
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

11-1998

A global object model for accommodating instance
heterogeneities
Ee Peng LIM
Singapore Management University, eplim@smu.edu.sg

Roger Hsiang-Li CHIANG
University of Cincinnati

DOI: https://doi.org/10.1007/978-3-540-49524-6_34

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons, and the Numerical Analysis and

Scientific Computing Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
LIM, Ee Peng and CHIANG, Roger Hsiang-Li. A global object model for accommodating instance heterogeneities. (1998).
Conceptual Modelling ER '98: Proceedings of the 17th International Conference on Conceptual Modeling , Singapore, November 16-19. 1507,
435-448. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/972

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13243475?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F972&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F972&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F972&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1007/978-3-540-49524-6_34
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F972&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F972&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F972&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F972&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

A Global Object Model for Accommodating

Ee-Peng Lim1 and Roger H.L. Chiang2

1 Centre for Advanced Information Systems
School of Applied Science, Nanyang Technological University

Singapore 639798, SINGAPORE
2 Information Management Research Centre

Nanyang Business School, Nanyang Technological University
Singapore 639798, SINGAPORE

Abstract. To completely address database integration problems in the
context of multidatabase[10] and data warehousing systems, one has to
examine various integration and query requirements. Due to various rea-
sons such as poor data quality in local databases, ongoing local database
updates, and instance heterogeneities, some instance differences have to
be accommodated by the integrated databases. We have therefore pro-
posed a new object-oriented global data model, called OORA, that can
accommodate attribute and relationship instance heterogeneities in the
integrated database. In addition, the OORA model has been designed to
allow database integrators and end users to query both the local and
resolved instance values using the same query language.

1 Introduction

To fully address the schema and instance integration issues in both multidatabase
and data warehousing systems, one has to examine the database integration
process at the macro level. Throughout the entire database integration process,
inter-database heterogeneities should be handled appropriately. While there has
not been a well accepted database integration methodology, we proposed to di-
vide the entire integration process into three phases, namely Analysis, Deriva-
tion, and Evolution.

– Analysis: Analysis is essentially a knowledge acquisition phase. In this
phase, database integrators are expected to understand pre-existing databases
at both the conceptual and implementation levels. Database integrators are
also required to find out from the integrated database users their global
application requirements in order to derive the global schema and instances.

– Derivation: The actual derivation of global schema and integrated instances
is done in this phase. Once the derivation is done, queries on the integrated
database can be evaluated. It is in this phase a complete mapping from local
schemas to the global schema, as well as a mapping from local instances to
global instances are specified.

– Evolution: Due to the autonomy of local database systems, updates to
the local databases may violate the mapping from local instances to global

T.W. Ling, S. Ram, and M.L. Lee (Eds.): ER’98, LNCS 1507, pp. 435–448, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

Instance Heterogeneities

436 E.-P. Lim and R.H.L. Chiang

instances. Evolution therefore refers to the ongoing refinement of integrated
databases as the local database schemas and instances evolve. It becomes
the most important phase to maintain a multidatabase or a data warehouse.

Among the above three phases, evolution has been largely ignored in the
database integration research primarily due to two reasons. Firstly, most re-
searchers focus on schema integration issues[1,3,4,11,14]. While a lot of schema
integration issues have to be investigated for different databases during the
derivation phase, it is uncommon to investigate schema integration issues during
the evolution phase due to rare modification to pre-existing local schemas. Sec-
ondly, research on the integration of instances has been pre-occupied by query
processing issues instead of local database updates during the evolution phase.
In this paper, we argue that instance integration may not be complete in the
derivation phase. During the evolution phase, one also has to consider local
database updates which lead to new instance conflicts that cannot be handled
by pre-defined integration methods. Hence, new global data models that can
accommodates instance heterogeneities become necessary.

Literature Review

Most previous database integration research focused on resolving schema con-
flicts. Lately, as researchers begin to address instance integration problems, sev-
eral solutions of instance conflict resolution have been proposed [7,8,13]. We
review some data modeling research in handling instance conflicts as follows.

