
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

2-2011

Cryptanalysis of a certificateless signcryption
scheme in the standard model
Jian WENG
Beijing University of Posts and Telecommunications

Guoxiang YAO
Jinan University - China

Robert H. DENG
Singapore Management University, robertdeng@smu.edu.sg

Min-Rong CHEN
Shenzhen University

Xianxue LI
East China Normal University

DOI: https://doi.org/10.1016/j.ins.2010.09.037

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Information Security Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
WENG, Jian; YAO, Guoxiang; DENG, Robert H.; CHEN, Min-Rong; and LI, Xianxue. Cryptanalysis of a certificateless signcryption
scheme in the standard model. (2011). Information Sciences. 181, (3), 661-667. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/1304

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13243634?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1304&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1304&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1304&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1016/j.ins.2010.09.037
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1304&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1304&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg


Cryptanalysis of a certificateless signcryption scheme
in the standard model

Jian Weng a,b,c, Guoxiang Yao b,⇑, Robert H. Deng d, Min-Rong Chen e, Xiangxue Li f

a State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China
b Department of Computer Science, Jinan University, Guangzhou 510632, China
c State Key Laboratory of Information Security, Institute of Software, Chinese Academy of Sciences, Beijing 100080, China
d School of Information Systems, Singapore Management University, Singapore 178902, Singapore
e College of Information Engineering, Shenzhen University, Shenzhen 518060, China
f Department of Computer Science and Technology, East China Normal University, Shanghai 200241, China

a r t i c l e i n f o

Article history:
Received 20 February 2010
Received in revised form 23 September
2010
Accepted 24 September 2010

Keywords:
Certificateless signcryption
Malicious-but-passive KGC attack
Semantic security
Existential unforgeability

a b s t r a c t

Certificateless signcryption is a useful primitive which simultaneously provides the func-
tionalities of certificateless encryption and certificateless signature. Recently, Liu et al.
[15] proposed a new certificateless signcryption scheme, and claimed that their scheme
is provably secure without random oracles in a strengthened security model, where the
malicious-but-passive KGC attack is considered. Unfortunately, by giving concrete attacks,
we indicate that Liu et al. certificateless signcryption scheme is not secure in this strength-
ened security model.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

To simplify the certificate management in traditional public key infrastructure (PKI), Shamir introduced the concept of
identity-based cryptography, where an entity’s public key is determined as his identity such as email address, and the cor-
responding private key is generated by a trusted third party named private key generator (PKG). The identity is a natural link
to a user, hence it can eliminate the need for certificates as used in traditional PKI. However, identity-based cryptography
inevitably suffers from the key escrow problem, i.e., all the users’ private keys are known to the PKG who thus can perform
cryptographic operations (such as decryption and signing) on behalf of these users.

In order to resolve the above key escrow problem for identity-based cryptography, Al-Riyami and Paterson [1] introduced
the concept of certificateless public key cryptography (CL-PKC). In CL-PKC, a third party named key generation center (KGC)
is also involved. However, in contrast to the PKG in identity-based cryptography, the KGC does not generate the full private
key for the user. Instead, the KGC only supplies the user with a partial private key which is computed from the user’s iden-
tity. The user then chooses a secret value and combines the partial private key to generate the full private key. CL-PKC can
successfully resolve the key escrow problem while avoiding the use of certificates.

