
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

1995

Multiple Query Optimization with Depth-First
Branch-and-Bound and dynamic query ordering
Ee Peng LIM
Singapore Management University, eplim@smu.edu.sg

Ahmet COSAR

Jaideep SRIVASTAVA

DOI: https://doi.org/10.4018/jdm.1995010102

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons, and the Numerical Analysis and

Scientific Computing Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
LIM, Ee Peng; COSAR, Ahmet; and SRIVASTAVA, Jaideep. Multiple Query Optimization with Depth-First Branch-and-Bound and
dynamic query ordering. (1995). Journal of Database Management. 6, (1), 14-19. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/185

https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.4018/jdm.1995010102
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg


Multiple Query Optimization with Depth-First Branch-and-Bound

and Dynamic Query Ordering

Ahmet Cosar, Ee-Peng Lim, Jaideep Srivastava

Departmentof Computer Science

University of Minnesota

Minneapolis, MN 55455

Abstract

In certain database applications such as deductive

databases, batch query processing, and recursive query

processing etc., a single query can be transformed into a

set ofclosely related database queries. Great benefits can

be obtained by executing a group of related queries all to-

gether in a single unijied multi-plan instead of executing

each query separately. In order to achieve this, Multiple

Query Optimization (MQO) identifies common task(s)

(e.g. common subezpressions, joins, etc.) among a set

of query plans and creates a single unified plan (multi-

plan) which can be executed to obtain the required out-

puts forall queries at once. In this paper, anew heuris-

tic function (f=), dynamic query ordering heuristics,

and Depth-First Branch-and-Bound (DFBB) are de-

jined and experimentally evaluated, and compared with

existing methods which use A* and static query order-

ing. Our experiments show that all three of f., DFBB,

and dynamic query ordering help to improve the perfor-

mance of our h4Q0 algorithm.

1 Introduction

The objective of multiple query optimization (MQO)

is to exploit the benefits of sharing common tasks in

the access plans for a group of queries. In certain

database applications, e.g. deductive query processing,

batch query processing and recursive query processing,

often a group of queries are submitted together to the

DBMS for execution. The traditional approach of pro-

cessing queries one at a time will be inefficient espe-

cially when there is a high number of queries sharing

Permission to copy without fee all or part of this materisi is
gmnted provided that the copies m. not mad. or distributed for

direct commercial advantage, tha ACM copyright notica and tha

titla of tha publication and ita data appaar, and rwtica ia @van
that copying ia by perm”aaion of tha Association for Computing
Machinary. To copy otharwiaa, or to republish, raquiras a faa
orrdkrr specifk permission.

CIKM ’93-1 l/93/D. C., USA

0 1993 ACM 0-89791-626-3/93/0011 .. ..$1.50

common relations and predicates. MQO identifies com-

mon sub-expressions among queries and creates an in-

tegrated query execution plan in which common tasks

are evaluated only once.

The idea of processing multiple queries has been

around for almost a decade [1, 6, 2, 13, 14]. Grant et

al [7] used a depth-first based approach to the prob-

lem of common sub-expression analysis. Chakravarthy

and Minker [2], used an extended version of the query

graph[17], called connection graph, to represent a set of

queries. A query decomposition algorithm guided by a

set of heuristics was used to evaluate all of the queries

simultaneously. Chakravarthy et al [3] addressed the

MQO problem at various levels of detail, depending on

the cost measure used. Sellis showed the MQO prob-

lem to be NP-hard [15], and gave a state space search

formulation [13, 14]. A* is used as the search algorithm

wit h bounding functions and intelligent state expansion,

based on query ordering, to eliminate states of little

promise rapidly. Subsequent improvement or variation

of Sellis’s effort on the MQO problem has been reported

in several papers[l O, 4, 9]. In [4], Sellis’ A* algorithm is

revised by having an improved heuristics function which

prunes search space more effectively while still guaran-

teeing an optimal solution. Simulated annealing tech-

nique has also been experimentally analyzed to handle

larger MQO problems that cannot be solved using A* in

a reasonable time with the currently available heuristics.

Our contributions:

One of the fundamental parameters in Sellis’ work is

the ordering of queries so as to decrease the error in

heuristic cost calculation function and also to group

together queries which have a high amount of shared

task(s). There are several ordering heuristics used by

Sellis which are computed only once at the beginning

and remain constant throughout the search. However,

we have observed that an initial ordering may become

ineffective, since once a plan for a query is merged with

the multi-plan, the sharing between the discarded alter-

native plan(s) and remaining queries becomes invalid.

