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Abstract 
 

The literature on multivariate stochastic volatility (MSV) models has developed 
significantly over the last few years. This paper reviews the substantial literature on 
specification, estimation and evaluation of MSV models. A wide range of MSV models 
is presented according to various categories, namely (i) asymmetric models; (ii) factor 
models; (iii) time-varying correlation models; and (iv) alternative MSV specifications, 
including models based on the matrix exponential transformation, Cholesky 
decomposition, Wishart autoregressive process, and the empirical range. Alternative 
methods of estimation, including quasi-maximum likelihood, simulated maximum 
likelihood, Monte Carlo likelihood, and Markov chain Monte Carlo methods, are 
discussed and compared. Various methods of diagnostic checking and model 
comparison are also examined.  
 
 
Keywords and phrases: multivariate stochastic volatility, asymmetry, leverage, 
thresholds, factor models, time-varying correlations, transformations, estimation, 
diagnostic checking, model comparison.  
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1. Introduction 
 

A wide range of multivariate GARCH and stochastic volatility (SV) models has been 
developed, analysed and applied extensively in recent years to characterize the volatility 
that is inherent in financial time series data. Bauwens et al. (2004) provided a recent 
survey of multivariate GARCH, or conditional volatility, models. The GARCH 
literature has expanded considerably since the univariate ARCH process was developed 
by Engle (1982). The univariate SV model was proposed by, among others, Taylor 
(1982, 1986), and the univariate SV literature was surveyed in Ghysels et al. (1996). 

 
Although there have already been many practical applications of multivariate 

GARCH models, the theoretical literature on multivariate stochastic volatility (MSV) 
models has developed significantly over the last few years. Some of the more important 
existing univariate and multivariate GARCH and SV models have been analysed in 
McAleer (2005). However, a comprehensive review of the important aspects of existing 
MSV models in the literature does not yet seem to exist. Owing to the development of a 
wide variety of MSV models in recent years, this paper reviews the substantial literature 
on the specification, estimation and evaluation of MSV models. 
 

There are both economic and econometric reasons why multivariate volatility 
models are important. The knowledge of correlation structures is vital in many financial 
applications, such as optimal portfolio risk management and asset allocation, so that 
multivariate volatility models are useful for making financial decisions. Moreover, as 
financial volatility moves together across different assets and markets, modelling 
volatility in a multivariate framework can lead to greater statistical efficiency. 
 

The remainder of the paper is organized as follows. Section 2 presents a range of 
MSV models according to various categories, including asymmetric models, factor 
models, time-varying correlation models, and several alternative specifications, 
including the matrix exponential transformation, Cholesky decomposition, Wishart 
autoregressive models, and an empirical range-based model. Section 3 compares and 
discusses alternative methods of estimation, including the quasi-maximum likelihood, 
simulated maximum likelihood, Monte Carlo likelihood, and Markov Chain Monte 
Carlo techniques. Various methods of diagnostic checking and model comparison are 
examined in Section 4. Some concluding comments are given in Section 5.  
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2. MSV Models 
 
This section reviews several variants of MSV models according to four categories, as 
follows: (i) asymmetric models; (ii) factor models; (iii) time-varying correlation 
models; and (iv) alternative MSV specifications, including models based on the matrix 
exponential transformation, Cholesky decomposition, Wishart autoregressive process, 
and empirical range. 
 

In what follows, )',,( 1 myyy K=  denotes a vector of returns for m  
financial assets. For expositional purposes, it is assumed that the conditional mean 
vector of y  is zero, although this can easily be relaxed. Moreover, exp(.)  and log(.)  
denote the element-by-element exponential and logarithmic operators, respectively, and 

1{ } { , , }mdiag x diag x x= K  denotes the m m×  diagonal matrix with diagonal elements 
given by 1( , , )mx x x ′= K . 
 
2.1  Basic Models 
 
The first MSV model proposed in the literature is due to Harvey et al. (1994), as 
follows:  
 

 

{ } ( ){ }1 / 2 / 2

,

, exp 0.5 ,t mt

t t t

h h
t t

y D

D diag e e diag h

ε=

= =K

   (1) 

 
 1 ,t t th hµ φ η+ = + +o       (2) 
 

 
0

~ , ,
0

t

t

P O
N

O
ε

η

ε
η

     
      Σ      

     (3) 

 
where 1( , , )t t mth h h ′= K  is an m×1 vector of unobserved log-volatility, µ  and φ  are 

1m×  parameter vectors, the operator o  denotes the Hadamard (or 

element-by-element) product, { },ijη ησΣ =  is a positive-definite covariance matrix, and 

{ }ijPε ρ=  is the correlation matrix, that is, Pε  is a positive definite matrix with 
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1iiρ =  and | | 1ijρ <  for any i j≠ , i, j = 1, …, m. Harvey et al. (1994) also considered 

the multivariate t  distribution for tε  as this specification permits greater kurtosis as 
compared with the Gaussian assumption. 
 

The model of Harvey et al. (1994) can easily be extended to a VARMA structure 
for th , as follows: 
 

1( ) ( ) ,t tL h Lµ η+Φ = +Θ  
 

where  
 

1
( ) p i

m ii
L I L

=
Φ = − Φ∑ , 

 

1
( ) q j

m jj
L I L

=
Θ = − Θ∑ , 

 
and L is the lag operator. 
 

Assuming that the off-diagonal elements of ηΣ  are all equal to zero, the model 

corresponds to the constant conditional correlation (CCC) model proposed by 
Bollerslev et al. (1988) and Bollerslev (1990) in the framework of multivariate GARCH 
processes. In the CCC model, each conditional variance is specified as a univariate 
GARCH model, that is, with no spillovers from other assets, while each conditional 
covariance is given as a constant correlation coefficient times the product of the 

corresponding conditional standard deviations. If the off-diagonal elements of ηΣ  are 

not equal to zero, then the elements of th  are not independent.  
 

Before introducing various MSV models, we present the long-memory MSV 
model analyzed by Anderson et al. (2003). By using a common degree of fractional 
integration, d , Anderson et al. (2003) specified the multivariate long-memory model as 
follows: 
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1( )(1 )d
t tL L h µ η+Φ − = + .  (4) 

 
As their analysis depends on the realized value of volatility, th , estimation of this 
model is relatively straightforward, as follows: (i) estimate the common d  using a 
multivariate extension of the GPH (Geweke and Porter-Hudak (1983)) estimator, as 
developed by Robinson (1995); and (ii) estimate the model by applying OLS to each 
equation separately. 
 
