Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

8-2005

Dispatching Vehicles in a Mega Container

Terminal

Ebru K. BISH
Virginia Polytechnic Institute and State University

Frank Y. CHEN
Chinese University of Hong Kong

Thin Yin LEONG
Singapore Management University, tyleong@smu.edu.sg

Barry L. Nelson

Northwestern University

Jonathan W.C. NG
University of Hong Kong

See next page for additional authors

DOI: https://doi.org/10.1007/500291-004-0194-2

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

b Part of the Computer Sciences Commons, Operations Research, Systems Engineering and
Industrial Engineering Commons, and the Transportation Commons

Citation

BISH, Ebru K.; CHEN, Frank Y.; LEONG, Thin Yin; Nelson, Barry L.; NG, Jonathan W. C.; and SIMCHI-LEVI, David. Dispatching
Vehicles in a Mega Container Terminal. (2005). OR Spectrum. 27, (4), 491-506. Research Collection School Of Information Systems.
Available at: https://ink library.smu.edu.sg/sis_research/1175

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of

Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1175&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1175&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1175&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1007/s00291-004-0194-2
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1175&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1175&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1175&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1175&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1068?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1175&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Author
Ebru K. BISH, Frank Y. CHEN, Thin Yin LEONG, Barry L. Nelson, Jonathan W. C. NG, and David SIMCHI-
LEVI

This journal article is available at Institutional Knowledge at Singapore Management University: https://ink.library.smu.edu.sg/
sis_research/1175

https://ink.library.smu.edu.sg/sis_research/1175?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1175&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research/1175?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1175&utm_medium=PDF&utm_campaign=PDFCoverPages

Published in
OR Spectrum (2005) 27: 491-506
DOI: 10.1007/s00291-004-0194-2

Dispatching vehicles in a mega container terminal*

Ebru K. Bish', Frank Y. Chen?, Yin Thin Leong?, Barry L. Nelson?,
Jonathan Wing Cheong Ng°, and David Simchi-Levi®

! Virginia Polytechnic Institute and State University,

Department of Industrial and Systems Engg., Blacksburg, VA 24061-0118, USA

The Chinese University of Hong Kong, Department of System Engg. and Engg. Mgmt.,
NT, Hong Kong, China (e-mail: yhchen @se.cuhk.edu.hk)

Port of Singapore Authority (PSA), Singapore, Singapore

Northwestern University, Department of Industrial Engg. and Management Sciences,
Evanston, IL, USA

University of Hong Kong, Department of Industrial and Manufacturing Systems Engg.,
Hong Kong, China

Massachusetts Institute of Technology, Department of Civil and Environmental Engg.,
Cambridge, MA, USA

Abstract. We consider a container terminal discharging and uploading containers
to and from ships. The discharged containers are stored at prespecified storage
locations in the terminal yard. Containers are moved between the ship area and
the yard using a fleet of vehicles, each of which can carry one container at a
time. The problem is to dispatch vehicles to the containers so as to minimize the
total time it takes to serve a ship, which is the total time it takes to discharge all
containers from the ship and upload new containers onto the ship. We develop easily
implementable heuristic algorithms and identify both the absolute and asymptotic
worst-case performance ratios of these heuristics. In simple settings, most of these
algorithms are optimal, while in more general settings, we show, through numerical
experiments, that these algorithms obtain near-optimal results for the dispatching
problem.

Keywords: Port terminal operations — Vehicle dispatching — Heuristics

1 Introduction and motivation

In the last few years we have seen the breakdown of many trade barriers and the
globalization of trade. These developments have increased the importance of logis-
tics and transportation, and in particular, the importance of marine transportation

* Research was supported in part by the Port of Singapore Authority (PSA).
Correspondence to: EY. Chen

systems. These systems include a network of terminals around the globe that allow
manufacturers and shippers to deliver goods quickly to their customers. These ter-
minals serve as hubs for the transshipment of containers from ship to ship or to other
modes of transportation, e.g., rail and trucks. In this paper we analyze a container
terminal, where the majority of the terminal operations consists of ship-to-ship
transshipments.

Intoday’s competitive market place, a speedy transshipment of containers to and
from ships is important to both the carrier, since it provides significant operational
efficiencies, and to the terminal, which can handle a large number of ships per day.
Unfortunately, in many regions around the globe, the terminals are now working
at, or close to, capacity and there is significant pressure from the business sectors
to increase terminal throughput and, in particular, to decrease ship turnaround time
at the terminal. In most cases, this requires the development of methodology and
tools which will allow the efficient coordination of activities within the terminal
area. In this paper we consider one aspect of the terminal operation, which is to
dispatch vehicles to containers in the terminal. This research was motivated by
our industry partner, who operates a major container terminal. In what follows, we
describe the operations of this container terminal, noting here that most container
terminals operate in a similar way.

When a ship arrives at the terminal, containers are first discharged from the ship
onto vehicles by quay cranes; the vehicles then transport the containers to various
storage locations in the yard area. Typically, after most, or all, containers have
been discharged from the ship, other containers are uploaded onto the ship. These
containers are carried by vehicles from the yard to the ship area, and are loaded
onto to ship by the quay cranes. Thus, two types of cranes exist in the terminal:
quay cranes, which are used to load and unload containers to and from the ship,
and yard cranes, which are used to load and unload containers at the terminal yard
storage area.