To account for this shortcoming of the query order-

ing heuristics we have adopted a set of dynamic query

433



ordering algorithms so that the order in which plans are

merged with the multi-plan dynamically changes based

on the current partial multi-plan to be augmented by

a new plan. Experimental results show that significant

gains are obtained by employing dynamic query order-

ing.

As a second contribution we have also analyzed

Depth-First Branch-and-Bound (DFBB) as a new al-

ternative algorithm to A* for solving MQO problems.

The DFBB algorithm demonstrates some preferable

characteristics over the A* algorithm. Using the A*

algorithm as a baseline, we conducted several experi-

ments to verify the advantages of DFBB in the MQO

domain. Improvement in the performance of the A*

algorithm and DFBB is dependent on (i) the heuris-

tic function used for estimating the lower bound on

the cost of a given path to an optimal plan, and (ii)

a good query ordering. Sellis proposed a heuristic func-

tion (~~ ) as well ss some alternative query orderings for

his A* algorithm[15]. We prove that a better heuristic

function (f.) can be obtained, and propose Successive

Augrnentation[16] as an efficient method to calculate the

initial upper bound. Lastly, we experimentally show

that the heuristics of selecting the plan (and thus the

query) with the largest sharing with the current par-

tial multi-plan can be used to adjust query ordering dy-

namically and prune the search space more effectively.

Equipped with a better heuristic function, and the dy-

namic query ordering heuristic, DFBB is demonstrated

to perform much better than A* algorithms. The use of

depth jirst search also helps to reduce the cost of calcu-

lating the heuristic function as it reduces the number of

“plan merge” operations, which is the operation used for

adding a plan to the current multi-plan by considering

the shared task(s).

Paper outline:

Our paper is structured as follows. Section 2 gives a

formal definition of the MQO problem. We examine

the suitability of various search algorithms for MQO in

section 3. In section 4, we present our new heuristic

function (f,) and show that it enables us to expand

much less states than the previously proposed heuristic

function (~s) when applied to the A* algorithm. A Suc-

cessive Augmentation algorithm is introduced for de-

ciding the initial upper bound in section 5. We then

present the new dynamic query ordering heuristics in

section 5.1. We ran our heuristics on an experimental

set of query plans and compared the results with those

obtained by query ordering heuristics in [15], which are

presented using three tables in section 6. Our conclu-

sions are presented in section 7.

2 Problem Formulation

In this section, we present a formulation of the MQO

problem which is due to Sellis[14, 15].

Let Q1, ..., Q. be n queries to be optimized together.

Query Qi has a set of ni alternative plans for its evalu-

ation, namely P~,l, P~,z, . . . . P;,~,.

Plan Pi,j is a set of t~ks {t~,j,t~,j,....t~~’}.

A t~k t~,jhas an associated cost of Cost(tf,j).

A solution, S, to the MQO problem is a set of plans

Ps = {P1,8,, P2,S2, “ ‘ “,l’n,. n}.

Let TS = U(l<i<n)pi,s, be the set of tasks in the solu-

tion S.

NOW, cost(S) = ~(t~ j~T~) cost(t~,j ) is the cost of the

solution.

An optimal solution S* is such that cost(S* ) is minimal.

Example 1 shows a sample MQO problem with two

queries and five plans. Query Q1 has plans P1,l and P1,2

while query Q2 has plans P2,1 ,P2,2 and P2,3. A plan is

made up of a set of tasks, each with a positive cost.

Example 1:

Let the plans for Q1 and Q2 have the following task sets:

Pl,l = {tl, t2, t3}; 1’1,2 = {~4)t5}

Pz,l = {tl, t6, t7}; P2,2 = {~2,~8,~9}; 1’2,3 = {~5,~10}

The task costs are:

COST TABLE

I tl tz ts tq t~ t6 t7 t&J tg tlil

cost I 40 30 5 35201055 10 30

Six solutions are possible, with the following costs:

cost(s(Pl,l , P2,1))= Cost(tl)+cost(tz )+cost(ts)+

cost(tG)+cost(tT)= 90

cost(s(Pl,l , P2,2))= Cost(tl)+cost(tz )+cost(ts)+

cost (ts)+cost (tg )= 90

COSt(S(Pl,l , P2,3))= COSt(tI)+COSt(t2 )+ COSt(ts)+

cost(t5)+cost(t10)= 125

cost(s(Pl)2) P2,1))= cost(tl)+cost(t4 )+cost(t5)+

cost(tG)+cost(tT)= 110

cost(s(P1,2 , P2,2))= cost(t2)+cost(t4 )+cost(t5)+

cost(ts)+cost(tg)= 100

cost(s(pl,z , P2,3))= cost(tq)+cost(ts) +cost(tlo)= 85

The minimum cost plans for the queries QI and Q2

are P1,2 and P2,2, with costs 55 and 45, respectively.

The minimum cost multi-plan, however, is {PI,2, P2,3}.

It is important to note that an optimal multi-plan is not

necessarily made up of the individual optimal plans for

each query. Similarly, it is not always necessary that an

optimal multi-plan will include a plan having a shared

tssk. It may well be the case that there exists a cheaper

plan without any shared tasks with other plans in an

optimal multi-plan. It would be an interesting research

to determine sufficient conditions on the set of queries

such that an optimal plan set has no sharing with a

query. In that case such queries could be optimized

separately.

434



3 Search Algorithms for MQO

It is well known that the A“ algorithm is optimal,

over the class of best-first searches that find optimal

solutions, for a given consistent non-underestimating

heuristic function[5]. The optimality is measured in

terms of the number of states expanded during search.

Nevertheless, it is also well known that A* requires a

large storage space to store states that are yet to be

expanded. As a result, A* can easily run out of mem-

ory when the size of MQO problems gets larger. Sev-

eral other alternative heuristic search algorithms have

been proposed, e.g. Iterative-Deepening-A* (IDA* )

and Depth-First Branch-and-Bound (DFBB), which

use much less memory. Rao and Kumar performed

an analysis on the search efficiency of A*, IDA* and

DFBB algorithms, and related their efficiency to the

two characteristics of search space defined below[12]:

Definition (Solution Density):

The solution density of a search space is the ratio of the

number of solution nodes to the total number of nodes

in the search space.

Definition (Heuristic Branching Factor):

Let ~(n) be a heuristic function which is the lower

bound on the cost of solutions that include the node

n. Let Vi denote the set of nodes that have the same

cost, such that this cost is the ith-smallest of all the

distinct ~-values. Thus, V., VI, . . . . V~_ 1 is a sequence

of sets arranged in the increasing order of cost. Assume

that the sequence of sizes 1~ I is a geometric progression

with ratio b where b is the heuristic branching factor.

Rao and Kumar showed that A* acts poorly when the

search space has high solution density or high heuristic

branching factor, IDA* performs well under low solu-

tion density and high heuristic branching factor, and

DFBB performs well under high solution density and

low heuristic branching factor.

3.1 Analysis of MQO Search Space

For the MQO problem, a state can be defined as

an n-tuple < pl,j~} P2,jz, “ “ “ ~Pn,jm > where pi,j, c

{NULL} U {Pi,,, Pi,z, . ~., Pi,n,}. If Pitj, = NULL, it
means that no plan has been selected for the query Qi,

i.e. the state is not a solution state. Therefore, we

have Il#=lnk solution states versus ll~=l(rak + 1), the

total number of states. A typical MQO problem usu-

ally has a few queries to be optimized, but each query

can have a large number of alternative plans. For exam-

ple, suppose a MQO problem has 10 queries, and each

query has 10 alternative plans. The ratio between the

number of solution states and total number of states is

( 1:::!;;!}:) H 0.9. Clearly, this indicates that MQO

search space has high solution density.

Given this nature of search space, and also knowing

that all solutions to MQO are at a depth of n, where

n is the number of queries, it becomes unnecessary to

consider IDA*, and the analytical result by Rao and

Kumar[12] suggests that depth-first branch-and-bound

algorithm (DFBB) is the most appropriate search al-

gorithm to use.

