
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

10-2006

Extracting link chains of relationship instances from
a website
Myo-Myo NAING

Ee Peng LIM
Singapore Management University, eplim@smu.edu.sg

Roger Hsiang-Li CHIANG

DOI: https://doi.org/10.1002/asi.20469

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons, and the Numerical Analysis and

Scientific Computing Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
NAING, Myo-Myo; LIM, Ee Peng; and CHIANG, Roger Hsiang-Li. Extracting link chains of relationship instances from a website.
(2006). Journal of the American Society for Information Science and Technology. 57, (12), 1590-1605. Research Collection School Of
Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/202

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13243472?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F202&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F202&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F202&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1002/asi.20469
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F202&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F202&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F202&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F202&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

On Extracting Link Information of Relationship
Instances from a Web Site�

Myo-Myo Naing, Ee-Peng Lim, and Dion Hoe-Lian Goh

Centre for Advanced Information Systems
School ofComputer Engineering

Nanyang Technological University, Nanyang
Avenue, N4-B3C-13, Singapore 639798, SINGAPORE

mmnaing@pmail.ntu.edu.sg, {aseplim,ashlgoh}@ntu.edu.sg

Abstract. Web pages from a web site can often be associated with
concepts in an ontology, and pairs of web pages can also be associated
with relationships between concepts. With such associations, web pages
can be searched, browsed or even reorganized based on their concept
and relationship labels. In this paper, we investigate the problem of
extracting link information of relationship instances from a web site. We
define the notion of link chain and formulate the link chain extraction
problem. An extraction method based on sequential covering has been
proposed to solve the problem. This paper presents the proposed method
and the experiments to evaluate its performance. We have applied the
method to extract link chain information from the Yahoo! Movie Web
Site with very promising results.

Keywords: Ontology, Information extraction, Hyperlink structure.

1 Introduction

1.1 Background and Motivation

Web extraction refers to extracting data from web pages. Due to the hetero-
geneous nature of web information and the different application usage, many
different types of web extraction problems can be defined. Nevertheless, these
problems are important because there are enormous amount of web information
waiting to be extracted.

In this paper, we assume that a set of ontology concepts and relationships
are given to enhance the access to web pages from a web site. The web pages can
be associated with the concepts while pairs of web pages can be associated with
the relationships between concepts. For example, web pages from a university
web site can be usually associated with concepts such as faculty, department,
course, lecturer, etc.. These web pages can therefore be treated as concept in-
stances. Relationships between concepts such as TeachCourse(lecturer,course)
and OfferCourse(department,course) exist, and so are the relationship instances
� This work is partially supported by the SingAREN21 research grant M48020004.

M. Jeckle and L.-J. Zhang (Eds.): ICWS-Europe 2003, LNCS 2853, pp. 213–226, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.2
 Für schnelle Web-Anzeige optimieren: Ja
 Piktogramme einbetten: Ja
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [600 600] dpi
 Papierformat: [594.962 841.96] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 600 dpi
 Downsampling für Bilder über: 900 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren
 Methode: Standard
Arbeitsbereiche:
 Graustufen ICC-Profil: ¡M
 RGB ICC-Profil: sRGB IEC61966-2.1
 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Nein
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Nein

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile (¡M)
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [600 600]
>> setpagedevice

214 M.-M. Naing, E.-P. Lim, and D.H.-L. Goh

relating pairs of web pages. When concepts and relationships are associated with
web pages, several new possibilities to access a web site become feasible [1]. For
example, web pages can be queried by their concept labels, and can be navigated
using the relationship labels.

In the previous web extraction research, most efforts have been devoted to
the attribute extraction [2,6] and relation extraction [3,8,14] tasks that assume
information to be extracted come from one single web page.

This paper, on the other hand, attempts to investigate the extraction of link
information for pairs of web pages that are associated with some relationship.
Since the link information may span across multiple web pages, both the training
and extraction processes must scan different web pages before a piece of link
information can be uncovered.

For example, at the Yahoo! Movies Web Site 1, we may be interested to
know the instances of the ActorOf(movie, actor) relationship which are actually
the web pages of movies together with the links to their actors’ web pages. To
efficiently find the link information connecting from the movie web pages to their
actor/actress’s web pages, we need a fully automated web extraction method.

