
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

9-2007

Robust Local Search and Its Application to
Generating Robust Schedules
Hoong Chuin LAU
Singapore Management University, hclau@smu.edu.sg

Fei Xiao
Singapore Management University, feixiao@smu.edu.sg

Thomas Ou

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Artificial Intelligence and Robotics Commons, Business Commons, and the

Operations Research, Systems Engineering and Industrial Engineering Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
LAU, Hoong Chuin; Xiao, Fei; and Ou, Thomas. Robust Local Search and Its Application to Generating Robust Schedules. (2007).
International Conference on Automated Planning and Scheduling (ICAPS). Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/369

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13243136?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F369&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F369&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F369&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F369&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F369&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/622?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F369&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F369&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg


Robust Local Search and Its Application to Generating Robust Schedules

Hoong Chuin LAU
School of Information Systems

Singapore Management University

Thomas OU
The Logistics Institute Asia Pacific
National University of Singapore

Fei XIAO
School of Information Systems

Singapore Management University

Abstract

In this paper, we propose an extended local search frame-
work to solve combinatorial optimization problems with data
uncertainty. Our approach represents a major departure from
scenario-based or stochastic programming approaches often
used to tackle uncertainty. Given a value 0 < ε ≤ 1, we
are interested to know what the robust objective value is, i.e.
the optimal value if we allow an ε chance of not meeting it,
assuming that certain data values are defined on bounded ran-
dom variables. We show how a standard local search or meta-
heuristic routine can be extended to efficiently construct a
decision rule with such guarantee, albeit heuristically. We
demonstrate its practical applicability on the Resource Con-
strained Project Scheduling Problem with minimal and max-
imal time lags (RCPSP/max) taking into consideration activ-
ity duration uncertainty. Experiments show that, partial order
schedules can be constructed that are robust in our sense with-
out the need for a large planned horizon (due date), which
improves upon the work proposed by Policella et al. 2004.

Introduction

Many optimization problems in planning and scheduling
problems are NP-hard, and local search methods have been
effectively employed to solve them. While these methods
work well for deterministic versions of the problems, they
often do not and cannot take data uncertainty into consider-
ation, and hence it is not clear how these methods will per-
form when we apply them to solve the same optimization
problems under uncertainty.

In the deterministic setting, a fitness or objective function
is used to evaluate the ’goodness’ of a solution. Without loss
of generality, suppose we are concerned with a minimization
problem and X is the feasible solution set. The goal is to
seek a best solution, x∗ with the minimal fitness value, i.e.
x∗ = arg minx∈X f(x).

In a corresponding uncertainty setting, we assume there
exist data pertubations z̃, and the fitness function f(x, z̃) as-
sumes different values under different scenarios, i.e. differ-
ent realizations of the uncertain data parameters z̃. The goal
will be to construct a policy/strategy that decides how x is
to be instantiated as uncertainty parameters are realized dy-
namically. In the context of planning and scheduling, this

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

refers to the plan/schedule execution strategy in a dynamic
environment as uncertainty unfolds. Note that works that fo-
cus on scenarios-based generation may not give a tractable
approach as the number of scenarios may grow exponen-
tially with the size of the problem although there are re-
search being done, such as Tarim et al. 2006 that reduces
the number of scenarios required.

In this paper, we are interested in the following robust op-
timization problem: given 0 < ε ≤ 1, find the minimum
(i.e. optimal) value V ∗ and a policy such that we have 1-ε
probability guarantee that, over all possible realizations of
uncertain parameters z̃, the objective value of the resulting
feasible solution x instantiated by the policy does not exceed
V ∗. Note that for some realizations of z̃, a feasible solution
may not even exist, and in this paper, we ignore such scenar-
ios. This value V ∗ is term as the robust objective value.

In other words, we offer the planner the option to choose a
level of risk (ε), and our model will produce solutions whose
values will not be worse than the robust value (V ∗) by more
than ε probability, under all possible realizations of uncer-
tainty. Clearly, the higher the value of ε (i.e. the more
risk adverse), the more conservative the robust value will be
found. It is also worth noting that one may be tempted set
V ∗ to a sufficient large value that guarantees the probability
bound. In this paper, we are interested to find the smallest
such value (i.e. least upper bound). In the scheduling con-
text for instance, this translates to the problem of finding the
minimum (1-ε)-guaranteed makespan under different real-
izations of uncertainty.

While optimization under uncertainty has been a well-
studied topic, both in the AI and Operations Research com-
munities, recent advances in robust optimization have only
begun to propose tractable approximation models to solve
linear stochastic optimization problems with uncertainties
(e.g. Sim et al. 2007). The objective of this paper is to
integrate concepts from robust optimization into classical
local search to solve combinatorial optimization problems
under uncertainty tractably. We will present an application
of robust local search to generate robust partial order sched-
ules (POS) for the Resource-Constrained Project Scheduling
Problem with minimal and maximal time lags (RCPSP/max)
under uncertainty.

