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ABSTRACT
Searching answers to complex questions is a challenging IR
task. In this paper, we examine the use of query templates
with semantic slots to formulate slot-based queries. These
queries have query terms assigned to entity and relation-
ship slots. We develop several query expansion methods for
slot-based queries so as to improve their retrieval effective-
ness on a document collection. Each method consists of a
combination of term scoring scheme, term scoring formula,
and term assignment scheme. Our preliminary experiments
evaluate these different slot-based query expansion methods
on a collection of news documents, and conclude that: (1)
slot-based queries yield better retrieval accuracy compared
to keyword-based queries in the complex question problems;
and (2) directly applying traditional query expansion on the
query terms of each slot does not always work well.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval - Query formulations, Retrieval models

General Terms
Design, Algorithms, Experimentation

Keywords
Query expansion, slot based query, query template, relation-
ship query, complex query

1. INTRODUCTION

1.1 Motivation
Search engines today are good at handling simple queries

each represented by a bag of query terms. They however
are not designed to evaluate queries derived from complex
questions that involve entities and relationships. For such
complex questions, users often need to convey more spe-
cific and complex information needs using either a natural

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIMS’07, November 9, 2007, Lisboa, Portugal.
Copyright 2007 ACM 978-1-59593-831-2/07/0011 ...$5.00.

goods :

evidence of transportation : boat, ship, car, road, plane, ...

source :

destination :

Question: What evidence is there for [transport] of 

[goods] from [source] to [destination]?

Slots:

Figure 1: Query Template Example

language query statement or a query consisting of semantic
slots.

The following shows an example complex query taken
from the TREC’s Complex and Interactive Question An-
swering (CiQA) 2006 track [9]. The query seeks to find the
extent of illegal immigration from Albania to Italy and the
steps taken to curb it.

Query Example: What evidence is there for [transport]
of [illegal immigrants] from [Albania] to [Italy]?

This complex query, among with other similar queries that
involve transportation of objects from one location to an-
other can be grouped under the same query template as
shown in Figure 1. The query template consists of query
slots assigned with entity and relationship semantics. The
entity slots are goods, source and destination. The relation-
ship slot in this template is the evidence of transportation.

In this paper, we focus on complex queries formulated us-
ing the query templates containing both entity and relation-
ship slots. Such complex queries are challenging to search
engines as it is difficult to achieve both good precision and
recall in their results.

Hearst [7] and Mitra et al [11] observe that a query may
consist of multiple aspects (similar to slots). They showed
that good precision in query results can be achieved by as-
signing query terms to the different aspects, and retrieving
documents containing at least one query term from each as-
pect. Their work however does not help to improve recall
for several reasons:

• Term mismatch problem: The relevant documents may
contain terms similar but not identical to terms given
in the query. As a result, they are not retrieved. This
could happen when users could not provide query terms
that are both relevant and complete.

• Missing slot problem: The relevant documents may not
contain information that cover all aspects (or slots)
of the query. Using the retrieval strategies proposed
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Figure 2: Slot-based Query Expansion framework.

by Hearst and Mitra, these documents will not be in-
cluded in the query results.

To improve recall, we therefore study the slot-based query
expansion (SLOQUE) task. A simple way to address the
SLOQUE task is to apply traditional query expansion tech-
niques on the slot query terms independently. However,
query slots are not independent of one another and they
may not carry equal importance. It is therefore important
to study how query expansion can be extended to handle
queries with multiple slots, and to evaluate the retrieval ef-
fectiveness of slot-based query expansion methods.

1.2 Overview of Slot-based Query Expansion
In this section, we introduce the general solution frame-

work for SLOQUE task as shown in Figure 2. We assume
that query templates each with one or more slots are avail-
able for users to select at the time a query is formulated. An
initial slot-based query (Q) consists of query terms assigned
to each slot.