2.2 Asymmetric Models 
 
It has long been recognized that the volatility of many financial assets responds 
differently to bad news and good news. This is especially true for stock returns. In 
particular, while bad news tends to increase the future volatility, good news of the same 
size will increase the future volatility by a smaller amount, or may even decrease the 
future volatility. A popular explanation for this asymmetry is the leverage effect, as first 
proposed by Black (1976) (see also Christie (1982)), which predicts that volatility tends 
to decrease in response to good news but increase in response to bad news. Other forms 
of asymmetry, such as the asymmetric V-shape, have to be explained by reasons other 
than the leverage effect. Alternative reasons for the volatility asymmetry that has been 
suggested in the literature include the volatility feedback effect (Campbell and 
Hentschel (1992)).  

 
The volatility asymmetry has been examined extensively in the context of 

univariate SV models. The news impact function (NIF) of Engle and Ng (1993) is a 
powerful tool for analysing the volatility asymmetry for GARCH-type models. The idea 
of the NIF is to examine the relationship between conditional volatility in period t+1 

(defined by 2
1+tσ ) and the standardized shock to returns in period t (defined by tε ) in 

isolation. Yu (2004b) generalized the NIF for the relationship between )|(ln 2
1 ttE εσ +  

and tε  in isolation, so that the NIF is also applicable to SV models.  
 
It is now possible to review the various asymmetric MSV models according to the 

different shapes of the NIF. 
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2.2.1 Leverage Effect 
 
Yu (2004a) defined the leverage effect to be a negative relationship between 

)|(ln 2
1 ttE εσ +  and tε , holding everything else constant. According to this definition, 

the leverage effect must lead to a decreasing NIF.  
 

A univariate discrete time SV model with the leverage effect was first proposed by 
Harvey and Shephard (1996), although Wiggins (1987) and Chesney and Scott (1989), 
among others, considered a continuous time model itself and discretized it for purposes 
of estimation. The model of Harvey and Shephard (1996) may be regarded as the Euler 
approximation to the continuous time SV model that is used widely in the option price 
literature (see, for example, Hull and White (1987), who generalized the Black-Scholes 
option pricing formula to analyse SV and leverage). These papers assume the negative 
correlation between the innovations. Yu (2004b) showed that, after rewriting the model 
in a Gaussian non-linear state space form with uncorrelated measurement and transition 
equation errors, the NIF is a straight line which slopes downwards.  

 
An alternative discrete time SV model with “leverage effect” was proposed by 

Jacquier et al. (2004), which differs from the specification in Harvey and Shephard 
(1996) in how the correlation of two error processes is modelled. Yu (2004a) argued 
that it is difficult to interpret the leverage effect in the latter specification, whereas the 
interpretation of the leverage effect is straightforward in the former. 

 
Danielsson (1998) and Chan et al. (2003) considered a multivariate extension of 

the model of Jacquier et al. (2004). The model is given by equations (1) and (2), 
together with  
 

 

,

0
~ , ,

0

{ },

t

t

ij ij

P L
N

L

L

ε

η

η

ε
η

λ σ

     
      Σ      

=
     (5) 
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where the parameter ijλ  captures asymmetry.1 In the empirical analysis, Danielsson 

(1998) did not estimate the multivariate DL model because the data used in his analysis 
did not suggest any asymmetry in the estimated univariate models. Chan et al. (2003) 
employed the Bayesian Markov Chain Monte Carlo (MCMC) procedure to estimate the 
DL model. However, the argument of Yu (2004a) regarding the leverage effect also 
applies to the model in (5). Thus, the interpretation of the leverage effect in (5) is 
unclear and, even if 0<iiλ , there is no guarantee that there will, in fact, be a leverage 
effect.  
 

Asai and McAleer (2004b) considered a multivariate extension of the model of 
Harvey and Shephard (1996). The model is given by equations (1) and (2), together with  
 

 

1 ,11 ,

0
~ , ,

0

{ , , },

t

t

m mm

P L
N

L

L diag

ε

η

η η

ε
η

λσ λ σ

     
      Σ      

= K

     (6) 

 
where the parameter iλ ,  i = 1,…,m, is expected to be negative. Asai and McAleer 
(2004b) developed an estimation method for this MSV model based on the Monte Carlo 
likelihood (MCL) technique proposed in Durbin and Koopman (1997).  
 
2.2.2 Threshold Effect 
 
In the GARCH literature, Glosten et al. (1993) proposed modelling the asymmetric 
responses in conditional volatility using thresholds. In the univariate SV literature, So et 
al. (2002) proposed a threshold SV model, in which the constant term and the 
autoregressive parameter in the SV equation changed according to the sign of the 
previous return.  
 

Although the multivariate threshold SV model has not yet been developed in the 
literature, it is straightforward to introduce a multivariate threshold SV model with 

                                                  
1 The case 0<iiλ  implies a leverage effect for asset i  as it implies that bad news for 
asset i  at period t  tends to increase the volatility of asset j  at period 1+t . 
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mean equation given in (1), together with the volatility equation, as follows: 
 

1 ( ) ( ) ,t t t t th s s hµ φ η+ = + +o      (7) 
 
where  

 

( )1 1( ) ( ), , ( )t t m mts s sµ µ µ ′= K , 

 

( )1 1( ) ( ), , ( )t t m mts s sφ φ φ ′= K , 

 
and ts  is a state vector, with elements given by 
 

0, if 0,
1, otherwise.

it
it

y
s

<
= 


      (8) 

 
It is straightforward to show that the NIF of a threshold SV model can have a flexible 
shape.  
 
2.2.3 General Asymmetric Effect 
 
Within the univariate framework, Danielsson (1994) suggested an alternative 
asymmetric specification to the leverage SV model, which is similar in spirit to an 
extension of the univariate exponential GARCH (EGARCH) model of Nelson (1991). 
The EGARCH model incorporated the absolute value function to capture the sign and 
magnitude of the previous normalized returns shocks to accommodate asymmetric 
behaviour.  
 

In the model suggested by Danielsson (1994), which was termed the asymmetric 
leverage (AL) model in Asai and McAleer (2004a), two additional terms, || ty  and ty , 
were included in the volatility equation, while the correlation between the two error 
terms was assumed to be zero. Asai and McAleer (2004a) noted that the absolute values 
of the previous realized returns were included because it was not computationally 
straightforward to incorporate the previous normalized shocks in the framework of SV 
models. Yu (2004b) proposed an alternative specification to Danielsson (1994) and 
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extended the volatility equation of the standard leverage SV model by including an 
additional term, namely || ty . Finally, Asai and McAleer (2004a) proposed a more 
general model which nests both the model of Yu (2004b) and the AL model as special 
cases. It is straightforward to show that the NIF of all three models can have a flexible 
shape. 