Most containers handled by the terminal are standard size (Twenty-foot-
equivalent unit (TEU)) containers. Due to the large container sizes, a crane would
unload a container only onto a vehicle; unloading to the ground would require addi-
tional crane operation to lift the container from the ground and load onto a vehicle,
and therefore, is not desirable. Thus, a vehicle needs to be available by the crane
throughout the loading and unloading operations. This constraint will be further
discussed in Section 3.

The terminal typically handles a small number of ships at a time, and each
ship is served by a number of quay cranes. A few hours before the arrival of an
incoming ship, the terminal receives detailed information about its contents; i.e.,
containers that are to be discharged into the yard, as well as a list of containers
currently in the yard that should be uploaded onto the ship. This information allows
the terminal dispatchers to generate the so-called crane job sequence: For each quay
crane serving the ship, a detailed sequence specifying the order of the containers
that are to be discharged/loaded onto the ship. This sequence is mainly determined
by the current positions of the containers on the ship, their destinations and contents.
Containers can be stacked on top of each other on the ship. Thus, the sequence in
which containers will be discharged is based on the containers’ current positions

on the ship. Similarly, the sequence in which containers will be uploaded onto
the ship is based on the contents of the containers (i.e., if a container is carrying
delicate items, then no container can be stored on top of it on the ship; thus, this
container must be stored at the top of a stack). This information, together with
the container’s destination, is used to determine an uploading sequence. Finally, of
course, the sequence always starts with discharged containers, which are followed
by the containers loaded onto the ship.

Thus, at any point in time, the quay crane operator has information on the next
container he/she is going to work on. If this is a container to be discharged from the
ship, then the crane sequence will identify a number of potential storage locations,
typically two to four, in the yard for this container. If this is a container to be loaded
onto the ship, then the crane sequence also identifies the current location of the
container in the yard area.

It is no surprise that managing, controlling and operating such a system is very
complex. At the operational level the questions are clear: how should vehicles be
dispatched to containers, what is an optimal location for a container discharged
from the ship, how should vehicles be routed in this complex network, and what is
an effective traffic control mechanism? Similarly, at the strategic level, the issues
include optimizing the number of quay cranes, vehicles and yard cranes.

Evidently, these issues are interrelated. Unfortunately, solving a single inte-
grated model that addresses, for instance, all the operational decisions, is well
beyond today’s computing capability. For that reason, in this research we decom-
pose the problem into several related models: dispatching vehicles to containers,
assigning discharged containers to specific locations, and routing vehicles. Our
approach is to analyze each model separately in order to gain an insight into the
system (see [4]). In this study, we focus on the problem of dispatching vehicles to
the containers for a single ship, assuming that a fleet of vehicles are already assigned
to this ship. In doing so, we treat other aspects of the system management as given
inputs. This includes selecting an appropriate location for a discharged container,
vehicle routing, traffic control, etc. Specifically, we focus on the impacts of vehicle
deployment on the system throughput. Our objective is to find easily implementable
vehicle dispatching policies that minimize the ship makespan, which is the time the
last vehicle returns to the ship area after all containers are discharged from the
ship and are taken to their storage locations in the yard, and all new containers are
uploaded onto the ship. We refer to this problem as the vehicle dispatching problem.

This paper is organized as follows. In the next section, we give a brief review
of the related literature. In Section 3, we consider the vehicle dispatching model
for a single ship with a single quay crane, and analyze the performance of dif-
ferent vehicle dispatching policies on discharging job sequences, uploading job
sequences, and combined job sequences. Based on the insights obtained for these
simple models, in Section 4 we analyze a more general model of a single ship with
multiple quay cranes, and test the performance of the proposed heuristics using
computational analysis. Finally, in Section 5, we discuss future research directions
and extensions to the vehicle dispatching problem.

2 Literature review

Problems associated with dispatching and routing vehicles arise frequently in logis-
tics systems, see, for instance, Bramel and Simchi-Levi [5]. Thus, these problems
have been extensively studied in the operations research/management science litera-
ture under different settings including, but not limited to, vehicle fleet management,
truck routing, and warehouse management. Unfortunately, most of this research is
not directly applicable to a container terminal operation due to its unique character-
istics. This, in turn, requires the development of algorithms that take into account
the special characteristics and constraints associated with container terminals.

This review is not meant to be exhaustive, but rather indicative of the recent
developments that are most related to the problem analyzed here; see Bish [2] and
Bish et al. [3] for more extensive reviews of the other related areas, such as material
handling systems and resource-constrained scheduling, and Steenken, Voss and
Stahlbock [16] and Vis and De Koster [19] for overviews of container terminal
operations research.

Most of the literature on container terminals has used queuing theory to analyze
terminal operations. These queuing models focus on strategic issues such as deter-
mining the equipment capacity, both on the water-side (such as berth capacity), and
on the land-side (such as the number of quay cranes, vehicles, and yard cranes); see,
for instance, Daganzo [7]. Several researchers focus on the operational level issues,
such as scheduling the cranes and determining storage locations for the unloaded
containers (see, for instance [2,3,6,10-15]).

Most recently, Kim and Bae [9] develop vehicle dispatching methods in con-
tainer terminals by utilizing information on locations and times of future delivery
tasks. They develop a mixed-integer programming model for assigning optimal
delivery tasks to vehicles. Since the mathematical model requires an excessive
amount of computational time, they also propose a heuristic algorithm; their nu-
merical study indicates that the proposed heuristic is quite effective. Vis, De Koster
and Savelsbergh [18] also consider the transport of containers between the ship
and the yard, with the objective of minimizing the number of vehicles used. These
two papers assume that each vehicle has a unit-load capacity. Grunow, Gunther and
Lehmann [8] further analyze dispatching methods for multi-load vehicles in highly
automated container terminals. This stream of research focuses on equipment al-
location and dispatching problems, while Vis and Harika [17] and Yang, Choi and
Ha [20] evaluate the relative performance of AGVs (Automated Guided Vehicle)
and ALVs (Automated Lifting Vehicle) at container terminals.