Given a user query, the initial document retrieval sub-
task is to construct an initial query to the information re-
trieval (IR) system to obtain the top ranked documents,
TopD, which represent a small set of relevant results from
which expansion terms can be derived. The choice of the
number of documents to be returned, |TopD|, is an inter-
esting research problem[12]. It may be determined based
on several criteria including the number of expected rele-
vant documents, query difficulty level, number of slots, and
others. In this paper, we will adopt some empirical |TopD|
values and leave the choice of optimum |TopD| to our future
research.

The goal of the term scoring subtask is to score and
to rank all the potential expansion terms with respect to
the slot-based query. Ideally, the expansion terms that are
relevant should be given higher scores. The term scoring
method could draw knowledge from the initial results TopD,
the document corpus D, and other external knowledge bases.

The term assignment subtask aims to assign expan-
sion terms to query slots. The number of expansion terms
assigned to each slot has to be determined. The output
of this subtask is an expanded query (Q′), which is to be
used in the final document retrieval subtask, to retrieve
the final document answer set.

1.3 Objectives and Contribution
The main objective of this paper is to develop different

query expansion methods for slot-based queries based on the
earlier framework. We seek to understand the effectiveness
of slot-based queries and their query expansion for complex

questions such as those in CiQA task. To the best of our
knowledge, this is the first time query expansion research
is conducted on complex queries involving slots. The expe-
rience gain will help search engine developers in designing
future search strategies for complex queries.

We now summarize our research contribution as follows:

1. We divide slot-based query expansion into several com-
ponents including term scoring scheme, term scoring
formula, term assignment scheme and final query for-
mat.

2. We then propose three term scoring schemes, known as
Non Slot-based Term Scoring (NTS), Slot-based Term
Scoring (STS), and All Slot-based Term Scoring (ATS).
Each scheme can be coupled with different term scor-
ing formulas.

3. We introduce a new term scoring formula known as
Lexical, Local and Global Analysis (LLG) that uses
linear combination of lexical, local and global term
knowledge to derive a term score. LLG outperforms
Local Context Analysis (LCA), a term scoring formula
known to do well in traditional query expansion[16].

4. We develop three term assignment methods based on
different final query formats. The query formats con-
sider different (re-)groupings of query terms and ex-
pansion term into query slots before the final document
retrieval steps.

In this work, we use Lucene search engine as the under-
lying retrieval system. Lucene [1] uses a simple extension
to vector space model to support boolean queries. Lucene
allows query terms or clauses to be declared required or op-
tional as shown in the following example:
Example: (+(s11, s12, s13), +(s21, s22, s23), (s31, s32, s33))

The example shows a Lucene query with 3 clauses. The
‘+′ sign preceding the first and the second clauses declares
that the two clauses are required. The third clause is op-
tional. Given this query, Lucene will retrieve documents
that contain at least one term from each required clause
(the first and the second clauses) only. All query terms in
the required and optional clauses affect the ranking of a doc-
ument.

1.4 Paper Organization
This paper is organized as follows. The next section briefly

describes some related work. Section 3 presents our slot-
based query representation. Sections 4 and 5 describe in
detail our term scoring and term assignment approaches re-
spectively. Sections 6 and 7 present our experiment setup
and the results. Section 8 concludes the work and provides
some future directions.

2. RELATED WORK
In slot-based document retrieval, Kumaran and Allan [10]

proposed various retrieval strategies for different relation-
ship types asked by slot-based queries. However, their work
cannot be generalized for all relationship types in slot-based
queries and does not address the slot-based query expansion.

Jaana and Kalervo [8] applied query expansion on queries
with structures. Their query structure refers to different
search engine specific operators (i.e. SYN, SUM, WSUM,
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etc.) and is different from the structure found in slot-based
queries. Furthermore, they did not propose any new query
expansion method.

Query expansion for non slot-based queries has been well
studied. The term scoring techniques can be categorized un-
der lexical analysis, global analysis and local analysis. Lex-
ical analysis uses pre-constructed term relationship knowl-
edge, such as thesauri, ontologies and dictionaries to de-
termine expansion terms. For example, Voorhees explored
different term relationships in WordNet for query expan-
sion[15].

Global analysis uses corpus-wide statistics, say term co-
occurrences, to expand a query [13, 5, 6]. Local analysis uses
only some initial retrieved documents to expand a query.
Some of the widely known works on local analysis include
[14, 16, 3].