Since its advent, CL-PKC has attracted great interest, and many certificateless cryptosystems have been proposed, includ-
ing many certificateless encryption schemes and certificateless signature schemes, e.g.[10,3,14,12,8,16,9,17,11,13]. As an
extension of the signcryption [18] in the certificateless scenario, Barbosa and Farshim [4] introduced the concept of
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certificateless signcryption, which simultaneously provides the functionalities of certificateless encryption and certificate-
less signature. In [4], Barbosa and Farshim proposed a concrete certificateless signcryption scheme, and proved its security
in the random oracle model [5]. As indicated in [6,7], a proof in the random oracle model can only serve as a heuristic
argument and cannot ensure the security in the real implementation. In addition, the security model defined in [4] does
not consider the malicious-but-passive KGC attack [2], which allows the KGC to embed extra trapdoors in the system
parameters. As noted by Liu et al. [15], Barbosa and Farshim’s certificateless signcryption scheme will be insecure under
the malicious-but-passive KGC attack. To address the above problems, Liu et al. [15] proposed a new certificateless
signcryption scheme, and claimed that their scheme is provably secure without random oracles, even under the
malicious-but-passive KGC attack. However, in this paper, by giving concrete attacks, we indicate that Liu et al. certificateless
signcryption scheme is not secure against the malicious-but-passive KGC attack.

2. Preliminaries

2.1. Bilinear pairing

Let G and GT be two (multiplicative) cyclic groups with prime order p. A bilinear pairing is a map e : G�G! GT with the
following properties:

� Bilinearity: 8g1; g2 2 G; 8a; b 2 Z�p, we have eðga
1; g

b
2Þ ¼ eðg1; g2Þ

ab;
� Non-degeneracy: There exist g1; g2 2 G such that eðg1; g2Þ– 1GT , where 1GT denotes the identity element of group GT ;
� Computability: There exists an efficient algorithm to compute e(g1,g2) for 8g1; g2 2 G.

2.2. Formal model of certificateless signcryption

In this subsection, we shall review the definition and security notions specified in [15], only with slight notational
differences.

2.2.1. Definition of certificateless signcryption
A certificateless signcryption scheme consists of the following six algorithms:

Setup(j): On input a security parameter j, this setup algorithm generates a master key msk
and the system parameters params. After this algorithm is performed, the KGC
publishes params and keeps msk secret.

Partial-Private-Key-Extract(params,msk,u): On input params, msk and an identity u, this algorithm outputs the partial private
key du for identity u. Note that the KGC executes this algorithm to generate du and
sends it to the corresponding owner u via a secure channel.

User-Key-Generate(params,u): On input params and an identity u, this algorithm returns a secret value xu and a
corresponding public key pku for identity u. Note that the entity u executes this
algorithm to generate his public key, and then distributes the public key pku

without being certificated.
Private-Key-Extract(params,du,xu): On input params, and entity’s partial private key du and secret value xu, this algo-

rithm generates the entity’s full private key sku. Note that this algorithm is exe-
cuted by the entity itself.

Signcrypt(params,M,skS,uS,pkS,uR,pkR): On input params, a message M, a sender’s private key skS, identity uS and public
key pkS, and a receiver’s identity uR and public key pkR, this algorithm outputs
a ciphertext r or an error symbol \.

Unsigncrypt(r,skR,uS,pkS): On input a ciphertext r, the receiver’s private key skR, and the sender’s identity uS

and public key pkS, this algorithm outputs the plaintext M or an error symbol \.

2.2.2. Security models
Based on Barbosa and Farshim’s model [4], Liu et al. [15] presented a strengthened model considering the malicious-

but-passive KGC attack.
Confidentiality. The confidentiality security for a certificateless signcryption scheme is defined via the following two

games against Type I and Type II adversaries:
Game I. In this game, a Type I adversary models an ‘‘outsider” adversary, who can replace the public key of arbitrary iden-

tities but cannot corrupt the master secret key. Concretely, this game is played between a challenger C and a Type I adversary
AI as below:

� Initialization. Challenger C runs algorithm Setup to generate the master secret key msk and the system parameters
params. C gives params to AI and keeps msk secret.
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� Phase 1. In this phase, AI adaptively performs a polynomially bounded number of queries as below:
– Request public key. When AI supplies an identity u and requests the public key for u, challenger C responds with the

corresponding public key pku.
– Extract partial private key. When AI supplies an identity u and requests u’s partial private key, C responds with the par-

tial private key du for this identity.
– Replace public key. When AI supplies an identity u and a new valid public key value pk0u, challenger C replaces the cur-

rent public key with pk0u.
– Extract private key. When AI requests the private key of an identity u whose public key was not replaced, challenger C

responds with the private key sku for this identity.
– Signcrypt. When AI submits a sender with identity uS, a receiver with identity uR and a message M, challenger C first

runs Signcrypt(params,M,skS,uS,pkS,uR,pkR), and then returns the resulting ciphertext to AI. Here skS denotes the sen-
der’s private key. Note that it is possible for the challenger to be unaware of the sender’s secret value when the asso-
ciated public key has been replaced by adversary AI. In this case, we require AI to provide the sender’s secret value.

– Unsigncrypt. When AI submits a ciphertext r, a sender with identity uS and a receiver with identity uR, challenger C
returns the result of Unsigncrypt(r,skR,uS,pkS). Note that it is possible for the challenger to be unaware of the receiver’s
secret value when the associated public key has been replaced by adversary AI. In this case, we require AI to provide
the receiver’s secret value.

� Challenge. Once AI decides that phase 1 is over, it outputs two distinct identities fuS� ;uR� g and two equal-length mes-
sages {M0,M1}. Challenger C first chooses a bit c randomly, and then computes r� ¼ Signcryptðparams;Mc; skS� ;

uS� ; pkS� ;uR� ; pkR� Þ. Finally, C gives r* to AI.
� Phase 2. Adversary AI continues to issue queries as in phase 1, and C responds in the same way as in phase 1.
� Response. Finally, adversary AI returns a bit c*. We say that AI wins the above game if c* = c and the following conditions

are simultaneously satisfied:
(1) AI cannot extract the private key for uR� .
(2) AI cannot extract the private key for any identity if the corresponding public key has been replaced.
(3) AI cannot extract the partial private key for uR� if AI has replaced the public key pkR� before the challenge phase.
(4) In phase 2, AI cannot make an unsigncryption query on the challenge ciphertext r* under uS� and uR� unless the sen-

der’s public key pkS� or the receiver’s public key pkR� , that were used to signcrypt Mc, has been replaced after the chal-
lenge phase.

We define AI ’s advantage as AdvIND�CLSC�CCA2

AI
¼ j2Pr½c� ¼ c� � 1j.

Game II. In this game, a Type II adversary models an ‘‘insider” adversary, who can corrupt the master secret key but can-
not replace any public key. Concretely, this game is played between a challenger C and a Type II adversary AII as below:

� Initialization. Adversary AII runs algorithm Setup to generate the master secret key msk and the system parameters
params. AII then gives params and msk to C. We should keep in mind that AII generates params and msk by itself.
� Phase 1. In this phase,AII adaptively issues a polynomially bounded number of queries as in game I. The only constraint is

that AII cannot replace any public key. Obviously, AII can compute the partial private key of any identity by itself with the
master secret key.
� Challenge. Once AII decides that phase 1 is over, it outputs two distinct identities fuS� ;uR� g and two equal-length mes-

sages {M0,M1}. Challenger C first chooses a bit c randomly, and then computes r� ¼ Signcryptðparams;Mc; skS� ;uS� ;

pkS� ;uR� ; pkR� Þ. Finally, C returns r* to AII.
� Phase 2. Adversary AII continues to issue queries as in phase 1, and C responds in the same way as in phase 1.
� Response. Finally, adversary AII returns a bit c*. We say that AII wins the above game if c* = c and the following condi-

tions are simultaneously satisfied:
(1) AII cannot extract the private key for the challenge identity uR� .
(2) In phase 2, AII cannot make an unsigncryption query on the challenge ciphertext r* under uS� ;uR� and public key pkR�

that were used to signcrypt Mc.

We define AII ’s advantage as AdvIND�CLSC�CCA2

AII
¼ j2Pr½c� ¼ c� � 1j.