– Polygen model [13] was proposed to capture source information of attribute
values that come from different local relations. A source value is associated
with every attribute value of the tuples of polygen relations. The source
information captured include the sites the attributes originated from and the
intermediate sites at which they are processed. The model, however, does not
provide the mechanism to accommodate or resolve instance heterogeneities.

– TS Relational model [5] was proposed to accommodate entity and attribute
conflicts in a relational integrated database. A special source attribute is
assigned to every relations. An extended relational algebra has been proposed
to manipulate the TS relations. Like the Polygen model, TS Relational model
is not designed to represent resolved instance values.

– Role-based Multidatabase model [9] considered the different roles (or rela-
tions) assumed by real-world objects. Queries on a role-based multidatabase
are decomposed into queries on different combinations of roles. Apart from
not handling resolved instance values, the role-based multidatabase model
does not classify between tolerable and intolerable relationship and attribute
value conflicts (see Sect. 2).

Research Objectives

Our research addresses the problem of accommodating instance heterogeneities
(conflicts) in the global data model adopted for integrated databases. There are
a number of reasons for accommodating instance heterogeneities:

A Global Object Model for Accommodating Instance Heterogeneities 437

– Resolving all instance differences may not be desirable because some global
applications may want to retain and view these differences. For example, the
different prices for the same product sold in different stores may be required
to be retained and queried in the integrated database.

– Preserving the instance heterogeneities allows database integrators to apply
different resolution techniques on the same integrated database for different
global application requirement.

– Resolving all instance conflicts may not be possible because the information
and knowledge required for the complete conflict resolution is not available
during the moment of instance integration.

– Resolving all instance conflicts may not be feasible because the amount of
processing time to resolve conflicts for large number of instances may be so
much that integrated information may not be available on time.

In this paper, we present an object-oriented global data model that can ac-
commodate instance heterogeneities for attributes and relationships in the inte-
grated database. The new global data model supports different integration and
query requirements from the database integrators and database users during the
derivation and evolution phases of database integration. To our best knowledge,
this is the first attempt in developing a global data model to support queries on
integrated databases containing resolved and unresolved instances.

2 Instance Heterogeneities

Instance heterogeneities can be classified into entity conflicts, attribute con-
flicts, and relationship conflicts [6,8]. Entity conflicts arise when it is not
known which entity instances from matching entity types1 correspond to the
same real-world entities. Relationship conflicts occur when it is not known which
relationship instances from matching relationship types correspond to the same
real-world relationships. Attribute conflicts arise when the matching entity (or
relationship) instances (determined by resolving entity or relationship conflicts)
do not have the same attribute values.

As pointed out by a number of researchers [2,5], instance integration may
be difficult due to imperfect data quality in the legacy databases. The methods
used for resolving discrepancies may also be different for different attributes.
In this paper, we will further point out that the tolerance of instance conflicts
varies among different attributes. In fact, it is common that not all instances
from legacy databases can be properly integrated during the derivation phase.

Although instances from different databases can be properly integrated dur-
ing the derivation phase, one still has to handle integration issues arising from
the updates to local database(s) during the evolution phase. For example, new
data instances could be added to a database making it necessary to perform
instance integration on the new instances. Similarly, instance integration is re-
quired for changes to attributes of some pre-existing data instances. There are

1 Matching entity types are determined by schema integration.

438 E.-P. Lim and R.H.L. Chiang

essentially two approaches to handle instance integration problems during the
derivation and evolution phases. The first approach requires the database inte-
grator to anticipate all possible integration scenarios during the derivation phase
and define the instance integration methods accordingly, hoping that all inte-
gration problems in the evolution phase can be predicted in advance. When the
integration scenarios cannot be predicted in advance (which is often the case),
one has to resort to accommodating instance conflicts in the integrated database
before these conflicts can be finally resolved sometime in the future or may not
be resolved at all.

2.1 Entity Conflicts

To resolve entity conflicts, the knowledge for identifying instances representing
the same real-world entities is required. For simple cases, common keys among
entity instances could be used to match instances. For example, the employee
name attribute can be used to match data from DBA and DBB . Complicated
entity conflicts arise when there is no common attribute that can be used to
match instances from different databases. Although it may not be possible to
resolve all entity conflicts, instances that could not be determined to represent
the same real-world entities can still be retained as separated instances in the
global database.

