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Chapter 14 

HIERARCHICAL TEXT CLASSIFICATION 
METHODS AND THEIR SPECIFICATION 

Aixin Sun, Ee-Peng Lim and Wee-Keong Ng 
School a/Computer Engineering, Nanyang Technological University, Singapore 639798 

Abstract: Hierarchical text classification refers to assigning text documents to the 
categories in a given category tree based on their content. With large number 
of categories organized as a tree, hierarchical text classification helps users to 
find information more quickly and accurately. Nevertheless, hierarchical text 
classification methods in the past have often been constructed in a proprietary 
manner. The construction steps often involve human efforts and are not 
completely automated. In this chapter, we therefore propose a specification 
language known as HCL (Hierarchical Classification Language). HCL is 
designed to describe a hierarchical classification method including the 
definition of a category tree and training of classifiers associated with the 
categories. Using HCL, a hierarchical classification method can be 
materialized easily with the help of a method generator system. 

Key words: Hierarchical Text Classification, Specification Language 

1. INTRODUCTION 

1.1 Motivation 

Text classification is a research area that develops methods for 
assigning text documents to a pre-defined set of categories [6, 8]. 
When the given categories are defined independently of one another, 
this is known as flat classification. Most of the studies in text 
classification have focused on flat classification. In most flat 
classification methods, either a binary classifier is assigned to each 
category to determine if a given document belongs to the category, or 
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a m-ary class{fier is assigned to a group of categories to determine if a 
given document belongs to zero or more categories in the group. 
After many years of research, flat classification has become a 
well-established research area and many good classifiers have been 
developed. A good survey of the text classification approaches is 
given in [6]. 

More recently, increasing attention has been given to hierarchical 
classification where the pre-defined categories are organized in a 
tree-like structure. A category tree example is shown in Figure 1. In 
a category tree, there are parent-child relationships between categories. 
These parent-child relationships may suggest strong or weak 
subsumption constraint between categories. A parent and child 
category pair with strong subsumption constraint suggests all 
documents belonging to the child also belong to the parent. Weak 
subsumption, on the other hand, allows a child category to have 
documents not belonging to its parent category. By organizing a large 
number of categories in a tree, hierarchical classification allows us to 
address a large classification problem using a divide-and-conquer 
approach, also known as the top-down approach [7]. At the root level, 
a text document can be first classified into one or more child 
categories. The document can then be further classified at each child 
category to determine if it belongs to categories at the next lower level. 
The classification step can be repeated until the document cannot be 
further classified into any lower-level categories. While in flat 
classification a given document is assigned to a category based on the 
outcome of one or one set of classifiers, the assignment of document 
to the category can be the outcome of mUltiple sets of classifiers in 
hierarchical classification. These classifiers are associated to different 
levels of the category tree to filter away documents that do not belong 
to the lower level categories. 
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Figure 2. A sample category tree 

While the applications of text classification (flat and hierarchical) 
are wide and diverse, there has not been a specification language for 
defining classification methods. Most of the existing text 
classification systems have been developed either manually by 
information retrieval (IR) experts who constructed each classifier by 
providing appropriate training data and input parameters, or by 
specialized scripts that are customized for the particular classification 
systems. The manual approach clearly incurs much overhead in time. 
The latter script approach takes less time in the actual construction of 
the classification systems but the scripts themselves still require time 
for development. Since such scripts are usually proprietary and not 
necessarily easy to use, they are not really suitable to be used directly 
the application developers and end users. 

1.2 Objectives 

To promote wider adoption and acceptance of text classification 
methods, we believe that a declarative specification language for 
defining text classification methods will be important and useful. Such 
a specification language, once standardized across all commercial text 
classification products, will facilitate users to directly create their text 
classification systems, to build layers of applications that use the 
specification language to define their text classification modules, and 
to exchange classification methods and results. In particular, the 
specification language can hide differences among the heterogeneous 
classifier packages used to implement a classification method. This 
greatly reduces the efforts of developing and maintaining the 
classification method, and this in tum translates to savings in the 
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development and maintenance costs of the application using the 
classification method. From the performance experiments perspective, 
a specification language will also allow users to compose variations of 
classification methods for performance evaluation and tuning. 