A certificateless signcryption scheme is said to be semantically secure against adaptive chosen ciphertext attacks, if there
exists neither polynomial time Type I adversary nor polynomial time Type II adversary who has a non-negligible advantage
in game I and game II, respectively.

Unforgeability. The authenticity security (existential unforgeability against chosen message attacks (EUF-CMA)) for a
certificateless signcryption scheme is captured by the following two games against Type I and Type II adversaries, respec-
tively.

Game III. This game is played between a challenger C and a Type I adversary AI for a certificateless signcryption scheme
as follows:

� Initialization. Challenger C runs algorithm Setup to generate the master secret key msk and the system parameters
params. Then C gives params to AI and keeps the master secret key msk to itself.
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� Queries. In this phase, AI adaptively issues a polynomial bounded number of queries as in game I.
� Output. Finally, AI outputs a new triple ðr�;uS� ;uR� Þ, which is not produced by the signcryption query. Adversary AI wins

game III if the result of Unsigncryptðr�; skR� ;uS� ; pkS� Þ is not the symbol \ and the queries are subject to the following
constraints:
(1) AI cannot extract the private key for uS� .
(2) AI cannot extract the private key for any identity if the corresponding public key has been replaced.
(3) AI cannot extract the partial private key for uS� .

We define AI’s success probability in game III to be SuccEUF�CLSC�CMA
AI

¼ Pr½AIwins�.
Game IV. This game is played between a challenger C and a Type II adversary AII for a certificateless signcryption scheme

as follows:

� Initialization. Adversary AII runs algorithm Setup to generate the master secret key msk and the system parameters
params. Then AII gives params to C. Note that AII generates msk and params itself.
� Queries. In this phase, AII adaptively issues a polynomial bounded number of queries as in game II.
� Output. Finally, AII outputs a new triple ðr�; uS� ; uR� Þ, which is not produced by the signcryption query. AdversaryAII wins

game IV if the result of Unsigncryptðr�; skR� ;uS� ; pkS� Þ is not the error symbol \ and AII did not extract the private key for
uS� .

We define AII ’s success probability in game IV to be SuccEUF�CLSC�CMA
AII

¼ Pr½AIIwins�.
A certificateless signcryption scheme is said to be existentially unforgeable under adaptive chosen message attacks, if

there exists neither polynomial time Type I adversary nor polynomial time Type II adversary who has a non-negligible suc-
cess probability in game III and game IV, respectively.

3. Review of Liu et al.’s certificateless signcryption scheme

In this section, we review Liu et al.’s identity-based signcryption scheme [15], which is specified by the following
algorithms:

Setup: Let ðG;GTÞ be bilinear groups such that jGj ¼ jGT j ¼ p for some prime p, and let g be a generator
of G. Given a pairing e : G�G! GT and a collision resistant hash function H: {0,1} ? {0,1}m,
the KGC randomly chooses a 2 Zp and computes g1 = ga. In addition, the KGC randomly picks
g2;u

0; v 0 2 G and two random vectors ~U ¼ ðuiÞn; ~V ¼ ðv jÞm from group G with lengths n and m,
respectively. The system parameters are params ¼ ðG;GT ; e; g; g1; g2;u0;v 0; ~U; ~V ;HÞ and the mas-
ter secret key is msk ¼ ga

2.
Partial-Private-Key-Extract: Let u[i] denote the ith bit of an identity u 2 {0,1}n and U ¼ fiju½i� ¼ 1; i ¼ 1; . . . ;ng. The KGC with

master secret key msk ¼ ga
2 randomly picks r 2 Zp and computes

du ¼ ðdu;1; du;2Þ ¼ ga
2 u0

Y
i2U

ui

 !r

; gr

 !
:

An entity with identity u is given du as his partial private key. Therefore, the partial private keys
for the sender uS and the receiver uR are respectively

dS ¼ ðdS;1;dS;2Þ ¼ ga
2 u0

Y
i2US

ui

 !rS

; grS

 !
;

dR ¼ ðdR;1;dR;2Þ ¼ ga
2 u0

Y
i2UR

ui

 !rR

; grR

 !
:

User-Key-Generate: An entity with identity u randomly chooses a secret value xu 2 Zp and sets his public key to be
pku ¼ eðg1; g2Þ

xu .
Private-Key-Extract: An entity with identity u randomly picks r0 2 Zp, and computes his private key as

sku ¼ ðsku;1; sku;2Þ ¼ dxu
u;1 u0

Y
i2U

ui

 !r0

;dxu
u;2gr0

0
@

1
A ¼ gaxu

2 u0
Y
i2U

ui

 !t

; gt;

where t = rxu + r0.
Signcrypt: To send a plaintext M 2 GT to the receiver with identity uR and public key pkR, the sender with

identity uS uses his private key skS = (skS,1,skS,2) to perform the following steps:
1. Randomly pick r00 2 Zp.
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2. Compute r1 ¼ M � pkr00

R ¼ M � eðg1; g2Þ
xR �r00 .

3. Compute r2 ¼ gr00 .
4. Compute r3 ¼ u0

Q
i2UR

ui

� �r00

.
5. Set r4 = skS,2.
6. Compute M ¼ Hðr1;r2;r3;r4;uR; pkRÞ 2 f0;1g

m, where M½j� denotes the jth bit of M and
M¼ fjjM½j� ¼ 1; j ¼ 1; 2; . . . ;mg.

7. Compute r5 ¼ skS;1 � v 0
Q

j2Mv j

� �r00

.
8. Output the ciphertext r = (r1,r2,r3,r4,r5).

Unsigncrypt: Upon receiving a ciphertext r = (r1,r2,r3,r4,r5), the receiver decrypts the ciphertext as follows:
1. Compute M ¼ Hðr1;r2;r3;r4;uR; pkRÞ 2 f0;1g

m, where M½j� denotes the jth bit of M and
M¼ fjjM½j� ¼ 1; j ¼ 1; 2; . . . ;mg.

2. Check whether the following equality holds:

eðr5; gÞ ¼ pkS � e u0
Y
i2US

ui;r4

 !
e v 0

Y
j2M

v j;r2

 !
: ð1Þ

If no, output \; otherwise, output M  r1 � eðr3 ;skR;2Þ
eðr2 ;skR;1Þ

.

4. Cryptanalysis of Liu et al.’s scheme

Liu et al. [15] claimed that their scheme is both semantically secure against adaptive chosen-ciphertext attacks and exis-
tentially unforgeable against adaptive chosen message attacks. However, in this section, we shall disprove their claims by
giving two concrete attacks.

4.1. Attack against semantic security

Liu et al. [15] claimed their scheme is semantically secure even in the strengthened model considering the malicious-
but-passive KGC attack. Unfortunately, this is not true, since there exists a polynomial time Type II adversary AII who can
always win game II as below:

1. In the initialization phase, adversary AII generates the master secret key msk and the system parameters params for chal-
lenger C. In particular, adversary AII defines the parameters u0; ~U ¼ ðuiÞn;v 0 and ~V ¼ ðv jÞm as below:

u0 ¼ gx0 ; u1 ¼ gx1 ; . . . ; un ¼ gxn ; v 0 ¼ gy0 ; v1 ¼ gy1 ; . . . ; vm ¼ gym ;

where x0; x1; . . . ; xn; y0; y1; . . . ; yn2RZp are chosen by adversary AII.
2. In phase 1, adversary AII needs not issue any query.
3. In the challenge phase, AII outputs two distinct identities fuS� ;uR� g and two plaintexts fM0;M1g 2 G2