2.2 Attribute Conflicts

Given two instances that represent the same real-world entity, the differences
in their equivalent attributes are known as attribute conflicts. We distinguish
two main types of attribute conflicts, namely tolerable and intolerable attribute
conflicts, that should be handled in database integration. Tolerable attribute
conflicts are those expected by a database integrator at the time an integrated
database is derived. Intolerable attribute conflicts, on the other hand, refer to
attribute conflicts that should not be resolved automatically by any predefined
resolution methods.

To distinguish between the above two types of attribute conflicts, we intro-
duce the concept of threshold predicate. When the difference between two or
more conflicting attribute values is smaller than a threshold value or when the
conflicting attribute values differs in expected patterns, there is an straightfor-
ward pre-defined approach to handle the conflicts. The exact conflict handling
approach can be readily specified during the derivation phase of database inte-
gration. The primary purpose of a threshold predicate is therefore to explicitly
capture the criteria to be satisfied by tolerable attribute conflicts. In other words,
we define tolerable attribute conflicts to be those satisfying the threshold pred-
icates defined for the attributes involved.

It is necessary to resolve tolerable attribute conflicts derived from different
local databases. To do so, resolution functions should be defined to reconcile
the corresponding tolerable attribute values. However, it is not always possible
to apply resolution functions to resolve all possible tolerable attribute conflicts.

A Global Object Model for Accommodating Instance Heterogeneities 439

Sometime, one may not know the correct resolution function to be specified
or used. In other occasions, the attribute conflicts are considered to be valid
and acceptable by the integrated database users. Thus, no resolution function is
required.

Attribute conflicts which fail the specified thresholds are defined to be intol-
erable. Database integrators should be alerted for intolerable attribute conflicts
by having the intolerable attribute conflicts recorded in a log file.

2.3 Relationship Conflicts

Relationship conflicts, first discussed in [6], arise when the relationship between
two real-world entities may not be represented consistently in different databases.
In [6], different types of relationship conflicts have been derived and they can be
caused by incorrect schema integration, incorrect entity conflict resolution and
inaccurate database content.

Like other instance-level conflicts, a complete resolution of relationship con-
flicts may not always be possible. When relationship conflicts cannot be resolved
by the multidatabase system or data warehousing system, they should be re-
tained and accommodated.

3 A Database Integration Example

As both multidatabase and data warehousing systems preserve the autonomy
of local database systems, updates to local databases can often introduce new
instance conflicts to integrated databases. Some of these new instance con-
flicts could be handled automatically by the resolution methods predefined by
database integrators. For new instance conflicts that cannot be resolved automat-
ically, database integrators have to be called upon to handle them. Nevertheless,
before any actions can be taken by the database integrators, these new conflicts
have to be accommodated by the global data model and the end users should
be allowed to continue using the integrated database.

We employ an integration scenario to demonstrate the attribute and relation-
ship conflicts. Figure 1 depicts the object-oriented schemas of the local databases
(DBA and DBB) containing company information. Here, we assume that schema
integration has been performed and the schemas of existing databases have been
made compatible to facilitate instance comparisons.

The instances of DBA and DBB are shown in Figs. 2 and 3 respectively. Sup-
pose all entity conflicts are resolved by matching ename and dname of employee
and department instances respectively. We notice that John in DBA works in
the Marketing department but John in DBB works in the Research department.
This is a relationship conflict. On the other hand, the difference in salary for
Chen in DBA and DBB is an attribute conflict. Figure 4 depicts the integrated
schema derived from DBA and DBB .

