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Simulation-based Estimation Methods for Financial Time Series

Models∗

Prepared for Handbook of Computational Finance

Jun Yu†

February 16, 2009

Abstract

This paper overviews some recent advances on simulation-based methods of estimating time
series models and asset pricing models that are widely used in finance. The simulation based
methods have proven to be particularly useful when the likelihood function and moments do
not have tractable forms and hence the maximum likelihood method (MLE) and the generalized
method of moments (GMM) are difficult to use. They can also be useful for improving the finite
sample performance of the traditional methods when financial time series are highly persistent
and when the quantity of interest is a highly nonlinear function of system parameters.

The simulation-based methods are classified in this paper, based on the frequentist/Bayesian
split. Frequentist’s simulation-based methods cover simulated generalized method of moments
(SMM), efficient method of moments (EMM), indirect inference (II), various forms of simulated
maximum likelihood methods (SMLE). Asymptotic properties of these methods are discussed
and asymptotic efficiency is compared. Bayesian simulation-based methods cover various MCMC
algorithms. Each simulation-based method is discussed in the context of a specific financial time
series model as a motivating example. The list of discussed financial time series models cover
continuous time diffusion models, latent variable models, term structure models, asset pricing
models, and structural models for credit risk.

Finite sample problems of the exact maximum likelihood method, such as finite sample
bias, are also discussed. Simulation-based bias correction methods, such as indirect inference,
simulation-based median unbiased estimation, and bootstrap methods are reviewed. A nice
property about these simulation-based bias correction methods is that they retains the good
asymptotic properties of maximum likelihood estimation while reducing finite sample bias.

∗Yu gratefully acknowledge financial support from the Ministry of Education AcRF fund under Grant No.
T206B4301-RS.

†School of Economics, Singapore Management University, 90 Stamford Road, Singapore 178903; email: yu-
jun@smu.edu.sg.
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Empirical applications, based on real exchange rates, interest rates and equity data, illustrate
how to implement the simulation based methods. In particular, we apply EMM to estimate
a continuous time stochastic volatility model, MCMC to a structural model for credit risk,
SMLE to a discrete time stochastic volatility model, II method to the Black-Scholes option
pricing model, median unbiased estimation method to a one-factor bond option pricing model.
Computer code and data are provided.

Keywords: Generalized method of moments, Maximum likelihood, MCMC, Indirect Inference,
Bootstrap, Median Unbiased, Option pricing, Credit risk, Stock price, Exchange rate, Interest
rate.



1 Introduction

Relative to other fields in economics, financial economics has a relative shorter history. However,
over the last half century, there has been an explosion of theoretical work in financial economics.
At the same time, interestingly, more and more complex financial products and services have been
created. The size of financial markets has exponentially increased and the quality of database is
hugely advanced.

How to price financial assets has been a driving force for much of the research on financial
asset pricing. With the growth in complexity in financial products and services, the challenges
faced by the financial economists naturally grow accordingly, one of which is the computing cost.
Another driving force for research in finance is to bring finance theory to data. Empirical problems
in financial economics almost always involve calculating a likelihood function or solving a set of
moment conditions.

Traditional estimation methods include maximum likelihood (ML), quasi-ML, generalized method
of moments (GMM), and Bayesian. When the model is fully specified and the likelihood function
has a tractable form, ML and Bayesian provide the full likelihood-based inference. Under mild
regularity conditions, it is well recognized that ML estimators (MLE) are consistent, asymptotic
normally distributed and asympotically efficient. Due to the invariance principle, a function of
MLE is a MLE and hence inherits all the nice asymptotic properties (e.g, Zehna, 1966). This
feature greatly facilitate financial applications of ML. When the model is not fully specified and
certain moments exist, GMM can be applied. Relative to ML, GMM may be less efficient but more
robust.

Financial data are typically available in time series format. Consequently, financial time se-
ries methods are of critical importance to empirical research in finance. Traditionally, financial
economists restrict themselves on a small class of time series models and a small set of financial
assets, so that the setups are simple enough to permit analytical solutions for asset prices. The
leading example is perhaps the geometric Brownian motion. It was used by Black and Scholes to
price an European option price (Black and Scholes, 1973) and by Merton to price corporate bonds
(Merton, 1974). In recent years, however, many alternative models and many financial assets have
been proposed so that asset prices do not have analytical solutions. As a result, various numerical
solutions have been proposed, one of which is simulation-based. Although this problem is sufficient
important and the solutions merit a detailed review (see McLeish (2005) for a textbook treatment),
it is beyond the scope of the present chapter.

Even if the pricing formula of a financial asset has a tractable form, estimation of the underlying
time series model is not always feasible by standard statistical methods. For many important
financial time series models, the likelihood function or the moment conditions cannot be evaluated
analytically and is numerically formidable so that classical statistical methods, such as ML, GMM
and Bayesian, are not feasible. For example, Heston derived a closed-form expression for the
European option price under the square root specification of stochastic volatility (SV) (Heston,
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1993), but ML Estimation of Heston’s SV model is notoriously difficult. For more complicated
time series models where asset prices do not have closed-form expressions, it is almost always the
case that standard estimation methods are difficult to use.

Other than to asset pricing, parameter estimates in financial time series models are inevitable
inputs to many other financial decision makings, such as asset allocation, value-at-risk, forecasting,
estimation of the magnitude of microstructure noise, estimation of transaction cost, specification
analysis, and credit risk analysis. For example, alternative time series specifications are available in
many cases. Consequently, it may be important to check the validity of a particular specification and
to compare the performance of alternative specifications. Obviously, estimation of these alternative
specifications is an important preliminary step to the specification analysis. For another example,
to estimate the theoretical price of a contingent claim implies by the underlying time series model,
one has estimate the parameters in the time series model and then plug the estimates into the
pricing formula.

In some case where ML or GMM or Bayesian methods are feasible, when financial time series
are highly persistent, classical estimators of parameters in the underlying time series models may
have poor finite sample statistical properties, due to the presence of large finite sample bias. The
bias in parameter estimation leads to a bias in other financial decision making. Because many
financial variables, such as interest rates and volatility, are highly persistence, this finite sample
problem is empirically relevant.

To overcome the difficulties in calculating likelihood and moments or improving the finite sample
property of standard estimators, many simulation-based estimation methods have been proposed
in recent years. Some of them are methodologically general in principle; some other are specially
designed to deal with a particular model structure. In this chapter, we review some simulation-
based estimation methods for financial time series models. Stern (1997) is an excellent review of the
simulation-based estimation methods in the cross-sectional context while Gouriéroux and Monfort
(1995) is an excellent review of the simulation-based estimation methods in the classical framework.
Johannes and Polson (2009) reviews the Bayesian MCMC methods used in financial econometrics.
Our present review is different from these reviews in several important aspects. First, our review
covers both the classical and Bayesian methods. Second, relative to Stern (1997) and Gouriéroux
and Monfort (1995), more recently developed classical methods are discussed in the present paper.

