
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

3-2003

Hierarchical text classification methods and their
specification
Ee Peng LIM
Singapore Management University, eplim@smu.edu.sg

Aixin SUN
Nanyang Technological University

Wee-Keong NG

DOI: https://doi.org/10.1007/978-1-4615-0435-1_14

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons, and the Numerical Analysis and

Scientific Computing Commons

This Book Chapter is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
LIM, Ee Peng; SUN, Aixin; and NG, Wee-Keong. Hierarchical text classification methods and their specification. (2003). Cooperative
Internet Computing. 236-256. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/855

https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F855&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F855&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F855&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1007/978-1-4615-0435-1_14
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F855&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F855&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F855&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F855&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Hierarchical Text Classification Methods and Their Specification 236

Chapter 14

HIERARCHICAL TEXT CLASSIFICATION
METHODS AND THEIR SPECIFICATION

Aixin Sun, Ee-Peng Lim and Wee-Keong Ng
School a/Computer Engineering, Nanyang Technological University, Singapore 639798

Abstract: Hierarchical text classification refers to assigning text documents to the
categories in a given category tree based on their content. With large number
of categories organized as a tree, hierarchical text classification helps users to
find information more quickly and accurately. Nevertheless, hierarchical text
classification methods in the past have often been constructed in a proprietary
manner. The construction steps often involve human efforts and are not
completely automated. In this chapter, we therefore propose a specification
language known as HCL (Hierarchical Classification Language). HCL is
designed to describe a hierarchical classification method including the
definition of a category tree and training of classifiers associated with the
categories. Using HCL, a hierarchical classification method can be
materialized easily with the help of a method generator system.

Key words: Hierarchical Text Classification, Specification Language

1. INTRODUCTION

1.1 Motivation

Text classification is a research area that develops methods for
assigning text documents to a pre-defined set of categories [6, 8].
When the given categories are defined independently of one another,
this is known as flat classification. Most of the studies in text
classification have focused on flat classification. In most flat
classification methods, either a binary classifier is assigned to each
category to determine if a given document belongs to the category, or

A. T. S. Chan et al. (eds.), Cooperative Internet Computing
© Kluwer Academic Publishers 2003

Hierarchical Text Classification Methods and Their Specification 237

a m-ary class{fier is assigned to a group of categories to determine if a
given document belongs to zero or more categories in the group.
After many years of research, flat classification has become a
well-established research area and many good classifiers have been
developed. A good survey of the text classification approaches is
given in [6].

More recently, increasing attention has been given to hierarchical
classification where the pre-defined categories are organized in a
tree-like structure. A category tree example is shown in Figure 1. In
a category tree, there are parent-child relationships between categories.
These parent-child relationships may suggest strong or weak
subsumption constraint between categories. A parent and child
category pair with strong subsumption constraint suggests all
documents belonging to the child also belong to the parent. Weak
subsumption, on the other hand, allows a child category to have
documents not belonging to its parent category. By organizing a large
number of categories in a tree, hierarchical classification allows us to
address a large classification problem using a divide-and-conquer
approach, also known as the top-down approach [7]. At the root level,
a text document can be first classified into one or more child
categories. The document can then be further classified at each child
category to determine if it belongs to categories at the next lower level.
The classification step can be repeated until the document cannot be
further classified into any lower-level categories. While in flat
classification a given document is assigned to a category based on the
outcome of one or one set of classifiers, the assignment of document
to the category can be the outcome of mUltiple sets of classifiers in
hierarchical classification. These classifiers are associated to different
levels of the category tree to filter away documents that do not belong
to the lower level categories.

Hierarchical Text Classification Methods and Their Specification 238

r------------,
I news ,

(------------,
, virtual category I

real category

artificial intelligence world wide web

Figure 2. A sample category tree

While the applications of text classification (flat and hierarchical)
are wide and diverse, there has not been a specification language for
defining classification methods. Most of the existing text
classification systems have been developed either manually by
information retrieval (IR) experts who constructed each classifier by
providing appropriate training data and input parameters, or by
specialized scripts that are customized for the particular classification
systems. The manual approach clearly incurs much overhead in time.
The latter script approach takes less time in the actual construction of
the classification systems but the scripts themselves still require time
for development. Since such scripts are usually proprietary and not
necessarily easy to use, they are not really suitable to be used directly
the application developers and end users.