Yang et al used both local scores and lexicon scores to se-
lect expansion terms[18] without considering global scores.
Thompson and Callan proposed to combine local, global co-
occurrence score and lexicon score in different stages of ran-
dom walk model[4]. Our term scoring formula, LLG (see
Section 4.2), is the first that linearly combines local, global
co-occurrence score and lexicon score.

3. QUERY REPRESENTATION AND INITIAL
DOCUMENT RETRIEVAL

3.1 Query Template (T)
A query template provides the slot structure that is used

for query formulation. A query template T is a tuple T =
〈S, R〉 where

• S = (S1, ..., Sm) is a set of entity slots, Si = (Si.label,
Si.term) and

• R = (R1, ..., Rn) is a set of relationship slots, Rj =
(Rj .label, Rj .term)

Entity slot Si has a label Si.label and a set of initialized
terms, Si.term. These terms will be inherited by all instan-
tiations of this slot. Similarly, a relationship slot Rj has
a label Rj .label and relationship term set Rj .term. Each
relationship term carries semantics that link between entity
slots.
Example 1: A query template example is shown in Figure
1. The formal definition is T = 〈(S1, S2, S3), (R1)〉 where

• S1 =(goods,{ });

• S2 =(source location,{ });

• S3 =(destination location,{ }); and

• R1 =(evidence of transport, {freighter, ship, boat, ..., trans-
port, transportation, truck, plane, car, terminal})

The template can be used to construct queries on movement
of goods from one location to another location.

3.2 User Query (Q)
A user query Q, an instantiation of a query template T =

〈(S1, ..., Sm), (R1, ..., Rn)〉, is Q = 〈(s1, ..., sm), (r1, ..., rn)〉
where

• si = {si1, ..., sigi} is the original entity term set for the
ith entity slot, Si.term ⊂ si

• rj = {rj1, ..., rjhj} is the original relationship term set
for the jth relationship slot, Rj .term ⊆ rj

We provide an example of user query that is instantiated
from a template shown in Figure 1. The query tries to collect
the evidence of transport of illegal immigrants from Albania
to Italy.
Q = (s1, s2, s3), (r1) where

• s1 ={illegal immigrants, immigrant};

• s2 ={albania}

• s3 ={italy}

• r1 ={freighter, ship, boat, ..., transport, transportation,
truck, plane, car, terminal}

The above definitions for slot-based queries may involve
multiple entities and multiple relationships. In this paper,
we will confine our discussions to only one relationship slot
for each template, i.e. n = 1. We see this type of slot-based
queries is very common. In particular, all the TREC’s CiQA
queries use only one relationship each.

3.3 Initial Document Retrieval
As part of initial document retrieval task, we may define

many initial query formats each representing a way to eval-
uate the user query. Among them, we would like to find one
that can return a small set of relevant documents for query
expansion. Based on earlier claim that query results will en-
joy better performance when the returned documents cover
many of the aspects of the query [7, 11], we represent the
initial query with format ((+s1, ..., +sm), +r1) as opposed to
the usually used bag of query terms. E.g. the initial query of
earlier example in this format is ((+{illegal immigrants,

immigrant}, +{albania}, +{italy}), +{freighter, ship,

boat, ..., transport, transportation, truck, plane,

car, terminal}).

4. TERM SCORING
The goal of the term scoring is to obtain relevance score

for each expansion term to an initial query. Since an initial
query is instantiated from a query template with multiple
slots, an expansion term may have relevance score(s) for each
given slot or for all given slots.

4.1 Term Scoring Schemes
To determine whether a term t should be included as an

expansion term for entity slots, we consider the following
time scoring schemes:

1. Slot-based Term Scoring (STS) For m entity slots,
the expansion term, t, will have TScore(t, si), i =
{1, ..., m}. that measures the relevance of term t with
respect to si.

2. Non-slot based Term Scoring (NTS) This scheme
combines the query terms from all entity slots into a
bag of terms s = s1

S
...