To design a specification language for text classification, we need 
to identify the essential primitives of the language. We focus on 
hierarchical classification in this chapter since it is more appropriate in 
practical applications. The language primitives to be designed must 
therefore be able to support the definition of the category tree 
structure, the association of classifiers to the categories, and the 
training and classification steps. Our proposed specification language, 
HCL (Hierarchical Classification Language), attempts to provide the 
above primitives. As flat classification problem can be treated as 
hierarchical classification problem on a one-level category tree where 
the root of the tree is virtual, we believe HCL is able to handle most 
text classification problems. In this chapter, we will overview the 
existing flat and hierarchical classification methods and illustrate HCL 
using a few examples. While the design of HCL is still tentative, we 
hope that it will serve to motivate further work in this area. 

1.3 Outline of the Chapter 

The rest of the chapter is organized as follows. We first 
examined the related work in Section 2. The proposed classification 
method generation system is described in Section 3. Our proposed 
classification language HCL is given in Section 4. Section 5 concludes 
our discussion. 

2. RELATED WORK 

Recently, hierarchical classification has gained much attention in 
the IR research community due to its practical usage. Koller and 
Sahami used multiple Bayesian classifiers to classify the Reuter's 
collection into some pre-defined categories [3]. The categories were 
arranged in two-level category trees. Dumais and Chen proposed the 
use of Support Vector Machine (SVM) classifiers to classifY web 
pages into a category tree using a top-down approach [1]. 
Nevertheless, their method allows a web page to be assigned to a child 
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category even if the former is not favored by the parent category. The 
category structure used is a 2-level category tree with a virtual root 
category obtained from the LookSmart's web directory 
(http://www.looksmart.com). We have not seen any work on the 
specification language for text classification. In this section, we 
therefore describe some script languages specially designed for text 
classification, and also survey some other existing data mining 
languages. 

The RAINBOW script language is part of the BOW library 
developed by the eMU Information Retrieval group [4]. Designed to 
facilitate the definition of classifiers for mainly performance 
evaluation purposes, the Rainbow language is very cryptic and not 
very readable. It also does not support the definition of working 
relationships between classifiers required in the hierarchical 
classification methods. 

Text classification can be considered as a special kind of data 
mining. In relational databases, data mining often refers to association 
rule mining, classification of database records, etc .. DMQL is a data 
mining query language developed by Han et al. to allow a user to 
specify the mining parameters and the type of knowledge to be mined 
from a given relational database [2]. Meo et al developed another 
SQL-like data mining language for specifying how association rules 
can be discovered from a relational database [5]. Nevertheless, the 
above two data mining languages are mainly for relational databases 
where data are stored as structured records. 
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Figure 3. Classification method generation system 

3. CLASSIFICATION METHOD GENERATION 
SYSTEM 

To adopt the HCL specification language, a classification method 
generation system must be provided to take a classification method 
specification in HCL and transform it into a working classification 
method. Figure 2 depicts the components of our proposed 
classification method generation system. 

Given a HCL classification method specification, a classification 
language compiler compiles it into an untrained classification method 
file which contains the internal representation of the category tree 
structure and the association of classifiers to the category tree. The 
classification method is untrained since the classifiers are yet to be 
constructed. 

The classification method trainer takes the untrained 
classification method and starts feeding training data to the classifier 
packages. Here, each classifier package is required to provide a 
training interface which allows a new executable classifier to be 
constructed when a training set is given. Note that the training data 
may include both positive and negative training data for binary 
classifiers, and training data of different classes for m-ary classifiers. 
Since the method is designed for hierarchical classification, the trainer 
must incorporate into the method classification steps in which the 
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invocations of classifiers associated with the higher-level categories 
come before those associated with the lower level categories. This 
ensures that documents will be filtered by the classifiers associated 
with the higher level categories first before they are examined by 
those associated with the lower level categories. The order of applying 
classifiers will be further illustrated in Section 4.5. 