We organize the review by collecting the methods into four categories: simulation-based ML,
simulation-based GMM, Bayesian Markov chain Monte Carlo (MCMC) methods, and indirect
inference methods. All these four methods all discussed in the context of a specific example. An
empirical illustration is performed using real data in each case. Section 2 overviews the classical
estimation methods, explains why sometimes the classical estimation methods may be difficult to
use. Section 3 discusses discrete time stochastic volatility models, reviews various simulation-based
ML methods, and illustrate the implementation of one particular simulation-based ML method
in the context of a basic discrete time SV model. Section 4 discusses continuous time models,
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review various simulation-based GMM, and illustrate the implementation of efficient method of
moments (EMM) in the context of a continuous time SV model. Section 5 discusses structure
credit risk models, review Bayesian MCMC methods, and illustrate the implementation of the
Gibb-sampler MCMC method in the context of a simple credit risk model. Section 6 discusses
continuous time models with a persistent, linear drift term, reviews indirect inference methods that
have been proposed to improve the finite sample performances of traditional methods, illustrate the
implementation of indirect inference methods to price a deep out-of-money option in the context
of Black-Scholes model. Finally, Section 7 concludes.

2 Classical Estimation Methods

In many cases the likelihood function of a financial time series model can be expressed by1

`(θ) = f(X; θ) =
∫

f(X,h; θ)dh, (1)

where X = (X1, · · · , Xn) := (Xh, · · · , Xnh) is the data observed by econometricians,2 h is the
sampling interval, f(X) the joint density of X, h a vector of some latent variables, θ a set of K

parameters one econometricians wish to estimate. As X(t) are often annualized, when daily (weekly
or monthly) data are used, h is set at 1/252 (1/52 or 1/12). Assume T = nh is the time span of the
data and the true values for θ is θ0. Unfortunately, when the integration in (7) is not analytically
available and the the dimension in h is high, numerical evaluation of (7) would be difficult.

ML needs to maximize (7) over θ in a certain parameter space, i.e.,

θ̂ML
n = argmaxθ∈Θ`(θ) = f(X; θ)

The first order condition of the maximization problem is

g(X; θ) :=
∂f

∂θ
= 0.

Under mild regularity conditions, ML estimator (MLE) has desirable asymptotic properties of con-
sistency, normality and efficiency. Moreover, due to the invariance property of maximum likelihood
(e.g, Zehna, 1966), a nonlinear transformation of MLE is a MLE of the nonlinear transformation
of the corresponding parameters. This property has proven very useful in asset pricing and credit
risk analysis. Since f(X; θ) is difficult to calculate, ML is not easy to implement.

Instead of maximizing the likelihood function, Bayesian methods updates the prior density to
the posterior density using the likelihood function, based on the Bayes theorem:

f(θ|X) ∝ f(X; θ)f(θ),
1Specific examples can be found below.
2When there is no confusion, we will use Xt and Xth interchangeably.
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where f(θ) is the prior density and f(θ|X) the posterior distribution. In the case where f(X; θ) is
difficult to calculate, the posterior density f(θ|X) is generally difficult to calculate.

Unlike ML or Bayesian methods that require the distributional assumption of the model, GMM
only requires a set of moment conditions. Let g be a set of q moment conditions, i.e.,

Eg(X; θ0) = 0

GMM minimizes a distance measure, i.e.,

θ̂GMM
n = argminθ∈Θ

(
1
n

n∑
t=1

g(Xt; θ)

)′
Wn

(
1
n

n∑
t=1

g(Xt; θ)

)′
,

where Wn is a certain positive definite weighting matrix of q × q-dimension (q ≥ K), which may
depend on the sample but not θ. Obviously, the implementation of GMM requires the g functions
to be known analytically or easy to calculate numerically. Since a fixed set of moments contain less
information than a density, in general, GMM uses less information than ML and hence is statistically
less efficient. In the case where the moment conditions are selected based on the score functions
(in which case q = K), GMM and ML are equivalent. However, sometimes moment conditions
are obtained without distributional assumptions and hence GMM may be more robust than the
full likelihood methods. Under mild regularity conditions, Hansen (1982) obtained the asymptotic
distributions for GMM estimators. Unfortunately, in many financial time series models, the g

function in the moment conditions do not have analytical expression and is difficult to calculate
numerically, making GMM not easy to implement.

Even if ML is applicable, MLE is not necessarily the best estimator in finite samples. Phillips
and Yu (2005a, 2005a, 2009a, 2009b) provided numerous examples to demonstrate the poor finite
sample property. There are three reasons for this. First, many financial variables (such as interest
rates and volatility) are very persistent. When linear time series models are fitted to these variables,
the MLE (and many other estimators alike) of the system parameters typically involves substantial
finite sample bias even in very large samples. For example when 600 weekly observations are used
to estimate the square root model of CIR, ML estimates the mean reversion parameter with nearly
300% bias. Second, often financial applications involve non-linear transformation of estimators of
the system parameters. Two examples are asset pricing and the evaluation of default probability.
Even if the system parameters are estimated without any bias, insertion of even unbiased estimators
into the nonlinear functions will not assure unbiased estimation of the quantity of interest. An well
known example is the MLE of deep out-of-money option. In general, the more pronounced the
nonlinear, the worse the finite sample performance. Third, even if a long-span sample is available
for some financial variables and hence asymptotic properties of econometric estimators is more
relevant, full data sets are not always employed in estimation because of possible structural changes
in long-span data. When short-span samples are used in estimation, finite sample distributions can
be far from the asymptotic theory. One way to improve the finite sample performance of classical
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estimators is to obtain the bias and the remove the bias from those estimator, with the hope that
the variance of bias-corrected estimator does not increase or only increase slightly so that the mean
square error becomes smaller. Unfortunately, explicit analytic evaluation of the bias function is
almost always infeasible in time series models.

When the likelihood function and moments are difficult to calculate or traditional estimators
perform poorly in finite sample, one can use simulation methods. There has been explosion of
theoretical and empirical work using simulation methods in financial time series analysis over the
last fifteen years. In the following sections we will consider some important examples. Simulated-
based methods are discussed in the context and an empirical illustration is provided for each
example.

3 Discrete time SV models

We first focus on the so-called basic lognormal (LN) SV model of Taylor (1982) which is defined by{
Xt = σeht/2εt, t = 1, . . . , T,
ht+1 = φht + γηt, t = 1, . . . , T − 1,

(2)

where Xt is the return of an asset, εt
iid∼ N(0, 1), ηt

iid∼ N(0, 1), corr(εt, ηt) = 0, and h1 ∼
N(0, γ2/(1 − φ2)). The parameters of interest are θ = (σ, φ, γ)′. This model is a powerful al-
ternative to ARCH-type models (Geweke (1994) and Danielsson (1994)).

Let X = (X1, . . . , XT )′ and h = (h1, . . . , hT )′. The likelihood function of the basic LN-SV
model is given by

p(X; θ) =
∫

p(X,h; θ)dh =
∫

p(X|h; θ)p(h; θ)dh. (3)

To perform ML estimation to the SV model, one must approximate the high-dimensional integral
(3) numerically. Since a typical financial time series has at least several hundreds observations,
using traditional numerical integration methods, such as quadratures, to approximate the high-
dimensional integral (3) is numerically formidable. This is the motivation of the use of Monte
Carlo integration methods in much of the SV literature.

The basic LN-SV model has been generalized in various dimensions to accommodate stylized
facts in financial data. Leverage, SV-t, super-position, jumps. Alternative to LN-SV is Heston.