The main objective of this paper is to formally introduce the link chain ex-
traction problem. We propose that relationship instances can be obtained by ex-
tracting the link chains between the source and target web pages of the relation-
ship instances. We also present an extraction method that semi-automatically
extracts link chain information using very few training examples from a well-
structured web site.

To measure the performance of a link chain extraction method, we further
define the precision and recall measures for the extracted link chain information.
A series of experiments are also conducted to evaluate our proposed method.

This link chain extraction research is closely related to several applications
using web content. In our context, we are interested in automated ontology-
based web annotation (OWA) [12] and would like to treat link chain extraction
an essential step in automated web annotation.

1.2 Paper Outline

The rest of the paper is organised as follows. In Section 2, we describe the related
work. We formally define the link chain extraction problem in Section 3. Our
proposed method to learn extraction rules for link chain extraction is given in
Section 4. The evaluation of learnt extraction rules on web pages to extract link
chain information is given in Section 5. Performance evaluation of our prosed
method is presented in Section 6. We finally conclude the paper and present
future research directions in Section 7.

1 http://movies.yahoo.com/

On Extracting Link Information of Relationship Instances from a Web Site 215

2 Related Work

There are a lot of extraction systems attempted to extract information from
the Web 2. Depending on the nature of the underlying sources, these systems
can be generally categorized into two types: the systems for extracting infor-
mation from natural language documents and those for extracting information
from semi-structured documents. The general survey of different information
systems has been presented in [10,5]. As our web extraction problem involves
semi-structured web pages, we survey some related extraction systems focusing
on semi-structured information sources.

To extract information from a single web page, text extraction rules are
often used to identify the relevant information in the page using some knowledge
about the way the page is formatted or structured. In the case of web pages,
this knowledge includes the way HTML tags are used to markup their semantic
content.

WHISK [13] presented a rule induction approach to generate patterns for
the relation instances contained in a semi-structured and free text web page. By
using the users’ markup training web pages, the WHISK algorithm generates the
rules that utilize regular expression patterns to identify the relevant phrases and
extract the delimiters of these phrases. WHISK is suitable for situations where
multiple records are found in a single web page.

In the SRV project [7], information from HTML sources are extracted by
using a set of training examples. The rules in SRV rely on a set of token-oriented
features identifying the simple or relational properties of the tokens. These simple
properties include word, numeric, and punctuation and the relational properties
include prev-token, next-token, etc. By examining the features found in the
training examples, SRV rules are able to extract a single record from a given
HTML page. SRV rules are used in the WEB→KB [4] project to extract attribute
instances of an ontology.

The system that is closely related to our work is the STALKER [11]. By giving
a sequence of tokens around the item to be extracted and an Embedded Catalog
Tree, STALKER generates the rules that can handle the hierarchical nature of
the items to be extracted. STALKER rules are general enough for the documents
with different formats by allowing the rules to have disjunctive properties. Rules
generated by WIEN [9] are similar to STALKER but they cannot handle the
nested structure or other variation of semi-structured documents.

3 Problem Statement

In this section, we formally define the hyperlink information extraction problem.
Before that, we define a few important terms as follows:

Let w be a web page. The URL of w is denoted by w.url. Let l be an anchor
element in a web page. The target URL and anchor text of l are denoted by
l.target and l.atext respectively.
2 http://www.isi.edu/info-agents/RISE/

216 M.-M. Naing, E.-P. Lim, and D.H.-L. Goh

Definition 1. (Relationship Instance)
Let Cs and Ct be the concepts and R(Cs, Ct) be a relationship in an ontology, a
pair of web pages (w1, w2) from a web site is an instance of R(Cs, Ct) if w1 is
an instance of Cs, w2 is an instance of Ct, and w1 is semantically related to w2
by the relationship R. We call w1 and w2 the source concept instance and
target concept instance respectively.

Definition 2. (Link Chain)
Let (w1, w2) be an instance of a relationship R(Cs, Ct). The link chain of
(w1, w2) with respect to R(Cs, Ct) is a list of link elements denoted by ((p1, l1),
(p2, l2) . . . , (pn, ln)) where p1 = w1, ln.target = w2.url, li is an anchor element
in pi and li.target = pi+1.url ∀1 ≤ i ≤ n(n ≥ 2), .

The source concept instances may or may not be directly linked to the target
concept instances. When they are indirectly linked, one or more intermediate
pages will be included in the link chain to provide the list of link elements. To
uniquely locate each anchor element, say li, in a page, we can represent each
anchor element by its page offset denoted by li.pos.