In this paper, our objective is to develop algorithms that are easy to implement,
especially for large problem sizes, and whose effectiveness can be characterized
analytically. For this purpose, we focus on simple vehicle dispatching rules, and
develop analytical bounds on the deviation of the heuristic solution from the opti-
mal solution for any problem instance as well as for large problem instances, and
complement our analysis with a numerical study.

3 The vehicle dispatching problem:
A single crane model

In what follows, we first analyze the vehicle dispatching problem by focusing on
a single ship single quay crane model, and obtain insights into the effectiveness
of various algorithms for different instances of this problem. In Section 4, we use
these insights to analyze a more general problem with multiple quay cranes.

Thus, we first consider a single ship served by a single quay crane with a
fixed number, k, of vehicles assigned to it. We assume that all the vehicles are
initially at the ship area and return to the ship area after completing the discharging
and uploading of the ship. Throughout, we use the terms dispatching policy and
algorithm interchangeably, and we refer to each container as a job. Throughout the
paper, we assume that the yard cranes are always available (similar assumptions are
used in other papers on container terminal operations; see, for instance, Kim and
Bae [9]) and all operation times are deterministic (however, as will be shown in the
sequel, some of our results still hold even when these operation times are random).

As mentioned above, our objective is to find an effective dispatching policy that
assigns vehicles to jobs so as to minimize the makespan. In the vehicle dispatching
problem, makespan is the time the last vehicle returns to the ship area after all
containers are discharged and are taken to their locations in the yard, and after all
containers are uploaded onto the ship.

Associated with the quay crane is a predetermined crane job sequence,

J7/+ : {J17J23" '7J’rl}>

with J;, ¢ = 1,2, ..., n, being either a job to be discharged from the ship (denoted
by a “~” job) or a job to be loaded onto the ship (denoted by a “+” job). The job
sequence may consist of only “~” jobs, in which case it is denoted by J_, only “+”
jobs, in which case it is denoted by .J., or a mix of “~" and “+”jobs, in which case
it is denoted by J_ /..

If the job sequence is a J_,; sequence, then it consists of two parts: the first
part includes all the jobs to be discharged from the ship, that is, all the “~” jobs,
while the second part includes all the jobs to be loaded onto the ship, that is, all the
“+” jobs.

Obviously, this predetermined job sequence imposes precedence constraints
among the jobs. That is, a “~” job cannot be discharged until all “~" jobs preceding
it in the job sequence are discharged; in other words, the quay crane cannot start the
task of discharging a specific “~” job until all its predecessor jobs have been
discharged from the ship. Similarly, the quay crane cannot load a “+” job until all
“+” jobs preceding it in the job sequence are loaded onto the ship. Finally, a “+”
job cannot be loaded until all “~” jobs in the sequence have been discharged.

Each “~” (“4”) job requires a crane movement that will /ift it up from the
ship (or the vehicle), and place it onto a vehicle (or the ship). Clearly, a vehicle
needs to be available by the crane only during the time the crane is placing the
job onto the vehicle. Thus, the total crane processing time of a job consists of two
components: one is the lifting time, the other is the placing time (during which
a vehicle is needed by the crane). For notational convenience and simplicity, we

@ 9

do not distinguish between these two components, and assume that each vehicle
needs to be available by the crane throughout the discharging/uploading process.
However, the subsequent analysis can be easily modified to handle the case where
there are two separate components for crane processing, and a vehicle needs to be
available only during the placing time. In our analysis, we assume that the time
required to discharge/upload a container by the quay crane is deterministic, and is
the same for all the jobs. We denote this time by s.

Containers are carried between the ship area and the yard using a fleet of vehi-
cles, each of which can carry one container at a time. Without loss of generality, we
assume that each vehicle travels at unit speed, i.e., each vehicle travels one unit of
distance per unit time, all vehicle travel times between the ship area and a specific
location in the yard are deterministic and are known in advance.

To simplify the analysis, we assume, throughout the paper, that there is always
an available yard crane ready to respond to a service request of any vehicle. Thus, the
time it takes a yard crane to load or unload a container is assumed to be incorporated
into the container travel times between the ship area and the yard area. Therefore,
throughout, the term crane will always refer to a quay crane.

Associated with each “~" (“+”) job is a predetermined drop-off (pick-up) point
in the yard, called the location of the job. Let d; be the travel time from the ship to
job J;’s location; i.e., the drop off location of J; if itis a “~" job, or the pick up point
of job J; if itis a “+” job. We refer to d; as travel time or distance interchangeably.

We first describe the greedy algorithm: The first k (=number of vehicles) jobs are
assigned, each to a single vehicle. We then assign the next job to the first available
vehicle. Specifically, when assigning a “—" job, the first available vehicle that arrives
at the quay crane will be dispatched to this job. Similarly, when assigning a “+”
job, the first available vehicle that can arrive at the job’s location at the earliest time
will be dispatched to this job. That is, if a vehicle is currently busy with another job
assignment, then the time it can be available at the next “+” job’s location will be the
time it completes its current assignment plus the traveling time from the destination
of its current assignment to the next job’s location; if a vehicle is currently free,
then this time will simply be the traveling time from its current location to the next
job’s location. Based on these times, we then select the vehicle that can arrive at
the next job’s location at the earliest time.