440 E.-P. Lim and R.H.L. Chiang

salary
position

ename

salary

qual floor dname

budget

floor dname

budget

position

ename

DepartmentEmployee

work_in

managed_byDepartmentEmployee

work_in

managed_by

(a) Schema of DB (b) Schema of DBA B

Fig. 1. Schemas of Local Databases

ename = john
position = trainee
salary = 1000
qual = diploma

ename = kim
position = secretary
salary = 1500
qual = NULL

dname = marketing
floor = 3
budget = 2M

Employee instances Department instances

position = engineer
salary = 2400

ename = mark
position = manager
salary = 3000

ename = daniel

ename = chen
position = engineer
salary = 2500

dname = planning

budget = 4M
floor = 2

floor = 1
dname = library

budget = 1M

work_in

work_in

work_in

work_in

work_in

managed_by

managed_by

managed_by

qual=MEng

qual = BBus

qual = BEng

Fig. 2. Instances of DBA

4 The OORA Object-Oriented Data Model

In this section, we propose the OORA
2, the extended object-oriented data model,

to accommodate instance heterogeneities in the integrated databases. Specifi-
cally, the OORA model is able to accommodate attribute and relationship con-
flicts. The OORA data model is also designed to support queries on the integrated
databases. Furthermore, the OORA data model ensures that the source of in-
stance heterogeneities can be identified in order to support subsequent integra-

2 R represents the relationship conflicts. A represents the attribute conflicts. The name
OORA indicates that both relationship and attribute conflicts can be accommodated.

A Global Object Model for Accommodating Instance Heterogeneities 441

ename = chen
position = leader
salary = 2600

dname = marketing
floor = 3
budget = 2.1M

floor = 6
dname = research

budget = 1M

ename = john
position = trainee
salary = 1200

ename = kain
position = engineer
salary = 5000

ename = sugimoto
position = fellow
salary = 10000

Employee instances Department instances

work_in

work_in

work_in

managed_by

work_in

work_in

managed_by

work_in

ename = stacy
position = sales rep
salary= 3500

ename = kim

salary = 1500
position = assistant

Fig. 3. Instances of DBB

ename

position salary

qual
floor budget dname

DepartmentEmployee

work_in

managed_by

Fig. 4. Integrated Schema

tion work on the partially integrated database. OORA differs from the traditional
OO data model in a number of ways:

– Identification of matching criteria for deriving global objects;
– Specification of threshold predicates and resolution functions;
– Representation of original and resolved attribute values; and
– Uniform treatment of attribute and relationship conflicts.

In the following, we describe the unique features of OORA model in detail.

442 E.-P. Lim and R.H.L. Chiang

4.1 Global Objects

A global object in the integrated database is derived from one or more local
objects that represent the same real-world entity. Like in the traditional OO
data model, each global object is assigned a unique global object id (oid). In
OORA, we assume that local objects corresponding to the same global objects
(or real-world entities) can be matched by examining some common attribute
values. These common attribute(s) can be specified as matching criteria by the
database integrator. For example, a database integrator may use ename to match
Employee objects, and dname to match Department objects from DBA and DBB .
The following two data definition statements have been used to identify matching
local objects:
DERIVE EMP from Employee@DB A, Employee@DB B

USING Employee@DB A(ename), Employee@DB B(ename);

DERIVE DEPT from Department@DB A, Department@DB B
USING Department@DB A(dname), Department@DB B(dname);

4.2 Threshold Predicates and Resolution Functions

A threshold predicate and a resolution function can be defined for each attribute
in the global schema. Given an attribute in a class of global objects, the threshold
predicate determines for each global object if a difference between local values of the
attribute is tolerable. The resolution function is then specified to resolve tolerable at-
tribute conflicts automatically. Depending on the characteristics of attributes, different
threshold predicates and resolution functions should be defined and be implemented
using system-defined functions/operators or general programs.

Given an attribute in the global schema, three combinations of threshold predicates
and resolution functions can be constructed3:

– Both the threshold predicate and resolution function are undefined: This implies
that any difference between the corresponding attribute values is considered an
intolerable attribute conflict. Unless all corresponding attribute values given are
identical, the resolved attribute value is always NULL.

– The threshold predicate is defined, but not the resolution function: This implies that
tolerable attribute conflicts can exist among distinct instances. These conflicts are
also acceptable. However, unless the acceptable attribute conflict involves identical
values, the resolved attribute value is always NULL.