The trainer assembles the constructed classifiers and incorporates 
them into a top-down hierarchical classification algorithm before 
generating the trained classification method as an executable program. 
A trained classification method can now be directly applied on a given 
document collection. During the classification phase, the method will 
call the different classifiers to classify and assign appropriate category 
labels to the documents. Since the classification method may not be 
perfect and there may be changes to the category tree or documents to 
be classified, one would expect further upgrading to be done on the 
classification method when new training data or new category tree are 
available. As opposed to a full-fledged retraining of the classification 
method, the classification method upgrader is able to take care of such 
incremental changes. 

In this chapter, we will only focus on classification specification 
language constructs that are mainly used in the classification language 
compiler and classification method trainer. The language constructs 
for supporting method upgrading will be part of our future work since 
there has not been much research work done in upgrading hierarchical 
classification methods. 

4. CLASSIFICATION SPECIFICATION LANGUAGE 

Our proposed classification language consists five components, 
namely, document modeling, category tree modeling, class(fier 
construction, classifier training, and document assignment. 
Throughout this section, we express the syntax of the classification 
specification language using the Backus Naur Form (BNF) notation. 
To improve readability, terminal and non-terminal symbols are shown 
in capital and Cour ier respectively. The single character terminals 
are enclosed by quotation marks, e.g. ";". The other extended symbols 
used in our language syntax are listed in Table 1. 
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Table I. Extended BNF symbols 
Symbol Meaning 
I Separators for alternative symbols 
[ 1 Symbol(s) enclosed is optional 
( ) Symbol(s) enclosed is used zero or more times 
( ) Enclose groups of alternative symbols 

4.1 Document Modeling 

In document classification, we deal with documents. There are 
two kinds of documents, i.e., training documents and documents to be 
classified. Since HCL is about the construction of classification 
methods, we only focus on modeling training documents. Regardless 
of its kind, HCL supports the notion of document variable which is of 
Document class. As shown in Table 2, a document class consists of a 
unique id, date, length, a labeled category set (labeledCat), 
and an assigned category set (assignedCat). 

Table 2. Attributes of document class 
Attribute Description 
ID document id 
date time when the document is created 
length length of the document 
labeledCat set of categories the document belongs to 
ass ignedCa t set of categories assigned by the classification method 
score (classif i score assigned by classif ier with respect to 
er, category) category where category must be in the domain of 

classifier (see Section 4.3) 

We assume that every document must belong to some document 
pool. The document id, an integer value, is unique within a document 
pool. Other than id, each document has a creation date, and 
length. For a training document, the set of labeled categories is 
represented by the labeledCat attribute. In the training processes, 
a training document can be assigned a set of categories by the 
classification method and is represented by the assignedCat 
attribute. Furthermore, each document may be assigned a score value 
by a classifier with respect to a set of categories. This is represented 
by the score (classifier, category) attribute. In HCL, we 
may use a document variable, say docVar, to represent a document 
in a document pool. We represent the attribute, say at tr ib, of the 
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document variable by docVar. attrib. 
HCL also allows a training document pool to be imported using the 

define train pool statement. These document pool statement 
speci_es where the classification method should obtain their training 
documents and the documents to be classified. The syntax of the 
def ine train pool statement is given below. 

define train Pool :: = DEFINE TRAIN POOL docPoolNarne 
docPoolPath ";" 

In the following example statements, we define myTrgPool as a 
training pool. The data file train. dat is formatted to store the 
appropriate document attributes and references to the document files. 

DEFINE TRAIN POOL rnyTrgPool Ihtc/train.dat; 

Table 3. Attributes of category class 
Attribute 
description 
type 
parent 
children 

cover 

Description 
description of the category 
real if the category can hold documents, virtual otherwise 
the parent of the given category and null for root category 
returns a set of categories containing all the child categories of the 
given category and null for leaf category 
returns a set of categories within the subtree rooted at the given 
category 

4.2 Category Structure Definitions 

Similar to document, HCL provides a category class to model 
categories. The category attributes include description, type, 
parent, children, and cover. Given a category, the 
description attribute provides a user readable description about 
the category. The type of a category can be real or virtual. A 
category is real when documents can be assigned to it, and virtual 
otherwise. The parent attribute refers to the parent category of the 
category. The children are a set of categories that are directly 
under the category. The cover attribute refers to the set of categories 
within the subtree rooted at the category. These attributes are depicted 
in Table 3. 