In the following sections, we present our results for different cases of the vehicle
dispatching problem.

3.1 Analysis of various dispatching policies

3.1.1 J_ Job sequences

Consider a J_ job sequence. Note that for such a job sequence, once a vehicle takes
a “~” job, it has to drop the job to its location in the yard, and then it has to make an
empty trip back to the ship area to take its next job. We apply the greedy algorithm
defined above to dispatch vehicles to jobs. We have the following result, whose
proof is straightforward and is thus omitted.

Theorem 1 For any J_ job sequence, the greedy algorithm is optimal, that is, the
greedy algorithm minimizes the makespan.

Remark The greedy algorithm is still optimal even if crane processing times are
job-specific, that is, the quay crane time associated with job J; is s;, and not a
constant s. Similarly, it is optimal even when the vehicle travel time and quay crane
processing times for each job are random variables.

@ 9

To illustrate the greedy algorithm, consider an example with four
J_: {Jla J27 J37 J4}a

withdy = 1,dy = 5,d3 = 1,d4 = 5 and s = 2 (all in minutes). Let £ = 2 and in
what follows we use V7 and V5 to denote the two vehicles. The greedy algorithm
works as follows. First, assign V; to J; and V5 to Js. After s = 2 minutes, V; leaves
the crane with Ji, and the crane starts discharging J5. After another 2 minutes, V5
leaves with J,. Now the first available vehicle for jobs J3 and Jy is clearly V;
by times 4 and 8, respectively. The dispatching solution can be represented as
Vi {J1,J3,J4}, and V5 : {J2}. The completion time for this J_ sequence is
20(= 8 + 2 + 10) minutes.

jobs:

3.1.2 J4 Job sequences

Consider now a J ;. job sequence. For such a job sequence, once a vehicle is assigned
to a “+” job, it makes an empty trip to the job‘s location starting from the ship area,
takes the job, and returns back to the ship area with the job. It is easy to see that
the greedy algorithm does not necessarily generate an optimal strategy for a J job
sequence.

Given a job sequence Jy : {J1, Jo,...,J,}, consider the following polyno-
mial time algorithm, called the reversed greedy algorithm. The reversed greedy
algorithm works as follows: Replace each “+” job by a “~” job with the same
location, that is, if location p is the pick-up point for a specific “+” job, the asso-
ciated “—" job has location p as its drop-off point. Now, reverse the order to get
the reversed job sequence J¥ : {J,, J,_1,...,J2, J1}. Apply the greedy algo-
rithm to this reversed list (of “—” jobs), to obtain a set of jobs assigned to each
vehicle. For instance, the jobs assigned to vehicle [, = 1,2, ...k, are given by
Vit {Jiy,Jips -y iy, 1, Jiy, b and they are served by the Ith vehicle following
that order. The final step of the algorithm is to reverse again the sequence of jobs
assigned to each vehicle. That is, vehicle [will serve this set of jobs assigned to it
following the order: {Jy; , Ji; s, iy, J1, }

‘We have the following result (please see Appendix for the proof):

Theorem 2 The reversed greedy algorithm is optimal for any J_ instance.

Remark Theorem 2 still holds when the crane processing times are job-specific.

Although we have identified the optimal vehicle dispatching rule for uploading
job sequences, it is interesting to study how well the simple greedy algorithm,
introduced in the previous section, would perform for such job sequences. This is

Table 1. Average percent deviation of the greedy algorithm’s makespan from optimality for
uploading job sequences

500 Uploading jobs
Spread a 2 6 10 16
4 18% 46% 58% 8.6 %
23% 55% 9.6% 10.1%
26% 63% 9.8% 9.9 %
24% 66% 105% 112%
26% 64% 11.0% 12.1%

ol
0 3 N W

because the greedy algorithm is an appealing dispatching policy due to its ease of
implementation, flexibility, and robustness (i.e., minor disruptions to the schedule
can be easily handled by the greedy algorithm, which schedules jobs one at a
time, following the order of the job sequence. This, however, is not true for the
reversed greedy algorithm, in which small changes to the schedule would require
the entire schedule to be regenerated by the reversed greedy.) For this purpose, we
have conducted computational experiments, the results of which are presented in
the next section.

3.1.3 Computational analysis of the greedy algorithm for J sequences

In this section, we analyze the effectiveness of the greedy algorithm for uploading
job sequences. We consider sequences each consisting of 500 “+” jobs. We set
the crane discharging/uploading time to be 3 minutes (s = 3). The traveling time
of each job (between the ship area and its location in the yard area) is generated
from a uniform distribution. To determine the impact of job distribution in the yard
on the performance of the greedy algorithm, we use four different sets of range
(spread) in our uniform distribution: in the first set, traveling times are uniformly
distributed between 2 and 4 minutes (with a spread, a, of 2 minutes), in the second
set, between 2 and 8 minutes (¢ = 6), in the third, between 2 and 12 minutes
(a = 10), and in the fourth, between 2 and 18 minutes (¢ = 16). Thus, as a
increases, job locations become more spread apart from each other in the yard area.
We replicate each scenario 500 times and determine the percent deviation of the
makespan obtained by the greedy algorithm from the optimal makespan (obtained
by the reversed greedy algorithm) over the 500 problems. The results are reported
in Table 1.