The structure of the paper is as follows. A literature re-
view is presented in section 2. We will present notations

208



and our proposed robust local search framework in sections
3 and 4. Section 5 describes the application of our frame-
work to RCPSP/max. Computational experiments on the
RCPSP/max benchmark problems are provided in Section
6. Section 7 provides overall conclusions and offers some
suggestions for future research.

Literature Review

In a practical scheduling environment, external unexpected
events may happen and disrupt the scheduled completion
time of the project. In recent years, there have been a grow-
ing number of proposed approaches that attempt to tackle
this problem. For a complete survey of recent works on
project scheduling, one may refer to Herroelen & Leus 2005.

One may broadly classify the decision-making ap-
proaches to tackle scheduling with uncertainty into 2 cate-
gories:

• Proactive scheduling that designs an a priori schedule that
takes into account the possible uncertainty that may occur.

• Reactive scheduling that revises or re-optimizes the base-
line schedule when an unexpected event occurs.

In this paper, we are concerned with proactive schedul-
ing against uncertainty. One can divide the works in this
area into 2 types: a) Executing a base-line schedules that is
buffered against uncertainty, and b) Executing a temporally
flexible scheduling policy.

Aytug et al. 2005 have highlighted the importance of
baseline schedules in production scheduling. Herroelen &
Leus 2004 raised the importance of having a baseline sched-
ule that can absorb disruptions in a multi-project environ-
ment where it may be necessary to make advance bookings
of key staff or equipment to guarantee their availability. The
paper is concerned with the development of a stable base-
line schedule in a multi-project environment that can absorb
disruptions in activity durations without affecting the plan-
ning of other activities, such that coordination of resources
and material procurement for each activity can be performed
efficiently. They assume that during project execution, ac-
tivities cannot be started before their foreseen starting time
in the baseline schedule. The objective is to minimize the
expected weighted deviation in activity start times.

A main argument against baseline schedules is that they
are brittle in the face of unpredictable execution dynamics
and can quickly become invalidated, a partial order schedule
(POS) on the other hand retains temporal flexibility when-
ever problem constraints allow it and can often absorb unex-
pected deviation from predictive assumptions.

A POS is defined by Policella et al. 2007 as a set of activ-
ities which are partially ordered such that any possible com-
plete order that is consistent with the initial partial order, is
a resource and time feasible schedule. A POS consists of a
set of feasible schedules that can be represented by a tem-
poral graph. Mathematically, a POS can be represented by a
temporal graph in which any activity is associated by a node
and the edges representing the constraints between the ac-
tivities. Within a POS, each activity retains a set of feasible
start times, and these options provide a basis for responding
to unexpected disruptions.

POS can be viewed as an intermediate approach between
the use of a baseline schedule and the completely dynamic
approach. Such approaches are based on the consideration
that robustness can be increased by introducing flexibility
in the schedule generation phase. An attractive property of
a POS is that reactive response to many external changes
can be accomplished via simple propagation in an underly-
ing temporal network (a polynomial time calculation), only
when an external change exhausts all options for an activity
it is necessary to recompute a new schedule from scratch.

On a separate front, recent advances in robust optimiza-
tion (Ben-Tal & Nemirovski 2002, Sim et al. 2006) has
shown promising results in immunizing uncertainty in opti-
mization against infeasibility while preserving the tractabil-
ity of the model. Sim et al. 2007 proposes a new deci-
sion rule model to approximate recourse decisions that is
computationally tractable using a mathematical program-
ming approach. This approach, while tractable, may still
be computationally challenging in solving large-scale opti-
mization problems as compared to local search. An interest-
ing new area of research that motivates this paper is the inte-
gration of robust optimization concepts and techniques into
local search thereby producing a computationally efficient
methodology for coping with large-scale combinatorial op-
timization under uncertainty, particularly in the scheduling
context.

Preliminaries

Ben-Tal & Nemirovski 2002 classifies the variables in a
stochastic optimization problem into 2 types: Adjustable and
Non-Adjustable variables.

Definition 1. Non-Adjustable variables are a priori deci-
sions that must be made before the actual realization of the
uncertainty.

Definition 2. Adjustable variables (also known as recourse
variables) are ’wait-and-see’ variables that can adjust
themselves when part of the uncertain data become known.

For example, in a scheduling problem such as RCPSP
with uncertain task durations, the non-adjustable variables
will represent the execution policy (in the case of Policella
2005, the POS) that need to be constructed apriori, while the
adjustable variables are associated with the actual start times
of the tasks, which will be set with respect to the execution
policy and dynamic realizations of uncertainty.

Notationally, let a random variable be denoted by x̃ and
bold face lower case letters such as x represent vectors. A
primitive random variable z̃k is one which has zero mean.
Examples of a primitive random variable include U(−a, a)
(uniform distribution between constants −a and a) and
N(0, σ) (normal distribution with mean 0 and variance σ2).