– Both the threshold predicate and resolution function are defined: This implies that
tolerable attribute conflict can exist among distinct instance and the resolution
function will return the resolved attribute values.

4.3 Elements of Attribute Values

In the OORA model, every non-oid attribute has a domain consisting of three ele-
ments, namely the original values (denoted by ovalue), resolved values (denoted by

3 Note that when the threshold predicate is not defined for an attribute, it is meaning-
less to define the resolution function for the attribute since any difference between
corresponding attribute values is considered intolerable, and such conflict shouldn’t
be resolved by a resolution function automatically.

A Global Object Model for Accommodating Instance Heterogeneities 443

rvalue) and conflict type (denoted by conflictType). The resolved value, original
value, and conflict type of an attribute A are represented by A.rvalue, A.ovalue and
A.conflictType respectively.

The A.ovalue of a global object is defined to be a set of (value, database id) pairs
where value denotes the attribute value contributed by the corresponding object from
the existing database identified by database id. The A.rvalue of a global object is
defined to be any A value contributed by local objects if there is no attribute conflict.
If a difference is found among the local A values, the tolerance of the conflict is first
determined using A.threshold(). If the conflict is tolerable, A.rvalue is obtained by
applying A.resolution() on the local attribute values. In the event where the conflict
is intolerable or A.resolution() is undefined, NULL is assigned to A.rvalue.

Depending on the original attribute values and the threshold predicate defined for
the attribute, different conflict types can be derived and be captured in A.conflictType.
A.conflictType is assigned NULL if there is no conflict, Resolvable if there is a toler-
able conflict that can be resolved by the pre-defined resolution function, Acceptable if
there is a tolerable conflict and there is no pre-defined resolution function for resolving
the conflict, and Intolerable if there is a intolerable conflict.

In our integrated database example, we can define the threshold predicates and
resolution function for the salary and position attributes as follows:

DEFINE = (abs(s1-s2) ≤ 100)
DEFINE salary.resolution@EMP(s1,s2) = max(s1,s2)
DEFINE position.threshold@EMP(p1,p2) = (p1=p2) or

(p1=secretary and p2=assistant)

With the above definition, the salary values of 2500 and 2600 for the employee Chen
constitute a resolvable attribute conflict. The global object for the employee Chen will
have a resolved salary value of 2600 computed by the resolution function. On the
other hand, the salary values of 1000 and 1200 for the employee John constitute an
intolerable attribute conflict. In this situation, database integrators should be alerted
and the conflict should be resolved manually. Since only threshold predicate is defined
for the position attribute, the position values of secretary and assistant constitute an
acceptable conflict.

4.4

In the OORA model, global relationships are derived from relationships between objects
of existing databases. The global relationships, represented as reference attributes in the
global schemas, relate global objects from different classes in the integrated database.
Similar to the attribute conflict, we represent the original and resolved values of a refer-
ence attribute R in the global schema by R.ovalue and R.rvalue respectively. Threshold
predicates and resolution functions can also be defined on reference attributes.

For illustration, let say the research department is in fact part of the marketing
department. The following threshold predicate and resolution function can be defined.

DEFINE work in.threshold@EMP(o1,o2) = (o1 = o2) ∨ (∀ o, o.oid ∈ {o1,o2},
o.dname ∈ {research,marketing})
DEFINE work in.resolution@EMP(o1,o2) = o1 if (o1=o2), marketing otherwise

In the above statements, o1 and o2 denotes global object ids of DEPT objects.

salary.threshold@EMP(s1,s2)

Relationship Conflicts

444 E.-P. Lim and R.H.L. Chiang

4.5 Integrated Database Instances

The OORA objects of the integrated database are shown in Tables 1 and 2. Note that
the Attribute-element columns in the above tables are included simply to illustrate the
three elements of attribute values. As shown in Tables 1 and 2, the OORA data model
retains both attribute and relationship conflicts while holding the matching objects
from different databases together by assigning global object ids to them. Respective
resolution functions are defined to perform various resolutions of instance conflicts
when they are tolerable. For example, the following threshold predicate and resolution
function are defined for budget attribute.