 
In the multivariate context, Asai and McAleer (2004b) suggested an extension of 

the AL SV model of Danielsson (1994) as equation (1), together with 
 
 1 1 2 | | ,t t t t th y y hµ γ γ φ η+ = + + + +o o o     (9) 
 
where 1γ  and 2γ  are 1p×  parameter vectors. Asai and McAleer (2004b) developed 
an estimation method for this MSV model, based on the Monte Carlo likelihood (MCL) 
technique.  
 
2.3 Factor Models 
 
In an attempt to reduce the dimensionality of the parameter space, various factor MSV 
models have been proposed. The factor MSV model was originally proposed by Harvey 
et al. (1994), and extended by Shephard (1996) and Jacquier et al. (1999). This model 
has several attractive features, including parsimony of the parameter space, and the 
ability to capture the common features in asset returns and volatilities. Alternative 
dynamic factor models are the latent factor ARCH model of Diebold and Nerlove 
(1989), and the factor ARCH representation used in Engle et al. (1990). 
 
2.3.1 Additive Factor Models 
 
The additive factor MSV model was first introduced by Harvey et al (1994), and 
subsequently extended in Jacquier et al (1995, 1999), Shephard (1996), Pitt and 
Shephard (1999a), and Aguilar and West (2000). The basic idea is borrowed from the 
factor multivariate ARCH models, where the returns are decomposed into two additive 
components. The first component has a smaller number of factors which captures the 
information relevant to the pricing of all assets, while the other one is idiosyncratic 
noise which captures the asset specific information (for further details, see Diebold and 
Nerlove (1989)).  
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Denote the 1K ×  vector of factors as tf  ( )K m< , and D  is an m K×  
dimensional matrix of factor loadings. The additive K  factor MSV model presented by 
Jacquier et al (1995) can be written as 
 

, 1

,

exp( / 2) ,

, 1, , ,

t t t

it it it

i t i i it it

y Df e

f h

h h i K

ε

µ φ η+

= +

=

= + + = K

 (10) 

 
where te , itε  and itη  are assumed to be mutually independent. In order to guarantee 

the identification of D  and tf  uniquely, the restrictions 0ijD =  and 1iiD =  for 

1, ,i m= K  and j i<  are usually adopted (see Aguilar and West (2000)).  
 

Model (10) was extended in Pitt and Shephard (1999a) by allowing each element 
in te  to evolve according to a univariate SV model. Chib et al. (2005) further extended 
the model by allowing for jumps and for idiosyncratic errors which follow the student t 
SV process.   
 

Jacquier et al. (1999), Pitt and Shephard (1999a) and Aguilar and West (2000) 
proposed estimation methods based on single-move MCMC algorithms. Chib et al 
(2005) argued that the single-move algorithms can be simulation-inefficient and 
suggested a more efficient multi-move MCMC algorithm. Based on the Efficient 
Importance Sampling (EIS) method proposed by Richard and Zhang (2004), Liesenfeld 
and Richard (2004) developed an alternative multi-move MCMC algorithm. Liesenfeld 
and Richard (2003) showed that the EIS method can be used to approximate the 
likelihood function, so that it can facilitate a simulated ML approach. 
 

Yu and Meyer (2004) showed that additive factor models accommodate both time 
varying volatility and time varying correlations. In the context of the bivariate 
one-factor SV model given by:  
 



 12

2 2
1 2

1

, ~ (0, { , })

exp( / 2) , ~ (0,1),

, ~ (0,1),

t t t t e e

t t t t

t t t t

y Df e e N diag

f h N

h h N

σ σ

ε ε

µ φ η η+

= +

=

= + +

 

 
Yu and Meyer (2004) derived the conditional correlation coefficient between ty1  and 

ty2  as 
 

2 2 2
1 2(1 exp( ))( exp( ))e t e t

d
h d hσ σ+ − + −

, 

 
where Dd =)',1( . It is clear from the above expression that the correlation depends on 
the volatility of the factor.  
 

Philipov and Glickman (2004a) proposed a high-dimensional additive factor MSV 
model in which the factor covariance matrices are driven by Wishart random processes, 
as follows: 
 
 

1 1
1 1

1/ 2 1 1/ 2
1 1

, ~ (0, ),

| ~ (0, ),

| , , , ~ ( , ),

1 ( ) ( ) ',

t t t t

t t t

t t t

d
t t

y Df e e N

f V N V

V V A v d Wish v S

S A V A
v

− −
− −

−
− −

= + Ω

=

 

 

where 1−
tV  is a matrix of factor volatility, A  is a symmetric positive definite matrix, 

d  is a scalar persistence parameter, Wish  is the Wishart distribution, v  is the 
degrees of freedom parameter of the Wishart distribution. A Bayesian MCMC algorithm 
is developed to estimate the model. 
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2.3.1 Multiplicative Factor Models 
 
The multiplicative factor MSV model, also known as the stochastic discount factor 
model, was considered in Quintana and West (1987). The one-factor model from this 
class decomposes the returns into two multiplicative components, a scalar common 
factor and a vector of idiosyncratic noise, as follows: 
  

1

exp( / 2) ,

( ) .

t t t

t t t

y h

h h

ε

µ φ µ η+

=

= + − +
  (11) 

 
The first element in εΣ  is assumed to be one for purposes of identification. Compared 
with the basic MSV model, this model has a smaller number of parameters, which 
makes it more convenient computationally. Unlike the additive factor MSV model, 
however, the correlations are now invariant with respect to time. Moreover, the 
correlation in log-volatilities is always equal to one.  
 

Ray and Tsay (2000) extended the one-factor model to a k-factor model, in which 
long range dependence is accommodated in the factor volatility: 
 

exp( ' / 2) , ~ (0, ),

(1 ) ,

t t t t t

d
t t

y h v N P

L h

εε ε

µ η

=

− = +

  

 
where tv  is an ( km× ) matrix of rank k, with mk < . 
 
2.4 Time-Varying Correlation Models 
 
The assumption of constant correlations in the correlation matrix Pε  in equation (3) 

can be relaxed by considering the time-varying correlation matrix, { },t ij tPε ρ= , where 

, 1ii tρ =  and , ,ij t ji tρ ρ= . 
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Following the suggestion made by Tsay (2002) and Christodoulakis and Satchell 
(2002) in the bivariate GARCH framework, Yu and Meyer (2004) proposed that the 

Fisher transformation of 12,tρ  could be modelled in a bivariate SV framework, as 

follows: 
 

( ) ( )12,

2
1

exp( ) 1 exp( ) 1 ,

( ) , ~ (0, ).

t t t

t v t v t t u

v v

v v u u N

ρ

µ ϕ µ σ+

= − +

= + − +

 (12) 

 

The first equality in (12) guarantees that 12,| | 1tρ < . Yu and Meyer (2004) estimated the 

bivariate model in equations (1), (2) and (12) using the Bayesian MCMC method. The 
obvious drawback with this specification is the difficulty in generalizing it to a 
higher-dimension. 
 