To define a category tree consisting of a set of categories, we use 
the define category tree statement with the following syntax. 
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define category tree : : = DEFINE CATEGORY TREE 

categoryTreeName WHERE (VIRTUAL I REAL) rootCatName "(" 

description ")" IS ROOT {"," define category} "i" 

def ine category :: = (VIRTUAL I REAL) categoryName "(" 

description ")" IS CHILD OF categoryName 

Every category must be defined within a category tree and for any 
category tree a root category must be defined. For example, to define 
the category tree in Figure 1, the following define category 
tree statement is used. The statement defines news as the category 
name of the root category and it is virtual. The other categories, fin, 
it, db, ai, and web are real and their parent-child relationships are 
expressed by IS CHILD OF. 

DEFINE CATEGORY TREE myTree WHERE VIRTUAL news ("news") 

IS ROOT, REAL fin ("financial") IS CHILD OF news, REAL it 

("information technology") IS CHILD OF news, REAL 

db("databases") IS CHILD OF it, REAL ai ("artificial 

intelligence") IS CHILD OF it, REAL web ("world wide web" ) 

IS CHILD OF IT i 

Given a category c, we can access its category attribute, at tr ib, 
using the "." (dot) notation, i.e., c. attrib. For example, the cover 
of it category is written as it. cover and according to the above 
category tree, it. cover is a 5 set of categories, {it, db, ai, 
web}. HCL can also model a set of categories by supporting the 
container class, categorySet. 

Let c be a category and CI and C2 be two categorySets. The 
following are the set operations and logical expressions that can be 
used in HCL. 
- CI union CHeturns the union OfC1 and C2. 
- CI intersect C2 returns the intersection ofCI and C2. 
- CI minus C2 returns C1 C2. 
- c in CI is true ifand only ifc exists in 0. 
- CI is subset of C2 is true if all the CI categories are found in C2. 

When multiple category trees are defined, HCL allows a category 
name to be prefixed by its category tree name to distinguish it from 
other categories in other category trees, e.g. myTree. f in. By 
supporting multiple category trees, HCL allows different sets of 
criteria to be used in classifying a set of documents and each set of 
criteria results in a different category tree. Note that the category tree 
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definition can also be used for flat classification by having all 
categories defined as the children of a dummy virtual root category. 

4.3 Construction of Classifiers 

As shown in Figure 2, the construction of a classification method 
requires the creation of classifier instances using the given classifier 
packages. Examples of such classifier packages are SVM (Support 
Vector Machine), Nai've Bayes, k-NN, and Rocchio (see [6] for more 
details). Each classifier instance may require different set of parameter 
values. HCL is designed to allow classifier instances of different types 
to be integrated together to support hierarchical classification. 

HCL considers both binary and m-ary classifiers. A binary 
classifier is usually associated with a category and it generates only 
one score value given a document. An m-ary classifier, on the other 
hand, is associated with a set of categories, and is able to generate 
multiple score values for a given document, one for each category. 
Here, we assume that each classifier is able to generate a score value 
as a real number. This assumption generally holds for most of the 
classifier packages. HCL represents the classifier package information, 
and the associated category as the engine and domain attributes of the 
classifier instance respectively. The latter refers to the category(ies) to 
which the classifier will assign score(s) to. For a binary classifier, the 
domain is a single category. For an m-ary classifier, the domain is a 
set of categories. 

