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Variations of Diffie-Hellman Problem

Feng Bao, Robert H. Deng, and HuaFei Zhu

Infocomm Security Department, Institute for Infocomm Research.
21 Heng Mui Keng Terrace, Singapore 119613.
{baofeng, deng, huafei}@i2r.a-star.edu.sg

Abstract. This paper studies various computational and decisional
Diffie-Hellman problems by providing reductions among them in
the high granularity setting. We show that all three variations of
computational Diffie-Hellman problem: square Diffie-Hellman problem,
inverse Diffie-Hellman problem and divisible Diffie-Hellman problem, are
equivalent with optimal reduction. Also, we are considering variations of
the decisional Diffie-Hellman problem in single sample and polynomial
samples settings, and we are able to show that all variations are
equivalent except for the argument DDH ⇐ SDDH. We are not able to
prove or disprove this statement, thus leave an interesting open problem.

Keywords: Diffie-Hellman problem, Square Diffie-Hellman problem, In-
verse Diffie-Hellman problem, Divisible Diffie-Hellman problem

1 Introduction

The Diffie-Hellman problem [9] is a golden mine for cryptographic purposes and
is more and more studied. This problem is closely related to the difficult of
computing the discrete logarithm problem over a cyclic group[11]. There are
several works to study classical and variable Diffie-Hellman problems([13], [14],
[21], [18]) in the generic model. For the decisional Diffie-Hellman problem set-
ting, there is alternative, yet equivalent notation, called matching Diffie-Hellman
problem, have been studied by Handschuh, Tsiounis and Yung [10]. These vari-
ations are by now the security of many protocols relying on ([1], [2], [5], [6],[8]).
Tatsuaki Okamoto and David Pointcheval[16] introduce a new notion called the
Gap-Problems, which can be considered as a dual to the class of the decision
problems. While Sadeghi and Steinerhere [19] rigourously consider a set of Diffie-
Hellman related problems by identifying a parameter termed granularity, which
describes the underlying probabilistic space in an assumption.

This paper studies various computational and decisional problems related to
the Diffie-Hellman problems by providing reductions among them in the high
granularity setting, i.e., we consider the variations of Diffie-Hellman problem
defined over some cyclic group with explicit group structure. More precisely,
we are interested in studying relationship among variations of Diffie-Hellman
problem including computational and decisional cases in single and polynomial
setting and try to obtain reductions that are efficient so that an advantage
against one of these problems can be reached against the other one.
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The basic tools for relating the complexities of various problems are polyno-
mial reductions and transformations. We say that a problem A reduces in poly-
nomial time to another problem B, denoted by A⇐ B, if and only if there is an
algorithm for A which uses a subroutine for B, and each call to the subroutine
for B counts as a single step, and the algorithm for A runs in polynomial-time.
The latter implies that the subroutine for B can be called at most a polynomially
bounded number of times. The practical implication comes from the following
proposition: If A polynomially reduces to B and there is a polynomial time al-
gorithm for B, then there is a polynomial time algorithm for A also. Specially,
for considering variation of Diffie-Hellman problem in polynomial time sampling
case, we need to define the conception of efficient constructing algorithm to meet
the requirement of the standard hybrid technique.

Our contributions: In this report, we are considering useful variations of
Diffie-Hellman problem: square computational(and decisional) Diffie-Hellman
problem, inverse computational(and decisional) Diffie-Hellman problem and di-
visible computational(and decisional) Diffie-Hellman problem. We are able to
show that all variations of computational Diffie-Hellman problem are equivalent
to the classic computational Diffie-Hellman problem if the order of a underlying
cyclic group is a large prime. We remark that our reduction is efficient, that is
an advantage against one of these problems can be reached against another one.
Also, we are considering variations of the decisional Diffie-Hellman problem in
single sample and polynomial samples settings, and we are able to show that all
variations are equivalent except for the argument DDH ⇐ SDDH. We are not
able to prove or disprove this statement, thus leave an interesting open problem
in this report.