1.2 Objectives

To promote wider adoption and acceptance of text classification
methods, we believe that a declarative specification language for
defining text classification methods will be important and useful. Such
a specification language, once standardized across all commercial text
classification products, will facilitate users to directly create their text
classification systems, to build layers of applications that use the
specification language to define their text classification modules, and
to exchange classification methods and results. In particular, the
specification language can hide differences among the heterogeneous
classifier packages used to implement a classification method. This
greatly reduces the efforts of developing and maintaining the
classification method, and this in tum translates to savings in the

Hierarchical Text Classification Methods and Their Specification 239

development and maintenance costs of the application using the
classification method. From the performance experiments perspective,
a specification language will also allow users to compose variations of
classification methods for performance evaluation and tuning.

To design a specification language for text classification, we need
to identify the essential primitives of the language. We focus on
hierarchical classification in this chapter since it is more appropriate in
practical applications. The language primitives to be designed must
therefore be able to support the definition of the category tree
structure, the association of classifiers to the categories, and the
training and classification steps. Our proposed specification language,
HCL (Hierarchical Classification Language), attempts to provide the
above primitives. As flat classification problem can be treated as
hierarchical classification problem on a one-level category tree where
the root of the tree is virtual, we believe HCL is able to handle most
text classification problems. In this chapter, we will overview the
existing flat and hierarchical classification methods and illustrate HCL
using a few examples. While the design of HCL is still tentative, we
hope that it will serve to motivate further work in this area.

1.3 Outline of the Chapter

The rest of the chapter is organized as follows. We first
examined the related work in Section 2. The proposed classification
method generation system is described in Section 3. Our proposed
classification language HCL is given in Section 4. Section 5 concludes
our discussion.

2. RELATED WORK

Recently, hierarchical classification has gained much attention in
the IR research community due to its practical usage. Koller and
Sahami used multiple Bayesian classifiers to classify the Reuter's
collection into some pre-defined categories [3]. The categories were
arranged in two-level category trees. Dumais and Chen proposed the
use of Support Vector Machine (SVM) classifiers to classifY web
pages into a category tree using a top-down approach [1].
Nevertheless, their method allows a web page to be assigned to a child

Hierarchical Text Classification Methods and Their Specification 240

category even if the former is not favored by the parent category. The
category structure used is a 2-level category tree with a virtual root
category obtained from the LookSmart's web directory
(http://www.looksmart.com). We have not seen any work on the
specification language for text classification. In this section, we
therefore describe some script languages specially designed for text
classification, and also survey some other existing data mining
languages.

The RAINBOW script language is part of the BOW library
developed by the eMU Information Retrieval group [4]. Designed to
facilitate the definition of classifiers for mainly performance
evaluation purposes, the Rainbow language is very cryptic and not
very readable. It also does not support the definition of working
relationships between classifiers required in the hierarchical
classification methods.

Text classification can be considered as a special kind of data
mining. In relational databases, data mining often refers to association
rule mining, classification of database records, etc .. DMQL is a data
mining query language developed by Han et al. to allow a user to
specify the mining parameters and the type of knowledge to be mined
from a given relational database [2]. Meo et al developed another
SQL-like data mining language for specifying how association rules
can be discovered from a relational database [5]. Nevertheless, the
above two data mining languages are mainly for relational databases
where data are stored as structured records.

Hierarchical Text Classification Methods and Their Specification 241

User

Classlficatlon
method

specificatlon
(upgrade)

Untrained

Figure 3. Classification method generation system

3. CLASSIFICATION METHOD GENERATION
SYSTEM

To adopt the HCL specification language, a classification method
generation system must be provided to take a classification method
specification in HCL and transform it into a working classification
method. Figure 2 depicts the components of our proposed
classification method generation system.

Given a HCL classification method specification, a classification
language compiler compiles it into an untrained classification method
file which contains the internal representation of the category tree
structure and the association of classifiers to the category tree. The
classification method is untrained since the classifiers are yet to be
constructed.