We assume that every uncertain parameter r̃ is equal to the
sum of its nominal value (mean) r0 and its deviation, repre-
sented by one (or possibly more) primitive random variable
z̃. For example, in RCPSP, each uncertain task duration r̃k

is represented by its mean value r0
k and its deviation repre-

sented by a single primitive random variable z̃k.
A decision rule specifies how an adjustable variable is to

be set with respect to the uncertainty parameters and non-

209



adjustable variables. Let z̃ and x denote the set of primitive
random variables and non-adjustable variables respectively.
In the linear decision rule framework proposed by Ben-Tal
& Nemirovski 2002, each adjustable decision variable is as-
sumed to be affinely dependent on a subset of some N num-
ber of primitive random variables:

V (x, z̃) = v0 +

N∑
k=1

vk(x)z̃k (1)

where each vk(x) (1 ≤ k ≤ N ) is a coefficient derived
from x. In RCPSP for example, x represents the POS to be
generated; each task is associated with an adjustable variable
V (x, z̃), where v0 represents the earliest start time of this
task under the POS, and vk encodes how task k is related to
this task in the POS. This will be further elaborated in the
section on ”Robust RCPSP/max”.

For simplicity, we will henceforth rewrite vk(x) as vk.

Segregated Random Variables

In the recent work of Sim et al. 2007, each primitive ran-
dom variable z̃k can be represented by 2 segregated random
variables z̃+

k (read z-plus) and z̃−k (z-minus):

z̃ = z̃+ − z̃− (2)

z̃+ = max {z̃, 0} (3)

z̃− = max {−z̃, 0} (4)

In the following table, we give examples of the respec-
tive values of mean μp, μm and variance σp

2, σm
2 for the

segregated variables z̃+ and z̃−.

z̃ V ar(z̃) σp
2, σm

2 μp,μm

U(−a, a) a2

3
5a2

48
a
4

N(0, σ) σ2 (π−1)σ2

2π
σ√
2π

Table 1: Values of the mean and variance for the segregated
variables under Uniform and Normal Distribution

Segregated Linear Decision Rule

Under the segregated linear decision rule framework of Sim
et al. 2007, each adjustable decision variable is assumed to
be affinely dependent on a set of some N segregated random
variables

{
z̃+
1 , z̃−1 , . . . , z̃+

N , z̃−N
}

. Hence, a segregated linear
decision rule has the following general form:

V (x, z̃) = v0 +
N∑

k=1

{
v+

k z̃+
k + v−k z̃−k

}
(5)

As we will show below, a segregated linear decision rule
allows us to easily obtain an upper bound on a subset of ran-
dom variables (see Eqn 9, which is not possible in the linear
decision rule framework proposed in Ben-Tal & Nemirovski
2002.

Given the mean and variance for each segregated variable
E(z̃+

k ) = E(z̃−k ) = μk , V ar(z̃+
k ) = σ2

pk and V ar(z̃−k ) =

σ2
mk , we can express the expected value and variance of any

adjustable variable as:

E[V (x, z̃)] = v0 +

N∑
k=1

{
v+

k μk + v−k μk

}
(6)

V ar[V (x, z̃)] =

N∑
k=1

{[
v+

k σpk

]2
+

[
v−k σmk

]2
− 2v+

k v−k μk

}

(7)

Segregated Linear Decision Rule in Scheduling

Adjustable variables are dependent on one another. In a
scheduling context, tasks are often connected in series or
parallel, and the start time of a task is dependent on the start
times of the preceding tasks. Thus, adjustable variables are
functions of other adjustable variables through the addition
operator (to model serial activities) and/or the maximum op-
erator (to model parallel activities). More details will be dis-
cussed on the Robust RCPSP section below.

Given some M number of adjustable variables, we may
express its sum as an adjustable variable in the form of a
segregated linear decision rule as follows:∑M

i=1 Vi(x, z̃)

=
∑M

i=1 v0
i +

∑N
k=1

{∑M
i=1 v+

i,kz̃+
k +

∑M
i=1 v−i,k z̃−k

}
(8)

Similarly, given some set C of adjustable variables, we
may also express the upper bound on the maximum of these
variables as an adjustable variable in the form of a segre-
gated linear decision rule:

maxi∈C{Vi(x, z̃)}

≤ maxi∈C{v
0
i } +

∑
k

{
maxi∈C{v

+
i,k}z̃

+
k

}
+

∑
k

{
maxi∈C{v

−
i,k}z̃

−
k

} (9)

Robust Local Search
In this section, we propose how a classical local search al-
gorithm may be extended in order to explicitly handle data
uncertainty so as to solve the robust optimization problem
presented in the Introduction.