S
sm, and assign the TScore(t, s).

3. All Slot-based Term Scoring (ATS) is done by
scoring the expansion term, t, with respect to all en-
tity slots. Each term, t, will have exactly one score,
TScore(t, s) = Avg({TScore(t, si)}m

i=1), that measures
the average relevance of t to all the entity slots. (Av-
erage function can be replaced with other reasonable
functions that aggregate the values of TScore(t, si)
into TScore(t, s))
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4.2 Term Scoring Functions
We study two expansion term scoring TScore(t, .) func-

tions used in term scoring schemes, namely local context
analysis (LCA) function and the lexical, local and global
analysis (LLG) function. The former has been used in non
slot-based query expansion while the latter is a new function
we propose for the slot-based queries.

LCA term scoring function

TScore(t, si) =
Y

sij∈si

„
δ +

log(af(t, sij))

log(|TopD|) · idft

«idfsij

(1)

where af(t, sij) =
X

dk∈TopD

TFk(t) · TFk(sij)

idft = max

0
@1.0,

log10

“
|D|

|D(t)|

”
5

1
A

TFk(t) = number of times t appears in dk

D(t) = documents containing t

δ = 0.1 to avoid zero TScore() value

LCA favors terms with high term frequency (TFk(t)) in
documents within TopD that contain original query terms
with high TFk(sij). This is captured by the af(t, sij). The
term idft penalizes terms occurring too many times in the
corpus, the term idfsij emphasizes infrequent query terms.

The term scoring function for the relationship slot
TScore(t, r1), using LCA can be defined similarly by replac-
ing si with r1.

LLG term scoring function
LLG draws knowledge from lexicon, local and global analysis
as shown in Equation 2.

TScore(t, si) = α · LexScore(t, si) +

(1 − α)[β · LCScore(t, si) + (1 − β) · GCScore(t, si)] (2)

LLG adopts a linear combination of lexicon score, local
analysis score and global analysis score. The three com-
ponent scores are normalized to the range of [0, 1] by their
maximum scores over all potential expansion terms over all
slots.

The lexicon score LexScore is derived from synonymy re-
lationships among terms in WordNet[2]. LexScore(t, si), is
defined as follows:

LexScore(t, si) =

X
sij∈si

isSynonym(t, sij)

|si| (3)

where

isSynonym(t, sij) =

j
1 if t is a synonym of sij ;
0 otherwise.

(4)

The more terms in si that are synonymous to t, the higher
the LexScore(t, si).

The local closeness score, LCScore(t, si), is defined as fol-
low:

Table 1: LLG with different α, β combinations.
α β Components used

0 0 GCScore
0.5 0 LexScore+ GCScore (equally weighted)
1 N/A LexScore
0 1 LCScore
0 0.5 LCScore+ GCScore (equal weightage)

0.5 1 LexScore+ LCScore (equal weightage)
0.33 0.5 All (equally weighted)

LCScore(t, si) = IDF (TopD, t) · (5)X
dk∈TopD

X
sij∈si

cntSentk(t, sij)

where IDF (TopD, t) = log

„
1 +

|D| − |TopD|
|D(t)| − |TopD(t)|

«

cntSentk(t, sij) returns the number of sentences in dk that
contain t and sij , TopD(t) are the documents in TopD con-
taining t. A term is assigned high LCScore(t, si) if it co-
locates frequently with many members of si within TopD.
LCScore favors terms that appear closely (within a sentence)
with many query slot terms.

The global closeness score, GCScore(), measures the prob-
ability of co-occurrence between a term and query terms of
a slot across the entire document corpus as shown below.
This scoring function assumes that the correlation between
a term t and any term sij ∈ si is independent of one another.

GCScore(t, si) = 1 − GCScore(t, si)

= 1 −
Y

sij∈si

GCScore(t, sij)

= 1 −
Y

sij∈si

„
1 − cn(t, sij)

cn(t) + cn(sij) − cn(t, sij)

«
(6)

where cn(t, sij) is the number of times terms t and sij co-
occur within a sliding window of SW terms (we set SW = 20
in all our experiments) and cn(t) is the total co-occurrence
counts of term t with the other terms in the whole corpus.
The distance between terms can be easily derived from the
index structure.