In this section, we will review several approaches to do simulated ML estimation of the basic
LN-SV model. The general methodology is first discussed, followed by a discussion of how to use
the method to estimate the LN-SV model and finally by an empirical application.

3.1 Laplace importance sampler (LA-IS)

One of the widely received Monte Carlo methods is to first match the integrand with a multivariate
normal distribution and second draw a sequence of independent variables from the multivariate
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normal distribution. That is, the carefully selected multivariate normal density is served as an
importance function. The technique in Stage 1 is known as the Laplace approximation while the
technique in Stage 2 is known as the importance sampler. In this paper we call the method LA-IS.

To fix the idea, in Stage 1, we match p(X,h; θ) and a multivariate normal distribution for h as
closely as possible so that the mean and co-variance in the multivariate normal are taken to be h∗

and −Ω−1, respectively, where
h∗ = arg max

h
ln p(X,h; θ) (4)

and

Ω =
∂2 ln p(X,h∗; θ)

∂h∂h′
. (5)

Then the Laplace approximation to the integrand (3) is

p(X,h; θ) ≈ N(h;h∗,−Ω−1), (6)

where N(·;µ,Σ) represents the density of a (multivariate) normal distribution with mean of µ and
co-variance of Σ.

For the LN-SV model h∗ does not have the analytical expression and hence numerical methods
are needed. For example, Shephard and Pitt (1997) and in Durham (2006) proposed to use Newton’s
method, which involves recursive calculations of h = h−−Ω−1h−, based on a certain initial vector
of log-volatilities, h0.

Based on the Laplace approximation, the likelihood function can be written as

p(X; θ) =
∫

p(X,h; θ)dh =
∫

p(X,h; θ)
N(h;h∗,−Ω−1)

N(h;h∗,−Ω−1)dh. (7)

The idea of importance sampling is to draw samples h(1), . . . ,h(S) from N(·;h∗,−Ω−1) so that we
can approximate p(X; θ) by

1
S

S∑
s=1

p(X,h(s); θ)
N(h(s);h∗,−Ω−1)

. (8)

After the likelihood function is obtained, a numerical optimization procedure, such as the quasi
Newton method, can be applied to obtain the ML estimator.

The convergence of (8) to the likelihood function p(X; θ) with S →∞ is ensured by Komogorov’s
strong law of large numbers. The square root rate of convergence is achieved if and only if the
following condition holds

V ar

(
p(X,h(s); θ)

N(h(s);h∗,−Ω−1)

)
< ∞.

See Koopman, Shephard and Creal (2009) for further discussions on the conditions and a test for
the convergence.
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The LA-IS method is quite general. The approximation error is determined by how closely the
integrant can be matched by the multivariate normal distribution. The Laplace approximation has
no approximation error when p(X,h; θ) is Gaussian in h. However, when p(X,h; θ) is far away
from Gaussian in h, it is expected the performance of Laplace approximation is not good.

For the LN-SV model, the integrand in (3) can be written as

p(X,h; θ) = N

(
h1, 0,

γ2

1− φ2

) T∏
t=2

N
(
ht, φht−1, γ

2
) T∏

t=1

N
(
Xt, 0, σ2eht

)
, (9)

and hence

ln p(X,h; θ) = lnN

(
h1, 0,

γ2

1− φ2

)
+

T∑
t=2

lnN
(
ht, φht−1, γ

2
)

+
T∑

t=1

lnN
(
Xt, 0, σ2eht

)
. (10)

It is easy to show that
∂N(x;µ, σ2)/∂x

N(x;µ, σ2)
= −x− µ

σ2
,

∂N(x;µ, σ2)/∂µ

N(x;µ, σ2)
= −µ− x

σ2
,

∂N(x;µ, σ2)/∂σ2

N(x;µ, σ2)
= − 1

σ2

(
1− (x− µ)2

σ2

)
,

Using these results, we obtain the gradient of the log-integrand, denoted as G,

G =



∂ ln p(X,h;θ)
∂h1

∂ ln p(X,h;θ)
∂h2
...

∂ ln p(X,h;θ)
∂hT−1

∂ ln p(X,h;θ)
∂hT


=



φh2−h1

γ2 − 1
2 + 1

2ε21
φh3−φ2h2+φh1

γ2 − 1
2 + 1

2ε22
...

φhT−φ2hT−1+φhT−2

γ2 − 1
2 + 1

2ε2T−1
hT−φhT−1

γ2 − 1
2 + 1

2ε2T


(11)

Furthermore, the Hessian matrix of the log-integrand, denoted as Ω, is

Ω =



− 1
γ2 − 1

2ε21
φ
γ2 · · · 0 0

φ
γ2 −1+φ2

γ2 − 1
2ε22 · · · 0 0

...
...

...
...

...
0 0 · · · −1+φ2

γ2 − 1
2ε2T−1

φ
γ2

0 0 · · · φ
γ2 − 1

γ2 − 1
2ε2T


(12)
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where εt = Xt exp(−0.5ht)/σ.
A closed related simulated ML method is proposed by Durbin and Koopman (1997). It is

designed to evaluate the log-likelihood function of a linear state-space model with non-Gaussian
errors. The basic idea of Durbin and Koopman (1997) is to use Laplace approximation to decompose
the likelihood into the likelihood of a linear state-space model with Gaussian errors and the residual.
It is known that the likelihood function of a linear state-space model with Gaussian errors can be
calculated by applying Kalman filter. The residual is calculated by simulation. Sandmann and
Koopman (1998) applied the method to estimate the LN-SV model and the SV-t model. To obtain
the linear state-space form for the LN-SV model, one can apply the log-squared transformation to
Xt: {

Yt = lnX2
t = ln sigma2 + ht + εt, t = 1, . . . , T,

ht+1 = φht + γηt, t = 1, . . . , T − 1,
(13)

where εt
iid∼ lnχ2

(1) (i.e. no-Gaussian), ηt
iid∼ N(0, 1), corr(εt, ηt) = 0, and h1 ∼ N(0, γ2/(1− φ2)).

3.2 Efficient importance sampler (EIS)

Richard and Zhang (2007) developed an alternative simulated ML method. It is based on a partic-
ular factorization of the importance density. It is also based on importance sampling and termed
as Efficient Importance Sampling (EIS) procedure. Relative to the ML method reviewed in Section
2.1, EIS minimizes the Monte Carlo sampling variance of the approximation to the integrand by
factorizing the importance density. To fix the idea, assume g(h|X) is the importance density which
can be constructed as

g(h|X) =
T∏

t=1

g(ht|ht−1,X) =
T∏

t=1

{
Cte

ctht+dth2
t p(ht|ht−1)

}
, (14)

where ct, Ct and dt depend on X and ht−1 with {Ct} be a normalization sequence so that g is a
normal distribution. The sequences {ct} and {dt} should be chosen to match p(X,h; θ) and g(h|X)
which, as we shown in the last section, requires a high-dimensional non-linear regression. The caveat
of EIS is to match each component in g(h|X) (ie Cte

ctht+dth2
t p(ht|ht−1)), to the corresponding

element in the integrand p(X;h) (ie p(Xt|ht)p(ht|ht−1)) in a backward manner, with t = T, T −
1, · · · , 1. It is easy to show that Ct depends only on ht−1 but not on ht. As a result, the recursive
matching problem is equivalent to running the following linear regression backward:

ln p(Xt|h(s)
t )− lnCt+1 = a + cth

(s)
t + dt(h

(s)
t )2, s = 1, · · · , S, (15)

where h
(1)
t , . . . , h

(S)
t are drawn from the importance density and h

(i)
t and h

(i)
t are treated as the

explanatory variables in the regression model with CT+1 = 1.
The method to approximate the likelihood involves the following procedures:
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1. Draw initial h(s) from Equation (??) with s = 1, · · · , S.