DEFINE budget.threshold@DEPT(b1,b2) = (abs(b1−b2)
max(b1,b2) ≤ 5%)

DEFINE budget.resolution@DEPT(b1,b2) = min(b1,b2)

Table 1. EMP’s Global Objects

Attrib-element oid ename position salary qual work in
ovalue e1 (john,A)(john,B) (trainee,A) (1000,A) (diploma,A) (d1,A)(d4,B)

(trainee,B) (1200,B)
rvalue john trainee NULL diploma d1
conflictType NULL NULL Intolerable NULL Resolvable
ovalue e2 (kim,A)(kim,B) (secretary,A) (1500,A) (NULL,A) (d1,A)(d1,B)

(assistant,B) (1500,B)
rvalue kim NULL 1500 NULL d1
conflictType NULL Acceptable NULL NULL NULL
ovalue e3 (chen,A)(chen,B) (engineer,A) (2500,A) (MEng,A) (d1,A)(d1,B)

(leader,B) (2600,B)
rvalue chen NULL 2600 MEng d1
conflictType NULL Intolerable Resolvable NULL NULL
ovalue e4 (mark,A) (manager,A) (3000,A) (BBus,A) (d2,A)
rvalue mark manager 3000 BBus d2
conflictType NULL NULL NULL NULL NULL
ovalue e5 (daniel,A) (engineer,A) (2400,A) (BEng,A) (d3,A)
rvalue daniel engineer 2400 BEng d3
conflictType NULL NULL NULL NULL NULL
ovalue e6 (stacy,B) (sales rep,B) (3500,B) (NULL,B) (d1,B)
rvalue stacy sales rep 3500 NULL d1
conflictType NULL NULL NULL NULL NULL
ovalue e7 (sugimoto,B) (fellow,B) (10000,B) (NULL,B) (d4,B)
rvalue sugimoto fellow 10000 NULL d4
conflictType NULL NULL NULL NULL NULL
ovalue e8 (kain,B) (engineer,B) (5000,B) (NULL,B) (d4,B)
rvalue kain engineer 5000 NULL d4
conflictType NULL NULL NULL NULL NULL

5 OORA Query Language and Examples

To query the global objects represented in the OORA data model, one has to formulate
queries in a language we refer to as OOQLRA. OOQLRA adapts the existing SQL
syntax for object-oriented queries. In addition, it is specially designed to support the
query requirement for an integrated database containing attribute and relationship
conflicts in the derivation and evolution phases of database integration. A OOQLRA

SELECT query statement can be expressed as:

A Global Object Model for Accommodating Instance Heterogeneities 445

Table 2. DEPT’s Global Objects

Attribute-element oid dname floor budget managed by
ovalue d1 (marketing,A)(marketing,B) (3,A)(3,B) (2M,A)(2.1M,B) (e3,A)(e3,B)
rvalue marketing 3 2M e3
conflictType NULL NULL Resolvable NULL
ovalue d2 (planning,A) (2,A) (4M,A) (e4,A)
rvalue planning 2 4M e4
conflictType NULL NULL NULL NULL
ovalue d3 (library,A) (1,A) (1M,A) (e5,A)
rvalue library 1 1M e5
conflictType NULL NULL NULL NULL
ovalue d4 (research,B) (6,B) (1M,B) (e7,B)
rvalue research 6 1M e7
conflictType NULL NULL NULL NULL

SELECT <target attribute 1>, ..., <target attribute m>
FROM <table 1>, ..., <table n>
WHERE <predicate expression>;

Unlike the usual SQL statements, every non-oid attribute (say A) found in a
OOQLRA query statement must be in one of the forms, A, A.ovalue, A.ovalue(D),
A.rvalue and A.conflictType where D is some local database id. Only attributes of
the forms A.ovalue, A.ovalue(D), A.rvalue and A.conflictType can be used in
the WHERE clause. In other words, the attribute in the form of attribute name can only
appear in the SELECT clause.

In the following subsections, we will use several query examples to illustrate other
essential features of OOQLRA.