2 Variations of Computational Diffie-Hellman Problem

Let p be a large prime number such that the discrete logarithm problem defined
in Z∗

p is hard. Let G ∈ Z∗
p be a cyclic group of prime order q and g is assumed

to be a generator of G. Though out this paper, we assume that G is prime
order, and security parameters p, q are defined as the fixed form p=2q + 1 and
ord(g)=q. A remarkable computational problem has been defined on this kind of
set by Diffie and Hellman [9]. More precisely, Diffie-Hellman assumption (CDH
assumption) is referred to as the following statement:

Computational Diffie-Hellman problem (CDH): On input g, gx, gy, comput-
ing gxy.

An algorithm that solves the computational Diffie-Hellman problem is a
probabilistic polynomial time Turing machine, on input g, gx, gy, outputs
gxy with non-negligible probability. Computational Diffie-Hellman assumption
means that there is no such a probabilistic polynomial time Turing machine.
This assumption is believed to be true for many cyclic groups, such as the prime
sub-group of the multiplicative group of finite fields.
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2.1 Square Computational Diffie-Hellman Assumption

Let G ∈ Z∗
p defined as above, we are interested in the square computational

Diffie-Hellman problem, which has been studied at by a set of researchers already
(see [3], [12],[13], [14] for more details). We remark that the reduction presented
in this section emphasizes its efficient and optimal characteristic. Therefore our
work is non-trivial indeed.

Square computational Diffie-Hellman problem (SCDH): On input g, gx, com-
puting gx2

.
An algorithm that solves the square computational Diffie-Hellman problem

is a probabilistic polynomial time Turing machine, on input g, gx, outputs gx2

with non-negligible probability. Square computational Diffie-Hellman assump-
tion means that there is no such a probabilistic polynomial time Turing ma-
chine. Fortunately, we are able to argue that the SCDH assumption and CDH
assumption are equivalent.

SCDH ⇐ CDH
Proof: Given an oracle A1, on input g,gx, gy, outputs gxy, we want to show

that there exists an algorithm A2, on input gx, outputs gx2
. Given a random

value u := gr, we choose t1, t2 ∈ Zq at random, and compute u1 = ut1 = grt1 ,
and u2 = ut2 = grt2 . Therefore we are able to compute v = A1(u1, u2)= gr2t1t2

with non-negligible probability. It follows that gr2
can be computed from v, t1, t2

immediately with same advantage.
CDH ⇐ SCDH
Proof: Given an oracle A2, on input g, gx, outputs gx2

, we want to show that
there exists an algorithm A1, on input g, gx, gy, outputs gxy. Now given gx, we
choose s1, s2, t1, t2 ∈ Zq at random and compute v1 := A2(gxs1) =g(xs1)2 , v2 :=
A2((gy)s2) =g(ys2)2 . Finally, we compute v3:= A2(gxs1t1+ys2t2) = g(xs1t1+ys2t2)2 .
Since s1, s2, t1, t2 are known already, it follows that gxy can be computed from
v1, v2, v3, s1, s2, t1, t2 immediately with same advantage.

2.2 Inverse Computational Diffie-Hellman Assumption

We are also interested in such a computational variation of computational Diffie-
Hellman problem, called inverse computational Diffie-Hellman assumption (In-
vCDH assumption) first studied at [17].

Inverse computational Diffie-Hellman problem (InvCDH): On input g, gx,
outputs gx−1

.
An algorithm that solves the inverse computational Diffie-Hellman problem

is a probabilistic polynomial time Turing machine, on input g, gx, outputs gx−1

with non-negligible probability. Inverse computational Diffie-Hellman assump-
tion means that there is no such a probabilistic polynomial time Turing machine.
Fortunately, we are able to argue that the SCDH assumption and InvCDH as-
sumption are also equivalent.