As can be seen from the table, the greedy algorithm generates schedules with
a makespan of at most 12% over the optimal makespan. For a fixed number of
vehicles, k, the ratio increases with the spread, a. Thus, the gap between the optimal
makespan and the makespan of the greedy algorithm increases as jobs get more
spread out in the yard area. Similarly, for a fixed value of a, the performance of the
greedy algorithm generally deteriorates as the number of vehicles increases.

In practice, terminal dispatchers shelf most “+” jobs that will be loaded onto
a particular ship in adjacent clusters in the yard area. Thus, the “spread” for these
jobs is usually small. Consequently, we believe that the greedy algorithm would

provide a rather efficient solution to “+” job sequences, and therefore, is a desirable
approach due to its simplicity and flexibility.

3.1.4 J_,, job sequences

Consider now a general J_, | job sequence. As mentioned above, if the schedule of
a vehicle ends with a “~” job, then the vehicle has to make an empty trip back to the
ship area after dropping its last “~” job in the yard area. Similarly, if the schedule of
a vehicle begins with a “+” job, then the vehicle has to make an empty trip from the
ship area to the yard area to take the “+” job. However, if the schedule of a vehicle
is such that the vehicle takes its first “+” job after dropping its last “=” job, then
the vehicle saves these two empty trips, and instead, it travels from the location of
its last “=” job to the location of its first “+” job. These travel times are sequence
dependent, since they depend on the order of the jobs taken by the vehicle.

The optimality of the greedy algorithm for J_ job sequences and the optimal-
ity of the reversed greedy algorithm for J job sequences suggest the following
algorithm for a J_, job sequence.

We start with the greedy algorithm applied to the first part of the job sequence,
which consists of all the “~" jobs. We then apply the reversed greedy algorithm to
the second part of the job sequence which consists of all the “+” jobs. Finally, we
combine the two schedules. We refer to this algorithm as the combined algorithm
(please see Bish et. al [1] for details).

We let Z© and Z* respectively denote the makespan obtained by the combined
algorithm and the optimal makespan and n denote the number of jobs in the se-
quence. The next theorem characterizes the effectiveness of the combined algorithm
(see Bish et. al [1] for its proof).

Theorem 3 For every finite instance of a J_/ job sequence, we have
ZC
7 <3.
In addition,
ZC
lim

n—oo J*

=1

The asymptotical performance of the algorithm is especially important, since in
practice the number of jobs is in thousands. In addition, in Bish et. al [1] we provide
a pseudo-polynomial time algorithm that is optimal for any instance of J_, job
sequences.

In the next section, we use the insights obtained for the single crane model to
analyze the vehicle dispatching problem with multiple quay cranes.

4 The vehicle dispatching problem:
A multiple crane model

In the previous sections we focused on a single crane model, and showed that the
greedy algorithm is optimal (i.e., it minimizes the ship makespan) for a discharging

(J-) job sequence, and the reversed greedy algorithm is optimal for an uploading
(J4+) job sequence. Our next objective is to extend this analysis to the more general
case, where multiple quay cranes are assigned to serve a single ship. Associated
with each quay crane is a job sequence and the objective is to assign vehicles to
containers so as to minimize the time all jobs are done. That is, the objective is to
minimize the makespan over all quay cranes. This objective is consistent with a
terminal’s objective of releasing ships at the earliest possible time.

Thus, the next question is whether the greedy and reversed greedy algorithms
continue to be optimal for discharging and uploading job sequences, respectively,
when there are multiple cranes. We first focus on situations in which each quay
crane has a J_ job sequence. In the multi-crane environment, the greedy algorithm
should be interpreted as assigning an available vehicle to the first available ship
crane. In this case, however, it is easy to construct examples that demonstrate the
greedy algorithm not necessarily to be optimal.

In practice, however, the greedy algorithm is an appealing solution procedure
due to its simplicity and flexibility. Therefore, we now use a simulation study to
investigate the performance of the greedy algorithm for a multiple crane model
with discharging job sequences. Based on this analysis, we, then, refine the greedy
algorithm so as to improve its performance for the multiple crane model. Due to the
symmetricity between the greedy algorithm and a discharging job sequence, and
the reversed greedy algorithm and an uploading job sequence, as observed in the
previous section, the performance of the reversed greedy algorithm for a multiple
crane model with uploading job sequences will be similar.

In what follows, we first describe the design of our computational experiments
and then discuss our findings.

4.1 Design of the computational experiments

Our objective in this section is to evaluate the performance of the greedy algorithm
for the multiple crane vehicle dispatching problem with discharging job sequences.
For this purpose, we compare the makespan obtained by the greedy algorithm with
that of the optimal makespan, obtained by solving a Mixed Integer Program (MIP);
the MIP formulation is given in Bish et. al [1]. However, it takes the MIP on the
order of a couple of hours on a Sun Sparc 10 workstation to find the optimal solution,
even for small sized problems consisting of only 4 vehicles, 2 cranes, and 20 jobs
on each crane. Thus, it is not a practical approach for actual dispatching purposes,
especially when problems with 500-2500 containers are common in practice.

For this reason, we limit our computational analysis to cases with only 4 vehi-
cles, 2 cranes, each with a job list of 8 — 12 jobs, and solve 200 such problems. For
each job, we generate a traveling time between the ship area and the job’s location
based on a uniform distribution in the range of 1 to 17 min. We assume that it takes
a crane 2 minutes to lift a container from the ship (or the vehicle), and it takes 1
minute to place (pick) the container on (from) the vehicle (observe that letting the
first time component to zero reduces the formulation to the model addressed in the
previous sections). Thus, a vehicle needs to be available by a crane only during the
last minute of job discharging/uploading.