2. Estimate ct and dt from (15) and do it backward with CT+1 = 1

3. Draw h(s) from importance density g(h|X) based on ct and dt.

4. Repeat Steps 2-3 until convergence. Denote the resulting sampler by h(s).

5. Approximate the likelihood by

1
S

S∑
s=1


T∏

t=1

p(Xt|h(s)
t )

Ct exp
(
cth

(s)
t + dt(h

(s)
t )2

)
 .

The EIS algorithm relies on the user to provide a problem-dependent auxiliary class of impor-
tance samplers. Does not need the assumption that the latent process is Gaussian.

3.3 An empirical example

For the purposes of illustration, we fit the LN-SV model to a widely used dataset. The dataset
consists of 945 observations on daily pound/dollar exchange rate from 01/10/1981 to 28/06/1985.
The same data were used in Shephard and Pitt (1997).

Matlab code (lais-lnsv.m) is used to implement the LA-IS method. Table 1 reports the estimates
and the likelihood when S = 32. The code are implemented with 20 different random seeds to obtain
the simulation standard errors.

4 Continuous time models

Many models that are used to describe financial time series are written in terms of a continuous
time diffusion X(t) that satisfies the stochastic differential equation

dX(t) = µ(X(t); θ)dt + σ(X(t); θ)dB(t), (16)

where B(t) is a standard Brownian motion, σ(X(t); θ) is some specified diffusion function, µ(X(t); θ)
is a given drift function, and θ is a vector of unknown parameters. One wishes to obtain estimates
of θ from a discrete sampled observations, Xh, ..., Xnh with h being the sampling interval. This
class of parametric model has been widely used to characterize the temporal dynamics of financial
variables, including stock prices, interest rates, and exchange rates.

Many estimation methods are based on the construction of a likelihood function derived from
the transition probability density of the discretely sampled data. This approach is explained as
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follows. Suppose p(Xih|X(i−1)h, θ) is the transition probability density. The Markov property of
model (16) implies the following log-likelihood function for the discrete sample

`TD(θ) = ln(p(Xih|X(i−1)h, θ)). (17)

To perform exact ML estimation, one needs a closed form expression for `TD(θ) and hence
ln(p(Xih|X(i−1)h, θ)). In general, the transition density p satisfies the forward equation:

∂p

∂t
=

1
2

∂2p

∂y2
.

and the backward equation:
∂p

∂s
= −1

2
∂2p

∂x2
.

where p(y, t|x, s) is the transition density. Solving the partial differential equation numerically at
y = Xih, x = X(i−1)h yields the transition density. This is approach proposed by Lo (1988).

Unfortunately, only in rare cases, do the transition density p(Xih|X(i−1)h, θ) have closed form
solutions. Phillips and Yu (2009) provide a list of examples in which ln(p(Xih|X(i−1)h, θ)) have
closed form analytical expressions, including the geometric Brownian Motion, Ornstein-Uhlenbeck
(OU) process, square-root process, and inverse square-root process. In general solving the for-
ward/backward equations is computationally demanding.

An older estimation method is using the Euler scheme, which approximates a general diffusion
process such as equation (16) by the following discrete time model

Xih = X(i−1)h + µ(X(i−1)h, θ)h + σ(X(i−1)h, θ)
√

hεi, (18)

where εi ∼ i.i.d. N(0, 1). The transition density for the Euler discrete time model has the following
closed form expression:

Xih|X(i−1)h ∼ N
(
X(i−1)h + µ(X(i−1)h, θ)h, σ2(X(i−1)h, θ)h

)
. (19)

Obviously, the Euler scheme introduces a discretization bias. The magnitude of the bias in-
troduced by Euler scheme is determined by h, which cannot be controlled econometricians. In
general, the bias becomes negligible when h is close to zero. One way to use the full likelihood
analysis is to make the sampling interval arbitrarily small by partitioning the original interval so
that the new subintervals are sufficiently fine for the discretization bias to be negligible. By mak-
ing the subintervals smaller, one inevitably introduces latent variables between the two original
consecutive observations X(i−1)h and Xih.
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4.1 SML Methods

To implement ML estimation, one can integrate out these latent observations.3 When the partition
becomes finer, the discretization bias is closer to 0 but the required integration becomes high
dimensional and hence simulation-based methods can be used, leading to simulated ML estimators.
To fix ideas, suppose M − 1 auxiliary points are introduced between (i− 1)h and ih, i.e.,

((i− 1)h ≡)τ0, τ1, · · · , τM−1, τM (≡ ih).

The Markov property implies that

p(Xih|X(i−1)h; θ) =
∫
· · ·
∫

p(XτM , XτM−1 , · · · , Xτ1 |Xτ0 ; θ)dXτ1 · · · dXτM−1

=
∫
· · ·
∫ M∏

m=1

p(Xτm |Xτm−1 ; θ)dXτ1 · · · dXτM−1 . (20)

The idea behind the simulated ML method is to approximate the densities p(Xτm |Xτm−1 ; θ) (step
1) and then evaluate the multidimensional integral using importance sampling techniques (step
2). Among the class of simulated ML methods that have been suggested in this context, Pedersen
(1995) is one of the earliest contributions.

Pedersen suggested approximating the latent transition densities p(Xτm |Xτm−1 ; θ) based on
the Euler scheme and approximating the integral by drawing samples of (XτM−1 , · · · , Xτ1) via
simulations from the Euler scheme. That is, the importance sampling function is the mapping
from (ε1, ε2, · · · , εM−1) 7→ (Xτ1 , Xτ2 , · · · , XτM−1) given by the Euler scheme:

Xτm+1 = Xτm + µ(Xτm ; θ)h/M + σ(Xτm , θ)
√

h/Mεm+1, m = 0, · · · ,M − 2,

where (ε1, ε2, · · · , εM−1) is a multivariate standard normal. implementations have been computa-
tionally burdensome.

As noted in Durham and Gallant (2002), there are two sources of approximation error in
Pedersen’s method. One is the (albeit reduced) discretization bias in the Euler scheme. The
second is due to the Monte Carlo integration. These two errors can be further reduced by increasing
the number of latent infill points and the number of simulated paths, respectively. However, the
corresponding computational cost will inevitably be higher.