InvCDH ⇐ SCDH
Proof: Given an oracle A2, on input g, gx, outputs gx2

, we want to show that
there exists an algorithm A3, on input gx, outputs gx−1

. Given a random value
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gr, we set h1 ← gr and h2 ← g. Finally, we view (h1, h2) as an input to the
oracle A2 to obtain A2(h1, h2) = grr−2

. It follows that gr−1
can be computed

from A2 immediately with same advantage.
SCDH ⇐ InvCDH
Proof: Given an oracle A3, on input g, gx, outputs gx−1

, we want to show
that there exists an algorithm A2, on input g, gx, outputs gx2

. Now given g, gr,
we set h1 ← gr and h2 ← g. Finally, we view (h1, h2) as an input to the oracle
A3 to obtain A3(h1, h2)= A3(gr, (gr)r−1

). It follows that gr2
can be computed

from A3 with the same advantage.

2.3 Divisible Computation Diifie-Hellman Assumption

Yet, there is another variation of CDH assumption, called divisible computa-
tion Diffie-Hellman assumption, which is interesting from point of views of both
theoretical research and practice.

Divisible computation Diifie-Hellman problem (DCDH problem): On random
input g,gx, gy, computing gy/x. We refer this oracle to as divisional computation
Diffie-Hellman problem.

An algorithm that solves the divisible computational Diffie-Hellman problem
is a probabilistic polynomial time Turing machine, on input g, gx, gy, outputs
gx/y with non-negligible probability. Divisible computation Diffie-Hellman as-
sumption means that there is no such a probabilistic polynomial time Turing
machine. As desired, we are able to show that divisible computational Diifie-
Hellman assumption is equivalent to computational Diffie-Hellman assumption:

CDH ⇐ DCDH
Proof: Suppose we are given an divisible computation Diffie-Hellman oracle

denoted by A4, on input g, gx, gy, outputs gy/x. We want to show that there
exists an algorithm A1, on input g, gx, gy, outputs gxy. Given g, gx, gy, we choose
s1, s2, t1, t2 ∈ Zq at random, and compute v1 := A4(g, (gx)s1 , gs2)=gxs1/s2 , v2: =
A4(g, gt1 , (gy)t2 = gt1/(yt2). Finally, we compute v := A3(v1, v2) = g(xys1t2)/(s2t1).
Since s1, s2, t1, t2 are known already, it follows that gxy can be computed from
v, s1, s2, t1, t2 immediately with same advantage.

DCDH ⇐ CDH
Proof: Suppose we are given an computational Diffie-Hellman oracle A1, on

input g, gx, gy, it outputs gxy. We want to show that there exists an algorithm
A4, on input g, gx, gy, outputs gy/x. Suppose we are given a triple g, gx, gy

now. By assumption, we are given a computational Diffie-Hellman oracle A1 ,
consequently, we are able to construct an InvCDH oracle A3. Viewing g, gy as
input to A3 to obtain v := gy−1

. Finally, one views g, gx, v as input to A1 to
obtain gx/y.

We prove the fact that if the underlying group with prime order q, all vari-
ations of computational Diffie-Hellman problem are equivalent, i.e., CDH ⇔
SCDH ⇔ InvCDH ⇔ DCDH.
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3 Variations of Decisional Diffie-Hellman Problem

In this section, we study variations of decisional Dffie-Hellman problem. It has
been known for years that the various DDH-based problems been published many
times and commented under many angles. Recently reductions were known from
the work of Sadeghi and Steiner [19] in the generic model, but the present paper
provides reductions in the high granularity setting. Before formally study the
relationship among the variation problems, we would like to provide a formal
definitions of the related problems.

3.1 Formal Definitions on Variations of Decisional Diffie-Hellman
Problem

Decisional Diffie-Hellman assumption-DDH: Let G be a large cyclic group of
prime order q defined above. We consider the following two distributions:

– Given a Diffie-Hellman quadruple g, gx, gy and gxy, where x, y ∈ Zq, are
random strings chosen uniformly at random;

– Given a random quadruple g, gx, gy and gr, where x, y, r ∈ Zq, are random
strings chosen uniformly at random.