The classification method trainer takes the untrained
classification method and starts feeding training data to the classifier
packages. Here, each classifier package is required to provide a
training interface which allows a new executable classifier to be
constructed when a training set is given. Note that the training data
may include both positive and negative training data for binary
classifiers, and training data of different classes for m-ary classifiers.
Since the method is designed for hierarchical classification, the trainer
must incorporate into the method classification steps in which the

Hierarchical Text Classification Methods and Their Specification 242

invocations of classifiers associated with the higher-level categories
come before those associated with the lower level categories. This
ensures that documents will be filtered by the classifiers associated
with the higher level categories first before they are examined by
those associated with the lower level categories. The order of applying
classifiers will be further illustrated in Section 4.5.

The trainer assembles the constructed classifiers and incorporates
them into a top-down hierarchical classification algorithm before
generating the trained classification method as an executable program.
A trained classification method can now be directly applied on a given
document collection. During the classification phase, the method will
call the different classifiers to classify and assign appropriate category
labels to the documents. Since the classification method may not be
perfect and there may be changes to the category tree or documents to
be classified, one would expect further upgrading to be done on the
classification method when new training data or new category tree are
available. As opposed to a full-fledged retraining of the classification
method, the classification method upgrader is able to take care of such
incremental changes.

In this chapter, we will only focus on classification specification
language constructs that are mainly used in the classification language
compiler and classification method trainer. The language constructs
for supporting method upgrading will be part of our future work since
there has not been much research work done in upgrading hierarchical
classification methods.

4. CLASSIFICATION SPECIFICATION LANGUAGE

Our proposed classification language consists five components,
namely, document modeling, category tree modeling, class(fier
construction, classifier training, and document assignment.
Throughout this section, we express the syntax of the classification
specification language using the Backus Naur Form (BNF) notation.
To improve readability, terminal and non-terminal symbols are shown
in capital and Cour ier respectively. The single character terminals
are enclosed by quotation marks, e.g. ";". The other extended symbols
used in our language syntax are listed in Table 1.

Hierarchical Text Classification Methods and Their Specification 243

Table I. Extended BNF symbols
Symbol Meaning
I Separators for alternative symbols
[1 Symbol(s) enclosed is optional
() Symbol(s) enclosed is used zero or more times
() Enclose groups of alternative symbols

4.1 Document Modeling

In document classification, we deal with documents. There are
two kinds of documents, i.e., training documents and documents to be
classified. Since HCL is about the construction of classification
methods, we only focus on modeling training documents. Regardless
of its kind, HCL supports the notion of document variable which is of
Document class. As shown in Table 2, a document class consists of a
unique id, date, length, a labeled category set (labeledCat),
and an assigned category set (assignedCat).

Table 2. Attributes of document class
Attribute Description
ID document id
date time when the document is created
length length of the document
labeledCat set of categories the document belongs to
ass ignedCa t set of categories assigned by the classification method
score (classif i score assigned by classif ier with respect to
er, category) category where category must be in the domain of

classifier (see Section 4.3)

We assume that every document must belong to some document
pool. The document id, an integer value, is unique within a document
pool. Other than id, each document has a creation date, and
length. For a training document, the set of labeled categories is
represented by the labeledCat attribute. In the training processes,
a training document can be assigned a set of categories by the
classification method and is represented by the assignedCat
attribute. Furthermore, each document may be assigned a score value
by a classifier with respect to a set of categories. This is represented
by the score (classifier, category) attribute. In HCL, we
may use a document variable, say docVar, to represent a document
in a document pool. We represent the attribute, say at tr ib, of the

Hierarchical Text Classification Methods and Their Specification 244

document variable by docVar. attrib.
HCL also allows a training document pool to be imported using the

define train pool statement. These document pool statement
speci_es where the classification method should obtain their training
documents and the documents to be classified. The syntax of the
def ine train pool statement is given below.

define train Pool :: = DEFINE TRAIN POOL docPoolNarne
docPoolPath ";"

In the following example statements, we define myTrgPool as a
training pool. The data file train. dat is formatted to store the
appropriate document attributes and references to the document files.

DEFINE TRAIN POOL rnyTrgPool Ihtc/train.dat;

Table 3. Attributes of category class
Attribute
description
type
parent
children

cover

Description
description of the category
real if the category can hold documents, virtual otherwise
the parent of the given category and null for root category
returns a set of categories containing all the child categories of the
given category and null for leaf category
returns a set of categories within the subtree rooted at the given
category

4.2 Category Structure Definitions

Similar to document, HCL provides a category class to model
categories. The category attributes include description, type,
parent, children, and cover. Given a category, the
description attribute provides a user readable description about
the category. The type of a category can be real or virtual. A
category is real when documents can be assigned to it, and virtual
otherwise. The parent attribute refers to the parent category of the
category. The children are a set of categories that are directly
under the category. The cover attribute refers to the set of categories
within the subtree rooted at the category. These attributes are depicted
in Table 3.