Table 2 summarizes the percent deviation of the makespan obtained by the
greedy algorithm from the optimal makespan over the 200 problems: for each
range of deviations, we report the number of problem instances with deviation in
that range. Table 2 shows that the greedy algorithm performs reasonably well in
most cases (in almost 80% of the instances, the deviation from the optimal solution
is less than 10%), with an average deviation of 7% from the optimal solution.
The next question is whether the performance of the greedy algorithm could fur-
ther be enhanced by small refinements that are not computationally expensive to
implement. This is discussed in the next section.

Table 2. Percent deviation of the heuristic makespan from optimality

% deviation <1% | 1-3% | 3-5% | 5-10% | > 10%
from optimality
of instances 3 26 38 88 45
in this range
(out of 200)

Average deviation = 7%

4.2 A refined greedy algorithm

Clearly, the main reason for the poor performance of the greedy algorithm is its
“myopic” nature. To overcome its “myopic” nature, we propose an enhancement
to the greedy algorithm, and include a simple look-ahead rule, described below.

Let J; j,%=1,2,and j = 1,2, ..., denote the 4" job in the sequence of crane
1. In what follows, we represent each job in terms of its traveling time (between
the ship area and its location). Let /; be the number of jobs in the job list of crane
i. Given a fixed p < [;, we assign a weight w; ; = Z;ﬂ;}{]ﬂ’li} Ji. i to each job
Jij, for j = 1,...,1;. Thus, the weight of each job represents the minimum time
required to complete the remaining jobs on crane ¢’s list, which excludes crane and
queuing times. When a vehicle arrives at the ship area, it determines the job(s) that
are available at the earliest time for pick-up (which is determined by the earliest
available time of the corresponding crane). If there is only one such job, then it
selects that job for pick-up (as in the greedy algorithm). If, on the other hand, there
are multiple jobs available at the same time, then the vehicle selects the job with
the maximum weight. Thus, in the latter case, the vehicle will give higher priority
to the job with a longer traveling time, or to the crane job sequence with a longer
time for the remaining jobs.

Finally, we further modify the greedy algorithm by the following enhancement:
When there are a certain number, x, of jobs left in the system, we perform an explicit
enumeration to determine the best schedule for these remaining jobs. Clearly,
should be a very small number. Presumably, this last enhancement is not as effective
for reasonably long job sequences. To confirm this, we tested a few examples with
20 jobs. It was found that this refinement “enhanced” efficiency by at most 0.3%

in those examples. (The main reason for us to use such an additional enhancement
is to remove the “ending” effect which may arise in small-sized problems.)

Next, we tested the performance of the refined greedy algorithm on the same
set of 200 problem instances (with p = 8,2 = 4). The results show that the
refined greedy algorithm generated near-optimal solutions for most instances, with
an average deviation from optimality of 1.55%, and a standard deviation of 2.61%.
The result is summarized in Table 3, shows the distribution of this deviation for
the refined greedy algorithm. As can be seen from the table, the refined greedy
algorithm performs much better than the greedy algorithm.

Table 3. Percent deviation of the heuristic makespan from optimality

% deviation <1% | 1-3% | 3-5% | 5-10% | > 10%
from optimality
of instances 22 95 40 43 0
in this range
(out of 200)
Average deviation = 1.55%, standard deviation = 2.61%.

5 Conclusions and future research directions

Our goal in this research is to come up with simple, easily implementable vehicle
dispatching policies that generate good makespan values for the vehicle dispatching
problem.

The greedy algorithm is an appealing solution due to its simplicity and flex-
ibility. Therefore, in this analysis, we considered the greedy algorithm, together
with the reversed greedy algorithm, the combined algorithm and the combined
greedy algorithm, all of which are based on the greedy algorithm. By consider-
ing a single-ship/single-crane model, we were able to prove the optimality of the
greedy algorithm for a discharging job sequence, the optimality of the reversed
greedy algorithm for an uploading job sequence, the asymptotic optimality of the
combined algorithm together with the optimality of the combined greedy algorithm
for a combined job sequence. Based on these results, we, then, analyzed a more
general problem of a single ship with multiple cranes, and tested the performance of
the greedy algorithm for this problem through computational analysis. The results
show that, although not optimal, the greedy algorithm performs reasonably well
for a multiple crane vehicle dispatching problem with discharging job sequences.
We further enhanced the performance of the greedy algorithm by including a look-
ahead type of rule, which we refer to as the refined greedy algorithm. Computational
analysis reveals that the performance of the refined greedy algorithm is very sat-
isfactory: an average deviation of 1.55% deviation from the optimal solution over
all problems tested.

We must note, however, that this research is only a start to analyze the operational
issues in container terminals, and there are still many open issues that need to be
analyzed.