An algorithm that solves the Decisional Diffie-Hellman problem is a statistical
test that can efficiently distinguish these two distributions. Decisional Diffie-
Hellman assumption means that there is no such a polynomial statistical test.
This assumption is believed to be true for many cyclic groups, such as the prime
sub-group of the multiplicative group of finite fields.

Square decisional Diffie-Hellman assumption-SDDH: Let G be a large cyclic
group of prime order q defined above. We consider the following two distributions:

– Given a square Diffie-Hellman triple g, gx and gx2
, where x ∈ Zq, is a random

string chosen uniformly at random;
– Given a random triple g, gx and gr, where x, r ∈ Zq, are two random strings

chosen uniformly at random.

An algorithm that solves the square decisional Diffie-Hellman problem
(SDDH for short) is a statistical test that can efficiently distinguish these two
distributions. Square decisional Diffie-Hellman assumption means that there is
no such a polynomial statistical test.

Inverse decisional Diffie-Hellman assumption -InvDDH: Let G be a large
cyclic group of prime order q defined above. We consider the following two dis-
tributions:

– Given a inverse Diffie-Hellman triple g, gx and gx−1
, where x ∈ Zq, is a

random string chosen uniformly at random.;
– Given a random triple g, gx and gr, where x, r ∈ Zq, are random strings

chosen uniformly at random.



306 F. Bao, R.H. Deng, and H. Zhu

An algorithm that solves the Inverse decisional Diffie-Hellman problem (In-
vDDH for short) is a statistical test that can efficiently distinguish these two
distributions. Inverse decisional Diffie-Hellman assumption means that there is
no such a polynomial statistical test.

Divisible decision Diffie-Hellman assumption-DDDH: Let G be a large cyclic
group of prime order q defined above. We consider the following two distributions:

– Given a divisible Diffie-Hellman quadruple g, gx, gy and gx/y, where x, y ∈
Zq, are random strings chosen uniformly at random;

– Given a random quadruple g, gx and gy and gr, where x, y, r ∈ Zq, are
random strings chosen uniformly at random.

An algorithm that solves the divisible decision Diffie-Hellman problem
(DDDH for short) is a statistical test that can efficiently distinguish these two
distributions. Divisive decision Diffie-Hellman assumption means that there is
no such a polynomial statistical test.

3.2 Relations among Variations of Decisional Diffie-Hellman
Assumption

Analogous the arguments above, we consider relations among variations of de-
cisional Diffie-Hellman assumption. We first prove the equivalence between In-
vDDH and SDDH assumptions.

InvDDH ⇐ SDDH.
Proof: Given a distinguisher D1 which is able to tell square Diffie-Hellman

triple from a random triple with non-negligible probability, we want to show that
there exists a polynomial distinguisher D2 which is able to tell inverse Diffie-
Hellman triple from a random triple with non-negligible advantage. Now we are
given g, gx and gr, where r is either x−1 or a random string. Setting h1 ← (gr)s,
h2 ← gs and h3 ← (gx)s2

), where s ∈ Zq is a random string. We remark that
if r = x−1, then h1 = (gx−1

)s, and h2 = (gx−1
)sx, and h3 = (gx−1

)s2x2
. If

gr is a random triple, then (h1, h2, h3) is also a random triple. We then view
(h1, h2, h3) as input to the oracle D1 to obtain correct value b ∈ {0, 1} (b=0
if the answer of D1 is SDDH triple, and 0 otherwise). Therefore, we have a
polynomial distinguisher D2 which is able to tell inverse Diffie-Hellman triple
from a random triple with same non-negligible advantage.