To define a category tree consisting of a set of categories, we use
the define category tree statement with the following syntax.

Hierarchical Text Classification Methods and Their Specification 245

define category tree : : = DEFINE CATEGORY TREE

categoryTreeName WHERE (VIRTUAL I REAL) rootCatName "("

description ")" IS ROOT {"," define category} "i"

def ine category :: = (VIRTUAL I REAL) categoryName "("

description ")" IS CHILD OF categoryName

Every category must be defined within a category tree and for any
category tree a root category must be defined. For example, to define
the category tree in Figure 1, the following define category
tree statement is used. The statement defines news as the category
name of the root category and it is virtual. The other categories, fin,
it, db, ai, and web are real and their parent-child relationships are
expressed by IS CHILD OF.

DEFINE CATEGORY TREE myTree WHERE VIRTUAL news ("news")

IS ROOT, REAL fin ("financial") IS CHILD OF news, REAL it

("information technology") IS CHILD OF news, REAL

db("databases") IS CHILD OF it, REAL ai ("artificial

intelligence") IS CHILD OF it, REAL web ("world wide web")

IS CHILD OF IT i

Given a category c, we can access its category attribute, at tr ib,
using the "." (dot) notation, i.e., c. attrib. For example, the cover
of it category is written as it. cover and according to the above
category tree, it. cover is a 5 set of categories, {it, db, ai,
web}. HCL can also model a set of categories by supporting the
container class, categorySet.

Let c be a category and CI and C2 be two categorySets. The
following are the set operations and logical expressions that can be
used in HCL.
- CI union CHeturns the union OfC1 and C2.
- CI intersect C2 returns the intersection ofCI and C2.
- CI minus C2 returns C1 C2.
- c in CI is true ifand only ifc exists in 0.
- CI is subset of C2 is true if all the CI categories are found in C2.

When multiple category trees are defined, HCL allows a category
name to be prefixed by its category tree name to distinguish it from
other categories in other category trees, e.g. myTree. f in. By
supporting multiple category trees, HCL allows different sets of
criteria to be used in classifying a set of documents and each set of
criteria results in a different category tree. Note that the category tree

Hierarchical Text Classification Methods and Their Specification 246

definition can also be used for flat classification by having all
categories defined as the children of a dummy virtual root category.

4.3 Construction of Classifiers

As shown in Figure 2, the construction of a classification method
requires the creation of classifier instances using the given classifier
packages. Examples of such classifier packages are SVM (Support
Vector Machine), Nai've Bayes, k-NN, and Rocchio (see [6] for more
details). Each classifier instance may require different set of parameter
values. HCL is designed to allow classifier instances of different types
to be integrated together to support hierarchical classification.

HCL considers both binary and m-ary classifiers. A binary
classifier is usually associated with a category and it generates only
one score value given a document. An m-ary classifier, on the other
hand, is associated with a set of categories, and is able to generate
multiple score values for a given document, one for each category.
Here, we assume that each classifier is able to generate a score value
as a real number. This assumption generally holds for most of the
classifier packages. HCL represents the classifier package information,
and the associated category as the engine and domain attributes of the
classifier instance respectively. The latter refers to the category(ies) to
which the classifier will assign score(s) to. For a binary classifier, the
domain is a single category. For an m-ary classifier, the domain is a
set of categories.

The construct_classifier statement is provided to define
classifier instances. Note that the setting of a classifier is optional. If
not specified, the default parameter values are used for the classifier.

construct classifier::= CONSTRUCT CLASSIFIER
classifierName WHERE ENGINE = engineName "," TYPE =
classifierType "," DOMAIN =(category I "{" categorySet
"}" ["," SETTING = parameterSetting)";"

categorySet ::= category {"," category I categorySet }

For the category tree shown in Figure 1, three classifiers can be
defined as follows.