3.2 Depth-first Branch-and-Bound Algo-

rit hm

Depth-first Branch-and-Bound (DFBB) algorithm

has been extensively used by the operations research

community. DFBB starts with an overestimate (up-

per bound) on the cost of an optimal solution, and then

searches the entire space in a depth-first fashion. When-

ever a solution is found, the overestimate is revised (to

be the minimum of the cost of this new solution and

the previous overestimate). Similarly, when a partial

multi-plan is found to have a worse lower bound than

the current overestimate, it is pruned. DFBB expands

each node exactly once, but it can expand nodes costlier

than an optimal solution, that are not expanded by the

A“ algorithm.

Let ~ be the heuristic function that gives a lower

bound estimate of any reachable solution state given a

node(st ate). Let soln be the current best solution, and

ubound be the upper bound on the solution cost. We

assume that value of ubound has been appropriately set

outside the DFBB algorithm. An algorithm for calcu-

lating such an initial upper bound is given in Section 5.

Below is an outline of the DFBB algorithm.

DFBB(node)

begin

mark(node);

if node is a solution state then

if f(node) < ubound then

begin

soln := node;

ubound := f(node);

end;

else begin

expand(node);

for each newly expanded node w do

if w is unmarked then

begin

mark(w);

if ~(w) < ubound then DFBB(w);

end;

end;

end;

4 Search Heuristic Function

Given a partial multi-plan solution, the search heuris-

tic function (f) is used to estimate the lower bound on

the cost of any complete multiplan solution derived by

435



augmenting the partial multiplan solution. In the fol-

lowing, we present the heuristic function proposed by

Sellis[14], denoted by ~s, and another heuristic function

proposed by Cosar et al[4], denoted by ,fC.

Definition (~, ):

Assume that the state after selecting plans for queries

Ql,.,Q~is
Sk =< Pl,jl, . . .,pk,j,, IV IYLL, . . .YNULL >.

Let cost,.,(t~,j) = co~~:)~).
S,J”

Also, Cdest(pi,j) = ~t:,j~p,,, cos~.=t(~!,j)

Here, n$,j is the number of queries, among the original

set of n queries, with a plan containing tf,j.

Then, f. = COSte3t(Sk) = ~~<i<k @S~est(Pi,j, )+

~k<i~n ?7?i?’i(COSte~i (pi,l), . . . . COSte~t@i,n, )).

Definition ( fc):

Assume that the state after selecting plans for queries

QI, c” ,Qk iS Sk.

Let taer = u(l<i<~)pi,jk be the set of tasks of the se-

lected plans.

Let cosi!e~t(Qi) = min{~t$,jepi,j cos~..t(t~,j)}for 1 S

j~ni

Also, coste~t(t~,j) = O, if t$,jc t$.l,and coste$t(t~,j) =

*, if tf,j # t~el.

1>>”

Here m~,j is the number of queries, among those not

assigned a plan yet, with a plan cent aining tf,j.

Now, f. = costest(S~) = Zt=ct,=, Cost(tz) +

~k<i<n cos~e~t(Qi).
Lemma 1: fc is at least as informed as f,.

Proof:

In f,, the first term corresponds to the plans already

selected and a lower bound is calculated for their total

cost. In f., the real shared cost for this set of plans is

used. Thus, the first term off= is at least as large as the

first term of f,. The second term of f, uses m~)j instead

of n~,j = in f,. Since m~j ~ n~,j, it is guaranteed

that the second term of ~C’ is at least as large as the

second term of f.. Hence, f. > f., and is thus more

informed[l 1]. The cost estimation of fC thus provides

at least as good (and often better) lower bound as that

of f~, and its convergence will be at least as good as,

and in most cases better than, f~.0

Definition (f. ) : The perfect cost estimation func-

tion can be defined as follows:

Assume, the state after selecting plans for queries

Ql,Qz,.”,QkisSk.

sk =< pl,jl). ..)pk,jk7NULL) NULLNULL >

Let t$er= u(l<i<k)~i,jkbe the set of t~ks of the se-

lected plans. --

Let codreol(Qi) = min{~t:,jepj,ji cosir.a~(~!,j)} 1 ~

j<71,i

(tk,) = o,Also, costreal i,. if t~,jc t=eland costreal (t#,j) ~

-!,

A key observation here is the inequality above, which in

the case off. was an equality. The reason for this being

that the sharing estimate may be overly optimistic.

NOW, f* = cost~~ar(sk) = Zt=ct,=l cos~(~z) +

~k<i<n costrea~(Qi)
Lemma 2: Heuristic cost estimate f. is admissible,

i.e. fc < f*.