Example:
Consider the web page pair (wi, wj) shown in Figure1. The URLs of wi and wj

are wi.url=
“http://movies.yahoo.com/shop?d=hv&cf=info&id=1808415480&intl=us”,
and
wj .url=
“http://movies.yahoo.com/shop?d=hc&id=1802753883&cf=gen&intl=us”
respectively. The (wi, wj) pair is an instance of the relationship
ActorOf(Movie, Actor).

The link chain of (wi, wj) with respect to ActorOf(Movie, Actor) is
((p1, l1), (p2, l2)), where p1 = wi, l1 is an anchor element in wi such that
l1.target = p2.url =“
http://movies.yahoo.com/shop?d=hv&id=1808415480&cf=cast”
l1.target = wk.url for some intermediate web page wk

l2 is an anchor element in wk such that l2.target = wj .url

3.1 Anchor Element Path and Patterns

To extract link chain for a given web page pair, we borrow the notion of embed-
ded catalog(EC) description defined in the STALKER project [11] for describing
the structure of selected anchor elements within a web page known as anchor
element path. The original embedded catalog has been defined to represent a
web page by a tree-like structure consisting of basic values as leaf nodes and
composition constructs as internal nodes. Instead of using an embedded catalog
to describe all components found in a web page, we use anchor element path to
describe the anchor element to be extracted from a web page in order to form a
part of a link chain.

On Extracting Link Information of Relationship Instances from a Web Site 217

wi

wj

wk

Fig. 1. (wi, wj) as an instance of ActorOf(Movie, Actor) Relationship

Definition 3. (Anchor Element Path)
Let w be a source target instance (source web page) or an intermediate web page
of a link chain ((p1, l1), (p2, l2), . . . , (pn, ln)). That is, there exists i, 1 ≤ i ≤ n
such that pi = w. The anchor element path of w is defined as a tuple (N, E)
where N and E denote a set of nodes and a set of directed edges respectively,
such that the nodes in N are connected by edges from E to form a directed chain.
Each non-root internal node is either a repetitive list of another internal node
or a leaf node. The leaf node represents the anchor element li in w.

In the above definition, the root node represents the entire web page. Each
internal node in the anchor element path represents some grouping of anchor
elements of the same type. This arises when the link chains of different instances

218 M.-M. Naing, E.-P. Lim, and D.H.-L. Goh

of the same relationship share some common web page (often the hub page of
the website), and the anchor elements linking to the next web page of these link
chains are grouped together as a list or table entries.

Definition 4. (Anchor Element Pattern)
The anchor element pattern of a link chain ((p1, l1), (p2, l2), . . . , (pn, ln)) is
defined as an ordered list of anchor element paths, (AEP1, . . . , AEPn) such
that each pi has AEPi as its anchor element path.

Definition 5. (Well Structured Web Site)
A web site is known to be well structured if all instances of any given rela-
tionship found at the web site have their link chains sharing the same anchor
element pattern.

In this paper, we assume that the web site from which the link chains
are to be extracted is well structured. This assumption is necessary because
rules for extracting link chains can only be discovered for structured web
sites. For unstructured websites, the heterogeneous representation of link chain
information will make it impossible for any rule learning method to derive some
useful patterns.

Example:
Consider the Yahoo! Movies website, the instances of relationship Acto-
rOf(Movie, Actor) share the anchor element pattern (AEP1, AEP2) shown in
Figure 2. AEP1 consists of only a root node and a leaf node representing the
anchor element involved in the link chain starting from a movie page. AEP2
consists of a root node, another internal node and a leaf node. While the leaf
node represents the anchor element involved in the link chains that leads to an
actor page, the anchor element is found in an intermediate page (known as the
Casts and Credits page shown in Figure 3). As the intermediate page groups all
anchor elements linking to different actor pages as a list, the internal node in
AEP2 is therefore defined to represent this grouping.

anchor element

root

AEP1 (AEP for movie page)

List

root

AEP2 (AEP for intermediate page)

anchor element

na

nb

nc

nd

ne

Fig. 2. Anchor Element Pattern of ActorOf(Movie, Actor) Relationship

On Extracting Link Information of Relationship Instances from a Web Site 219

3.2 Extraction Rules Definition

Anchor element paths and anchor element patterns are designed to model the
structure of web pages containing the anchor elements involved in link chains.
They alone, however, cannot be used for extracting anchor elements from web
pages. We therefore have to introduce the notion of extraction rule.