In practice, other issues need to be incorporated into the analysis and addressed
by the algorithms. One important issue is how to determine a storage location
for each discharged container. In the model considered here, the storage location
of each discharged container is assumed to be given. This problem, where the
location of each discharged container is also a decision variable, has been analyzed
in [3] and [4]. Another issue would be identifying routes for each vehicle so as
to avoid congestion. There is also the issue of coordinating yard crane work load,
etc. Yet another important research direction would be to extend this analysis to a
multiple ship model. This direction has been studied in several recent papers; see, for
instance, Bish [2] and Kim and Bae [9]. Bish [2] considers the vehicle dispatching
and container location problem for a multi-ship multi-crane model, develops a
heuristic algorithm, which assigns locations to containers based on a transshipment
problem and dispatches vehicles to jobs based on a modified version of the greedy
algorithm, and analyzes the effectiveness of the heuristic from both worst-case
and computational points of view. Her results suggest that a modified version of the
greedy algorithm works very well in a multi-ship setting as well. However, analytical
results are presented only for a two-ship model and need to be extended to consider
any number of ships. On the other hand, Kim and Bae [9] develop a mathematical
programming formulation for a multi-ship multi-crane model, suggest a heuristic
algorithm, and analyze its performance through a numerical study. We believe that
this line of work needs to be extended to analytically characterize the effectiveness
of simple heuristics, such as modified versions of the greedy algorithm discussed
in this paper, in the context of a multi-ship model.

Although we considered a simplified model in this research, the insights gained
in this paper proved to be helpful in analyzing more complex situations at terminal
ports.

Appendix: Proof of Theorem 2

Consider any job sequence consisting of jobs {.J1, Ja, - -, Jy, }. For dispatching
policy 7, we refer to the time a vehicle is assigned to J;, ¢ = 1,2,---,n, as
the start time of J;, and denote it as ST; (7). Similarly, we refer to the time J;,
1 =1,2,.-- n, is completed under that policy as the completion time of J;, and
denote it as C'T; (7).

Thus, in a J_ job sequence, the start time of a
starts the task of discharging the job to a vehicle, and the completion time of a
job is the time the vehicle returns to the ship area after carrying the discharged job
to its location in the yard. In a J job sequence, the start time of a “+” job is the
time a vehicle is dispatched to the job’s location to bring the job to the ship, and
the completion time of a “+” job is the time the quay crane finishes loading the job
onto the ship. We will omit the policy parameter and use ST; and C'T;, when the
policy is obvious from the context or when a specific property must hold for all
policies.

TR

job is the time the crane

@ 9

As stated before, job precedence constraints for a J_ : {Jy,J2,- -+, J,} job
sequence imply that

ST; >ST; 1+s 1=2,---,n,

whereas, fora Jy : {Jy, Ja, -, J,} job sequence we must have
Cl; >CTi1+s i=2,---,n.

To prove the Theorem, we need the following lemma.

Lemma 4 Consider a dispatching policy 7, applied to a “+” job sequence J,
with a makespan of Z(wy.). There exists a dispatching policy 7_ applied to the
reversed job sequence J% associated with J, that achieves the same makespan,
e, Z(m_)=Z(ry).

Proof. Consider a “+” job sequence J; : {Jy,Jo, --,J,}, and a dispatching
policy my.. We let V; : {J;,, Ju,, -, Jlfl} denote the job sequence assigned to

vehicle !, = 1,2, - - -, k, under this dispatching policy. The precedence constraints
for this J job sequence imply that job ¢, ¢ = 2, - - -, n, cannot be completed until
all its predecessors in J4, i.e., jobs Jy, Jo, -+, J;_1, are completed. Hence, we
have

Cn(ﬂ-"r) 2 CTi—l(W+)+S Z:277n (D

Clearly, the makespan for this dispatching policy is Z(7y) = CTy,(74).

Now consider the corresponding reversed “~” job sequence, J* :
{Jn, Jn—1," -, Ja2, J1 }. Our objective is to find a dispatching policy w_ for the
reversed job sequence with a makespan of Z(7_) such that Z(w_) = Z(74.).

For this purpose, consider the dispatching policy 7_ obtained as follows. Re-
verse the job sequence V;,l = 1,2, - - -, k, defined as above, and denote the resulting
sequence as V;7* : {1y, Jiy, 157+ Jiy . Under this policy, vehicle [starts with
job Jlfz , continues with job Jlfz _1, and so on. Start job J,,, a “~” job now, at time
Z(ry) — CTy(my) = 0, job Jp_q at Z(7wy) — CT—1(m4), -+, and job J; at
Z(my) — CTy(my).

Now, if we can show that the schedule obtained by dispatching policy 7_
satisfies (i) the precedence constraints for the J® job sequence, and (ii) vehicle
capacity constraints, then we have a dispatching policy for which

Z(r_)=Z(ry)— CTi(my) +2dy + s = Z(7y)

and we are done.
Consider jobs J;_; and J;, ¢ = 2,---,n. Under dispatching policy m_, we
have:

STi_i(r_) — STi(x_) = Z(my) — CTioy(my) — Z(ns) + CTi(my)
=CTi(ry) — CT;—1(n4) > s, from Equation (1)
and hence the precedence constraints for the J % job sequence are satisfied.

Next, we have to show that the schedule obtained by dispatching policy 7_ also
satisfies the vehicle capacity constraints. Vehicle [, [= 1,2, - - k, can serve jobs

{Jlfz , Jlfz _1,-++,Ji, } under dispatching policy 7_, since for jobs .J;, 1 and .Jj, ,
h =2,---, fi, we have the following:

STy, —1(m-) = STy, (7-) = Z(my) = CTy, 1 (7y) — Z(7y) + CTy, (74
= CTlh (7T+> - CTlhfl(ﬂ-Jr) > 2dlh + s,

indicating that vehicle capacity constraints are satisfied. Hence, dispatching policy
7_ generates a feasible schedule for the J* job sequence with a makespan of
Z (w4). This completes the proof. |

Lemma 4 leads to the following corollary:

Corollary 5 Consider a dispatching policy w_ applied to a job sequence J_, with
a makespan of Z(w_). There exists a dispatching policy 7 for the reversed “+”

Jjob sequence associated with J_ such that it achieves exactly the same makespan,
e, Z(ny)=Z(m_).