Robust Optimization Problem Formulation

Given that the objective function for our problem is a func-
tion of non-adjustable variables x and uncertainty random
variables z̃, we can view the objective function as an ad-
justable fitness function V (x, z̃). Recall that the robust opti-
mization problem is to find the minimum value V ∗ for which
the following probability bound is observed:

P (V (x, z̃) ≤ V ∗) ≥ 1 − ε (10)

From the one-sided Chebyshev’s Inequality, we can ob-
tain a bound for the robust objective value V ∗ as a function
of its expected value and variance of the robust fitness func-
tion, i.e.:

E[V (x, z̃)] +
√

1−ε
ε

√
V ar[V (x, z̃)] ≤ V ∗

⇒ P (V (x, z̃) ≤ V ∗) ≥ 1 − ε
(11)

210



Hence, we can reformulate our robust optimization prob-
lem as the following optimization model:

min V ∗

s.t. E[V (x, z̃)] +
√

1−ε
ε

√
V ar[V (x, z̃)] ≤ V ∗ (12)

From this model, we can now derive the robust fitness
function which will be used in our proposed local search
framework:

Definition 3. Given 0 < ε ≤ 1 and the adjustable fitness
function V (x, z̃) defined above, the robust fitness function,
f(x, z̃, ε), is defined as

f(x, z̃, ε) = E[V (x, z̃)] +

√
1 − ε

ε

√
V ar[V (x, z̃)] (13)

Hence, the goal of a local search is to find a local minima
of f given z̃ and ε. Note that the function f can be com-
puted efficiently via Eqns 5, 6, which is a linear function of
nominal values with the mean and variance of the segregated
variables. This is important since local search typically re-
quires the fitness function to be computed many times.

Robust Local Search Algorithm

This section will present how our concepts of segregated
linear decision rule and robust fitness function can be inte-
grated with a standard local search to solve the Robust Op-
timization Problem defined above. Our proposed algorithm
is outlined as follows. Steps i, ii, v and vi are standard steps
in a local search algorithm. Steps iii and iv represent our de-
parture from standard local search to deal with uncertainty.

i. Generate Initial Solution
This is usually obtained using a simple greedy heuristic.

ii. Generate Neighbourhood of Solutions
Generate a pool of neighbour solutions from the current
solution.

iii. Assume Segregated Linear Decision Rule for all ad-
justable variables and check feasibility
For each candidate solution x in the solution pool, derive
the coefficients vk(x) for each adjustable variable. Subse-
quently, for each solution check constraint violation and
reject those that are not feasible.

iv. Evaluate Robust Fitness Function f
For each feasible solution x, evaluate f to obtain the ro-
bust objective values. The solution with the lowest robust
objective value is the current best robust solution.

v. Apply Penalty (optional)
Some advanced local search strategies may require a
penalty to be applied to prevent it from being caught at
a local minima. In the case of tabu-search for example, a
tabu-list is updated when a tabu move is applied. In the
case of iterated local search, a perturbation move will be
applied to the current local minima.

vi. Termination Criteria
If the termination criteria is met, return the solution with
the lowest robust fitness function value else repeat the op-
timization cycle by determining the next move.

Robust RCPSP/max

Research on resource constrained project scheduling prob-
lem has been mostly concerned with the generation of a
precedence and resource feasible baseline schedule that min-
imizes the deterministic makespan of the project. However,
in practice, projects are often unable to observe to its given
baseline schedule with many failing to meet the expected
project deadlines. This leading to the incurrence of extra
cost as a result of late delivery penalties.

Therefore there exists a practical need to study the tack-
ling of the scheduling problem with uncertainty being taken
into consideration. Although there exist research that looks
at the problem of stochastic availability of the resources, the
scope of this paper will only cover the aspect of uncertainty
in terms of the stochastic duration of activities in project
scheduling. Möhring 2001 reports that the problem of find-
ing the distribution a given project makespan with activity
duration uncertainty itself is a �P -Complete problem in gen-
eral. Thus, it is even more computationally challenging to
consider the project scheduling problem with resource con-
straint in the uncertainty context.

Our approach takes the proactive viewpoint in generating
partial-order schedules that can be executed within a project
completion time which we term the robust make-span with
a probability of at least 1 − ε.

In the following 4 subsections, we will first define the
RCPSP/max problem, followed by the various metrics of ro-
bustness for partial order schedules. We will then discuss the
formulation of our robust model and finally present our pro-
posed robust local search algorithm to search for the best
robust POS.

RCPSP/max Problem Formulation

The standard RCPSP/max has the following inputs:

• V : Set of N activities {a0, a1, . . . , an, an+1} represented
as nodes in a graph. Activity a0 is inserted that denotes
the dummy start node and an+1 denotes the dummy end
node.

• di: Activity processing time for activity i.

• Ck: Constant resource capacity for resource type k over
entire horizon.

• Ep: Set of temporal constraints between activities repre-
sented as directed edges in a graph.

• rik: Resource requirement for activity i for resource type
k.

A schedule is an assignment of start times to activities
a0, a1, . . . an, an+1, i.e. a vector S = (s0, s1, . . . , sn, sn+1)
where si denotes the start time of activity ai. The time at
which activity ai has been completely processed is called
its completion time and is denoted by V i. Since we as-
sume that processing times are deterministic and preemp-
tion is not permitted, completion times are determined by
V i = si + di. Schedules are subjected to both temporal
and resource constraints. Resource constraints, in the form
of

∑
i∈At

rik ≤ Ck∀t, k ensures that the resource usage for
each resource type k does not exceed the capacity at any

211



point of time during the execution of the project in which At

is the set of active activities at time t. Temporal constraints
contained in the set Ep, designate arbitrary minimum and
maximum time lags between the start times of any two ac-
tivities, lmin

ij ≤ sj−si ≤ lmax
ij . The objective is to minimize

the make-span, V n of the whole project.
In the robust optimization counterpart, we assume that the

processing time of each activity to be uncertain. The prob-
lem we need to solve is given a value ε, find a POS for a
RCPSP/max problem such that the robust make-span V ∗ of
the POS is minimized, and the probability that the POS will
be completed within V ∗ is at least 1 − ε.