Given an anchor element path, AEP = (N, E), we associate an extraction
rule with each non-root node in N .

Definition 6. (Extraction Rule)
An extraction rule is defined as a triple < sr, tr, er > where sr, tr and er repre-
sent the start, target and end rules respectively.

Given a non-root node n in AEP , the start, target and end rules of n are
denoted by n.sr, n.tr and n.er respectively.

Definition 7. (Start/End Rule)
A start/end rule is defined as a Skipto(〈landmark〉) predicate or a disjunc-
tion of conjuncts of Skipto(〈landmark〉) predicates. The argument 〈landmark〉
represents a sequence of tokens.

Definition 8. (Target Rule)
A target rule is defined as a HasAnchorTextPattern(〈regularExpression〉)
predicate.

The purpose of a start (or end) rule is to skip the content that appears
before (or after) portion of content represented by a node. The target rule, only
applies to a leaf node, is used to verify the content within the portion of web page
represented by a leaf node. The 〈landmark〉 of a start (or end) rule is a sequence
of tokens which can be string tokens or token classes. There are 7 different token
classes, namely, HTMLTag, Punctuation, Alphabetic, Alphanumeric, Numeric,
AllCaps, and Symbol.

A Skipto() predicate skips everything in the web page content until it has
consumed a sequence of string tokens matching its landmark. The Skipto() pred-
icate returns True if a match is found, and False otherwise.

The HasAnchorTextPattern() predicate matches the anchor text of an an-
chor element with its regular expression (〈regularExpression〉) argument. If the
anchor text satisfies the regular expression argument, the predicate returns True.
Otherwise, a False value is returned.

3.3 Extraction Rule Evaluation on a Web Page

Given the AEP of a web page, we would like to be able to evaluate the extraction
rules of the AEP nodes and extract anchor elements from the web page. The
extraction rule evaluation algorithm is given in Algorithm 1.

In the EvaluateRule algorithm, page and AEPpage are the given web page
and its AEP respectively. The anchor-elements variable stores the list of anchor
elements from the web page. The algorithm evaluates the non-root nodes in a
top-down manner. The variable content is used to store the portion of web
content extracted using the start and end rules of the parent node.

220 M.-M. Naing, E.-P. Lim, and D.H.-L. Goh

Algorithm 1 EvaluateRule(page,AEPpage)
1: Let anchor-elements be empty
2: Let content be page
3: for each non-root node n in AEPpage from the topmost level to the leaf level do
4: if n is a leaf node then
5: Extract an anchor element ae by applying n.sr and n.er on content
6: if ae satisfies n.tr then
7: Add ae to anchor-elements
8: end if
9: else

10: Extract a new content by applying n.sr and n.er on content
11: end if
12: end for
13: Return anchor-elements

4 Extraction Rule Learning Problem

4.1 Formal Definition

Having define the extraction rules for AEPs, we now formally state the extraction
rule learning problem as follows:

Definition 9. (Extraction Rule Learning Problem)
Given a set of link chains {lc1, . . . , lcm} of instances belong to a relation-
ship R(Cs, Ct) where lci = ((p1i, l1i), . . . , (pni, lni)), the anchor element pat-
tern of web pages in the link chains (AEP1, . . . , AEPn), the extraction rule
learning problem is to derive the extraction rule for each non-root node in
AEP1, . . . , AEPn.

As shown the above problem definition, we assume that the AEPs of web
pages are given. A set of link chains is also used as input to generate rules. Since
the extraction rules consist of start, end and target rules, we will describe how
the given link chains are used to derive training data for learning different types
of rules. We will also present our proposed rule learning method.

4.2 Training Data

Let a web page w be a sequence of tokens S. A token is a number, a word or a
HTML tag. When a web page w follows the structure of a particular AEP , we
say that w as an instance of AEP . The content of a root node in AEP is the
entire sequence S, and the content of a child node in AEP is a subsequence of
the content of its parent node.

We divide the training data for rule learning into two components, the train-
ing data for generating start and end rules denoted by TR, and that for gen-
erating target rules denoted by EX. Given a non-root node n in AEP, the two
kinds of training data are denoted by n.TR and n.EX. Hence, from the input

On Extracting Link Information of Relationship Instances from a Web Site 221

link chains, it is necessary for us to derive n.TR and n.EX for every non-root
node n in AEP.