In order to develop an MSV model which accommodates time-varying correlation, 
Asai and McAleer (2004c) and Yu and Meyer (2004) suggested two alternative SV 
extensions of the dynamic conditional correlation (DCC) model of Engle (2002) (see 
the VCC model of Tse and Tsui (2002) for a related development). Suppose that ty , 
conditional on tΣ , has a multivariate normal distribution, (0, )tN Σ , where the 
covariance matrix is given by 
 

t t t tD DΣ = Γ .  (13) 
 
In equation (13), the time-varying correlation matrix is given by tΓ , while the diagonal 
matrix tD  is defined by equations (1) and (2). For the DCC model, tΓ  is specified as 
follows:  

 

1 1,t t t tQ Q Q∗− ∗−Γ =  

 

where ( ){ }( )1/ 2
vecdt tQ diag Q∗ = , by using some positive definite matrix tQ . 
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Asai and McAleer (2004c) extended the DCC model by specifying tQ  as 
follows: 
 

1 (1 ) ,

~ ( , ),

t t t

t m

Q Q Q

W

ψ ψ

ν

+ = − + +Ξ

Ξ Λ
  (14) 

 
where ),( ΛνmW  denotes a Wishart distribution. This dynamic correlation MSV model 

guarantees the positive definiteness of tΓ  under the assumption that Q  is positive 

definite and | | 1ψ < . The latter condition also implies that the time-varying correlations 
are mean reverting. In the special case where 1ν = , tΞ  can be expressed as the 
cross-product of a multivariate normal variate with mean zero and covariance matrix 
given by Λ .  
 

Yu and Meyer (2004) proposed an alternative MSV extension of DCC by 
specifying tQ  as follows: 
 

1 ( ) ( )

( ) ,

t t t t

t t t

Q S B Q S A e e S

S A B B Q A e eιι

+ ′= + − + −

′ ′= − − + +

o o

o o o

 (15) 

 
where ~ (0, )t me N I . According to Ding and Engle (2001) and Engle (2002), if A , B  
and ( )A Bιι′ − −  are positive semi-definite, then tQ  will also be positive 
semi-definite. Moreover, if any one of the matrices is positive definite, then tQ  will 
also be positive definite. 
 
2.5 Alternative Specifications 
 
This sub-section introduces four alternative MSV models based on the matrix 
exponential transformation, the Cholesky decomposition, the Wishart autoregressive 
process, and the observed range, respectively. 
 
2.5.1 Matrix Exponential Transformation 
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Chiu et al. (1996) proposed a general framework for the logarithmic covariance matrix 
based on the matrix exponential transformation, which is well known in the 
mathematics literature (see, for example, Bellman (1970)). In this sub-section, we 
denote Exp(.) as the matrix exponential operation to distinguish it from the standard 
exponential operation. For any m m×  matrix A , the matrix exponential transformation 
is defined by the power series expansion: 
 

0

Exp( ) (1/ !) ,S

s

A s A
∞

=

=∑   (16) 

 
where 0A  reduces to the m m×  identity matrix and sA  denotes the standard matrix 
multiplication of A  s  times. Thus, in general, the elements of Exp( )A  do not 
typically exponentiate the elements of A .  
 

The properties of the matrix exponential and matrix logarithm are summarized in 
Chiu et al. (1996). For any real symmetric matrix A , we note the singular value 
decomposition A TDT ′= , where the columns of the m m×  orthonormal matrix T  
denote the appropriate eigenvectors of A , and D  is an m m×  diagonal matrix, with 
elements equal to the eigenvalues of A . Therefore, Exp( ) Exp( )A T D T ′= , where 
Exp( )D  is an m m×  diagonal matrix, with diagonal elements equal to the exponential 
of the corresponding eigenvalues of A . If it is assumed that Exp( )t tAεΣ =  for any 
symmetric matrix tA , then tΣ  is positive definite.  

 
Similarly, the matrix logarithmic transformation, Log( )B , for any m m×  

positive definite matrix, B , is defined by using the spectral decomposition of B . 
 

Using the matrix exponential operator, we propose the following model: 
 

~ (0, ),

Exp( ),

t t

t t

y N

A

Σ

Σ =
  (17) 

 
where vech( )t tAα =  is a vector autoregressive process, as follows: 
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1 ,

~ (0, ),

t t t t

t

x

N η

α µ φ α η

η

+ = + ϒ + +

Σ

o

  (18) 

 

with ( ),| |t t tx y y ′′ ′= , n×1 parameter vectors µ  and φ , where n = 0.5m(m+1), n n×  

covariance matrix ηΣ , and an 2n m×  matrix of parameters ϒ . A limitation of this 

specification is that it is not straightforward to interpret the relationship between the 
elements of tΣ  and tA . 
 
2.5.2 Cholesky Decomposition 
 
One of the most serious difficulties in modelling multivariate volatility is to ensure that 
the covariance matrix is positive semi-definiteness (see, for example, Engle and Kroner 
(1995)). Although the conventional approach is to impose suitable parametric 
restrictions, Tsay (2002) advocated an alternative approach, which uses the Cholesky 
decomposition. For a symmetric, positive-definite matrix tΣ , the Cholesky 

decomposition factors the matrix tΣ  uniquely in the form '
tttt LGL=Σ , where tL  is a 

lower triangular matrix with unit diagonal elements, and tG  is a diagonal matrix with 
positive elements. 
 

The MSV model of Tsay (2002) is given as follows: 
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The elements in tG  are always positive due to the exponential transformation. 
Consequently, the Cholesky decomposition guarantees the positive semi-definiteness of 

tΣ . It can be seen that the elements in tL  and tG  are assumed to follow an AR(1) 
process. Moreover, it is straightforward to derive the relationship between the variances 
and correlations, on the one hand, and the variables in tL  and tG , on the other, as 
follows:  
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It is clear from these expressions that the dynamics in tiig ,  and tijq ,  are the 
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driving forces underlying the time-varying volatility and the time-varying correlation. 
However, the dynamics underlying volatility are not determined separately from those 
associated with the correlations, as both are dependent on their corresponding AR(1) 
processes. This restriction is, at least in spirit, similar to that associated with factor MSV 
models.  
 