SDDH ⇐ InvDDH.
Proof: Given a distinguisher D2, which is able to tell the inverse decisional

Diffie-Hellman triple from a random triple with non-negligible advantage, we
want to show that there exists a distinguisher D1 that is able to tell the square
decisional Diffie-Hellman triple from a random pair with non-negligible advan-
tage. Given g, gx, gr, where either r = x2 or r ∈ Zq a random string. Setting,
h1 ← gx, h2 ← (gr)s and h3 ← gs−1

. We remark that if r = x2, then h1 = gx,
h2 = (gx)xs and h3 = (gx)(xs)−1

. If r is a random string, then h1, h2 and h3 are
random triple. We view (h1, h2, h3) as input to inverse decisional Diffie-Hellman
distinguisher D2 to obtain correct value b ∈ {0, 1} (b=0 if the answer of D2 is
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InvDDH triple, and 0 otherwise). Therefore, we have a polynomial distinguisher
D2 which is able to tell square Diffie-Hellman triple from a random triple with
same non-negligible advantage.

Based on the above arguments, we know the fact that SDDH ⇔ InvDDH.
Then we consider the equivalence between DDDH and DDH.
DDDH ⇔ DDH.
Proof: Given (g, gx, gy, gx/y), one simply submits (g, gy, gx/y, gx) to DDH to

decide the divisible format of the quadruple;
DDH ⇔ DDDH
Conversely, given (g, gx, gy, gxy), one queries DDDH with (g, gxy, gy, gx) and

return DDDH’s answer (plus, queries can be easily randomized if needed).
Therefore, we know the fact that DDDH ⇔ DDH.
Finally, we consider the problem whether DDH ⇔ SDDH or not. Firstly, we

show the fact below:
SDDH ⇐ DDH.
Proof: Given a distinguisher D, which is able to tell the standard deci-

sional Diffie-Hellman triple from the random triple with non-negligible advan-
tage, we want to show that there exists a distinguisher D1 that is able to
tell the square decisional Diffie-Hellman triple from a random triple with non-
negligible advantage. Suppose we are given a triple (g, gx, gz), where gz is either
of the form gy or gx2

, we then choose two strings s, t at random, and compute
u ← (gx)s,v ← (gx)t, w ← (gz)st. We remark that if (g, gx, gz) is square Diffie-
Hellman triple then (g, u, v, w) is a Diffie-Hellman quadruple and if (g, gx, gz)
is random triple then (g, u, v, w) is a random quadruple. Finally, we view the
quadruple (g, u, v, w) as an input to the distinguisher D to obtain correct value
b ∈ {0, 1} (b=0 if the answer of D is DDH quadruple, and 0 otherwise). There-
fore if D1 is able to distinguish a Diffie-Hellman quadruple or random quadruple
with non-negligible advantage then there is a square Difie-Hellman distinguisher
D1 that is able to tell the square decisional Diffie-Hellman triple from a random
triple with same non-negligible advantage.

Unfortunately, we are not able to show that DDH ⇐ SDDH. This leaves
an interesting research problem. Recall that the computational Diffie-Hellman
problem (CDH assumption) equivalents the square computational Diffie-Hellman
problem (SCDH assumption), we believe this conjecture true if the underlying
group G ∈ Z∗

p , e.g., |G| = q and p = 2q + 1.
Conjecture: Under the assumption of group structure of G, DDH is equivalent

to SDDH.

3.3 Polynomial Samples Setting

We are interested in generalized variations of Diffie-Hellman problem. These as-
sumptions play central role for the construction of dynamic group protocols([1],
[3], [6], [7], [19], [20]). In this section, we are considering variations of the de-
cisional Diffie-Hellman problem in polynomial samples setting. We study those
generalized variations of Diffie-Hellman problem by first provided some related
notions, then we present optimal reductions from one to another.
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Generalized Decisional Diffie-Hellman assumption: for any k, the following
distributions are indistinguishable:

– The distribution R2k of any random tuple (g1, · · · , gk, u1, · · ·,uk) ∈ G2k,
where g1, · · · , gk, and u1, · · · , uk are uniformly distributed in G2k;

– The distribution D2k of tuples (g1, · · · , gk, u1, · · · , uk) ∈G2k, where g1, · · · , gk

are uniformly distributed in Gk, and u1 = gr
1, · · · , uk = gr

k for random r ∈ Zq

chosen at random.