Given a non-root node n from a AEP , n.TR consists of a set of
(content,prefix+,prefix−,suffix+,suffix−) tuples, one for each web page having
AEP as the anchor element path. The content component represents the web
page content extracted by the start and end rules of its parent node of n.
The prefix+ and prefix− components are the positive and negative training
sequences for n.sr respectively. The suffix+ and suffix− components are the
positive and negative training sequences for n.er respectively. Suppose the
content to be extracted from a training web page for n is a subsequence
(content[k], content[k + 1], · · · , content[m − 1]) and content has a length of p.
A positive training sequence in prefix+ is (content[1], · · · , content[k −1]). A pos-
itive training sequence in suffix+ is (content[m], · · · , content[p]). Once prefix+ is
derived, equal number of negative training sequences are derived from content
and included in prefix−. The same applies tosuffix−.

If n is a leaf node, n.EX is also required. It consists of a set of anchor text
of the anchor elements from the training web pages for AEP and is to be used
as training data to generate the target rule.

4.3 Extraction Rule Learning Algorithm

With the training data, we learn the start and end rules using the GetSERule()
algorithm, and the target rules using the GetTargetRule() algorithm shown
in Algorithms 2 and 4.

We demonstrate how to generate these rules using the anchor element path
AEP2 in Figure 2 and a web page satisfying AEP2. Figure 3 illustrates the part
in the web page containing the list of anchor elements leading to the different
actor/actress pages.

The start and end rule to be learnt for the non-root internal node in AEP2
are:

nd.sr = Skipto(Starring:</td>)Skipto()
nd.er = Skipto(</table>) Skipto(</td>)

The start rule, n1.sr, skips everything from the beginning of the web page un-
til reaching the landmark “(Starring:</td>)” and again skips
the remaining content until the landmark “()”. The end rule n1.er starts
from the end of the web page, skips everything until reaching the landmark
“(</table>) ” and again skips the remaining content until reaching the land-
mark “(</td>)”. The following start, end and target rules are to be
learnt for the leaf node of the AEP2:

ne.sr = Skipto()
ne.er = Skipto(</td>)
ne.tr = HasAnchorTextPattern(namepattern)

The rules ne.sr and ne.er are quite straightforward. The target rule ne.tr verifies
if the anchor text within the anchor element extracted using ne.sr and ne.er
matches the namepattern pattern which is defined as follows:

222 M.-M. Naing, E.-P. Lim, and D.H.-L. Goh

namepattern =
[A-Z][a-z]{1,15}[-]?\s?[A-z]?\.?\x?[[A-Z][a-z]{1,15}]*

The above pattern looks for name string that begins with a uppercase character.
Several other patterns in the form of regular expressions, e.g. date pattern, can
also be defined and used in target rules.

The GetSERule() algorithm (see Algorithm 2) is a sequential covering al-
gorithm adapted from [11]. It learns the start or end rule of the given examples
in n.TR for a non-root node n of the AEP . To generate a start rule, examples
consists of a set of (content, prefix+, prefix−). To generate an end rule, exam-
ples consists of a set of (content, suffix+, suffix−) tuples. The covered positive
examples are removed while the negative examples unchanged throughout the
learning process. As long as there exists an uncovered positive examples (pre-
fixes or suffixes), it tries to generate the perfect rule. The perfect rule is the rule
that accepts only the true positive examples and rejects the negative ones. Once
all the positive examples are covered, the best start or end rule is returned.
The GetSERule() algorithm calls LearnRule() function to learn a perfect
rule. This latter first generates the initial set of candidates by using the short-
est prefix (or suffix) in the training prefixes (or suffixes). It repetitively selects
and refines the best candidate until the candidates are empty or the rule is per-
fect. The GetBestRefiner() and GetBestSolution() functions are based on some
pre-defined heuristics to refine the rules and they return the best solution by
applying different sets of criteria.