2.5.3 Wishart Autoregressive Models 
 
Gourieroux et al. (2004) proposed the Wishart autoregressive (WAR) multivariate 
process of stochastic positive semi-definite matrices to develop an altogether different 
type of dynamic MSV model. Let tΣ  denote a time-varying covariance matrix of ty . 
Gourieroux et al. (2004) defined the WAR( p ) process, as follows: 

 

∑
=

=Σ
K

k
ktktt xx

1

'        (19) 

 
where 1−> mK  and each ktx  follows the VAR( p ) model, given by: 
 

,
1

, (0, )
p

kt i k t i kt kt
i

x A x Nε ε−
=

= + Σ∑ . 

 
By using the realized value of volatility, Gourieroux et al. (2004) estimated the 
parameters of the WAR(1) process using a two-step procedure based on nonlinear least 
squares. 
 

Philipov and Glickman (2004b) suggested an alternative model based on Wishart 
processes, as follows: 
 

1
1 1

| ~ (0, ),

| , ~ ( , ),

t t t

t t m t

y N

S W Sν ν−
− −

Σ Σ

Σ

  (20) 

 
where ν  and tS  are the degrees of freedom and the time-dependent scale parameter 
of the Wishart distribution, respectively. With a time-invariant covariance structure, the 
above model may be considered as a traditional Normal-Wishart representation of the 
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behavior of multivariate returns. However, Philipov and Glickman (2004b) introduced 
time variation in the scale parameter, as follows: 
 

( )( ) ( )1/ 2 1 1/ 21 d

t tS A A
ν

−= Σ , 

 
where A  is a positive definite symmetric parameter matrix that is decomposed through 

a Cholesky decomposition as ( )( )1/ 2 1/ 2A A A ′= , and d  is a scalar parameter. The 

quadratic expression ensures that the covariance matrices are symmetric positive 
definite. Philipov and Glickman (2004b) estimated the parameters of the above model 
using the Bayesian MCMC technique. 
 
2.5.4 Range-Based Model 
 
Tims and Mahieu (2003) proposed a range-based MSV model. As the range can be used 
as a measure of volatility, which is observed (or realized) when the high and low prices 
are recorded, Tims and Mahieu (2003) suggested a multivariate model for volatility 
directly, as follows: 
 

1

log( ) ' , ~ (0, ),

, ~ (0, ).

t t t t

t t t t

range D f N

f f N η

ε ε

η η+

= + Σ

= Φ + Σ
 

 
As the volatility is not latent in this model, efficient estimation of the parameters is 
achieved through the use of the Kalman filter. It is not known, however, how to use this 
model for purposes of asset pricing. 
 
3. Estimation 
 
As SV models typically do not have a closed-form expression for the likelihood 
function, the estimation of the parameters for the wide range of univariate and 
multivariate SV models has attracted significant attention in the literature.  
 

An important concern for the choice of a particular estimation method lies in its 
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efficiency. In addition to efficiency, other important issues related to estimation include: 
(1) estimation of the latent volatility; (2) determination of the optimal filtering, 
smoothing and forecasting methods; (3) computational efficiency; (4) applicability for 
flexible modelling. Broto and Ruiz (2004) provided a recent survey regarding the 
numerous estimation techniques for SV models, with an emphasis on univariate SV 
models and methods. Some of these techniques have also been applied to the estimation 
of MSV models. 
  
3.1 Quasi-Maximum Likelihood 
 
In order to estimate the parameters of the model (1)-(3), Harvey et al. (1994) proposed a 
Quasi-Maximum Likelihood (QML) method based on the property that the transformed 

vector 2 2
1(ln , , ln )t t mty y y∗ ′= K  has a state space form with the measurement equation 

given by: 
 

2 2 2
1

,

ln (ln , , ln )

t t t

t t t mt

y h ξ

ξ ε ε ε

∗ = +

′= = K

     (21) 

 
and the transition equation (2). The measurement equation errors, tξ , are non-normal, 
with mean vector ( ) 1.2793tE ξ ι= − , where ι  is an 1m×  vector of unit elements. 

Harvey et al. (1994) showed that the covariance matrix of tξ , denoted ξΣ , is given by 

{ }2( / 2) ijξ π ρ∗Σ = , where 1iiρ∗ =  and 

 

2
2

1

2 ( 1)! ,
(1/ 2)

n
ij ij

n n

n
n

ρ ρ
π

∞
∗

=

−
= ∑       (22) 

 

where ( ) ( 1) ( 1)nx x x x n= + + −L  and ijρ  is defined by (3). Treating tξ  as a 

Gaussian error term, QML estimates may be obtained by applying the Kalman filter to 
equations (2) and (21). Taking account of the non-normality in tξ , the asymptotic 
standard errors can be obtained by using the results established in Dunsmuir (1979).  
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If ijρ∗  can be estimated, then it is also possible to estimate the absolute value of 

ijρ , and the cross-correlations between the different values of itε . Estimation of the 

signs of ijρ  may be obtained by returning to the untransformed observations, and 

noting that the sign of each of the pairs, it jtε ε  ( , 1, ,i j m= K ), will be the same as the 

corresponding pairs of observed values, it jty y . Therefore, the sign of ijρ  is estimated 

as positive if more than one-half of the pairs, it jty y , is positive. 

 
One of the main features of this transformation is that tξ  and tη  are uncorrelated 

even if the original tε  and tη  are correlated (see Harvey et al. (1994)). Since the 

leverage effects assume a negative correlation between tε  and tη , as in equation (5), 

the transformation may ignore the information regarding the leverage effects. In the 

univariate case, Harvey and Shephard (1996) recovered it in the state space form, given 

the signs of the observed values. As for the multivariate case, Asai and McAleer 

(2004b) derived the state space form for the leverage effects in the model (1), (2) and 

(5), based on pairs of the signs of ity  and jty . This representation enables use of the 

QML method based on the Kalman filter. However, Asai and McAleer (2004b) adopted 

the Monte Carlo likelihood method for purposes of efficient estimation.  

 

The main advantages of the QML method are that it is computationally convenient, 

and also straightforward for purposes of filtering, smoothing, and forecasting. 

Unfortunately, the available (though limited) Monte Carlo experiments in the context of 

the basic univariate SV model suggest that the QML method is generally less efficient 

than the Bayesian MCMC technique and the likelihood approach based on Monte Carlo 

simulation (for further details, see Jacquier et al. (1994) and the discussions contained 

therein). It is natural to believe that inefficiency remains for the QML method relative to 

the Bayesian MCMC technique and the likelihood approach in the multivariate context, 
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although no Monte Carlo evidence is available to date. 