The construct_classifier statement is provided to define 
classifier instances. Note that the setting of a classifier is optional. If 
not specified, the default parameter values are used for the classifier. 

construct classifier::= CONSTRUCT CLASSIFIER 
classifierName WHERE ENGINE = engineName "," TYPE = 
classifierType "," DOMAIN =( category I "{" categorySet 
"}" [ "," SETTING = parameterSetting)";" 

categorySet ::= category {"," category I categorySet } 

For the category tree shown in Figure 1, three classifiers can be 
defined as follows. 

CONSTRUCT CLASSIFIER svmLocal WHERE ENGINE = SVM, TYPE = 
binary, DOMAIN = fin, SETTING = -j 2.0; 
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CONSTRUCT CLASSIFIER svrnSubtree WHERE ENGINE= SVM, TYPE= 
binary, DOMAIN= it; 

CONSTRUCT CLASSIFIER nbLocal WHERE ENGINE= NaiveBayes, 
TYPE = rn-ary, DOMAIN= {it,db,ai,web}; 

In the above statements, svrnLocal is a binary SVM classifier 
associated with the fin category. The svrnSubtree classifier is 
associated with the it category. During classification, a score value 
will be assigned to each document by the svrnLocal classifier for the 
fin category, but not the other categories. The string" - j 2. 0" serves 
as the parameter value for invoking the SVM classifier package. 
Given a document d, the score value assigned is represented by 
d. score (svrnLocal, fin). The same applies to the 
svrnSubtree classifier for the it category. 

The classifier, nbLocal, is a m-ary NaIve Bayes classifier 
associated with the categories it, db, ai, and web. In other words, 
nbLocal can assign a score to a given document, say d, for each of 
the above four categories. The scores are represented by 
d. score (nbLocal, it), d. score (nbLocal, db), 
d. score (nbLocal, ai), and d. score (nbLocal, web). 

Although the above construct classifier statements define 
the required classifier instances, they do not provide further 
instructions on how these classifier instances will be trained. Neither 
do they specify how the score values assigned by classifier instances 
are used in the actual assignment of categories to documents. These 
two requirements will be discussed in the following two subsections. 

4.4 Training of Classifiers 

In HCL, the train statement (train strnt) specifies how the 
classifier instances can be trained. The focus of the train statement is 
the selection of the training documents rather than how the training 
documents are handled by the classifiers. In other words, HCL does 
not determine what document features will be extracted and selected 
by the different classifier packages for the purpose of training. Below 
is the syntax of the train statement. 
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train stmt ::= TRAIN classifierName USING docVar AS 

POSITIVE FROM docPoolSet ["," docVar AS NEGATIVE FROM 

docPoolSet] [WHERE logical exp] ";" 

train stmt ::= TRAIN classifierName USING docVar FROM 

docPoolSet FOR CATEGORY category { "," docVar FROM 

docPoolSet FOR CATEGORY category } [ WHERE logical exp ] 
". fl , 

docPoolSet ::= docPoolName {"+" docPoolName } 

The first train statement is designed for binary classifier instances 
while the second one is for m-ary classifier instances. For binary 
classifier instances, HCL considers both positive training documents 
and negative training documents. In some binary classifier packages 
such as SVM, the training step requires both kinds of training 
documents. Some other packages may only require positive training 
documents. For m-ary classifier instances, we need to identify a set of 
training documents for each category in the classifier domain. The 
FOR CATEGORY clause is designed for this purpose. 

The above train statement uses a SQL-like statement to choose the 
training documents for classifiers. Similar to a SQL query statement 
where a tuple variable can be used to step through tuples from one or 
more relational table, the train statement provides document variables 
(docVar) to represent some document from one or more document 
pool. Note that several document pools can be aggregated together to 
form a larger document pool using the "+" operator. The 
logical_exp clause specifies the conditions to be imposed on the 
document variables representing the different sets of training 
documents used in training. 

The train statement does not make any assumption about the 
number of training documents qualifying their where conditions. It is 
therefore the user's responsibility to ensure that adequate documents 
are available for training purposes. 

The training statements of the three classifier instances constructed 
in Section 4.3 are given below. 