Queries on Original Attribute/Relationship Values

The original attribute and relationship values in the existing databases have to be
examined by the database integrators during the process of deriving objects in the
integrated databases in both the derivation and evolution phase. For example, the
following OOQLRA statement (Q1) could be used to identify unresolved intolerable
attribute conflict in the EMP class.

Example (Q1):
SELECT E.oid,E.ename.ovalue,E.position.ovalue,
E.salary.ovalue,E.qual.ovalue
FROM EMP E
WHERE E.ename.conflictType=Intolerable OR
E.position.conflictType=Intolerable OR
E.salary.conflictType=Intolerable OR
E.qual.conflictType=Intolerable;

Since the OORA model accommodates all the original attribute and relationship
values in the integrated database, users can query local databases via the global schema
using OOQLRA statement. An example of such queries is illustrated in Q2.

Example (Q2):
SELECT E.oid,E.ename.ovalue(A),E.position.ovalue(A),
E.salary.ovalue(A),E.qual.ovalue(A),E.work in(A).dname.ovalue(A)
FROM EMP E;

446 E.-P. Lim and R.H.L. Chiang

Table 3. Query Result of Q1

oid ename.ovalue position.ovalue salary.ovalue qual.ovalue
e1 (john,A)(john,B) (trainee,A)(trainee,B) (1000,A)(1200,B) (diploma,A)
e3 (chen,A)(chen,B) (engineer,A)(leader,B) (2500,A)(2600,B) (MEng,A)

Table 4. Query Result of Q2

oid ename.ovalue(A) position.ovalue(A) salary.ovalue(A) qual.ovalue(A) work in.ovalue(A).dname.ovalue(A)
e1 john trainee 1000 diploma marketing
e2 kim secretary 1500 NULL marketing
e3 chen engineer 2500 MEng marketing
e4 mark manager 3000 BBus planning
e5 daniel engineer 2400 BEng library

Queries on Resolved Attribute/Relationship Values

Once an integrated database is derived, OOQLRA allows end users to query only the
resolved attribute and relationship values in the integrated database while hiding the
conflicts from the users.

Example (Q3):
SELECT E.ename.rvalue,E.work in.rvalue.dname.rvalue,
E.work in.rvalue.budget.rvalue
FROM EMP E;

Table 5. Query Result of Q3

ename.rvalue E.work in.rvalue.dname.rvalue E.work in.rvalue.budget.rvalue
john marketing 2M
kim marketing 2M
chen marketing 2M
mark planning 4M
...

...
...

Evolution of Local Databases

When an integrated database is first derived during the derivation phase, all con-
flicts between local instances may be fully resolved. As the local database evolves, new
records are added to the databases, some old ones are removed, and other old ones get
updated. These local changes may lead to un-anticipated conflict(s) in the integrated
database. In this case, queries similar to Q1 can be used to identify unresolved attribute
and relationship conflicts.

Example (Q4):
SELECT E.oid,E.ename,E.position,E.salary,E.qual,E.work in
FROM EMP E
WHERE E.ename.conflictType=Intolerable OR
E.position.conflictType=Intolerable OR

A Global Object Model for Accommodating Instance Heterogeneities 447

E.salary.conflictType=Intolerable OR
E.qual.conflictType=Intolerable OR
E.work in.conflictType=Intolerable;

Table 6. Query Result of Q4

oid ename position salary qual work in
e1 (john,A)(john,B) (trainee,A)(trainee,B) (1000,A)(1200,B) (diploma,A) (d1,A)(d4,B)

john trainee NULL diploma d1
NULL NULL Intolerable NULL Resolvable

e3 (chen,A)(chen,B) (engineer,A)(leader,B) (2500,A)(2600,B) (MEng,A) (d1,A)(d1,B)
chen NULL 2600 MEng d1
NULL Intolerable Resolvable NULL NULL

To resolve the identified conflicts, one has to examine the cause of conflicts. If
the conflicts are due to flaws in the derivation of integration database, we can define
attribute threshold predicates and resolution functions using the DEFINE statements.
Otherwise, the conflicts may be caused by erroneous information introduced to some
local database, e.g. typographical errors made during data entry.