 

3.2 Simulated Maximum Likelihood  

 
One Simulated Maximum Likelihood (SML) method is the Accelerated Gaussian 
Importance Sampling (AGIS) approach, as developed in Danielsson and Richard (1993). 
The AGIS approach is designed to estimate dynamic latent variable models, whereby 
Monte Carlo methods are used to integrate the latent variables out of the joint density of 
the latent and observable variables to obtain the marginal densities of the observable 
variables. Danielsson’s comments on Jacquier et al. (1994) show that the finite sample 
property of this SML estimator is close to that of the Bayesian MCMC method. As for 
MSV models, Danielsson (1998) applied the AGIS approach to estimate the parameters 
of the MSV model in (1)-(3). It seems difficult to extend the AGIS approach to 
accommodate more flexible SV models, as the method is specifically designed for 
models with a latent Gaussian process.  

 
While the AGIS technique has limited applicability, the Efficient Importance 

Sampling (EIS) procedure proposed by Richard and Zhang (2004), and applied by 
Liesenfeld and Richard (2003, 2004), is applicable to models with more flexible classes 
of distributions for the latent variables. As in the case of AGIS, EIS is a Monte Carlo 
technique for the evaluation of high-dimensional integrals. The EIS relies on a sequence 
of simple low-dimensional least squares regressions to obtain a very accurate global 
approximation of the integrand. This approximation leads to a Monte Carlo sampler, 
which produces highly accurate Monte Carlo estimates of the likelihood. In order to 
estimate the parameters of the additive factor model (10) with one factor, Liesenfeld and 
Richard (2003) proposed an SML approach by approximating the likelihood function 
based on EIS, while Liesenfeld and Richard (2004) developed a multi-move MCMC 
algorithm by sampling the latent variables based on EIS. 

 
Let tλ  denote a q -dimensional vector of latent variables, and ( , ; )f Y θΛ  be the 

joint density of { } 1

T
t t

Y y
=

=  and { } 1

T
t t
λ

=
Λ = . The likelihood function associated with 

the observable variables, Y , is given by the ( )T q× -dimensional integral 

( ; ) ( , ; )L Y f Y dθ θ= Λ Λ∫ . The likelihood function can be factorized as:  
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1 1 1 1 11 1
( ; ) ( , | , , ) ( | , , ) ( | , , ) ,T T

t t t t t t t t t tt t
L Y f y Y d g y Y p Y dθ λ θ λ θ λ θ− − − − −= =

= Λ Λ = Λ Λ∏ ∏∫ ∫  

 

where { } 1

t
t s s

Y y
=

=  and { } 1

t
t s s

λ
=

Λ = . It should be noted that the second equality 

implies that ty  is independent of 1t−Λ , given 1( , )t tYλ − , which is a standard 
assumption in the analysis of SV models. Although it is assumed, for notational 
convenience, that the initial values 0 1{ , , }y y− K  and 0 1{ , , }λ λ− K  are known constants, 
this condition can be relaxed. A Monte Carlo estimate of ( ; )L Yθ  based on the above 
factorization is given by: 
 

 ( )
1

1 1

1ˆ( ; ) ( | ( ), , )
TN

i
t t t

i t

L Y g y Y
N

θ λ θ θ−
= =

 
=  

 
∑ ∏ % , 

 

where the { }( )

1
( )

Ti
t t
λ θ

=
%  are samples drawn from the conditional density 

( )
1 11( | , , )i

t t ttp Yλ θ− −−Λ% . This Monte Carlo estimate is inefficient in the sense that ( ) ( )i
tλ θ%  

has no relation to the actual value tλ  as it does not use any information about ty  to 

generate ( ) ( )i
tλ θ%  from ( )

1 11( | , , )i
t t ttp Yλ θ− −−Λ% .  

 
In order to cope with this problem, the AGIS proposed by Danielsson and Richard 

(1993) and Danielsson (1994), and the EIS suggested by Richard and Zhang (2004), 
consider an auxiliary sampler, 1( | , )t t tm aλ −Λ . These methods enable the factorization 
given above to be rewritten as:  
 

  1 1
1

1 11

( , | , , )( ; ) ( | , ) ,
( | , )

T T
t t t t

t t t
t tt t t

f y YL Y m a d
m a
λ θθ λ
λ

− −
−

= =−

 Λ
= Λ Λ Λ 
∏ ∏∫  

 
which yields an importance sampling Monte Carlo estimate, as follows: 
  

 
( ) ( )

1 1 1
( ) ( )

1 1 1 1

( , ( ) | , ( ), )1( ; ) ,
( ( ) | ( ), )

i iTN
t t t t t t

i i
i t t t t t t

f y a Y aL Y
N m a a a

λ θθ
λ

− − −

= = − −

 Λ
=  Λ 

∑ ∏
% %

%
% %

 (23) 
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where the { }( )

1
( )

Ti
t t t

aλ
=

%  are samples drawn from importance density ( )
1( | , )i

t t tm aλ −Λ% .  

 
The EIS method denotes an approximation of the density 1 1( , | , , )t t t tf y Yλ θ− −Λ  as 

( ; )t taκ Λ , and constructs the auxiliary density 1( | , )t t tm aλ −Λ , as follows: 
 

1
1

( ; )( | , ) ,
( ; )

t t
t t t

t t

am a
a

κλ
χ−

−

Λ
Λ =

Λ
 

 

where 1( ; ) ( ; )t t t t ta a dχ κ λ−Λ = Λ∫ . It should be noted that matching 

1 1( , | , , )t t t tf y Yλ θ− −Λ  with ( ; )t taκ Λ  may leave 1( ; )t taχ −Λ  unexplained. As 

1( ; )t taχ −Λ  does not depend on tλ , it can be transferred back to the period 1t −  
minimization sub-problem. Taken together, EIS requires solving a simple 
back-recursive sequence of low-dimensional least squares problems of the form: 
 

 
( ) ( ){

( )}

( ) ( ) ( )
1 1 1

1

( )
1

ˆ ˆarg min log , ( ) | , ( ), ( );

ˆ       log ( );

t

N
i i i

t t t t t t ta i

i
t t t

a f y Y a

c a
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κ θ

− − +
=
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− − Λ
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for : 1t T → , with 1( ; ) 1T Taχ +Λ ≡ . The tc  are unknown constants to be estimated 
jointly with the unknown ta . In order to obtain highly efficient importance samplers, a 
small number of iterations of the EIS algorithm is required. When such iterations 
converge to fixed values of the auxiliary parameters, ˆta , this would be expected to 
produce optimal importance samplers. Finally, the EIS estimate of the likelihood 

function for a given value of θ  is obtained by substituting { } 1
ˆ T

t t
a

=
 for { } 1

T
t t

a
=

 in 

equation (23).  
 