An expansion term t receives high GCScore(t, si) if it co-
locates frequently with many members of si in the global
corpus (global closeness).

LexScore(t, r1), LCScore(t, r1) and GCScore(t, r1) are
defined similarly as above with si replaced by r1.

Table 1 shows interesting combinations of α and β that
result in different LLG score functions.

TScore(t, r1), which is the relevance score of term t to r1,
is defined similarly as above with si replaced by r1.

5. TERM ASSIGNMENT
Term assignment has three important roles: 1) to decide

the expanded query format; 2) to decide the number of ex-
pansion terms for each slot; 3) to decide which slot each
expansion term is to be assigned to. An expanded query Q′

is obtained after expanding an user query Q.
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There can be different formats of expanded queries in the
SLOQUE task. The choice of query format affects the deci-
sion of number of expansion terms as well as the assignment
of an expansion term to a particular slot. The following are
3 expanded (or final) query formats studied.

1. Final Query 1 (QF1): QF1 = 〈(+s′, +r′1)〉, where

• s = s1

S
...

S
sm ⊆ s′ and r1 ⊆ r′1

• s′ − s are the expansion terms for all entity slots,
and r′1 − r1 are expansion terms for r1

QF1 enforces the presence of at least one term from
s′ and at least one term from r′1 for a document to be
returned by the IR system.

2. Final Query 2 (QF2): QF2 = 〈(+s′1, ..., +s′m), +(r′1)〉
where

• si ⊆ s′i and r1 ⊆ r′1
• (s′i −si) are new expansion terms for si and (r′1−

r1) are new expansion terms for r1

QF2 enforces at least one term from each of s′i, i =
{1, 2, ..., m} and at least one term from r′1 for a docu-
ment to be retrieved.

3. Final Query 3 (QF3): QF3 = 〈(+s1, ..., +sm), (s′−
s), +(r′1)〉.
In QF2, the expansion term set s′ − s is assigned a
new slot termed as the auxiliary entity slot. QF3 en-
forces at least one original query term from each of
si, i = {1, 2, ..., m} and at least one term from r′1 for
a document to be retrieved. The auxiliary term set,
s′−s, is designed to enhance the ranking of those doc-
uments satisfying the slot-based query needs.

Another important parameter of the step is the number
of expansion terms to be assigned. In this paper, we assign
equal number of expansion terms for all the slots. We use
M to denote the number of expansion terms for each entity
and relationship slot.

If STS is the term scoring scheme, we have m values of
TScore(t, si) for each expansion term t. Term assignment
is done differently for QF2 compared to QF1 and QF3 as
shown below:

QF2 : s′i − si = {t|t /∈ si, rank(t, si) ≤ M}
QF1 or QF3: s′ − s =

S
si∈s{t|t /∈ s, rank(t, si) ≤ M}

If NTS or ATS is the term scoring scheme, we have a
TScore(t, s) value for each expansion term t. Term assign-
ment is done for QF1, QF2 and QF3 as shown below:

QF2 : s′i − si = {t|t /∈ si, rank(t, s) ≤ M}
QF1 or QF3: s′ − s = {t|t /∈ s, rank(t, s) ≤ M × m},
All expansion terms in s′ − s are unique.

To give more importance to the original query terms,
similar to query expansion framework adopted by [16, 17],
we adopt a query weighting scheme for the final expanded
queries as follows:

• Each original query term in si receives a weight of two.