 :
 <table> <tr> <tr> <td>
 Starring:</td> </tr>
 <tr> <td>

 Mandy Moore </td> <td> </td>
 :
 <td>

 Connie Ray </td> </tr>
 </table>
 :

Fig. 3. Example intermediate web page and it’s partial source

On Extracting Link Information of Relationship Instances from a Web Site 223

Algorithm 2 GetSERule(examples)
1: SERule ← empty
2: while examples �= empty do
3: rule ← LearnRule(examples)
4: examples←(examples− examples covered by rule)
5: SERule ← SERule + rule
6: end while
7: Return SERule

Algorithm 3 LearnRule(examples)
1: Seed← examplei with shortest length in examples
2: Candidates ← GetInitialCandidates(Seed)
3: repeat
4: BestRefiner ← GetBestRefiner(Candidates, examples)
5: BestSolution ← GetBestSolution(Candidates ∪ BestSolution, examples)
6: Candidates ← Refine(BestRefiner, Seed)
7: until IsPerfect(BestSolution) or BestRefiner is empty
8: return PostProcess(BestSolution)

Algorithm 4 GetTargetRule(EX)
1: Let P be a array of predefined pattern strings
2: for each P [i] in P do
3: match-count[i]←0
4: end for
5: max = match-count[1]
6: for each Atextj in EX do
7: for each P [i] in P do
8: if Atextj match P [i] then
9: match-count[i] ← match-count[i]+1

10: if match-count[i] > max then
11: max ← match-count[i]
12: position ← i
13: end if
14: end if
15: end for
16: end for
17: a− pattern = P [position]
18: TargetRule ← HasAnchorTextPattern(a-pattern)
19: return TargetRule

224 M.-M. Naing, E.-P. Lim, and D.H.-L. Goh

The GetTargetRule() generates a target rule by examining the training an-
chor texts in n.EX. Each training anchor text is compared with the pre-defined
patterns. The pre-defined pattern with maximum match count is determined
and used as the argument of the HasAnchorTextPattern predicate which is in
turns returned it as the target rule.

5 Link Chain Construction

In this section, we describe how the link chains of a particular relationship are
to be constructed by using ConstructLinkChain() algorithm shown in Algo-
rithm 5. Inputs to the ConstructLinkChain() algorithm are the Anchor Element
Pattern and a set of source web pages.

The algorithm firstly extracts anchor elements from the source pages and
assign them to anchor-element1. From these anchor elements, it obtains the
next set of pages P2 by applying the GetPages() function. The extraction of
anchor elements from pages in P2 will be performed. This process repeats until
all the required anchor elements are extracted. The algorithm then constructs
the link chains using different combinations of link elements.

Algorithm 5 ConstructLinkChain(P1, AEPPAttern)
1: Let linkchain← empty
2: Let AEPPattern be (AEP1, · · · , AEPm)
3: for each p1 in P1 do
4: anchor-elements1 ← EvaluateRule(p1, AEP1)
5: for (i = 2 to m) do
6: Pi ← GetPages(anchor-elementsi−1)
7: anchor-elementsi ← EvaluateRule(Pi, AEPi)
8: end for
9: for each combination of (< p1, a1 >, · · · , < pm, am >) where pj ∈ Pj , aj ∈

anchor-elementj , 1 ≤ j ≤ m do
10: Add (< p1, a1 >, · · · , < pm, am >) to linkchains
11: end for
12: end for
13: Return linkchains

6 Performance Evaluation

We evaluate our proposed algorithms on Yahoo! movie web site. The movie
home pages are taken as the source pages for four kinds of relationships: Actor-
Of, Directed-by, Produced-by and Written-by. The target pages are the home
pages of Actors, Directors, Producers and Writers. Giving at most 4 training link
chains and anchor element pattern of the given link chains, the rules of nodes
from the anchor element paths are generated for extracting the series of anchor
elements from the given pages.

On Extracting Link Information of Relationship Instances from a Web Site 225

We then apply the learned rules on (1000) movie homepages from the movie
web site, and observe whether the extracted link chains actually lead to the
correct target pages.

Given a relationship, let the number of link chains existed in the test data set
be Nlr, the number of extracted link chains be Nle and the number of correctly
extracted link chains be Nlc . The recall R and precision P is defined as follows:

R =
Nlc

Nlr
(1)

P =
Nlc

Nle
(2)

The number of example link chains, precision and recall for each relationship
are described in Table 1.