CONSTRUCT CLASSIFIER svmLocal WHERE ENGINE = SVM, TYPE =
binary, DOMAIN = fin, SETTING = -j 2.0;

Hierarchical Text Classification Methods and Their Specification 247

CONSTRUCT CLASSIFIER svrnSubtree WHERE ENGINE= SVM, TYPE=
binary, DOMAIN= it;

CONSTRUCT CLASSIFIER nbLocal WHERE ENGINE= NaiveBayes,
TYPE = rn-ary, DOMAIN= {it,db,ai,web};

In the above statements, svrnLocal is a binary SVM classifier
associated with the fin category. The svrnSubtree classifier is
associated with the it category. During classification, a score value
will be assigned to each document by the svrnLocal classifier for the
fin category, but not the other categories. The string" - j 2. 0" serves
as the parameter value for invoking the SVM classifier package.
Given a document d, the score value assigned is represented by
d. score (svrnLocal, fin). The same applies to the
svrnSubtree classifier for the it category.

The classifier, nbLocal, is a m-ary NaIve Bayes classifier
associated with the categories it, db, ai, and web. In other words,
nbLocal can assign a score to a given document, say d, for each of
the above four categories. The scores are represented by
d. score (nbLocal, it), d. score (nbLocal, db),
d. score (nbLocal, ai), and d. score (nbLocal, web).

Although the above construct classifier statements define
the required classifier instances, they do not provide further
instructions on how these classifier instances will be trained. Neither
do they specify how the score values assigned by classifier instances
are used in the actual assignment of categories to documents. These
two requirements will be discussed in the following two subsections.

4.4 Training of Classifiers

In HCL, the train statement (train strnt) specifies how the
classifier instances can be trained. The focus of the train statement is
the selection of the training documents rather than how the training
documents are handled by the classifiers. In other words, HCL does
not determine what document features will be extracted and selected
by the different classifier packages for the purpose of training. Below
is the syntax of the train statement.

Hierarchical Text Classification Methods and Their Specification 248

train stmt ::= TRAIN classifierName USING docVar AS

POSITIVE FROM docPoolSet ["," docVar AS NEGATIVE FROM

docPoolSet] [WHERE logical exp] ";"

train stmt ::= TRAIN classifierName USING docVar FROM

docPoolSet FOR CATEGORY category { "," docVar FROM

docPoolSet FOR CATEGORY category } [WHERE logical exp]
". fl ,

docPoolSet ::= docPoolName {"+" docPoolName }

The first train statement is designed for binary classifier instances
while the second one is for m-ary classifier instances. For binary
classifier instances, HCL considers both positive training documents
and negative training documents. In some binary classifier packages
such as SVM, the training step requires both kinds of training
documents. Some other packages may only require positive training
documents. For m-ary classifier instances, we need to identify a set of
training documents for each category in the classifier domain. The
FOR CATEGORY clause is designed for this purpose.

The above train statement uses a SQL-like statement to choose the
training documents for classifiers. Similar to a SQL query statement
where a tuple variable can be used to step through tuples from one or
more relational table, the train statement provides document variables
(docVar) to represent some document from one or more document
pool. Note that several document pools can be aggregated together to
form a larger document pool using the "+" operator. The
logical_exp clause specifies the conditions to be imposed on the
document variables representing the different sets of training
documents used in training.

The train statement does not make any assumption about the
number of training documents qualifying their where conditions. It is
therefore the user's responsibility to ensure that adequate documents
are available for training purposes.

The training statements of the three classifier instances constructed
in Section 4.3 are given below.

TRAIN svmLocal USING posDoc AS POSITIVE FROM myTrgPool,

negDoc AS NEGATIVE FROM myTrgPool WHERE fin IN

posDoc.labeledCat AND fin NOT IN negDoc.labeledCat;

Hierarchical Text Classification Methods and Their Specification 249

TRAIN svmSubtree USING posDoc AS POSITIVE FROM myTrgPool,

negDoc AS NEGATIVE FROM myTrgPool WHERE it. cover INTERSECT

posDoc.labeledCat 1= NULL AND it.cover INTERSECT

negDoc.labeledCat = NULL;

TRAIN nbLocal USING itDoc FROM myTrgPool FOR CATEGORY it,

dbDoc FROM myTrgPool FOR CATEGORY db, aiDoc FROM myTrgPool

FOR CATEGORY ai, webDoc FROM myTrgPool FOR CATEGORY web,

WHERE it IN itDoc.labeledCat AND db IN dbDoc.labeledCat

AND ai IN aiDoc .1abeledCat AND web IN webDoc .1abeledCat;

Since both svmLocal and svmSubtree are binary classifiers,
we need to specify both the positive and negative training documents.
Each training documents in the training pool myTrgPool may be
labeled with multiple categories. For svmLocal, as long as a
document is labeled with the f in category, i.e., f in IN
posDoc .1abeledCat, we want the document to be selected as a
positive training document. Other documents can be used as negative
training documents.