• Each expansion term t in s′i − si is assigned a weight
of 1 − 0.9(rank(t, si)/M)

Lucene allows a boost factor to be assigned to each query
term. We therefore use query term weights as boost factors
in our experiments.

id T (query template) R1.label R1.term
1 What evidence is there for [transport] of [goods] 

from [source location] to [destination location]?
evidence of
transportation

ship, cargo, vessel, boat, vehicle, container, 
port, train, transport, pipeline, link, passenger, 
freight, plane, shipment, terminal

2 What [financial relationships] exist between
[entity1] and [entity2]?

financial 
relationship

dollar, money,fund, budget, fee, expense, 
income, market, price, business, profit, grant, 
tax, revenue, transfer, financial, bank, trade 

3 What [familial ties] exist between [entity1] and
[entity2]?

familial ties relation, mother, father, cousin, brother, 
sister, descendent, ancestor, related to, 
family link, link, relationship

4 What [common interests] exist between
[entity1] and [entity2]?

common 
interests

common, interest, collaborate, cooperate, 
cooperation, share, joint                        

5 What [influence/effect] do(es) [subject entity]
have on/in [object entity]?

influence/ effect because, cause, lead to, increase, lower, 
decrease, affect, effect, influence, help, risk      

6 What is the [position] of [entity] with respect to
[issue]?

position against, for, agree, agreement, oppose, 
opposition

7 Is there [evidence to support the involvement]
of [subject entity] in [object event/entity]?

evidence of
involvement

involve,  involved, engage, engaged, support

Figure 3: TREC CiQA’s 7 templates

Table 2: Distribution of the number of relevant doc-
uments.

average minimum maximum
17.2 8 41

6. EXPERIMENTS
The experiments were conducted to compare the differ-

ent term scoring schemes, term scoring formulas and term
assignment schemes when applied to SLOQUE task. We
would like to know how effective are they in retrieving the
documents carrying relevant information for complex query
answering tasks. We also evaluate how the methods using
LLG behave when different α and β values are used.

6.1 Dataset and Queries
We use TREC CiQA 2006’s query topics (topic 26-55)

and the AQUAINT news corpus in our experiments [9]. For
each query topic, CiQA task requires each participant to
submit their answers in the form of sentences. From these
sentences, an NIST assessor then looks for relevant snippets.
We construct a set of relevant documents that are the ones
containing sentences which cover the relevant snippets.

We exclude 3 query topics with too few number of relevant
documents. The remaining 27 topics can be classified into
7 groups each using the same query template. As shown
in Figure 3, the 7 query templates cover different types of
relationships. In our experiments, we carefully selected the
query terms for the relationship slot and used them in all
the queries sharing the same query template.

The relevant set is a partial ground truth set as it was de-
rived from CiQA 2006 participants’ submissions only. Table
2 presents the distribution of the number of relevant docu-
ments over all evaluated topics.

6.2 Evaluation Metrics
We use Recall and MRR-normalized (MRR-norm) metrics

to evaluate retrieval performance. We measure Recall and
MRR-norm at top 20 and 100 retrieved documents.

Recall@P =
|AP

T

R|
|R| (7)

MRR − norm@P =

X

d∈R
T

AP

1

rank(d)

|R|
X

j=1

1

j

(8)

where AP is the top P retrieved documents using the evalu-
ated method, R is the relevant set, and rank(d) is the rank
of relevant document d in AP .
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The same numbers of retrieved documents (i.e., 20 and
100) have also been commonly used by the TREC partici-
pants to select documents for extracting answer sentences.

6.3 Experiment Settings
We evaluate several methods to solve SLOQUE task by

combining different scoring schemes (STS, NTS, ATS), term
scoring formulas(LCA, LLG), and final query formats (QF1
to QF3). These methods are named following the convention
〈term scoring scheme〉(〈term scoring formula〉)-〈final query
format〉.

Our first set of experiments evaluates the methods us-
ing LLG for different α and β values shown in Table 1.
Our second set of experiments evaluates the performance
of the methods using LCA and LLG score formulas sepa-
rately, we then pick the best two methods from each and
compare them. In the following, we summarize the evalu-
ated methods:

1. STS(LCA)-QF2 and STS(LLG)-QF2. These two meth-
ods score the relevance of each expansion term with
respect to each entity slot (STS scheme). For each en-
tity slot, we assign the top M expansion terms and
construct the final query using QF2.

2. NTS(LCA)-QF1 and NTS(LLG)-QF1. These two meth-
ods score the relevance of each expansion term to the
bag of entity terms from all entity slots (NTS scheme).
The top M × m expansion terms are assigned to the
bag of entity terms in the final query using QF1.