Measuring the Robustness of Schedules

Robustness of Partial Order Schedules In this subsec-
tion, we shall look at the various metrics in measuring the
robustness of a POS. The first metric is taken from Aloulou
& Portmann. 2003 defines the metric flexibility, flex as fol-
lows:

flex =

n∑
i=1

n∑
j>i∧ai⊀aj∧aj⊀ai

1

n (n − 1)
(14)

Flexibility measures the number of pairs of activities in the
solution which are not reciprocally related by simple prece-
dence constraints. The rationale is that when two activities
are not related it is possible to move one without moving the
other one. Hence, the higher the value of flex the lower the
degree of interaction among the activities.

The second metric by Smith et al. 1998 defines the aver-
age width, relative to the temporal horizon, of the temporal
slack associated with each pair of activities (ai, aj) as shown
in the following equation:

fldt =
n∑

i=1

n∑
j=1∧j �=i

slack(ai, aj)

H × n × (n − 1)
× 100 (15)

where H is the horizon of the problem defined above, n is
the number of activities, slack(ai, aj) is the width of the
allowed distance interval between the end time of activity
ai and the start time of activity aj , and 100 is a scaling
factor. This metric characterizes the fluidity of a solution,
i.e., the ability to use flexibility to absorb temporal variation
in the execution of activities. Furthermore it considers that
a temporal variation concerning an activity is absorbed by
the temporal flexibility of the solution instead of generating
deleterious domino effects (the higher the value of fldt, the
lower the risk, i.e., the higher the probability of localized
changes).

Note that all the above metrics do not explicitly take
into consideration the distribution of the uncertain durations.
More precisely, all metrics are concerned with measuring the
number of solutions contained within a POS within a fixed
horizon H , which is usually a large value. Unfortunately,
these metrics do not give an accurate measure of how large
the makespan can be if we take into consideration the uncer-
tainty of the durations. Now if we know some distributional
information such as variance, we will be able to generate
POS that are robust in the sense that we can measure the

precise probability of successful execution of the generated
POS, or conversely, given a probability, we can find a ro-
bust makespan such that all executions will have a makespan
bounded by that robust makespan with the probability guar-
antee.

Robust Model Formulation

In our proposed model, we do not assume the probability
distribution type of the activity duration because in real prac-
tice it is difficult to justify such assumption. The processing

time of each activity is represented by a random variable d̃.

We denote d0 = E[d̃] as the mean processing time.
We can view the negative segregated random variable

ẽ = max{d0− d̃, 0} as representing the probability distribu-
tion of the earliness i.e. the distribution of the difference of
its processing time from the mean time d0 when the activity
is completed before its mean time. Similarly, we can view

the positive segregated random variable l̃ = max{d̃−d0, 0}
represents the lateness i.e. the distribution of the difference
of its processing time from the mean time d0 when the activ-
ity is completed after its mean time. The uncertain process-
ing time of an activity is thus composed of 3 components its

mean d0, earliness ẽ, and lateness l̃.

d̃ = d0 + l̃ − ẽ (16)

The value of E
[
l̃kẽk

]
equals to zero, since an activity can

only either be early or late.

Segregated Linear Decision Rule

We use the segregated linear decision rule to represent the
earliest starting time S(z̃) and finishing time V (z̃) for each
activity.

Serial Activities Consider two activities a1 and a2 that are
connected serially, in which a2 starts after a1 is completed.
Assuming no lag times in between activities. The starting
time and ending time for a1 are:

S1(l̃, ẽ) = 0 (17)

V1(l̃, ẽ) = S1(l̃, ẽ) + d̃1 = d0
1 + l̃1 − ẽ1 (18)

The starting and ending time for a2 are:

S2(l̃, ẽ) = V1(l̃, ẽ) = d0
1 + l̃1 − ẽ1 (19)

V2(l̃, ẽ) = S2(l̃, ẽ)+ d̃2 = (d0
1 + d0

2)+ (l̃1 + l̃2)− (ẽ1 + ẽ2)
(20)

In general, we can express the end time of the n-th activity
of a serial N-activity project network using Eqn 8 as follows:

Vn(l̃, ẽ) = Vn−1(l̃, ẽ) + d̃n

=
∑N

i=1 d0
i + l̃i − ẽi

(21)

Parallel Activities Consider two parallel activities a1 and
a2 that are executed concurrently. The completion time of
the both activities can express an upper bound ending time
of both activities from Eqn 9 as follows:

S3(l̃, ẽ) = max
(
V1(l̃, ẽ), V2(l̃, ẽ)

)
≤ max

(
d0
1, d

0
2

)
+ (l̃1 + l̃2)

(22)

212



In general, we can express the upper-bound of the end time
of any parallel N -activity project networks as follows:

S(an+1) ≤ max
i∈N

{d0
i } +

N∑
i=1

l̃i (23)

Thus, given any project network, we can formulate its ear-
liest finishing time of the project as an adjustable variable in
segregated linear decision rule using Eqns 21 and 23. We
can define the adjustable project makespan variable as a ro-
bust fitness function to be used in a local search from Eqn 13,
V ∗(x, z̃, ε). We termed the value returned from the function
V ∗(x, z̃, ε) as the robust makespan, V ∗

Algorithmic Design

Algorithm 1 shows the design of our robust local search.
Given the a) RCPSP/max problem instance, b) mean and
variance values of the segregated variables c) level of risk
(ε), the algorithm will return the POS with the minimal ro-
bust makespan, V ∗. In essence, we perform robust local
search on the neighbourhood set of activity lists. An activity
list is defined as a precedence-constraint feasible sequence
commonly used by heuristics to generate earliest start time
schedules using methods such as the serial schedule gener-
ation scheme in solving the standard RCPSP problem (see
Kolisch & Hartmann 2005).

The following is a description of how Algorithm 1 works.
In our algorithm, different activity lists will be explored

by local moves. In our context, we only consider the ac-
tivity list as the sequence of activities which satisfy the
non-negative minimal time lag constraint. When we con-
sider maximal time lag constraint in RCPSP/max, schedul-
ing each activities to its earliest possible start time based
on the its order position in the activity list may restrict the
schedule so much that it may not even return in a feasible
schedule. Thus, when we schedule each activity sequen-
tially based on its order position in the activity list, we will
instead assign its starting time by randomly picking a time
from its domain of feasible start times.

According to preliminary experiments, this new random-
ized approach returns more feasible solutions than the earli-
est start time one. After finding a feasible schedule, a POS
will be generated by applying the chaining procedure pro-
posed in Policella et al. 2004. Then, the V ∗ value will be
computed according to the POS. Intuitively, using the ran-
domized approach may return a schedule with a large base-
line scheduled completion time. However, we can apply the
shortest path algorithm on the resultant POS to generate the
earliest start time schedule for a smaller makespan.

As mentioned above, it may be difficult to find a feasible
schedule that satisfies minimal and maximal time lag con-
straints using activity list. In fact, we believe that in the set
of all activity lists, many may not yield a feasible schedule.
We overcome this problem in the following way. Define the
set of activity lists which result in feasible (resp. infeasi-
ble) schedules as F (resp. I). We seek to design a local
search algorithm with the following characteristics: a) Start-
ing from an activity list in I , the local search should move
to an activity list in F within a short time. b) Starting from

Algorithm 1 Robust Local Search Algorithm

Generate an activity list AL randomly
Find a feasible start time schedule, S randomly according
to AL
if AL ∈ F then

POS ← chaining(S)
Computer V ∗

now according POS
Update V ∗

min as V ∗
now

else
Record the first activity a which can not be scheduled

end if
for i ← 1 to Max Iteration do

if AL ∈ I then
Shift activity a ahead in AL randomly as AL’

else
Select two activity b and c in AL randomly
Swap b and c in AL as AL’

end if
Find randomized start time schedule S′ according to
AL’
if AL′ ∈ F then

POS′ ← chaining(S′)
Compute V ∗ according to POS′

if AL ∈ I or V ∗ ≤ V ∗
now then

V ∗
now ← V ∗

AL ← AL′

if V ∗ ≤ V ∗
min then

V ∗
min ← V ∗

end if
end if

else if AL ∈ I then
AL ← AL′

else
p ← rand(0, 1)
if p < 0.01 then

AL ← AL′

Record the first activity a which can not be sched-
uled

end if
end if

end for

an activity list in F , the local search should move to the ac-
tivity list with the minimal V ∗ value. c) We also diversify
the exploration of activity lists in F by allowing the local
search to move from an activity list in F to an activity list in
I , since activity lists in the F region may not be reachable
from one another by simple local moves. This has the flavor
of strategic oscillation proposed in meta-heuristics research.

