys in ’s inner nodes are randomly picked, and all -values
in are derived from .

To summarize, any access pattern observed by the adversary
can be caused by all possible permutations with the same prob-
ability. Thus, the accesses to do not leak more in-
formation to the adversary than in Algorithm 2.

The lemmas have shown that accesses to auxiliary data struc-
tures leaks no additional information than in the basic construc-
tion. Since both the full scheme and the basic one have the
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same database access patterns for the query execution and par-
tial shuffle, Lemma 3.1 and Lemma 3.2 still hold in the full
scheme, which leads to the following theorem as in proving The-
orem 3.1.

Theorem 4.1: For a database and any
corresponding shuffled and encrypted database using pseu-
dorandom permutations and a semantically secure
encryption , for any PPT adversary against our scheme
(Algorithms 3 and 4), there exists a PPT , such that for any
clean query , , for any access pattern , ,

. The proba-
bility is taken over all the internal coin tosses of Algorithm 3,
Algorithm 4, , and or .

V. PERFORMANCE

A. Complexity Analysis

Our scheme has an communication complexity,
which is the same as that of schemes in [9], [10], and [19],
and is the lower bound of communication complexity for any
PIR construction. The computational complexity describes the
amount of accesses on , including database accesses (e.g.,
read and write), auxiliary data structure accesses. Note that
queries are executed in every session. When the th session
starts, holds black records. Therefore, one query execu-
tion of Algorithm 3 costs
accesses due to the task of binary searches on and .
A partial shuffle at the end of the th session permutes

black records. It requires accesses
to scan array , accesses to permute the
records, accesses in average
for constructing , accesses for constructing .
Therefore, totally queries executed in sessions costs

server operations, which is approximated to

Therefore, the complexity of the amortized server computation
cost per query is , which is independent of the database
size.

The advantage of our scheme decreases when asymptoti-
cally approaching . One optimization is to reset the state when

is large. A reset is to run a full shuffle on the original database
which costs accesses using the full shuffle algorithm in [19].
Let be the parameter such that the database is reset for every

sessions. Then, the average amount of accesses is

We choose an optimal ,
which satisfies that

, such that the optimal average cost becomes

Thus, the complexity of the average computation cost per query
after optimization is .

A comparison of our scheme against other PIR schemes is
given in Table III. Note that all previous hardware-assisted

TABLE III
COMPARISON OF COMPUTATION COMPLEXITY IN TERMS OF THE AMOUNT OF

SERVER ACCESSES

schemes [9], [10], [18], [19] claim computation com-
plexity since they only count the cost of database accesses. In
fact, all of them require operations to determine if an
item is in cache. Our scheme also has database read/write,
though we need an additional cost for a binary search in . For
those PIR schemes without using caches, the computation cost
per query is at least . Our scheme substantially outper-
forms all other PIR schemes in terms of average query cost by
paying a slightly higher price of online query processes.

B. Comparison With Hierarchy-Based ORAM

We also compare our scheme with the state-of-the-art ORAM
proposed in [15] (denoted by PR-ORAM). The comparison is
made upon several aspects including computation complexity,
the actual computation cost, the protected storage cost, and the
server storage cost.

1) Complexity. Clearly, the complexity of
our scheme is much higher than the complexity
of PR-ORAM and other hierarchy-based ORAM construc-
tions.

2) Actual Computation Cost. According to [15], the con-
stant factor in the big- notation of PR-ORAM’s server
operation complexity is about 72 if two optimization tech-
niques are applied. (Otherwise, it is about 160 according to
their experiments.) Therefore, it takes operations
per query. The average cost of our scheme with optimiza-
tion is . By conservatively set-
ting , our scheme outperforms PR-ORAM’s

operations when as shown in
Fig. 3(a). Note that a popular trusted hardware, e.g., IBM
PCIXCC, typically has megabytes storage, which can ac-
commodate thousands of items. It is more suitable than
PR-ORAM for databases of up to billions of items.

3) Protected Storage. Both our scheme and PR-ORAM need
a protected storage whose size is independent of the data-
base size. In our scheme, the hardware needs a cache to
store a constant amount of data items. PR-ORAM also
needs a client end storage to store secret information. Since
it does not store data, it requires less storage than our
scheme.

4) Server-side Storage. In our scheme, the server storage
grows with query executions. At maximum, it stores the
database of items, two arrays and of size ,
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Fig. 3. Comparison between our scheme and ORAM [15] with different cache size. (a) � � ����; (b) � � ����.

Fig. 4. Experiment results of the proposed PIR scheme. (a) Effect of reset by full-shuffle; (b) linear relation between amortized query execution time and
�
� �	
�.

TABLE IV
QUERY EXECUTION TIME FOR DIFFERENT DATABASE SIZES �, WITH A FIXED

CACHE SIZE � � ���

a tree (including ) of nodes, and an array of
. Therefore, the maximum storage cost at the server

side is at maximum, in contrast to the server
storage in PR-ORAM.

5) Architecture. Although we introduce a trusted hardware in
the server side, the algorithms proposed in this paper can
also be applied to client–server settings as ORAM-based
PIR. We remark that to solve the PIR problem, both our
scheme and ORAM require a trusted entity. In the tight-
coupling architecture considered in our scheme, a secure
hardware is the one, which supports multiple clients and
has faster database accesses. In the loose-coupling archi-
tecture as suggested in [21], a client/agent plays the role of
trusted party. Note that the choice of architecture does not
affect the complexity of the algorithms or the number of
server operations.

C. Experiment Results

We have implemented Algorithms 3 and 4 and measured their
computation time cost with a simulated trusted hardware. Both
algorithms are executed on a PC with a Pentium D CPU at
3.00 GHz, 1-GB memory, and Ubuntu 9.10 86_64. They are
implemented by using OpenSSL-0.9.8 library, where the per-
mutation is implemented using the generalized Feistel con-
struction proposed by Black and Rogaway in [4].

Our experiment is to verify our square-root performance
analysis in Section V-A. We fix the cache size as 512 items
and experiment with databases of five different sizes. For
each database, we ran 100 000 random generated queries with
full-shuffles after a fixed amount of sessions. We measured the
average query time in each experiment. The results are shown
in Table IV below, and are plotted in Fig. 4. Fig. 4(a) depicts
the up-and-down of the partial shuffle time, where the drop is
due to the protocol reset. Fig. 4(b) depicts the average query
execution time growing almost linearly with which
confirms our analysis above.

VI. CONCLUSION

We have presented a novel hardware-based scheme to pre-
vent database access patterns from being exposed to a mali-
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cious server. By virtue of twin-retrieval and partial-shuffle, our
scheme avoids full-database shuffle and reduces the amortized
server computation complexity from to where

is the number of queries, or to with an opti-
mization using reset. Although the hierarchy-based ORAM al-
gorithm family [15], [20], [21] can protect access patterns with
at most cost, they are plagued with large constants
hidden in the big- notations. With a modest cache ,
our construction outperforms those poly-logarithm algorithms
for databases of entries. In addition, our scheme has
much less server storage overhead. We have formally proved
the scheme’s security following the notion of PIR and showed
our experiment results which confirm our performance analysis.
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