3. NTS(LCA)-QF2 and NTS(LLG)-QF2. These two meth-
ods use NTS scheme to score expansion terms. The top
M expansion terms are assigned to each entity slot of
the final query using QF2.

4. NTS(LCA)-QF3 and NTS(LLG)-QF3. These two meth-
ods use NTS scheme to score expansion terms. The top
M × m expansion terms are assigned to the auxiliary
slot of the final query in QF3.

5. ATS(LCA)-QF3 and ATS(LLG)-QF3. These two meth-
ods score the relevance of each expansion term with
respect to all entity slots (ATS-scheme) using average
function. The top M×m expansion terms are assigned
to the auxiliary slot of the final query in QF3.

Recall that |TopD| refers to the size of initial query result
used for query expansion. We empirically set |TopD| = 10 as
the minimum number of relevant documents is 8 (see Table
2). To vary the number of expansion terms per slot, we try
different M values from 1 to 5. We use the run that does
not involve query expansion as our baseline, Bl.

7. EXPERIMENT RESULTS

7.1 Determining Appropriate α and β Values
for Methods using LLG

We tried different combinations of α and β values for 5
evaluated LLG methods at all the evaluated metrics. As
the best results are consistent among these methods accross
different metrics, we only show the Recall and MRR-norm
at 100 results for NTS(LLG)-QF3 using different α and β
values as shown in Figure 4. The following describes the
behavior of different combination on NTS(LLG)-QF3. All

other methods show similar tendency though not exactly the
same ordering of performance among different combinations.

As shown in the figure, the combination (α=0.33,β=0.5)
yielded the best results in Recall and MRR-norm. This
suggests equal weightage to LexScore, LCScore and GC-
Score is a reasonable choice. GCScore-only (α=0, β=0)
was the worst performing combination. Figure 4 also shows
that combining different scoring components can improve
the performance of expanded queries. For example, the
combined GCScore and LCScore scoring formula using α=0,
β=0.5 was shown to improve over GCScore-only and LCScore-
only methods. For the remaining experiments, we will there-
fore use α=0.33 and β=0.5 for all methods using LLG.

7.2 Comparing Methods using LLG and LCA
The final set of experiments aims to compare the methods

using LLG and LCA separately and to compare the best
methods of LLG and LCA.

Comparison of Methods using LLG
Figure 5 shows performance of various methods using LLG.

The following is the summary of the general behavior of
the methods obtained from the figure:

• NTS(LLG)-QF3 yielded the best MRR-norm (the fig-
ure only shows MRR-norm at 20 since the performance
is consistent with that of at 100).

• NTS(LLG)-QF1 yielded the best Recall@100 but only
the second best Recall@20.

• NTS(LLG)-QF2 was the worst among all the evaluated
methods in both Recall and MRR-norm.

• STS(LLG)-QF2 was worse than NTS(LLG)-QF1 and
NTS(LLG)-QF3 in both Recall and MRR-norm.

• ATS(LLG)-QF3 yielded the second best MRR-norm
but not on Recall.

Generally, when LLG is used, NTS scheme is better than
STS scheme. This seems to confirm the claim made by Xu
and Croft[17] as well as Qiu and Frei [13] that a good expan-
sion term must be “close” to “all” aspects of a query instead
of only one of them.

Using STS, relevant terms may not be ranked highly since
they are relevant only to the combined slot, s, instead of to
any single slot. On the other hand, NTS manages to score
these terms highly.

Even ATS using average score over all slots is not as
good as NTS. TScore(t, s) using ATS scheme is derived
from TScore(t, si) using STS scheme which score relevance
of t to different slots independently. TScore(t, s) using ATS
scheme receives high score if term t receives high score (using
STS) to many slots or extremely high score (using STS) to
a single slot. The latter is not a good criteria to choose rele-
vant expansion terms. In contrast to independently scoring
the relevance of t to each slot, NTS scheme pools the terms/
slots together and scores each expansion term t to the pool
of terms.