Proofi

By comparing the definitions of the two cost estimates,

and the inequality of f* compared to the equality of f~,

we see that f. < f.. Thus, fc is admissible. ❑

Theorem 1: An A* algorithm for the multiple query

optimization problem using fc will expand no more

states than one using f,.

Proof:

Follows from Lemmas 1 and 2, and properties of

A*[Il].n

5 Initial Upper Bound

We know that the total number of states expanded by

A* is independent of the initial upper bound. However,

the upper bound greatly affects the memory require-

ments since the better it is the more states are pruned

at earlier stages of the search. Sellis showed that the

performance of A* can be improved by having an upper

bound to discard all states with f. value higher than the

upper bound and used the cost of the multi-plan con-

structed by merging locally optimal single query plans

as the initial upper bound. The construction of such a

multiplan takes 0(m3) time (though it can be done in

O(m) time and O(t) space where t is the total number of

distinct tasks in all plans), where m is the total number

of tasks in the set of locally optimal plans.

Successive Augmentation has been successfully used

for solving many optimization problems, including sin-

gle query optimization[16, 8]. Therefore we decided to

use it for obtaining a good initial upper bound, since

such an initial upper bound would cut down the search

space and reduce memory requirements. We will now

present our Successive Augmentation algorithm as an ef-

ficient method to construct a good initial upper bound;

solution[l. . . n ] = O; (n is the number of queries)

Q={ Ql, ””’, Qrt};
for(i=l; i<n; i++){

nezt = choosequery(so2 wtion, Q);

solution [nezt] = choose_plan(.so ltution, Qn.st);

Q:= Q – {Qme.t};

The function choose.query is used to determine the

order in which queries are considered. For this we find

the query with highest sharing with already selected

query plans in the sense that the difference ( origin al.cost

shared-cost) is the largest. Here origin al.cost is the

cost of a plan obtained by adding together the costs of

436



all tasks in it, and shared.cost is the remaining cost of

a plan by ignoring its tasks which are already merged

into the multi-plan.

5.1 Dynamic Query Orderings

As seen from Sellis’ results the query ordering used

for selecting the order in which queries will be merged

into the multi-plan affects the total number of states

expanded throughout the search greatly. However, the

fact that Sellis’ ordering heuristics are static and are

calculated without considering the current partial multi-

plan affects their benefit to the search negatively. Our

dynamic query ordering is done at run time by analyz-

ing a given partial multi-plan. For this, all alternative

plans of queries which are not assigned a plan in this

multi-plan are checked to find out the one with maxi-

mum sharing with the tasks already in the multi-plan.

The amount of sharing can be calculated by any for-

mula, we preferred to use the difference (origins/.cost –

shared_cost), but the ratio (original-cost/shared-cost)

also performs well.

6 Experimental Results

We ran our heuristics on query sets consisting of 10-

20 queries and obtained results for f. with both A* and

DFBB. The queries were assigned between 3 to 5 plans

which were again generated randomly. The number of

queries were increased from 10 to 20 and a random query

set was generated for each of them and then the various

heuristics were run on the same queries to perform an

experimental comparison between them. Note that we

preferred to perform only one experiment for each query

set size (rather than providing averages as done in [14])

as this provides us better insight into the performance

of each heuristic function in comparion to the others.

The results in Table 1 show that fc performs sub-

stantially better than fg, ( we had to stop at 12 queries

for f. as it took too long to run the experiments). The

use of dynamic query ordering also improves the perfor-

mance of the search algorithm which was verified by our

experiments given in Table 2 as A* with ~C performed

better with dynamic query ordering. DFBB has also

been found to be promising since it reduces the amount

of work involved in calculating our heuristic function,

fc. In fact our results in Table 3 show that even though

A* expands fewer states than DFBB, most of the time

DFBB executes much fsster. For example, ss seen in

Table 3, for 18 queries both A* and DFBB expanded

132 states but DFBB performed only 786 “plan merge”

operations (“plan merge” is the operation used for cal-

culating f~) while A* performed 1096 “plan merge” op-

erations. We expect DFBB to be a good alternative to

A* both because of its low memory requirements during

search and also its efficiency in calculating f~.