3Alternative to simulation-based approaches, one can use closed-form sequences to approximate the transition
density itself, thereby developing an approximation to the likelihood function. Two different approximation mech-
anisms have been proposed in the literature. One is based on Hermite polynomial expansions (Aı̈t-Sahalia, 1999,
2002, 2008) whereas the other is based on the saddlepoint approximation (Aı̈t-Sahalia and Yu, 2006). Aı̈t-Sahalia
(2002) provided evidence that the closed-form approximation based on Hermite polynomials is more accurate and
faster than the simulation-based approaches review here.
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In order to reduce the discretization bias in step 1, Elerian (1998) suggested replacing the Euler
scheme with the Milstein scheme while Durham and Gallant advocated using a variance stablization
transformation, i.e., applying the Lamperti transform to the continuous time model. Certainly, any
method that reduces the discretization bias can be used. Regarding step 2, Elerian et al (2001)
argued that the importance sampling function of Pedersen ignores the end-point information, XτM ,
and Durham and Gallant (2002) showed that Pedersen’s importance function draws most samples
from regions where the integrand has little mass. Consequently, Pedersen’s method is simulation-
inefficient.

To improve the efficiency of the importance sampler, Durham and Gallant (2002) considered
the following importance sampling function

Xτm+1 = Xτm +
Xih −Xτm

ih− τm
h/M + σ(Xτm , θ)

√
h/Mεm+1, m = 0, · · · ,M − 2,

where (ε1, ε2, · · · , εM−1) is a multivariate standard normal. Loosing speaking, this is a Brownian
bridge because it starts from X(i−1)h at (i− 1)h and is conditioned to terminate with Xih at ih.

Another importance sampling function proposed by Durham and Gallant (2002) is to draw
Xτm+1 from the density N(Xτm + µ̃mh/M, σ̃2

mh/M) where µ̃m = (XτM − Xτm)/(ih − τm), σ̃2
m =

σ2(Xτm)(M −m− 1)/(M −m).
Elerian et al. (2001) proposed a more efficient importance function which is based on the

following tied-down process:
p(Xτ1 , · · · , XτM−1 |Xτ0 , XτM ).

In particular, they proposed using the Laplace approximation (c.f., Phillips, 1984; Tierney and
Kadane, 1986) to the tied-down process. That is, they used the distributional approximation
(Xτ1 , · · · , XτM−1) ∼ N(x∗,Σ∗) where

x∗ = arg max
x

ln p(Xτ1 , · · · , XτM−1 |Xτ0 , XτM )

Σ2 = −

[
∂2 ln p(X∗

τ1 , · · · , X∗
τM−1

|Xτ0 , XτM )
∂x′∂x

]−1

,

where x = (Xτ1 , · · · , XτM−1)
′.

Durham and Gallant (2002) compared the performance of these three importance functions
relative to Pedersen (1995) and found that all these methods deliver substantial improvements.

4.2 Simulated GMM

Not only is the likelihood function for (16) difficult to construct, but also the moment conditions.
Prasao, Rao, Sorensen, Hansen and Scheikman, But if X(t) is multivariate with some latent vari-
ables, moment conditions are not known in closed-form in general. S(t) is a stock price, which is
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assumed to follow the stochastic volatility (SV) model [Hull and White (1987)]:

dS(t) = σSS(t)σ(t)dB1(t),

d lnσ2(t) = −κ lnσ2(t)dt + γdB2(t),

and {St}n
t=1 is again a sample of equispaced time series observations on S(t) with sampling interval

h. Under certain assumptions, Hull and White (1987) showed that the value of a European call
option is the Black-Scholes price integrated over the distribution of the mean volatility. Unfortu-
nately, the option price does not have a closed-form solution. A flexible way for calculating option
prices is via Monte Carlo simulations. For example, Hull and White (1987) designed an efficient
procedure of carrying out the Monte Carlo simulation to calculate a European call option. In
general, the price depends on κ, σS , and γ. For the SV model, it is well known that the likelihood
function has no closed-form expression [Durham and Gallant (2002), and Kim, Shephard, and Chib
(1998)].

While (16) is difficult to estimate, it is amenable to data simulation. For example, one can
simulate data from the Euler scheme at an arbitrarily small sampling interval. With the interval
approaches to zero, the simulated data can be regarded as the exact simulation although the
transition density at the coarser sampling interval is not known analytically. With simulated data,
moments can be easily constructed, facilitating GMM estimation.

Simulated GMM methods have been proposed by McFadden (1989), Pakes and Pollard (1989)
for iid environments, and Lee and Ingram, Duffie and Singleton (1993) for time series environments.

Let {X̃(s)
t (θ)}T(T )

t=1 be the data simulated from (16) when parameter is θ using random seed s.
Therefore, {X̃(s)

t (θ0)} is drawn from the same distribution as the original data {Xt} and hence
share the same moment characteristic. The parameter θ is chosen so as to ”match moments”, that
is, to minimize the distance between sample moments of the data and those of the simulated data.
Assuming H represents K-moments, SGMM estimator is defined as:

θ̂SGMM
n = argminθ∈Θ

 1
n

n∑
t=1

g(Xt)−
1

T(T )

T(T )∑
t=1

g(X̃(s)
t ; θ)

′

Wn

 1
n

n∑
t=1

g(Xt)−
1

T(T )

T(T )∑
t=1

g(X̃(s)
t ; θ)

′

,

where Wn is a certain positive definite weighting matrix of q × q-dimension (q ≥ K), which may
depend on the sample but not θ, T(T ) is the number of number of observation in a simulated path.
Under the ergodicity condition, we have

1
T(T )

T(T )∑
t=1

g(X̃(s)
t ; θ0)

p→ E(g(Xt; θ0))

and
1
n

n∑
t=1

g(Xt)
p→ E(g(Xt; θ0)),
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justifying the SGMM procedure.
The SGMM procedure can be made optimal by a careful choice of the weighting function, given

a set of moments. However, the SGMM estimator is in general asymptotically less efficient than
SML for the reason that moments are less informative less likelihood. Gallant and Tauchen (1996)
extended the SGMM technique so that the estimator is asymptotically as efficient as SML. This
estimator is termed efficient method of moments (EMM), which we review below.

4.3 EMM

EMM is first introduced by Gallant and Tauchen (1996) and has now found many applications
in financial time series; see Gallant and Tauchen (2001a) for a brief review of the literature. It
is closely related to SGMM. An important difference between them is that while GMM relies on
an ad hoc chosen set of moment conditions, EMM is based on a judiciously chosen set of moment
conditions. The moment conditions EMM employs is the expectation of the score of an auxiliary
model which is often referred to as the score generator.

Let the SV model of interest be the structural model. This is the continuous time version of
the Box-Cox SV model of Yu, Yang and Zhang (2006).

dS(t) = σSS(t)[g(ht, δ)]1/2dB1(t),

dh(t) = −κh(t)dt + γdB2(t),

The conditional density of the structural model is defined by

pt(xt|yt, θ),

where the true value of θ is θ0 and θ0 ∈ Θ ⊂ <`θ with `θ being the length of θ0. Denote the
conditional density of an auxiliary model by

ft(xt|yt, β), β ∈ R ⊂ <`β

where yt is a vector of lagged xt. Further define the expected score of the auxiliary model under
the structural model as

m(θ, β) =
∫
· · ·
∫

∂

∂β
ln f(x|y, β)p(x|y, θ)p(y|θ)dxdy.