Moreover, the EIS method can be used to compute the filtered estimates of the 
latent variables. Let ( )th λ  denote a function such as, for example, exp( )tλ , which 
represents the conditional return variance. Then the sequence of conditional 
expectations of ( )th λ , given 1tY − , the past observations of the returns, provides a 
sequence of filtered estimates of ( )th λ . For the SV model, these expectations take the 
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form of a ratio of integrals, as follows:  
 

 [ ] 1 1 1 1
1

1 1 1

( ) ( | , , ) ( , ; )
( ) | ,

( , ; )
t t t t t t t

t t
t t t

h p Y f Y d
E h Y

f Y d

λ λ θ θ
λ

θ
− − − −

−
− − −

Λ Λ Λ
=

Λ Λ
∫

∫
 

 
in which both the numerator and denominator can be estimated by the EIS algorithm. 
 

In the application of the Bayesian MCMC method, Liesenfeld and Richard (2004) 
proposed using a combination of the EIS-sampler with Tierney's (1994) 
Acceptance-Rejection Metropolis-Hastings (AR-MH) algorithm to simulate | ,Y θΛ . 
The basis of such a procedure is the fact that the EIS density for Λ  provides a very 
close approximation to ( | , )f Y θΛ . 

 

3.3 Monte Carlo Likelihood 

 
The Monte Carlo likelihood (MCL) approach for non-Gaussian models is based on 
importance sampling techniques, so that the method may be classified as an SML 
method. The MCL method can approximate the likelihood function to an arbitrary 
degree of accuracy by decomposing it into a Gaussian part, which is constructed by the 
Kalman filter, and a remainder function, whose expectation is evaluated through 
simulation.  
 

Durbin and Koopman (1997) demonstrated that the log-likelihood function of state 
space models with non-Gaussian measurement disturbances could be expressed simply 
as 
 

( | )
ln ( | ) ln ( | ) ln ,

( | , )G G
G

p
L y L y E

p y
ξ ξ θ

θ θ
ξ θ

 
= +  

 
   (24) 

 
where 1( , ) 'Ty y y= K , 1( , ) 't t mty y y= K , and 1( , , ) 'Tξ ξ ξ= K  and ln ( | )GL y θ  are 
the vectors of measurement disturbances and the log-likelihood function of the 

approximating Gaussian model, respectively,  ( | )pξ ξ θ  is the true density function, 

( | , )Gp yξ θ  is the Gaussian density of the measurement disturbances of the 
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approximating model, and GE  refers to the expectation with respect to the ‘so-called’ 
importance density ( | , )Gp yξ θ  associated with the approximating model. Equation 
(24) shows that the non-Gaussian log-likelihood function can be expressed as the 
log-likelihood function of the Gaussian approximating model plus a correction for the 
departures from the Gaussian assumptions relative to the true model.  
 

A key feature of the MCL method is that only the minor part of the likelihood 
function requires simulations, unlike other SML methods. Therefore, the method is 
computationally efficient in the sense that it needs only a small number of simulations 
to achieve the desirable accuracy for empirical analysis. 
 

The MCL estimates of the parameters, θ , are obtained by numerical optimization 
of the unbiased estimate of equation (24). The log-likelihood function of the 
approximating model, ln ( | )GL y θ , can be used to obtain the starting values. Sandmann 
and Koopman (1998) is the first paper to have used this MCL approach in the SV 
literature. Asai and McAleer (2004b) developed the MCL method for asymmetric MSV 
models. As noted in Asai (2004), this MCL method is also able to accommodate the 
additive factor MSV model. 
 

3.4 Markov Chain Monte Carlo 

 

Markov Chain Monte Carlo (MCMC) methods are used widely in the SV literature, 

following the development in Jacquier et al. (1994), which has been greatly refined and 

simplified by Shephard and Pitt (1997) and Kim et al. (1998). The idea behind MCMC 

methods is to produce variates from a given multivariate density (the posterior density 

in Bayesian applications) by repeatedly sampling a Markov chain whose invariant 

distribution is the target density of interest. The MCMC method focuses on the density 
( , | )h yπ θ  instead of the usual posterior density, ( | )yπ θ , since the latter requires 

computation of the likelihood function ( | ) ( | , ) ( | )f y f y h f h dhθ θ θ= ∫ . The MCMC 

procedure only requires alternating back and forth between drawing from ( | , )f h yθ  

and ( | , )f h yθ . This process of alternating between conditional distributions produces 

a cyclic chain.  
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As for the property of sample variates from an MCMC algorithm, they are a 

high-dimensional sample from the target density of interest. These draws can be used as 

the basis for drawing inferences by appealing to suitable ergodic theorems for Markov 

chains. For example, posterior moments and marginal densities can be estimated (or 

simulated consistently) by averaging the relevant function of interest over the sampled 

variates. The posterior mean of θ  is estimated simply as the sample mean of the 

simulated θ  values. These estimates can be made arbitrarily accurate by increasing the 

simulation sample size.  

 

One particularly important technical advantage of the Bayesian MCMC method 

over classical inferential techniques is that MCMC does not need to use numerical 

optimization. This advantage becomes especially important when the number of 

parameters to be estimated is large, as in the application of MSV models to the analysis 

of financial data. 

 
Jacquier et al. (1999), Pitt and Shephard (1999a), and Aguilar and West (2000) 

have applied the MCMC procedure to estimate additive factor MSV models, while Yu 
and Meyer (2004) compared various MSV models. Moreover, Yu and Meyer (2004) 
employed the purpose-built Bayesian software package called BUGS (Bayesian 
Analysis Using the Gibbs Sampler). Each of these MCMC algorithms is based on a 
single-move algorithm.  

 
The main drawback with the single-move algorithm for MSV models lies in its 

slow convergence. This is not surprising since the components of the latent volatility 
process are highly persistent (Kim et al. (1998)). In order to improve the simulation 
efficiency, Chib et al. (2005) developed a new MCMC algorithm which greatly 
improves simulation efficiency for a factor MSV model augmented with jumps. 
Liesenfeld and Richard (2004) proposed an alternative multi-move MCMC method 
based on EIS, which can be used to estimate SV models by maximum likelihood, as 
well as simulation smoothing.   

 
Bos and Shephard (2004) modelled the Gaussian errors in the standard Gaussian, 

linear state space model as an SV process, and showed that conventional MCMC 
algorithms for this class of models are ineffective. Rather than sampling the unobserved 



 29

variance series directly, Bos and Shephard (2004) sampled in the space of the 
disturbances, which decreased the correlation in the sampler and increased the quality of 
the Markov chain. Using the reparameterized MCMC sampler, they showed how to 
estimate an unobserved factor model. 