With all the above considerations in mind, we apply two
different types of local moves. To converge quickly to an
activity list in F , the first local move is designed to schedule
the activity which meets temporal or resource conflict ear-
lier. It will randomly shift ahead the first activity which can-
not be scheduled in the current activity list. When an activity
list is in F , the second local move will randomly pick two
activities and swap them in the current activity list, while sat-

213



V ∗(x, z̃, ε) flex(x) fldt(x)
ε % cpu(s) V ∗ flex fldt V ∗ flex fldt V ∗ flex fldt

J10 0.01 100 0.1 47.6 0.242 0.630 52.2 0.297 0.659 51.4 0.268 0.713
0.05 46.8 0.244 0.632 51.1 50.4
0.1 46.5 0.247 0.634 50.8 50.1
0.2 46.3 0.244 0.632 50.6 49.9

J20 0.01 96.2 0.7 79.9 0.237 0.624 87.7 0.282 0.655 87.6 0.249 0.751
0.05 78.5 0.238 0.621 86.2 86.1
0.1 78.2 0.237 0.620 85.9 85.7
0.2 77.7 0.238 0.622 85.6 85.4

J30 0.01 98.9 3.0 106.4 0.240 0.588 113.8 0.272 0.613 116.7 0.239 0.736
0.05 104.5 0.237 0.586 112.0 114.9
0.1 104.4 0.238 0.586 111.6 114.5
0.2 103.4 0.236 0.590 111.3 114.1

Table 2: Comparison of using robust makespan (V ∗), flexibility (flex) and fluidity (fldt) as metrics of robustness on J10, J20,
J30 benchmark problem sets

isfying the non-negative minimal time lag constraints. The
move will be accepted, if it results in a smaller or equal V ∗

value. To explore more different activity lists, we introduce a
small probability to accept the move which lead to an infea-
sible schedule. The detailed robust local search procedure is
given in Algorithm 1.

In Algorithm 1, chaining is the function to generate a
POS from a baseline schedule (Policella et al. 2004). The
probability to move from an activity list in F to one in I
is set at 0.01. Max Iteration is the maximal number of
iterations of the robust local search. The minimal V ∗ value
will be saved as V ∗

min.

Experimental Evaluation

In this section we will present the experimental results of ap-
plying the robust local search algorithm to solve the robust
optimization problem associated with RCPSP/max. Com-
parison is made between the POS obtained using the robust
make-span V ∗ as its fitness function and those obtained us-
ing the flexibility and fluidity metrics as the fitness function.
We run our robust local search algorithm on the standard
RCPSP/max benchmark problem sets as defined in Kolisch
et al. 1998. This benchmark consists of 3 sets J10, J20 and
J30 of 270 problem instances of difference size 10 x 5, 20 x
5 and 30 x 5 (number of activities x number of resources).

For all the data set we assume that its nominal activity du-
ration, d0 is the deterministic activity duration given from
benchmark. To model activity duration uncertainty, we let

each activity’s duration to be a random variable d̃ = d0 + z̃
where z̃ ∼ N(0, 0.1). z̃ can be further split into its seg-
regated variables: z̃ = z̃+ − z̃−. By setting the standard
deviation of z̃ to be 0.1, we like to investigate how the
RCPSP/max robust model would react to small variation in
the activity duration. The nominal duration of each activity
in the benchmark ranges from 1 to 10 and averaging around
5. The values, V ar(z̃+) = σ2

p = 0.0341, V ar(z̃−) =

σ2
m = 0.0341 and E(z̃+) = E(z̃−) = μ = 0.0399 can

be calculated using the formulas inside Table 1.

We run our robust local search algorithm across 4 in-

creasing levels of risk, ε = {0.01, 0.05, 0.1, 0.2} with the
Max Iteration set to 1000 for the local search. For each
benchmark set, the local search algorithm is repeated 3
times differently using different fitness function. First ro-
bust make-span V ∗ as the fitness function which is repeated
4 times each for different values of ε. Subsequently, the local
search’s fitness function is replaced with the flexibility and
fluidity function. The values of the flexibility and fluidity
used are normalized as in Policella et al. 2007. The search
algorithm will attempt to return the best POS, POSflex and
POSfldt with the maximal flexibility and fluidity respec-
tively. We also compute the robust makespan for POSflex

and POSfldt. All the results recorded in Table 2 are the
average results over the subset of the solved problem in-
stances. The % column reports the percentage of the number
of problems that our algorithm solves over the total number
of solved problem instances in each benchmark sets. The
cpu column reports the average runtime for each benchmark
cases. The algorithm is implemented in C++ and the CPU
times reported are executed on a Pentium 4-3000 MHz pro-
cessor under LINUX.

0.01 0.05 0.1 0.15 0.2
100

110

120

130
Robust Makespan vs Level of Risk

Level of Risk

R
o

b
u

s
t 

M
a
k
e
s
p

a
n N(0,0.1)

N(0,0.5)

Figure 1: Robust makespan versus Level of Risk Curve (J30
benchmark)

From table 2, we first observe that, the robust make-span
increases as the level of risk(ε) decreases. The lower the

214



level of risk that the planner is willing to take, the higher
the robust make-span value for the POSs generated. We
repeat the experiment on the J30 set, but now increase the
variability of each activity duration to z̃∼N(0,0.5). The ob-
tained results are shown in the chart in Fig 1. We can ob-
serve that as the level of risk increases, the robust-makespan
decreases in a convex manner. In other words, we have to
incur a much higher cost (a higher robust-makespan) as we
become more conservative. Furthermore, this trend is more
acute in case where the activity duration variability is high
(compare N(0,0.5) with N(0,0.1)). Although this result is in-
tuitive, our approach provides a method for how this tradeoff
is quantified. With this tradeoff result, the planner may uti-
lize the robust make-span versus risk(ε) curve to decide on
the desired optimal robust POS.