Obviously, in the context of the SV model, the integration cannot be solved analytically since
neither p(x|y, θ) nor p(y|θ) has closed form. However, it is easy to simulate from an SV model so
that one can approximate the integral by Monte Carlo simulations. That is

m(θ, β) ≈ mN (θ, β) ≡ 1
N

N∑
τ=1

∂

∂β
ln f(x̂τ (θ)|ŷτ (θ), β),
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where {x̂τ , ŷτ} are simulated from the structural model. The EMM estimator is a minimum chi-
squared estimator which minimizes the following quadratic form,

θ̂n = arg min
θ∈Θ

m′
N (θ, β̂n)(In)−1mN (θ, β̂n),

where β̂n is a quasi maximum likelihood estimator of the auxiliary model and In is an estimate of

I0 = lim
n→∞

V ar

(
1√
n

n∑
t=1

{ ∂

∂β
ln ft(xt|yt, β

∗)}
)

with β∗ being the pseudo true value of β. Under regularity conditions, Gallant and Tauchen (1996)
show that the EMM estimator is consistent and has the following asymptotic normal distribution,

√
n(θ̂n − θ0)

d→ N(0,
∂

∂θ
m(θ0, β

∗)(I0)−1 ∂

∂θ′
m(θ0, β

∗)).

For specification testing, we have

Jn = nm′
N (θ̂n, β̂n)(In)−1mN (θ̂n, β̂n) d→ χ2

`β−`θ

under the null hypothesis that the structural model is correct. When a model fails the above
specification test one may wish to examine the quasi-t-ratios and/or t-ratios to look for some
suggestion as to what is wrong with the structural model. The quasi-t-ratios are defined as

T̂n = S−1
n

√
nmN (θ̂n, β̂n)

where Sn = [diag(In)]1/2. It is well known that the elements of T̂n are downward biased in absolute
value. To correct the bias one can use the t-ratios defined by

T̃n = Q−1
n

√
nmN (θ̂n, β̂n)

where

Qn =
(

diag{In −
∂

∂θ′
mN (θ̂n, β̂n)[m′

N (θ̂n, β̂n)(In)−1mN (θ̂n, β̂n)]−1 ∂

∂θ
mN (θ̂n, β̂n)}

)1/2

.

Large quasi-t-ratios and t-ratios reveal the features of the data that the structural model cannot
approximate.

Furthermore, Gallant and Tauchen (1996) show that if the auxiliary model nests the data gen-
erating process, under regularity conditions the EMM estimator has the same asymptotic variance
as the maximum likelihood estimator and hence is fully efficient. If the auxiliary model can closely
approximate the data generating process, the EMM estimator is nearly fully efficient (Gallant and
Long (1997) and Tauchen (1997)).

15



To choose an auxiliary model, the seminonparametric (SNP) density proposed by Gallant and
Tauchen (1989) can be used since its success has been documented in many applications. As to SNP
modeling, six out of eight tuning parameters are to be selected, namely, Lu, Lg, Lr, Lp, Kz, and Ky.
The other two parameters, Iz and Ix, are irrelevant for univariate time series and hence set to be 0.
Lu determines the location transformation whereas Lg and Lr determine the scale transformation.
Altogether they determine the nature of the leading term of the Hermite expansion. The other
two parameters Kz and Ky determine the nature of the innovation. To search for a good auxiliary
model, one can use the Schwarz BIC criterion to move along an upward expansion path until an
adequate model is found, as outlined in Bansal et al (1995).

4.4 An empirical example

For the purposes of illustration, we fit the continuous time Box Cox SV model to daily prices
of Microsoft. The dataset consists of 945 observations on daily pound/dollar exchange rate from
01/10/1981 to 28/06/1985. The same data were used in Gallant and Tauchen (2001).

Fortran code (lais-lnsv.m) is used to implement the EMM method. Table 2 reports the estimates.

5 Stochastic duration models

6 Credit risk models

All structural credit risk models specify a dynamic structure for the underlying firm’s asset and
default boundary. Let V be the firm’s asset process, F the face value of a zero-coupon debt that
the firm issues with the time to maturity T . Merton (1974) assumed that Vt evolves according to
a geometric Brownian motion:

d lnVt = (µ− σ2/2)dt + σdWt, V0 = c, (21)

where W (t) is a standard Brownian motion which is the driving force of the uncertainty in Vt, and
c is a constant. The exact discrete time model is

lnVt+1 = (µ− σ2/2)h + lnVt + σ
√

hεt, V0 = c, (22)

where εt ∼ N(0, 1) and h is the sampling interval. Obviously there is a unit root in lnVt.
The firm is assumed to have two types of outstanding claims, namely, an equity and a zero-

coupon debt whose face value is F maturing at T . The default occurs at the maturity date of debt
in the event that the issuer’s assets are less than the face value of the debt (ie VT < F ). Since
Vt is assumed to be a log-normal diffusion, the firm’s equity can be priced with the Black-Scholes
formula as if it is a call option on the total asset value V of the firm with the strike price of F and

16



the maturity date T . Similarly, one can derive pricing formulae for the corporate bond (Merton,
1974) and spreads of credit default swaps, although these formulae will not be used in this paper.

Assuming the risk-free interest rate is r, the equity claim, denoted by St, is

St ≡ S(Vt;σ) = VtΦ(d1t)− Fe−r(T−t)Φ(d2t) (23)

where Φ(·) is the cumulative distribution function of the standard normal variate,

d1t =
ln(Vt/F ) + (r + σ2/2)(T − t)

σ
√

T − t
,

and

d2t =
ln(Vt/F ) + (r − σ2/2)(T − t)

σ
√

T − t
.

When the firm is listed in an exchange, one may assume that St is observed at discrete time
points, say t = τ1, · · · , τn. When there is no confusion, we simply write t = 1, · · · , n. Since the joint
density of {Vt} is specified by (22), the joint density of {St} can be obtained from Equation (23)
by the change-of-variable technique. As S is analytically available, the Jacobian can be obtained,
facilitating the ML estimation of θ (Duan, 1994).

The above approach requires the equilibrium equity prices be observable. This assumption
appears to be too strong when data are sampled at a reasonably high frequency because the
presence of various market microstructure effects contaminate the equilibrium price process. The
presence of market microstructure noises motivates Duan and Fulop (2008) to consider the following
generalization to Merton’s model:

lnSt = ln S(Vt;σ) + δvt, (24)

where {vt} is a sequence of iid standard normal variates. Equation (22) and Equation (24) form the
basic credit risk model with microstructure noises which was studied by Duan and Fulop (2008).

One of the most compelling reasons for obtaining the estimates for the model parameters and
the latent equity values is for credit applications. For example, Moody’s KMV Corporation has
successfully developed a structural model, by combining financial statement and equity market-
based information, to evaluate private firm credit risk. Another practically important quantity is
the credit spread of a risk corporate bond over the corresponding Treasure rate.

Using the notations of Duan and Fulop (2008), the credit spread is given by

C(Vn; θ) = − 1
T − τn

ln
(

Vn

F
Φ(−d1n) + e−r(T−τn)Φ(d2n)

)
− r, (25)

where the expressions for d1n and d2n were given in Section 2. The default probability is given by

P (Vn; θ) = Φ
(

ln(F/Vn)− (µ− σ2/2)(T − τn)
σ
√

T − τn

)
. (26)
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Putting the model in a state-space framework, Equation (24) is an observation equation and
Equation (22) is a state equation. Unfortunately, the Kalman filter is not applicable here since the
observation equation is nonlinear.