For the binary classifier svmSubtree, we want the positive
training documents to be from any of the categories in the subtree
rooted in category it. Therefore, a document is used as positive
training example if and only if its labeled categories overlap with
fi t , db, ai , web g, that is it. cover. As mentioned in Section 4.3,
the svmSubtree classifier will only assign a score value to a given
document for the it category. As we train the classifier with training
documents belonging to the subtree rooted at it, this score value
therefore suggests how strong the classified document belongs to the
subtree instead of the it category.

For the m-ary classifier nbLocal, there are four groups of
training documents required, one for each category in the classifier's
domain. Such grouping of training documents will allow the
nbLocal classifier to later assign a score value to a classified
document for each of the four categories.

4.5 Category Assignment

While the construct classifier and train stmt
statements define classifier instances and their training data, the actual
assignment of categories to documents must be specified by the

Hierarchical Text Classification Methods and Their Specification 250

assign category statement with the following syntax.

assign category: : = ASSIGN DOCUMENT docVar TO category IF

logical exp ";"

The assign category statement essentially assigns documents
to categories according to the score values given by the classifiers.
Recall that the same document may be classified by different
classifiers with different score values. The logical expression
(logical_exp) allows Boolean conditions to be specified on the
score values, and these conditions essentially compare score values
with some thresholds. The document variable docVar, representing
the documents to be classified, is required mainly for expressing the
logical expression.

For example, to assign documents to the categories in our earlier
category tree example, the following assign document statements
can be used.

ASSIGN DOCUMENT d TO fin IF d.score(svrnLocal,fin»O.l;

ASSIGN DOCUMENT d TO it IF d.score(svrnSubtree,it»0.2 AND

d.score(nbLocal, it»O.l;

ASSIGN DOCUMENT d TO db IF d.score(svrnSubtree,it»0.2 AND

d.score(nbLocal, db»0.2;

ASSIGN DOCUMENT d TO ai IF d.score(svrnSubtree,it»0.2 AND

d.score(nbLocal, ai»0.2;

ASSIGN DOCUMENT d TO web IF d. score (svrnSubtree, it) >0.2 AND

d.score(nbLocal, web»0.2;

svmLocal ~-----------iK

Figure 4. Classification order of using svrnLocal, svrnSubtree and nblocal

Hierarchical Text Classtfication Methods and Their Specification 251

In the first assign statement, a document is assigned to
category firi if the score given by svmLocal for the category is
greater than 0.1. The second assign statement indicates that only if
a document is given a score higher than 0.2 by the svmSubtree
classifier and a score higher than 0.1 by the nbLocal classifier, it is
assigned to the it category. The other statements can be interpreted
similarly.

Note that the assign document statements not only assign
documents to categories, they together suggest the ordering of
applying classifiers on a given document to assign categories to the
document and the conditions of the assignment. In Figure 3, the
diamonds with the character "c" indicate the assignment conditions.
The figure shows that the categories it, db, a i and web share a
common condition (i.e., score (svmSubtree, it) >0.2) on the
score returned by the svmSubtree classifier. The common
condition suggests that classification should be performed by the
svmSubtree classifier before the nbLocal classifier. Such ordering
information will help to reduce the amount of classification efforts
tremendously since the svmSubtree classifier can discard
documents before they are classified by the nbLocal classifier.

4.6 Discussions

So far, we have defined the important HCL language constructs
to define a hierarchical classification method. We have illustrated the
language using a hierarchical classification example that uses a
top-down approach to classify documents. In such an approach, the
classifiers associated with the top-level categories will have to accept
a document before the document is classified by the classifiers
associated with the low-level categories. In this subsection, we will
use HCL to specify another two variants of top-down hierarchical
classification methods. The first uses NaIve Bayes classifiers only
while the second was proposed by Dumais and Chen [1].