Now we are ready to prove Theorem 2.

Proof of Theorem 2. Let 77 be the optimal dispatching policy fora .J job sequence,
with a makespan of Z (77). By Lemma 4, we can find a dispatching policy 7_ for
the corresponding reversed “~ job sequence .J? such that Z(7_) = Z(77.).

Now consider the optimal dispatching policy 7* for this .JZ job sequence with
amakespan of Z(7*). By Corollary 5, we can find a dispatching policy 7. for the
corresponding reversed “+” job sequence J , which is the original .J job sequence,
such that Z(n*) = Z(m4.).

By the optimality of Z(7*) for the J* job sequence, we have:

Z(xh) = Z(r_) > Z(r") = Z(ry) @)

On the other hand, the optimality of Z () for the J job sequence implies
that

Z(x}) < Z(my),
and hence, Equation (2) holds as equality. That is,
Z(x*) = Z(x*) 3)

Finally, Theorem 1 tells us that the greedy algorithm is an optimal dispatching
policy for the .J* job sequence. Thus, given a .J; job sequence, we can obtain the
reversed job sequence J ¥ associated with .J; and find the optimal schedule for this
J® job sequence by applying the greedy algorithm. Given the optimal schedule for
the J% job sequence, we can construct a schedule for the original .J, job sequence
as done in the proof of Lemma 4. That is, we can do that by reversing the sequence
of jobs assigned to each vehicle. Furthermore, this must be (one of) the optimal
schedule(s) for the J; job sequence, since Z(n*) = Z(m}) by Equation(3).
Observing that this is the reversed greedy algorithm completes the proof. O

References

10.

11.

13.

14.

17.

18.

20.

. Bish EK, Chen FY, Leong YT, Nelson BL, Ng JW, Simchi-Levi D (2000) Dispatching

vehicles in a mega container terminal. Unabridged Technical Report, Virginia Poly-
technic Institute and State University, Dept of Industrial and Systems Engg

. Bish EK (2003) A multiple-crane-constrained scheduling problem in a container ter-

minal. European Journal of Operational Research 144: 83—107

. Bish EK, Leong T, Li C, Ng JWC, Simchi-Levi D (2001) Analysis of a new scheduling

and location problem. Naval Research Logistics 48: 363-385

. Bish EK (1999) Theoretical analysis and practical algorithms for problems in a mega

container terminal. Ph.D. Dissertation, Northwestern University

. Bramel J, Simchi-Levi D (1997) The logic of logistics. Theory, algorithms, and appli-

cations for logistics management. Springer, New York, NY

. Castilho BD, Daganzo CF (1993) Handling strategies for import containers at marine

terminals. Transportation Research 27B(2): 151-166

. Daganzo CF (1990) The productivity of multipurpose seaport terminals. Transportation

Science 24: 205-216

. Grunow M, Giinther HO, Lehmann M (2004) Dispatching multi-load AGVs in highly

automated seaport container terminals. OR Spectrum 26: 211-235

. Kim KH, Bae JW (2004) A look-ahead dispatching method for automated guided

vehicles in automated port container terminals. Transportation Science 38: 224-234
Kim KH, Kang JS, Ryu K-R (2004) A beam search algorithm for the load sequencing
of outbound containers in port container terminals. OR Spectrum 26: 93-116

Kim KH, Park YM, Ryu K-R (2000) Deriving decision rules to locate export containers
in container yards. European Journal of Operational Research 124: 89-101

. Kim KH, Kim HB (1999) Segregating space allocation models for container inventories

in port container terminals. International Journal of Production Economics 59: 415-423
Kim KH, Kim KY (1999) An optimal routing algorithm for a transfer crane in port
container terminals. Transportation Science 33(1): 173-176

Kim KH (1997) Evaluation of the number of rehandles in container yards. Computers
and Industrial Engineering 32(4): 701-711

. Kim KY, Kim KH (1999) A routing algorithm for a single straddle carrier to load

export containers onto a containership. International Journal of Production Economics
59: 425-433

. Steenken D, Voss S, Stahlbock R (2004) Container terminal operation and operations

research — A classification and literature review. OR Spectrum 26: 3—49

Vis IFA, Harika I (2004) Comparison of vehicle types at an automated container ter-
minal. OR Spectrum 26: 117-143

Vis IFA, De Koster R, Savelsbergh MWP (2004) Minimum vehicle fleet size under
time window constraints at a container terminal. Transportation Science (forthcoming)

. Vis IFA, De Koster R (2003) Transshipment of containers at a container terminal: an

overview. European Journal of Operational Research 147: 1-16
Yang CH, Choi YS, Ha TY (2004) Simulation-based performance evaluation of trans-
port vehicles at automated container terminals. OR Spectrum 26: 149-170

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	8-2005

	Dispatching Vehicles in a Mega Container Terminal
	Ebru K. BISH
	Frank Y. CHEN
	Thin Yin LEONG
	Barry L. Nelson
	Jonathan W. C. NG
	See next page for additional authors
	Citation
	Author

	OR194.DVI