Let X = (lnS1, · · · , lnSn)′, h = (lnV1, · · · , lnVn)′, and θ = (µ, σ, δ)′. The likelihood function
of (24) is given by

p(X; θ) =
∫

p(X,h; θ)dh =
∫

p(X|h;µ)p(h; θ)dh, (27)

where p(·) means the probability density function. In general this is a high-dimensional integral
which does not have closed form expression due to the non-linear dependence of lnSt on lnVt.

6.1 SML via particle filter

The transition density is difficult to evaluate.
particle filtering which is applicable to a broad class of nonlinear non-Gaussian multi-dimensional

state space models of the form, {
yt = H(xt, ut)
xt = F (xt−1, vt),

(28)

where xt is a k-dimensional state vector (here, xt = ht is the one-dimensional log-volatility), vt is a
l-dimensional white noise sequence with density q(v), ut is a one dimensional white noise sequence
with density r(u) and assumed uncorrelated with {vs}n

s=1, H and F are possibly nonlinear functions.
Let ut = G(yt, xt) and G′ is the derivative of G as a function of yt. The density of the initial state
vector is assumed to be p0(x). We now summarize all the steps involved in Kitagawa’s algorithm:

1. Generate M l-dimensional particles from p0(x), f
(j)
0 for j = 1, . . . ,M .

2. Repeat the following steps for t = 1, . . . , n.

(a) Generate M l-dimensional particles from q(v), v
(j)
t for j = 1, . . . ,M .

(b) Compute p
(j)
t = F (f (j)

t−1, v
(j)
t ) for j = 1, . . . ,M .

(c) Compute α
(j)
t = r(G(yt, p

(j)
t )) for j = 1, . . . ,M .

(d) Re-sample {p(j)
t }M

j=1 to get {f (j)
t }M

j=1 with probabilities proportional to

{r(G(yt, p
(j)
t ))× |G′(yt, p

(j)
t )|}M

j=1.

To estimate the model via ML, built upon the work of Pitt and Shephard (1999) and Pitt
(2002), Duan and Fulop developed a particle filtering method. Particle filter is an alternative to
the Extended Kalman filter (EKF) with the advantage that, with sufficient samples, it approaches
the true ML estimate. Hence, it can be made more accurate than the EKF. Like the idea in many
other simulation based methods, particle filter essentially approximates the target distribution
by the corresponding empirical distribution, based on a weighted set of particles. To avoid the
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variance of importance weight to grow over time, it is important to perform the resampling step in
the particle filtering.

6.2 Bayesian MCMC Methods

The two algorithms discussed in Section ?? are the classical ML methods. We now discuss how
the Laplace approximation can be employed to perform a Bayesian MCMC analysis. The goal of
MCMC methods is to sample from posterior densities. There are a number of different ways in
which Bayesian MCMC can be applied to SV models. The first one samples from the posterior
p(θ|X) ∝ p(X|θ)p(θ). However, since the marginal likelihood p(X|θ), given in terms of an integral,
does not have a closed form expression, standard Bayesian analysis is not trivial. Alternatively, one
can augment the parameter vector by the vector of latent variables and obtain the joint posterior
p(θ,h|X) ∝ p(X, θ|h)p(h|θ)p(θ). Consequently, evaluation of p(X|θ) becomes unnecessary. From
the joint posterior, one can find the marginal distribution p(θ|X) to make inference about the
model parameters and the marginal distribution p(h|X) to make inference about the log-volatilities.
MCMC can be used to draw (correlated) samples from the high dimensional (T+p) posterior density.

In the basic SV model, one way of sampling σX , φ, σ and h is to update each element of σX , φ, σ

and each element in h one at a time (i.e. a single-mover). This so-called Gibbs sampling algorithm
was suggested by Shephard (1993) and Jacquier et al. (1994). For SV models, the consecutive states
are often highly dependent, rendering inefficient mixing and slow convergence of the Markov chain
to the equilibrium distribution. To improve the simulation efficiency, Shephard and Pitt (1997),
Kim et al. (1998) and Liesenfeld and Richard (2006) suggested MCMC methods which sample the
vector h in a single block (i.e. a multi-mover).

In the present paper, we suggest an alternative Bayesian MCMC algorithm which achieves high
simulation efficiency. The idea is as follows. First, an approximation to the likelihood function
p(X|θ) is obtained via the Laplace approximation (6), making augmentation of the parameter
vector redundant. Second, we use the MH algorithm, developed by Metropolis et al. (1953) and
Hastings (1970), to obtain a MCMC sample from the posterior of θ. To use the MH algorithm
we first fit the model by maximizing the approximated marginal likelihood (6). Denote by θ̂ the
resulting estimate of θ, and by Σ̂θ̂ its covariance matrix based on the observed Fisher information.
The MH-proposal density is taken to be a multivariate normal, centered at the current parameter
value, with covariance matrix Σ̂θ̂. Note further that for each value of θ proposed by the MH-
algorithm the Laplace approximation is invoked via equation (6). While our algorithm is strongly
related to that developed in Meyer et al. (2003), it differs in that Meyer et al. used a sequential
Laplace approximation.

As the posterior sampling is done in a much lower dimensional space in the proposed integration
sampler, it is natural to expect several advantages of our method relative to the MCMC algorithms
that require sampling of the latent process. First, the integration sampler should have higher
simulation efficiency. Second, while it is typically difficult to check the convergence of simulated
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chains of latent variables as the sample size T grows, it is trivial to do so in our integration sampler,
regardless of the sample size.

A major advantage of the MCMC algorithms that sample the latent process is that they provide
an integrated framework for parameter estimation and latent variable smoothing. Indeed, the
smoothed latent variable E(ht|X), and the associated posterior variance, is a by-product of the
MCMC output (Jacquier et al. 1994). There are two sources of variation contributing to the
posterior uncertainty in h: uncertainty in h given θ and uncertainty about θ. It is worth pointing out
that MCMC, by providing samples from p(h|X), directly accounts for both sources of uncertainty.

6.3 An empirical application

7 Simulation Methods for Improving Finite Sample Performances

7.1 indirect inference

The indirect inference (II) procedure is a simulation-based estimation procedure and can be un-
derstood as a generalization of the simulated method of moments approach of Duffie and Singleton
(1993). It was first introduced by Smith (1993) and coined with the term by Gouriéroux, Monfort,
and Renault (1993). It is also closely related to the method proposed by Gallant and Tauchen
(1996). The method was originally proposed to deal with situations where the moments or the
likelihood function of the true model are difficult to deal with (and hence traditional methods such
as GMM and ML are difficult to implement), but the true model is amenable to data simulation.
Because many continuous time models are easy to simulate but present difficulties in the analytic
derivation of moment functions and likelihood, the II procedure has some convenient advantages
in working with continuous time models in finance.