It is more difficult to make general comparison on the
second factor, QF1, QF2 and QF3 since their performances
depend on the use of STS, NTS or ATS. Thus, we compare
QF1, QF2 and QF3 together with the term scoring scheme
used.
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Figure 4: Performance of LLG with different combinations of α and β
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Figure 5: Performance of STS(LLG)-QF2, NTS(LLG)-{QF1/QF2/QF3} and ATS(LLG)-QF3 with α = 0.33
and β = 0.5

As shown in Figure 5, NTS(LLG)-QF1 was the best recall
for large number of retrieval (i.e. P = 100), but it was the
second best for P = 20. QF1 combines all entity slots into
one slot and relaxes the selection criteria of documents to be
retrieved. The relaxation explains why its MRR-normalized
performance cannot outperform some of the other methods.

Knowing that slot-based is better than bag of terms (see
Section 3.3) and NTS is generally better than ATS and STS,
it is natural to think that combining NTS and QF2 may yield
good performance. However, the experiment results showed
otherwise. Hence, combining NTS and QF2 is not a good
idea.

As shown in Figure 5, NTS(LLG)-QF2 almost consistently
performed below the baseline. This is because NTS(LLG)-
QF2 gives top terms ranked by NTS to all the slots such
that all slots share exactly the same expansion terms. This
greatly relaxes the selection criteria and significantly boosts
the expansion terms importance with respect to the original
query terms. This will not only reduce precision (in terms of
MRR-norm) but also recall. Similar behavior was shown in
the performance of ATS(LLG)-QF2. This result is ommitted
for conserving space.

This leads us to the combination of NTS and QF3. It
accommodates the assignment of expansion terms scored
by NTS to a new slot instead of to existing slots, preserv-
ing the selection criteria of original query and the high im-
portance of original query terms. Compared with baseline
(Bl), NTS(LLG)-QF3 with M = 4 improved Recall@20 and
MRR-norm@20 by 17% and 27% respectively.

Comparison of Methods Using LCA
The performance of methods using LCA was consistent with
the performance of methods using LLG. NTS(LCA)-QF3
gave the best performance. Generally NTS is better than
STS and ATS (except when it is combined with QF2). Com-
pared with baseline (Bl), NTS(LCA)-QF3 improved Recall@20
with M = 5 and MRR-norm@20 with M = 2 by 10% and
17% respectively.

Comparing Best Methods using LCA and Best Methods
using LLG
This section compares the performance of LCA and our
new proposed score function, LLG. We choose to compare
the two best methods for LCA and two best methods for
LLG, i.e. NTS(LCA)-QF1, NTS(LCA)-QF3, NTS(LLG)-
QF1 and NTS
(LLG)-QF3.

As shown in Figure 6, LLG performed better than LCA
for almost all parameter settings

Even using LCScore alone(LLG with α = 0 and β = 1)
is already better than LCA. LCA favors terms with high
term frequency from documents within TopD. On the other
hand, LCScore imposes stricter correlation criteria. LCScore
favors terms that appear closely (within a sentence) with
many original query terms.
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Figure 6: Performance of Bl, best methods of LLG, and best methods of LCA.

8. CONCLUSION AND FUTURE WORK
Slot-based queries are designed to support complex ques-

tions. Slot-based queries can improve retrieval performance
compared to the traditional bag-of-term queries. In this pa-
per, we propose different query expansion methods for slot-
based queries. Our best method can improve both recall and
MRR-normalized by 17% and 27% compared with methods
without using expansion.

Our key findings include: (a) the LLG term scoring for-
mula performs well when it gives equal importance to lexical,
local closeness and global closeness term knowledge; (b) the
NTS, STS and ATS term scoring schemes using LLG with
some final query formats can improve retrieval accuracy, out-
performing the schemes using LCA; and (c) NTS using LLG
or LCA produces good ranking of expansion terms compared
to ATS and STS.

As part of our future work, a more comprehensive set
of experiments will be conducted to compare the different
query expansion methods. In particular, we would like to
consider multiple relationship slots, the choice of |TopD|,
and semantic constraints on the slots.
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