TRAIN svmLocal USING posDoc AS POSITIVE FROM myTrgPool, 

negDoc AS NEGATIVE FROM myTrgPool WHERE fin IN 

posDoc.labeledCat AND fin NOT IN negDoc.labeledCat; 
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TRAIN svmSubtree USING posDoc AS POSITIVE FROM myTrgPool, 

negDoc AS NEGATIVE FROM myTrgPool WHERE it. cover INTERSECT 

posDoc.labeledCat 1= NULL AND it.cover INTERSECT 

negDoc.labeledCat = NULL; 

TRAIN nbLocal USING itDoc FROM myTrgPool FOR CATEGORY it, 

dbDoc FROM myTrgPool FOR CATEGORY db, aiDoc FROM myTrgPool 

FOR CATEGORY ai, webDoc FROM myTrgPool FOR CATEGORY web, 

WHERE it IN itDoc.labeledCat AND db IN dbDoc.labeledCat 

AND ai IN aiDoc .1abeledCat AND web IN webDoc .1abeledCat; 

Since both svmLocal and svmSubtree are binary classifiers, 
we need to specify both the positive and negative training documents. 
Each training documents in the training pool myTrgPool may be 
labeled with multiple categories. For svmLocal, as long as a 
document is labeled with the f in category, i.e., f in IN 
posDoc .1abeledCat, we want the document to be selected as a 
positive training document. Other documents can be used as negative 
training documents. 

For the binary classifier svmSubtree, we want the positive 
training documents to be from any of the categories in the subtree 
rooted in category it. Therefore, a document is used as positive 
training example if and only if its labeled categories overlap with 
fi t , db, ai , web g, that is it. cover. As mentioned in Section 4.3, 
the svmSubtree classifier will only assign a score value to a given 
document for the it category. As we train the classifier with training 
documents belonging to the subtree rooted at it, this score value 
therefore suggests how strong the classified document belongs to the 
subtree instead of the it category. 

For the m-ary classifier nbLocal, there are four groups of 
training documents required, one for each category in the classifier's 
domain. Such grouping of training documents will allow the 
nbLocal classifier to later assign a score value to a classified 
document for each of the four categories. 

4.5 Category Assignment 

While the construct classifier and train stmt 
statements define classifier instances and their training data, the actual 
assignment of categories to documents must be specified by the 
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assign category statement with the following syntax. 

assign category: : = ASSIGN DOCUMENT docVar TO category IF 

logical exp ";" 

The assign category statement essentially assigns documents 
to categories according to the score values given by the classifiers. 
Recall that the same document may be classified by different 
classifiers with different score values. The logical expression 
(logical_exp) allows Boolean conditions to be specified on the 
score values, and these conditions essentially compare score values 
with some thresholds. The document variable docVar, representing 
the documents to be classified, is required mainly for expressing the 
logical expression. 

For example, to assign documents to the categories in our earlier 
category tree example, the following assign document statements 
can be used. 

ASSIGN DOCUMENT d TO fin IF d.score(svrnLocal,fin»O.l; 

ASSIGN DOCUMENT d TO it IF d.score(svrnSubtree,it»0.2 AND 

d.score(nbLocal, it»O.l; 

ASSIGN DOCUMENT d TO db IF d.score(svrnSubtree,it»0.2 AND 

d.score(nbLocal, db»0.2; 

ASSIGN DOCUMENT d TO ai IF d.score(svrnSubtree,it»0.2 AND 

d.score(nbLocal, ai»0.2; 

ASSIGN DOCUMENT d TO web IF d. score (svrnSubtree, it) >0.2 AND 

d.score(nbLocal, web»0.2; 

svmLocal ~-----------iK 

Figure 4. Classification order of using svrnLocal, svrnSubtree and nblocal 
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In the first assign statement, a document is assigned to 
category firi if the score given by svmLocal for the category is 
greater than 0.1. The second assign statement indicates that only if 
a document is given a score higher than 0.2 by the svmSubtree 
classifier and a score higher than 0.1 by the nbLocal classifier, it is 
assigned to the it category. The other statements can be interpreted 
similarly. 