T . Then, AII is given a
challenge ciphertext r� ¼ Signcryptðparams;Mc; skS� ;uS� ; pkS� ;uR� ; pkR� Þ, where c is the random bit chosen by the chal-
lenger. Recall that AII’s goal is to correctly guess the value c. Note that according to algorithm Signcrypt, the ciphertext
r� ¼ ðr�1;r�2;r�3;r�4;r�5Þ is of the following forms:

r�1 ¼ Mc � eðg1; g2Þ
xR� r00

; r�2 ¼ gr00 ; r�3 ¼ u0
Y

i2UR�

ui

0
@

1
A

r00

;

r�4 ¼ skS� ;2; r�5 ¼ skS� ;1 � v 0
Y

j2Mc

v j

0
@

1
A

r00

;

where UR� ¼ fijuR� ½i� ¼ 1; i ¼ 1; . . . ;ng; Mc ¼ fjjMc½j� ¼ 1; . . . ;mg, and Mc ¼ Hðr�1;r�2;r�3;r�4;uR� ; pkR� Þ.
4. In phase 2, adversary AII first randomly picks r̂2RZp and defines another ciphertext r0 ¼ ðr01;r02;r03;r04;r05Þ with

r01 ¼ r�1 � eðg1; g2Þ
xR� r̂

; r02 ¼ r�2 � gr̂; r03 ¼ r�3 � u0
Y

i2UR�

ui

0
@

1
A

r̂

; r04 ¼ r�4;

r05 ¼
r�5

ðr�2Þ
y0þ
P

j2Mc
yj
� ðr�2Þ

y0þ
P

j2M0c

yj

� v 0
Y

j2M0c

v j

0
@

1
A

r̂

;

where M0
c ¼ fjjM

0
c½j� ¼ 1; � � � ;mg; M0

c ¼ Hðr01;r02;r03;r04;uR� ; pkR� Þ. Observe that r0 ¼ ðr01;r02;r03;r04;r05Þ is indeed a valid
ciphertext under the same message Mc, the same sender with identity uS� and public key pkS� ¼ eðg1; g2Þ

xS� , and the same
receiver with identity uR� and public key pkR� ¼ eðg1; g2Þ

xR� , since
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r01 ¼ r�1 � eðg1; g2Þ
x�Rr̂ ¼ Mc � eðg1; g2Þ

xR� ðr00þr̂Þ;

r02 ¼ r�2 � gr̂ ¼ gr00þr̂ ;

r03 ¼ r�3 � u0
Y

i2UR�

ui

0
@

1
A

r̂

¼ u0
Y

i2UR�

ui

0
@

1
A

r00þr̂

;

r04 ¼ r�4 ¼ skS� ;2;

r05 ¼
r�5

ðr�2Þ
y0þ
P

j2Mc
yj
� ðr�2Þ

y0þ
P

j2M0c
yj � v 0

Y
j2M0c

v j

0
@

1
A

r̂

¼
skS� ;1 � v 0

Q
j2Mc

v j

� �r00

ðgr00 Þy
0þ
P

j2Mc
yj

� ðgr00 Þ
y0þ
P

j2M0c
yj � v 0

Y
j2M0c

v j

0
@

1
A

r̂

¼
skS� ;1 � v 0

Q
j2Mc

v j

� �r00

g
y0þ
P

j2Mc
yj

� �r00 � g
y0þ
P

j2M0c
yj

� �r00

� v 0
Y

j2M0c

v j

0
@

1
A

r̂

¼
skS� ;1 � v 0

Q
j2Mc

v j

� �r00

gy0
Q

j2Mc
gyj

� �r00 � gy0
Y

j2M0c

gyj

0
@

1
A

r00

� v 0
Y

j2M0c

v j

0
@

1
A

r̂

¼
skS� ;1 � v 0

Q
j2Mc

v j

� �r00

v 0
Q

j2Mc
v j

� �r00 � v 0
Y

j2M0c

v j

0
@

1
A

r00

� v 0
Y

j2M0c

v j

0
@

1
A

r̂

¼ skS� ;1 � v 0
Y

j2M0c

v j

0
@

1
A

r00þr̂

:

Next, adversary AII issues an unsigncryption query by submitting the ciphertext r0, the sender with identity uS� and the re-
ceiver with identity uR� . Recall that according to the restrictions specified in game II, it is legal for AII to issue this query since
r0 – r*. So, the challenger has to return the underlying message Mc to AII. With Mc, adversary AII can certainly know the
value c, and thus wins game II.