 
Smith and Pitts (2005) used a bivariate SV model to measure the effects of 

intervention in stabilization policy. Missing observations were accommodated in the 
model and a data-based Wishart prior for the precision matrix of the errors in the 
transition equation were suggested. A threshold model for the transition equation was 
estimated by MCMC jointly with the bivariate SV model. 
 
4. Diagnostic Checking and Model Comparison 

 

Pitt and Shephard (1999a) conducted diagnostic checking which is applicable to the 

MSV models. Although their method is based on the particle filter algorithm (Pitt and 

Shephard (1999b)), other simulation filtering techniques, such as the EIS filter of 

Liesenfeld and Richard (2003) and the reprojection technique of Gallant and Tauchen 

(1998), may also be applicable. By using these filtering methods, we can obtain samples 
from the prediction density, 1( | ; )t tf h Y θ+ , where 1( , , )t tY y y ′= K . Pitt and Shephard 

(1999a) focus on four quantities for assessing overall model fit, outliers and 

observations which have substantial influence on the fitted model. 

 
The first quantity is the log-likelihood for 1t + , 1 1log ( | ; )t t tl f y Y θ+ += . As we 

have the following: 

 

1 1 1 1( | ; ) ( | ; ) ( | ; )t t t t t tf y Y f y h dF h Yθ θ θ+ + + += ∫ , 

 
Monte Carlo integration may be used as 

 

1 1 1
1

1ˆ ( | ; ) ( | ; ),
M

i
t t t t

i

f y Y f y h
M

θ θ+ + +
=

= ∑  
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where 1 1~ ( | ; )i
t t th f h Y θ+ + . It is possible to evaluate the log-likelihood at the ML (MCL, 

SML) estimates or at the posterior means.  

 

The second quantity is the normalized log-likelihood, n
tl . Pitt and Shephard 

(1999a) used samples from jz  ( 1, ,j S= K ), where 1~ ( | ; )j
t tz f y Y θ+ , to obtain 

samples 1
i
tl +  using the above method. Denote the sample mean and standard deviation 

of the samples of log-likelihood as 1
l
tµ +  and 1

l
tσ + , respectively. The normalized 

log-likelihood at 1t +  may be computed as ( )1 1 1 1
n l l
t t t tl l µ σ+ + + += − . If the model and 

parameters are correct, then this statistic should have mean zero and variance one. Large 

negative values indicate that an observation is less likely than would be expected from 

the model.  

 
The third quantity is the uniform residual, 1 1( | ; )t t tu F l Y θ+ += , which may be 

estimated as  

 

( )1 1 1 11
ˆˆ ( ) 1 ( )S j

t t t tj
u F l S I l l+ + + +=

= = <∑ , 

 

where the 1
j

tl +  are constructed as above. Assuming that the parameter vector θ  is 

known, under the null hypothesis that the model is correct, it follows that 

1ˆ ~ (0,1)tu UID+ .  

 
Finally, the fourth quantity is the distance measure, td , which may be computed 

as follows: 

 

( )1 1 1 11
( | ; ) 1 ( | ; )M i

t t t t ti
V y Y M V y hθ θ+ + + +=

Σ = ∑ , 
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where 1 1~ ( | ; )i
t t th f h Y θ+ + . If the conditional distribution of ty  is multivariate normal, 

then the quantity 1
t t t td y y−′= Σ  is independently distributed as 2

mχ  under the null 

hypothesis that the parameters and model are correct. Therefore, we may use 

2
1

~T
t mTt

d χ
=∑  as a test statistic. 

 

When the MCMC procedure is used, it may require checking convergence of 

Markov chains and prior sensitivities. The former can be assessed by correlograms, and 

the latter by using alternative priors (for further details, see Kim et al. (1998), Chib 

(2001) and Chib et al. (2005)). 

 

Turning to model selection, we may use the likelihood ratio test for the nested 

models, and Akaike information criterion (AIC) or Bayesian information criterion (BIC) 

for the non-nested models, in the context of the likelihood-based methods, such as SML 

and MCL. In the Bayesian framework, model comparison can be conducted via the 

posterior odds ratio or Bayes factor. For both values, the marginal likelihood needs to be 

calculated, for which estimation is based on the procedure proposed by Chib (1995) and 

its various extensions.  

 

The AIC is inappropriate for the MCMC method because, when MCMC is used to 

estimate the SV models, as mentioned above, the parameter space is augmented. For 

example, in the basic univariate SV model, we include the T  latent volatilities in the 

parameter space, with T  being the sample size. As these volatilities are dependent, 

they cannot be counted as T  additional free parameters. Consequently, AIC is not 

applicable for comparing SV models. Recently, Berg et al. (2004) showed that model 

selection of alternative univariate SV models can be performed easily using the 

deviance information criterion (DIC) proposed by Spiegelhalter et al. (2002), while Yu 

and Meyer (2004) compared alternative MSV models using DIC. 
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5. Concluding Remarks 
 
As the literature on multivariate stochastic volatility (MSV) models has developed 
significantly over the last few years, this paper reviewed the substantial literature on 
specification, estimation and evaluation of MSV models. A wide range of MSV models 
was presented according to various categories, namely (i) asymmetric models; (ii) factor 
models; (iii) time-varying correlation models; and (iv) alternative MSV specifications, 
including models based on the matrix exponential transformation, Cholesky 
ecomposition, Wishart autoregressive process, and the empirical range. Alternative 
methods of estimation, including quasi-maximum likelihood, simulated maximum 
likelihood, Monte Carlo likelihood, and Markov chain Monte Carlo methods, were 
discussed and compared. Various methods of diagnostic checking and model 
comparison were also examined.  

 
Relative to the extensive theoretical and empirical multivariate GARCH literature, 

the MSV literature is still in its infancy. The majority of existing research in the MSV 
literature deals with specifications and/or estimation techniques, which are often 
illustrated by fitting a particular symmetric or asymmetric MSV model to financial 
returns series. Few papers have directly addressed important economic issues using 
MSV models. To our knowledge, Nardari and Scruggs (2003) and Han (2002) are two 
exceptions. Nardari and Scrugg used MSV models to address the restrictions in the APT 
theory while Han examined the economic values of MSV models. Clearly, further 
applications of MSV models are needed.  

 
Most of the MSV models discussed in this paper have been estimated using at 

most 3 or 4 return series. Chib et al. (2005) is the first paper in the literature where 
genuinely high-dimensional MSV models have been estimated. Chan et al. (2003) and 
Nadari and Scruggs (2003) also estimated high-dimensional MSV models. With the 
development of superior estimation techniques and the availability of greater computing 
power, the literature on specification, estimation and evaluation of high-dimensional 
MSV models will be broadened appreciably.  
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