Hierarchical Text Classification Methods and Their Specification 252

4.6.1 Hierarchical Classification using Naive Bayes Classifiers Only

Figure 5. Classification order of using Naive Bayes classifiers only

In this hierarchical classification method, we want to replace the
svmLocal and svmSubtree classifiers in our earlier example by a
m-ary classifier, called nbSubtree. The nbSubtree classifier will
have f in and it as its domain, and assign scores to documents for
the two categories. The score for f in will indicate if a document
belongs to the f in category, while the score for it will indicate if the
document belongs to the subtree rooted at it.

The classifier construction, train, and category assignment
statements for the nbSubtree are shown below.

CONSTRUCT CLASSIFIER nbSubtree WHERE ENGINE= NaiveBayes,

TYPE = m-ary, DOMAIN= {fin,it};

TRAIN nbSubtree USING finDoc FROM myTrgPool FOR CATEGORY
fin, itTreeDoc FROM myTrgPool FOR CATEGORY it WHERE fin

IN finDoc.labeledCat AND it.cover INTERSECT

itTreeDoc.labeledCat! = NULL;

ASSIGN DOCUMENT d TO fin IF d.score (nbSubtree, fin» 0.2;

ASSIGN DOCUMENT d TO it IF d. score (nbSubtree , it) > 0.2 AND

d.score(nbLocal, it»0.2;

ASSIGN DOCUMENT d TO db IF d. score (nbSubtree, it) > 0.2 AND
d.score(nbLocal, db»0.2;

ASSIGN DOCUMENT d TO ai IF d.score(nbSubtree, it» 0.2 AND
d.score(nbLocal, ai»0.2;

Hierarchical Text Classification Methods and Their Specification 253

ASSIGN DOCUMENT d TO web IF d.score (nbSubtree, it» 0.2
AND d.score(nbLocal, web»O.2;

4.6.2 Hierarchical Classification with Multiplicative Thresholding

In this section, we illustrate the use of HCL to define the
hierarchical classification method using multiplicative thresholding
strategy. This method was first proposed by Dumais and Chen [1]. In
their work, a virtual category tree of height 2 was used. A binary SVM
classifier is assigned to the root category, and one SVM classifier is
assigned to each category at the leaf level. Only if the product of
scores returned by the root and leaf classifiers exceeds a pre-defined
threshold, a document is then assigned to the leaf category.

svmlt

svmDb

svmAi

svmWeb

Figure 6. Classification order of using multiplicative thresholding and SVM

To specify the classification method using HCL on the 2-level
category tree (rooted at it) extracted from our earlier example. The
three categories in Figure 1, db, ai, and web are real and it is
virtual. Note that the category tree in this section is different from the
one we used in previous sections. In the following, we present the
complete classification method specification.

DEFINE CATEGORY TREE i tTree WHERE VIRTUAL it (" information
technology") IS ROOT, REAL db ("databases") IS CHILD OF
it, REAL ai ("artificial intelligence") IS CHILD OF it,
REAL web ("world wide web") IS CHILD OF it;

CONSTRUCT CLASSIFIER svmIt WHERE ENGINE = SVM, TYPE
binary, DOMAIN = it;

Hierarchical Text Classification Methods and Their Specification 254

CONSTRUCT CLASSIFIER svrnDb WHERE ENGINE = SVM, TYPE =
binary, DOMAIN = db;

CONSTRUCT CLASSIFIER svrnAi WHERE ENGINE
binary, DOMAIN = ai;

CONSTRUCT CLASSIFIER svrnWeb WHERE ENGINE
binary, DOMAIN = web;

SVM, TYPE

SVM, TYPE

TRAIN svrnIt USING posDoc AS POSITIVE FROM rnyTrgPool,
negDoc AS NEGATIVE FROM rnyTrgPool WHERE it. cover INTERSECT
posDoc.labeledCat!= NULL AND it.cover INTERSECT
negDoc.labeledCat = NULL;

TRAIN svrnDb USING posDoc AS POSITIVE FROM rnyTrgPool,
negDoc AS NEGATIVE FROM rnyTrgPool WHERE db IN
posDoc.labeledCat AND db NOT IN negDoc.labeledCat AND
it.cover INTERSECT negDoc.labeledCat != NULL;