TABLE 1: THE COMPARISON OF f, AND fc.

no. of queries A*+ f, A*+ f.
10 61635 51
11 57694 50

12 96290 103

TABLE 2: THE COMPARISON OF

DYNAMIC QUERY ORDERING

WITH STATIC QUERY ORDERING .

no. of queries A“+f. A*+ fc+DQO

15 179 51

16 289 178

17 228 142

18 286 132

19 119 58

20 1000 442

TABLE 3: THE COMPARISON OF DFl?B WITH A*.

no. of queries A*+ fc+DQO ] DFBB+f.+DQO

no. of states/ no. of planmerges

15 51/646 91/716

16 178/1195 186/857

17 142/1065 142/717

18 132/1096 132/786

19 58/713 58/610

20 442/3059 563/2164

7 Conclusions

From these experimental results we have realized that

fc performs quite well using dynamic query ordering.

DFBB also helps to improve the overall performance

of the search since it reduces the number of times f.

needs to be calculated. The low memory requirements

for DFBB makes it a good candidate for smaller sys-

tems, as well. Another desirable property of DFBB is

that unlike A“, a complete multi-plan is found in the

shortest possible time and the optimizer need not wait

for “the optimum” to be found if the time allowed for

optimization is limited.

References

[1]

[2]

[3]

U.S. Chakravarthy and J. Minker. Processing mul-

tiple queries in database systems. In Database En-

gineering 5.3, pages 38-44, 1982.

U.S. Chakravarthy and J. Minker. Multiple

query processing in deductive database using query

graphs. In Proc. of the VLDB Conf., pages 384–

391, 1986.

U.S. Chakravarthy and A. Rosenthal. Anatomy of

a modular multiple query optimizer. In Proc. o~

the VLDB Conf., pages 230-239, 1988.

437



[4] A. Cosar, J. Srivastava, and S. Shekhar. On the

multiple pattern multiple object (mpmo) match

problem. In Int’1 Conf on Management of Data,

1991.

[5] R. Dechter and J. Pearl. Network-based Heuris-

tics for Constraint Satisfaction Problems. Springer-

Verlag, 1988.

[6] S. Finkelstein. Common expression analysis in

database applications. In Proc. of the ACM-

SIGMOD Int ’1 Conf. on the Management of Data,

pages 235-245, 1982.

[7] J. Grant and J. Minker. On optimizing the eval-

uation of a set of expressions. Int’1 J. Comput.

Inform. Sci., 11, March 1982.

[8] Y.E. Ioannidis and Y.C. Kang. Randomized algo-

rithms for optimizing large join queries. In Proc. of

the A CM-SIGMOD Int’1 Conf on the Management

of Data, pages 312–321, 1990.

[9] E-P. Lim, J Srivastava, and A. Cosar. An extensive

search for optimal multiple query plans. In Int’1

Conf. on Management of Data, 1992.

[10] J. Park and A. Segev. Using common subexpres-

sions to optimize multiple queries. In Proceedings

of the Int’1 Conf. on Data Engineering, pages 31 l–

319, 1988.

[11] J. Pearl. Heuristics. Reading, MA: Addison-

Wesley, 1984.

[12] V.N. Rao and V. Kumar. Analysis of heuristic

search algorithms. Technical Report TR 90-40,

Dept. of Computer Science, Univ. of Minnesota,

July 1990.

[13] T. Sellis. Global query optimization. In Proc. of

the ACM-SIGMOD Int ’1 Conf. on the Management

of Data, 1986.

[14] T. Sellis. Multiple query optimization. ACM

llansactions on Database Systems, 13(1):23–52,

1988.

[15] T. Sellis and S. Ghosh. On the multiple query opti-

mization problem. IEEE Trans. on Knowledge and

Data Engineering, 2(2):262–266, 1990.

[16] A. Swami and A. Gupta. Optimization of large join

queries. In Proc. of the A CM-SIGMOD Ini ’1 Conf.

on the Management of Data, pages 8–17, 1988.

[17] E. Wong and K. Youssefi. Decomposition: A strat-

egy for query processing. ACM Transactions on

Database Systems, 1(3):223-241, 1976.

438


	Singapore Management University
	Institutional Knowledge at Singapore Management University
	1995

	Multiple Query Optimization with Depth-First Branch-and-Bound and dynamic query ordering
	Ee Peng LIM
	Ahmet COSAR
	Jaideep SRIVASTAVA
	Citation


	tmp.1529476599.pdf.D0a55