Another observation we can obtain from the experiments
is that by using flexibility and fluidity as the fitness func-
tion for local search, we obtain a POS with a higher robust
make-span as compared to using robust make-span as the fit-
ness function. This observation can be seen across different
levels of risk (ε) as well in different problem set sizes. This
suggests that having high fluidity does not imply robustness
and thus we may not be required to buffer too much slack
between activities, against conventional wisdom. Our re-
sult also does not seem to indicate any relationship between
robust makespan and flexibility, as the values of flexibility
fluctuates at different levels of ε for each problem set.

Conclusion

In this paper, we propose a simple yet efficient method to
enrich local search so that it is capable of solving a variant
of optimization problem under uncertainty: namely, given a
level of confidence (or risk), how to find a robust objective
value and a policy such that when uncertainty is dynamically
realized, the policy execution will result in a solution whose
value is as good as the robust value with the given level of
confidence (risk). We applied our local search framework to
tackle the RCPSP/max problem under uncertainty where a
schedule policy (i.e. POS) need to be generated. Interest-
ingly, our experimental results show that given mild activity
uncertain distribution, we can find POS with better robust
makespan that do not necessarily have high flexibility and
fluidity. And as a by-product, we also managed to improve
the results obtained in Policella et al. 2007.

The future direction of this work is promising - the most
obvious avenue being the improvement of our framework,
and its application to tackle other planning and scheduling
problems. We also believe that our work can be a launch
pad for designing systems that enable decision-makers to
find solutions which are not only optimized, but also robust
against uncertainty, in a computationally efficient manner.

Acknowledgments

The authors would like to thank Dr Melvyn Sim for his
suggestions and guidance in integrating robust optimization
with local search in a dynamic setting using segregated lin-
ear decision rule.

References

Aloulou, M.A. & Portmann., M.C. (2003). An efficient
proactive reactive scheduling approach to hedge against
shop floor disturbances. In 1st Multidisciplinary Interna-
tional Conference on Scheduling: Theory and Applica-
tions(MISTA), 337–362.

Aytug, H., Lawley, M.A., McKay, K., Mohan, S. & Uzsoy,
R. (2005). Executing production schedules in the face of
uncertainties: A review and some future directions. In Eu-
ropean Journal of Operational Research, vol. 165(1), 86–
110.

Ben-Tal, A. & Nemirovski, A. (2002). Robust optimization
- methodology and applications. Math. Prog. Series B, 92,
453–480.

Herroelen, W. & Leus, R. (2004). The construction of stable
project baseline schedules. In European Journal of Oper-
ational Research, vol. 156(3), 550 – 565.

Herroelen, W. & Leus, R. (2005). Project scheduling under
uncertainty: Survey and research potentials. In European
Journal of Operational Research, vol. 165(2), 289–306.

Kolisch, R. & Hartmann, S. (2005). Experimental inves-
tigation of heuristics for resource-constrained project
scheduling: An update. European Journal of Operational
Research.

Kolisch, R., Schwindt, C. & Sprecher, A. (1998). Bench-
mark Instances for Project Scheduling Problems, 197–
212. Kluwer Academic Publishers, Boston.

Möhring, R.H. (2001). Scheduling under uncertainty:
bounding the makespan distribution. Computational Dis-
crete Mathematics: advanced lectures, 79–97.

Policella, N. (2005). Scheduling with Uncertainty A Proac-
tive Approach using Partial Order Schedules. Ph.D. the-
sis, Universit‘a degli Studi di Roma La Sapienza.

Policella, N., Smith, S.F., Cesta, A. & Oddi, A. (2004). Gen-
erating robust schedules through temporal flexibility. In
International Conf. on Automated Planning and Schedul-
ing (ICAPS), 209–218.

Policella, N., Cesta, A., Oddi, A. & Smith, S. (2007). From
precedence constraint posting to partial order schedules:
A csp approach to robust scheduling. In AI Communica-
tions, accepted.

Sim, M., Chen, X. & Sun, P. (2006). A robust optimiza-
tion perspective of stochastic programming. Operations
Research, accepted.

Sim, M., Chen, X. & Sun, P. (2007). A linear-decision based
approximation approach to stochastic programming. Op-
erations Research, accepted.

Smith, S.F., Cesta, A. & and, A.O. (1998). Profile-based
algorithms to solve multiple capacitated metric schedul-
ing problems. In Artificial Intelligence Planning Systems,
214–231.

Tarim, S.A., Manandhar, S. & Walsh, T. (2006). Stochas-
tic constraint programming: A scenario-based approach.
Constraints, 11(1), 53–80.

215


	Singapore Management University
	Institutional Knowledge at Singapore Management University
	9-2007

	Robust Local Search and Its Application to Generating Robust Schedules
	Hoong Chuin LAU
	Fei Xiao
	Thomas Ou
	Citation


	Robust Local Search and Its Application to Generating Robust Schedules