An algorithm that solves the generalized decisional Diffie-Hellman problem
is a statistical test that can efficiently distinguish these two distributions. Gen-
eralized decisional Diffie-Hellman assumption means that there is no such a
polynomial statistical test.

Similarly, one can extend the variation of decisional Diffie-Hellman problem
to the general case of other types.

Generalized square decisional Diffie-Hellman assumption (GSDDH): Let G
be a large cyclic group of prime order q defined above. We consider the following
two distributions:

– The distribution R3k of any random tuple (g1, · · · , gk, g1
x1 , · · · , gk

xk , u1,
· · · , uk) ∈ G3k, where g1, · · · , gk, x1, · · · , xk and u1, · · · , uk are uniformly
distributed in G3k;

– The distribution D3k of tuples (g1, · · · , gk, g1
x1 , · · · , gk

xk , u1, · · · , uk) ∈ G3k,
where g1, · · · , gk, g1

x1 , · · · , gk
xk are uniformly distributed in Gk while u1 =

gx1
2

1 , · · · , uk = gk
xk

2
for each xi uniformly distributed in Zq.

An algorithm that solves the generalized square decisional Diffie-Hellman
problem is a statistical test that can efficiently distinguish these two distribu-
tions. Square decisional Diffie-Hellman assumption means that there is no such
a polynomial statistical test.

Generalized inverse decisional Diffie-Hellman assumption (GInvDDH): Let G
be a large cyclic group of prime order q defined above. We consider the following
two distributions:

– The distribution R3k of any random tuple (g1, · · · , gk, g1
x1 , · · · , gk

xk , u1,
· · · , uk) ∈ G3k, where g1, · · · , gk, x1, · · · , xk and u1, · · · , uk are uniformly
distributed in G3k;

– The distribution D3k of tuples (g1, · · · , gk, g1
x1 , · · · , gk

xk , u1, · · · , uk) ∈ G3k,
where g1, · · · , gk, g1

x1 , · · · , gk
xk are uniformly distributed in Gk while u1 =

g1
x1

−1
, · · · , uk = gk

xk
−1

for each xi uniformly distributed in Zq.

An algorithm that solves the generalized inverse decisional Diffie-Hellman
problem (GInvDDH for short) is a statistical test that can efficiently distinguish
these two distributions. Generalized inverse decisional Diffie-Hellman assumption
means that there is no such a polynomial statistical test.

Now we are able to show that the generalized decisional Diffie-Hellman as-
sumption is true even in the polynomial sampling setting. The argument is by
mathematics induction.



Variations of Diffie-Hellman Problem 309

6-DDH ⇐ 4-DDH.
Proof: Let us consider a machine M that can get a non-negligible advantage ε

between D4 and R4. We define a 6-DDH distinguisher M ′, which runs as follows:
Given any six-tuple (g1, g2, g3, u1, u2, u3), which comes from either R6 or D6, M ′

runs M on the quadruple (g1g2, g3, u1u2, u3) and simply forwards the answer. As
explained by the equations presented below, that if (g1, g2, g3, u1, u2, u3) follows
the distribution D6, then (g1g2, g3, u1u2, u3) follows the distribution D4. It is also
the same between R6 and R4. As a consequence, our new machine gets the same
advantage ε in distinguishing D6 and R6 with the help of M in distinguishing
D4 and R4, performing just one more multiplication in G, where G is assumed
to be a cyclic group of order q, and g is assumed to be a generator of this group.
We denote the output of M(respectively M ′)as follows: If the input comes from
D4(D6 respectively), it outputs 1 and 0 if the input tuple comes from R4(R6

respectively).