Table 1. Link Chain Extraction Results of Yahoo! Movie Web Site

Relationship # training link chains # extracted link chains Precision Recall
Actor-Of 4 7918 100% 100%

Directed-by 3 970 100% 100%
Produced-by 2 1312 100% 100%
Written-by 1 48 100% 100%

The results was very encouraging as we obtained 100% precision and recall for
all relationships for even very small number of training link chains. This results
is achieved mainly because the Yahoo! Movie web site is a well structured web
site. The extraction rules generated by our algorithms are able to accurately
select the anchor elements to be extracted.

7 Conclusion and Future Work

In this paper, we propose to extract link chains, an important piece of informa-
tion linking pairs of web pages with some relationships. The link chain informa-
tion can be very useful in several web applications including ontology-based web
annotation [12]. By including link chain information in an annotation of relation-
ship instance, users can use it to guide the browsing process for a web site. The
experimental results show that our method of extracting link chain information
achieves high precision and recall for the web pages in a well structured web site.

We plan to conduct our method on loosely structure web site of other do-
mains. Currently, our method is only suitable for link chains sharing the same
anchor element patterns. As part of our future work, we will continue our re-
search in the following directions:

– Enhance our method to extract relationship instances that involve different
anchor element patterns.

– Investigate methods for deriving more information from the extracted link
chains to facilitate ontological web annotations.

226 M.-M. Naing, E.-P. Lim, and D.H.-L. Goh

References

1. T. B.-Lee, J. Hendler, and O. Lassila. The Semantic Web, May 2001.
URL:http://www.scientificamerican.com/2001/0501issue/0501berners-lee.html.

2. S. Baluja, V. Mittal, and R. Sukthankar. Applying machine learning for high
performance named-entity extraction. Computational Intelligence, 16, Nov. 2000.

3. Sergey Brin. Extracting patterns and relations from the world wide web. In
WebDB Workshop at 6th International Conference on Extending Database Tech-
nology, 1998.

4. M. Craven, D. DiPasquo, D. Freitag, A. McCallum, T. M. Mitchell, K. Nigam, and
S. Slattery. Learning to Construct Knowledge Bases from the World Wide Web.
Artificial Intelligence, 118(1-2): 69–113, 2000.

5. Line Eikvil. Information Extraction from World Wide Web-A Survey. Technical
Report 945, Norweigan Computing Center, 1999.

6. F.Ciravegna. Adaptive Information Extraction from Text by Rule Induction and
Generalisation. In Prodeedings of the 17th International Conference on Artificial
Intelligence, Seattle, USA, August 2001.

7. D. Freitag. Information extraction from HTML: Application of a general machine
learning approach. In Proc. of the 15th Conf. on Artificial Intelligence (AAAI-98),
pages 517–523, 1998.

8. Benjamin Habegger. Multi-pattern wrappers for relation extraction from the Web.
In Proceedings of the Europeen Conference on Artificial Intelligence, 2002.

9. N. Kushmerick. Wrapper induction: Efficiency and expressiveness. Artificial Intel-
ligence, 118(1-2): 15–68, 2000.

10. Ion Muslea. Extraction patterns for information extraction tasks: A survey. In In
AAAI-99 Workshop on Machine Learning for Information Extraction, 1999.

11. Ion Muslea, Steven Minton, and Craig A. Knoblock. Hierarchical wrapper induc-
tion for semistructured information sources. Autonomous Agents and Multi-Agent
Systems, 4(1/2): 93–114, 2001.

12. M. M. Naing, E.-P. Lim, and D. H.-L. Goh. Ontology-based Web Annotation
Framework for HyperLink Structures. In Proceedings of the International Work-
shop on Data Semantics in Web Information Systems, Singapore, December 2002.

13. S. Soderland. Learning Information Extraction Rules for Semi-structured and Free
Text. Journal of Machine Learning, 34(1-3): 233–272, 1999.

14. N. Sundaresan and J. Yi. Mining the Web for Relations. In Proceedings of the
WWW9 Conference, pages 699–711, 2000.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	10-2006

	Extracting link chains of relationship instances from a website
	Myo-Myo NAING
	Ee Peng LIM
	Roger Hsiang-Li CHIANG
	Citation

	Introduction
	Background and Motivation
	Paper Outline

	Related Work
	Problem Statement
	Anchor Element Path and Patterns
	Extraction Rules Definition
	Extraction Rule Evaluation on a Web Page

	Extraction Rule Learning Problem
	Formal Definition
	Training Data
	Extraction Rule Learning Algorithm

	Link Chain Construction
	Performance Evaluation
	Conclusion and Future Work