TRAIN svrnAi USING posDoc AS POSITIVE FROM rnyTrgPool,
negDoc AS NEGATIVE FROM rnyTrgPool WHERE ai IN
posDoc.labeledCat AND ai NOT IN negDoc.labeledCat AND
it.cover INTERSECT negDoc.labeledCat != NULL;

TRAIN svrnWeb USING posDoc AS POSITIVE FROM rnyTrgPool, neg Doc
AS NEGATIVE FROM rnyTrgPool WHERE web IN posDoc.labeledCat
AND web NOT IN negDoc.labeledCat AND it. cover INTERSECT
negDoc.labeledCat != NULL;

ASSIGN DOCUMENT d TO db IF d.score(svrnIt, it) *
d.score(svrnDb, db»O.l;

ASSIGN DOCUMENT d TO ai IF d.score(svrnIt, it) *
d.score(svrnAi, ai»O.l;

ASSIGN DOCUMENT d TO web IF d.score(svrnIt, it) *
d.score(svrnWeb, web»O.l;

In the above train statements for the leaf level classifiers, the
selection of positive training documents is quite straightforward, but
the selection of negative trammg documents requires some
explanation. Since the svrnlt classifier is designed to filter away
documents not belonging to the category tree, the negative training
documents are therefore chosen from those training documents under
the category tree but not belonging to the leaf level categories. The
category assignment statements specify that a document is assigned to

Hierarchical Text Classification Methods and Their Specification 255

the leaf level category if the product of scores from the root classifier
and the leaf level classifier exceeds 0.1. The classification order is
shown in Figure 5.

5. CONCLUSIONS

In this chapter, we propose a specification language for
hierarchical text classification known as HCL. HCL provides four
essential language primitives, i.e., define, construct, train
and assign, to define a hierarchical classification method. We have
illustrated the features of HCL using a few examples. With a standard
classification language such as HCL, the process of constructing a
hierarchical classification method will be simplified making it also
easier for performance evaluation and tuning.
At present, the design of HCL is still tentative. There are still several
important future research issues to be addressed:
- Implementation of HCL: We plan to implement HCL on different

classifier packages to study the detailed implementation issues and to
promote it to be the standard way for building hierarchical classification
methods.

- Design and implementation ofthe Method Upgrader module: We have
not investigated the research issues involved in designing the method
upgrader module so far. This is an important component in our
classification method generation system. Further· research on the method
upgrading techniques will be required before they can be incorporated
into the overall method generation system.

- Reporting facility: A full-fledged classification method should report its
performance when it is used on some given document collection. This
reporting facility has not be added to our design yet but should be
considered in the future.

REFERENCES

I. S. T. Dumais and H. Chen. Hierarchical classification of Web content. In Proc. of the 23rd
ACM Int. Conf. on Research and Development in Information Retrieval (SIGIR), pages
256-263, Athens, GR, 2000.

2. 1. Han, Y. Fu, W. Wang, K. Koperski, and O. Zaiane. Dmql: A data mining query
language for relational databases. In SIGMOD'96 Workshop on Research Issues in Data
Mining and Knowledge Discovery (DMKD'96), Montreal, Canada, 1996.

Hierarchical Text Classification Methods and Their Specification 256

3. D. Koller and M. Sahami. Hierarchically classifying documents using very few words. In
Proc. of the 14th Int. Conf. on Machine Learning, pages 170-178, Nashville, US, 1997.

4. A. K. McCallum. Bow: A toolkit for statistical language modeling, text retrieval,
classification and clustering. http://www.cs.cmu.edul_mccallumlbow, 1996.

5. R. Meo, G. Psaila, and S. Ceri. A new SQL-like operator for mining association rules. In
Proc. of the 22nd Int. Conf. on Very Large Data Bases, pages 122-133, Mumbai, India,
Sep 1996.

6. F. Sebastiani. Machine learning in automated text categorization. ACM Computing
Surveys, 34(1):1-47, 2002.

7. A. Sun and E.-P. Lim. Hierarchical text classification and evaluation. In Proc. of the 1st
IEEE Int. Conf. on Data Mining, pages 521-528, California, USA, Nov 2001.

8. Y. Yang. An evaluation of statistical approaches to text categorization. Information
Retrieval, 1(1-2):69-90, 1999.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	3-2003

	Hierarchical text classification methods and their specification
	Ee Peng LIM
	Aixin SUN
	Wee-Keong NG
	Citation

	tmp.1529642247.pdf.q6WlE