Pr[M(g1g2, g3, u1u2, u3) = 1|(g1, g2, g3, u1, u2, u3) ∈ R6]

= Pr[M(gx1+x2 , gx3 , gx4+x5 , gx6) = 1|x1, x2, x3, x4, x5, x6 ∈ Zq]

= Pr[M(gx, gy, gz, gr) = 1|x, y, z, r ∈ Zq]

= Pr[M(g1, g2, u1, u2) = 1|(g1, g2, u1, u2) ∈ R4]

and
Pr[M(g1g2, g3, u1u2, u3) = 1|(g1, g2, g3, u1, u2, u3) ∈ D6]

= Pr[M(gx1+x2 , gx3 , gr(x1+x2), grx3) = 1|x1, x2, x3, r ∈ Zq]

= Pr[M(gx, gy, grx, gry) = 1|x, y, r ∈ Zq]

= Pr[M(g1, g2, u1, u2) = 1|(g1, g2, u1, u2) ∈ D4]

4-DDH ⇐ 6-DDH
Let us consider a machine M that can get a non-negligible advantage ε

between D6 and R6. We define a 4-DDH distinguisher M ′, which runs as
follows: on a given quadruple (g1, g2, u1, u2), M ′ runs M on the six-tuple
(g1, g2, g

s
1g

t
2, u1, u2, u

s
1u

t
2), for randomly chosen s and t in Zq, and simply for-

wards the answer. Once again, the advantage of our new distinguisher M ′ is
exactly the same as the advantage of M , with very few more computations: we
assume again g to be a generator of G, and we insist on the fact that Zq is a
field.

Pr[M ′(g1, g2, u1, u2) = 1|(g1, g2, u1, u2) ∈ D4]

= Pr[M(gx1 , gx2 , gsx1+tx2 , grx1 , grx2 , gsrx1+trx2) = 1|x1, x2, r, s, t ∈ Zq]

= Pr[M(gx1 , gx2 , gx3 , grx1 , grx2 , grx3) = 1|x1, x2, x3, r ∈ Zq]

= Pr[M(g1, g2, g3, u1, u2, u3) = 1|(g1, g2, g3, u1, u2, u3) ∈ D6]

and
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Pr[M ′(g1, g2, u1, u2) = 1|(g1, g2, u1, u2) ∈ R4]

= Pr[M(gx1 , gx2 , gsx1+tx2 , gy1 , gy2 , gsy1+ty2) = 1|x1, x2, s, t, y1, y2 ∈ Zq]

= Pr[M(gx1 , gx2 , gx3 , gy1 , gy2 , gy3) = 1|(x1, x2, x3, y1, y2, y3) ∈ Zq
6]

= Pr[M(g1, g2, g3, u1, u2, u3) = 1|(g1, g2, g3, u1, u2, u3) ∈ R6]

Based on the above argument, we obtain the useful result: the Decisional
Diffie-Hellman Problems, 4-DDH and 6-DDH, are equivalent.

We known that the obtained reductions are optimal since an advantage
against one of these problems can be reached against the other one. There-
fore, under the sole classical Decisional Diffie-Hellman assumption, for any k,
the generalized decisional Diffie-Hellman assumption is indistinguishable.

With the same technique above, the generalized square decisional Diffie-
Hellman assumption and the generalized inverse decisional Diffie-Hellman as-
sumption can be easily proved. We also remark that the standard hybrid tech-
nique provides alternative approach to prove the Decisional Diffie-Hellman prob-
lem in the polynomial sampling setting.

4 Conclusions

We have studied the relationship among variations of Diffie-Hellman problem in-
cluding the computational and decisional cases with efficient reductions. We show
that all four variations of computational Diffie-Hellman problem are equivalent
if the order of a underlying cyclic group is large prime. Also, we are considering
variations of the decisional Diffie-Hellman problem in single sample and poly-
nomial samples setting. We are able to show that all variations are equivalent
except for the argument DDH ⇐ SDDH, and thus leave an interesting open
problem.
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