6 Conclusions

This research introduces a novel approach to examine the database integration process.
To support the query and integration activities in all phases of database integration,
we believe that some amount of instance-level conflicts have to be accommodated by
the integrated databases. Furthermore, not all instance conflicts can always be resolved
during database integration. This paper examines the impact of instance conflicts on
global data model. The concept of threshold predicate and resolution function have
been adopted to handle both attribute and relationship conflicts. An extended object-
oriented data model called OORA has been proposed to accommodate attribute and
relationship conflicts. Its query language OOQLRA and some query examples were
given. This research can be seen as an initial effort to systematically devise different
solutions to resolve as well as to accommodate instance heterogeneity in the integrated
databases. This is in contrast to past database integration research which often em-
phasized on conflict resolution only.

References

1. C. Batini, M. Lenzerini and S.B. Navathe. A Comparative Analysis of Methodolo-
gies for Database Schema Integration. ACM Computing Survey, 18(4), December
1986.

2. M. Garcia-Solaco, F. Saltor and M. Castellanos. Semantic Heterogeneity in Mul-
tidatabase Systems, chapter 5, pages 129–202. Prentice Hall, 1996.

3. W. Kim and J. Seo. Classifying Schematic and Data Heterogeneity in Multi-
database Systems. IEEE Computer, December, 1991.

4. J.A. Larson, S.B. Navathe and R. Elmasri. A Theory of Attribute Equivalence in
Databases with Application to Schema Integration. IEEE Transactions in Software
Engineering, 15(4), April 1989.

448 E.-P. Lim and R.H.L. Chiang

5. E.-P. Lim, R.H.L. Chiang and Y.Y. Cao. Tuple Source Relational Model: A Source-
Aware Data Model for Multidatabases. in Data & Knowledge Engineering, Forth-
coming, 1999.

6. E.-P. Lim and R.H.L. Chiang. Resolving instance-level relationship conflicts in
database integration. In Workshop on Information Technologies and Systems
(WITS’97), Atlanta, Georgia, December 1997.

7. E.-P. Lim, J. Srivastava, S. Prabhakar, and J. Richardson. Entity Identification
Problem in Database Integration. In Proceedings of IEEE Data Engineering Con-
ference, Vienna, Austria, 1993.

8. E.-P. Lim, J. Srivastava, and S. Shekhar. Resolving Attribute Incompatibility in
Database Integration: An Evidential Reasoning Approach. In IEEE International
Conference on Data Engineering, Houston, TX, February 1994.

9. P. Scheuermann, and E.I. Chong. Role-based Query Processing in Multidatabase
Systems. In International Conference on Extending Database Technology, Cam-
brige, U.K., March 1994.

10. A.P. Sheth and J.A. Larson. Federated database systems for managing dis-
tributed heterogeneous, and autonomous databases. ACM Computing Surveys,
22(3), September 1990.

11. S. Spaccapietra, C. Parent and Y. Dupont. Model Independent Assertions for
Integration of Heterogeneous Schemas. Very Large Database Journal, 1(1), 1992.

12. Y.R. Wang and S.E. Madnick. The Inter-database Instance Identification Problem
in Integrating Autonomous Systems. In IEEE International Conference on Data
Engineering, 1989.

13. R. Wang and S. Madnick. A Polygen Model for Heterogeneous Database Systems:
The Source Tagging Perspective. In International Conference on Very Large Data
Bases, pages 519–538, Brisbane,Australia, 1990.

14. M.W.W. Vermeer and P.M.G. Apers. On the applicability of schema integration
techniques to database interoperation. In Entity-Relationship Conference, Cot-
tbus,Germany, 1996.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	11-1998

	A global object model for accommodating instance heterogeneities
	Ee Peng LIM
	Roger Hsiang-Li CHIANG
	Citation

	Introduction
	Instance Heterogeneities
	Entity Conflicts
	Attribute Conflicts
	Relationship Conflicts

	A Database Integration Example
	The OO RA Object-Oriented Data Model
	Global Objects
	Threshold Predicates and Resolution Functions
	Elements of Attribute Values
	Relationship Conflicts
	Integrated Database Instances

	OO RA Query Language and Examples
	Conclusions