Note that the assign document statements not only assign 
documents to categories, they together suggest the ordering of 
applying classifiers on a given document to assign categories to the 
document and the conditions of the assignment. In Figure 3, the 
diamonds with the character "c" indicate the assignment conditions. 
The figure shows that the categories it, db, a i and web share a 
common condition (i.e., score (svmSubtree, it) >0.2) on the 
score returned by the svmSubtree classifier. The common 
condition suggests that classification should be performed by the 
svmSubtree classifier before the nbLocal classifier. Such ordering 
information will help to reduce the amount of classification efforts 
tremendously since the svmSubtree classifier can discard 
documents before they are classified by the nbLocal classifier. 

4.6 Discussions 

So far, we have defined the important HCL language constructs 
to define a hierarchical classification method. We have illustrated the 
language using a hierarchical classification example that uses a 
top-down approach to classify documents. In such an approach, the 
classifiers associated with the top-level categories will have to accept 
a document before the document is classified by the classifiers 
associated with the low-level categories. In this subsection, we will 
use HCL to specify another two variants of top-down hierarchical 
classification methods. The first uses NaIve Bayes classifiers only 
while the second was proposed by Dumais and Chen [1]. 
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4.6.1 Hierarchical Classification using Naive Bayes Classifiers Only 

Figure 5. Classification order of using Naive Bayes classifiers only 

In this hierarchical classification method, we want to replace the 
svmLocal and svmSubtree classifiers in our earlier example by a 
m-ary classifier, called nbSubtree. The nbSubtree classifier will 
have f in and it as its domain, and assign scores to documents for 
the two categories. The score for f in will indicate if a document 
belongs to the f in category, while the score for it will indicate if the 
document belongs to the subtree rooted at it. 

The classifier construction, train, and category assignment 
statements for the nbSubtree are shown below. 

CONSTRUCT CLASSIFIER nbSubtree WHERE ENGINE= NaiveBayes, 

TYPE = m-ary, DOMAIN= {fin,it}; 

TRAIN nbSubtree USING finDoc FROM myTrgPool FOR CATEGORY 
fin, itTreeDoc FROM myTrgPool FOR CATEGORY it WHERE fin 

IN finDoc.labeledCat AND it.cover INTERSECT 

itTreeDoc.labeledCat! = NULL; 

ASSIGN DOCUMENT d TO fin IF d.score (nbSubtree, fin» 0.2; 

ASSIGN DOCUMENT d TO it IF d. score (nbSubtree , it) > 0.2 AND 

d.score(nbLocal, it»0.2; 

ASSIGN DOCUMENT d TO db IF d. score (nbSubtree, it) > 0.2 AND 
d.score(nbLocal, db»0.2; 

ASSIGN DOCUMENT d TO ai IF d.score(nbSubtree, it» 0.2 AND 
d.score(nbLocal, ai»0.2; 
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ASSIGN DOCUMENT d TO web IF d.score (nbSubtree, it» 0.2 
AND d.score(nbLocal, web»O.2; 

4.6.2 Hierarchical Classification with Multiplicative Thresholding 

In this section, we illustrate the use of HCL to define the 
hierarchical classification method using multiplicative thresholding 
strategy. This method was first proposed by Dumais and Chen [1]. In 
their work, a virtual category tree of height 2 was used. A binary SVM 
classifier is assigned to the root category, and one SVM classifier is 
assigned to each category at the leaf level. Only if the product of 
scores returned by the root and leaf classifiers exceeds a pre-defined 
threshold, a document is then assigned to the leaf category. 

svmlt 

svmDb 

svmAi 

svmWeb 

Figure 6. Classification order of using multiplicative thresholding and SVM 

To specify the classification method using HCL on the 2-level 
category tree (rooted at it) extracted from our earlier example. The 
three categories in Figure 1, db, ai, and web are real and it is 
virtual. Note that the category tree in this section is different from the 
one we used in previous sections. In the following, we present the 
complete classification method specification. 