Therefore, Liu et al.’s scheme is not semantically secure against chosen-ciphertext attacks.

4.2. Attack against existential unforgeability

In this subsection, we shall indicate that Liu et al.’s scheme is not existentially unforgeable against chosen message at-
tacks. At a high level, the insecurity of Liu et al.’s scheme lies in the fact that, given a ciphertext generated by a sender, a
Type II adversary can derive the sender’s full private key, and hence can arbitrarily forge signcryption on behalf of this sen-
der. Concretely, there exists a polynomial time Type II adversary AII who can always win game IV as below:

1. In the initialization phase, adversary AII generates the master secret key msk and the system parameters params for chal-
lenger C. In particular, adversary AII defines the parameters v0 and ~V ¼ ðv jÞm as below:

v 0 ¼ gy0 ; v1 ¼ gy1 ; . . . ;vm ¼ gym ;

where y0; y1; . . . ; yn2RZp are chosen by adversary AII.
2. In the queries phase, adversary AII issues a signcryption query by submitting a sender with identity uS� , a receiver with

identity uR� and a message M. Then adversary AII is given a ciphertext r ¼ Signcryptðparams;M; skS� ;uS� ; pkS� ;uR� ; pkR� Þ.
Note that according to algorithm Signcrypt, the ciphertext r = (r1,r2,r3,r4,r5) is of the following forms:

r1 ¼ M � eðg1; g2Þ
xR� r00

; r2 ¼ gr00 ; r3 ¼ u0
Y

i2UR�

ui

0
@

1
A

r00

;

r4 ¼ skS� ;2; r5 ¼ skS� ;1 � v 0
Y
j2M

v j

 !r00

;

where UR� ¼ fijuR� ½i� ¼ 1; i ¼ 1; . . . ;ng; M¼ fjjM½j� ¼ 1; . . . ;mg, and M ¼ Hðr1;r2;r3;r4;uR� ; pkR� Þ.
From r2 ¼ gr00 and r5 ¼ skS� ;1 � v 0

Q
j2Mv j

� �r00

, adversary AII can derive the sender’s private key component skS� ;1 by com-
puting r5

r
y0þ
P

j2M
yj

2

, since

r5

r
y0þ
P

j2M
yj

2

¼
skS� ;1 � v 0

Q
j2Mv j

� �r00

ðgr00 Þy
0þ
P

j2M
yj

¼
skS� ;1 � v 0

Q
j2M

v j

 !r00

ðgy0þ
P

j2M
yj Þr00

¼
skS� ;1 � v 0

Q
j2Mv j

� �r00

gy0
Q

j2Mgyj

� �r00 ¼
skS� ;1 � v 0

Q
j2Mv j

� �r00

v 0
Q

j2Mv j

� �r00 ¼ skS� ;1:

Recall that r4 ¼ skS� ;2. So adversary AII knows the sender’s full private key skS� ¼ ðskS� ;1; skS� ;2Þ. With skS� , adversary AII can
certainly forge signcryption on behalf of this sender, and thus can always win game IV.
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Therefore, Liu et al.’s scheme is not existential unforgeable against chosen-message attacks.

5. Conclusion

In this paper, we indicated that Liu et al.’s certificateless signcryption scheme [15] is neither semantically secure against
chosen ciphertext attacks nor existentially unforgeable against chosen message attacks. We demonstrated this by giving
concrete attacks according to their security model.
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