A carefully designed II estimator can also have good small sample properties of parameter
estimates, as shown by MacKinnon and Smith (1996), Monfort (1996), Gouriéroux, Renault, Touzi
(2000) in the time series context and by Gouriéroux, Phillips and Yu (2005) in the panel context.
The idea why II can remove the bias goes as follows. Whenever a bias occurs in an estimate and
from whatever source, this bias will also be present in the same estimate obtained from data, which
are of the same structure of the original data, simulated from the model for the same reasons.
Hence, the bias can be calculated via simulations. The method therefore offers some interesting
opportunities for bias correction and the improvement of finite sample properties in continuous
time parameter estimation, as shown in Phillips and Yu (2009a).

To fix the idea of II for parameter estimation, consider the OU process. Suppose we need to
estimate the parameter κ in:

dX(t) = κ(µ−X(t))dt + σ(X(t)) dW (t),

from observations {Xh, · · · , Xnh}. An initial estimator of κ can be obtained, for example, by
applying the Euler scheme to {Xh, · · · , Xnh} (call it κ̂n). Such an estimator is involved with the
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discretization bias (due to the use of the Euler scheme) and also with a finite sample estimation
bias (due to the poor finite sample property of ML in the near-unit-root situation).

Given a parameter choice κ, we apply the Euler scheme with a much smaller step size than h

(say δ = h/10), which leads to

X̃k
t+δ = κ(µ− X̃k

t )h + X̃k
t + σ(X̃k

t )
√

δεt+δ,

where
t = 0, δ, · · · , h(= 10δ)︸ ︷︷ ︸, h + δ, · · · , 2h(= 20δ)︸ ︷︷ ︸, 2h + δ, · · · , nh.

This sequence may be regarded as a nearly exact simulation from the continuous time OU model
for small δ. We then choose every (h/δ)th observation to form the sequence of {X̃k

ih}n
i=1, which can

be regarded as data simulated directly from the OU model with the (observationally relevant) step
size h.4

Let {X̃k
h , · · · , X̃k

nh} be data simulated from the true model, where k = 1, · · · ,K with K being
the number of simulated paths. It should be emphasized that it is important to choose the number
of simulated observations and the sampling interval to be the same as the number of observations
and the sampling interval in the observed sequence for the purpose of the bias calibration. Another
estimator of κ can be obtained by applying the Euler scheme to {Xk

h , · · · , Xk
nh} (call it κ̃k

n). Such
an estimator and hence the expected value of them across simulated paths is naturally dependent
on the given parameter choice κ.

The central idea in II estimation is to match the parameter obtained from the actual data with
that obtained from the simulated data. In particular, the II estimator of κ solves

κ̂n =
1
K

K∑
h=1

κ̃k
n(κ) or κ̂n = ρ̂0.5(κ̃k

n(κ)), (29)

where ρ̂τ is the τth sample quantile. In the case where K tends to infinity, the II estimator solves

κ̂n = E(κ̃k
n(κ)) or κ̂n = ρ0.5(κ̃k

n(κ)) (30)

where E(κ̃k
n(κ)) is called the mean binding function or the mean bias function, and ρ0.5(κ̃k

n(κ)) is
the median binding function or the median bias function, i.e.,

bn(κ) = E(κ̃k
n(κ)), or bN (κ) = ρ0.5(κ̃k

n(κ)).

It is a finite sample functional relating the bias to κ. In the case where bn is invertible, the indirect
inference estimator is given by:

κ̂II
n = b−1

n (κ̂n). (31)
4If the transition density of Xt+h|Xt for the continuous time model is analytically available, exact simulation can

be directly obtained. In this case, the Euler scheme at a finer grid is not necessary.
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When a median binding function is used, the estimator is the median unbiased estimator of Andrews
(1993). Typically, the binding functions cannot be computed analytically in either case. That is
why II needs to calculate the binding functions via simulations. While often used in the literature
for the binding function is the mean, the median has certain advantages over the mean. First, the
median is more robust to outliers than the mean. Second, it is easier to obtain the unbiased property
via the median. In particular, while the linearity of bn(κ) gives rise of the mean-unbiasedness in
κ̂II

n , only monotonicity is needed for bn(κ) to ensure the median-unbiasedness (Phillips and Yu
(2009d)).

There are several advantages in the II procedure relative to the jackknife procedure. First,
indirect inference is more effective on removing the bias in parameter estimates. Phillips and
Yu (2009a) provided evidence to support this superiority of indirect inference. Second, the bias
reduction may be achieved often without an increase in variance. In extreme cases of root near
unity, the variance of II can be even smaller than that of ML (Phillips and Yu (2009a). To see this,
note that equation (31) implies:

V ar(κ̂II
n ) =

(
∂bn

∂κ

)−1

V ar(κ̂ML
n )

(
∂bn

∂κ′

)−1

.

When ∂bn/∂κ > 1, the II has a smaller variance than ML.
A disadvantage in the II procedure is the high computational cost. It is expected that with the

continuing explosive growth in computing power, such a drawback is of less concern. Nevertheless,
to reduce the computational cost, one can choose a fine grid of discrete points of κ and obtain the
binding function on the grid. Then standard interpolation and extrapolation methods can be used
to approximate the binding functions at any point.

As pointed out before, since prices of contingent-claims are always non-linear transformations
of the system parameters, insertion of even unbiased estimators into the pricing formulae will not
assure unbiased estimation of a contingent-claim price. The stronger the nonlinearity, the larger
the bias. As a result, plugging-in the indirect inference estimates into the pricing formulae may
still yield an estimate of the price with unsatisfactory finite sample performances. This feature was
illustrated in a the context of various continuous time models and contingent claims in Phillips and
Yu (2009d). To improve the finite sample properties of the contingent price estimate, Phillips and
Yu (2009d) generalized the II procedure so that it is applied to the quantity of interest directly.

To fix the idea, suppose θ is the scalar parameter in the continuous time model on which the
price of a contingent claim, P (θ), is based. Denote by θ̂ML

n the MLE of θ that is obtained from
the actual data, and write P̂ML

n = P (θ̂ML
n ) be the ML estimate of P . P̂ML

n involves finite sample
estimation bias due to the non-linearity of the pricing function P in θ, or the use of the biased
estimate θ̂ML

n , or both these effects. The II approach involves the following steps.

1. Given a value for the contingent-claim price p, compute P−1(p) (call it θ(p)), where P−1(·)
is the inverse of the pricing function P (θ).
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2. Let S̃k(p) = {S̃k
1 , S̃k

2 , · · · , S̃k
T } be data simulated from the time series model (16) given θ(p),

where k = 1, . . . ,K with K being the number of simulated paths. As argued above, we choose
the number of observations in S̃k(p) to be the same as the number of actual observations in
S for the express purpose of finite sample bias calibration.

3. Obtain φ̃ML,k
n (p), the MLE of θ, from the k’th simulated path, and calculate P̃ML,k

n (p) =
P (φ̃ML,k

n (p)).

4. Choose p so that the average behavior of P̃ML,k
n (p) is matched with P̂ML

n to produce a new
bias corrected estimate.

The procedure can be generalized to cases where θ is an K−dimensional vector and where θ is
obtained from cross-sectional data; see Phillips and Yu (2009d) for detailed discussions. Phillips
and Yu (2009d) performed extensive Monte Carlo studies, showing that the proposed procedure
works well, not only relative to ML but also relative to the jackknife procedure.

7.2 An empirical application

8 Conclusions
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