DEFINE CATEGORY TREE i tTree WHERE VIRTUAL it ( " information 
technology") IS ROOT, REAL db ("databases") IS CHILD OF 
it, REAL ai ("artificial intelligence") IS CHILD OF it, 
REAL web ("world wide web") IS CHILD OF it; 

CONSTRUCT CLASSIFIER svmIt WHERE ENGINE = SVM, TYPE 
binary, DOMAIN = it; 
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CONSTRUCT CLASSIFIER svrnDb WHERE ENGINE = SVM, TYPE = 
binary, DOMAIN = db; 

CONSTRUCT CLASSIFIER svrnAi WHERE ENGINE 
binary, DOMAIN = ai; 

CONSTRUCT CLASSIFIER svrnWeb WHERE ENGINE 
binary, DOMAIN = web; 

SVM, TYPE 

SVM, TYPE 

TRAIN svrnIt USING posDoc AS POSITIVE FROM rnyTrgPool, 
negDoc AS NEGATIVE FROM rnyTrgPool WHERE it. cover INTERSECT 
posDoc.labeledCat!= NULL AND it.cover INTERSECT 
negDoc.labeledCat = NULL; 

TRAIN svrnDb USING posDoc AS POSITIVE FROM rnyTrgPool, 
negDoc AS NEGATIVE FROM rnyTrgPool WHERE db IN 
posDoc.labeledCat AND db NOT IN negDoc.labeledCat AND 
it.cover INTERSECT negDoc.labeledCat != NULL; 

TRAIN svrnAi USING posDoc AS POSITIVE FROM rnyTrgPool, 
negDoc AS NEGATIVE FROM rnyTrgPool WHERE ai IN 
posDoc.labeledCat AND ai NOT IN negDoc.labeledCat AND 
it.cover INTERSECT negDoc.labeledCat != NULL; 

TRAIN svrnWeb USING posDoc AS POSITIVE FROM rnyTrgPool, neg Doc 
AS NEGATIVE FROM rnyTrgPool WHERE web IN posDoc.labeledCat 
AND web NOT IN negDoc.labeledCat AND it. cover INTERSECT 
negDoc.labeledCat != NULL; 

ASSIGN DOCUMENT d TO db IF d.score(svrnIt, it) * 
d.score(svrnDb, db»O.l; 

ASSIGN DOCUMENT d TO ai IF d.score(svrnIt, it) * 
d.score(svrnAi, ai»O.l; 

ASSIGN DOCUMENT d TO web IF d.score(svrnIt, it) * 
d.score(svrnWeb, web»O.l; 

In the above train statements for the leaf level classifiers, the 
selection of positive training documents is quite straightforward, but 
the selection of negative trammg documents requires some 
explanation. Since the svrnlt classifier is designed to filter away 
documents not belonging to the category tree, the negative training 
documents are therefore chosen from those training documents under 
the category tree but not belonging to the leaf level categories. The 
category assignment statements specify that a document is assigned to 
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the leaf level category if the product of scores from the root classifier 
and the leaf level classifier exceeds 0.1. The classification order is 
shown in Figure 5. 

5. CONCLUSIONS 

In this chapter, we propose a specification language for 
hierarchical text classification known as HCL. HCL provides four 
essential language primitives, i.e., define, construct, train 
and assign, to define a hierarchical classification method. We have 
illustrated the features of HCL using a few examples. With a standard 
classification language such as HCL, the process of constructing a 
hierarchical classification method will be simplified making it also 
easier for performance evaluation and tuning. 
At present, the design of HCL is still tentative. There are still several 
important future research issues to be addressed: 
- Implementation of HCL: We plan to implement HCL on different 

classifier packages to study the detailed implementation issues and to 
promote it to be the standard way for building hierarchical classification 
methods. 

- Design and implementation ofthe Method Upgrader module: We have 
not investigated the research issues involved in designing the method 
upgrader module so far. This is an important component in our 
classification method generation system. Further· research on the method 
upgrading techniques will be required before they can be incorporated 
into the overall method generation system. 

- Reporting facility: A full-fledged classification method should report its 
performance when it is used on some given document collection. This 
reporting facility has not be added to our design yet but should be 
considered in the future. 
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