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1. Introduction 

 Growth theory has traditionally focused on the so-called “balanced path.” This presupposes 

either a unitary elasticity of substitution between capital and labor, or a Harrod-neutral mode of 

technical change, or both. Despite efforts to justify these presuppositions, we are a long way 

from being sure that they completely describe the world in which we live.1

 If we are not sure about the size of the elasticity of substitution, then we should have a 

model that admits all its plausible values, and work towards finding out how growth rates behave 

under them. The same is true for the mode of technology. Thus is the aim of this paper: to build 

an endogenous growth model that explicitly allows all conceivable elasticities, and all forms of 

technical progress. 

To do this, we derive a dynamic equation comprising four exogenous parameters on its 

right-hand side, together with time t 

 ˆ( ) [ , , , (0), ]y t a b tσ φ= Ψ ,       (1) 

where  is the endogenous rate of per capita income growth, ŷ σ  is the elasticity of substitution 

between capital and labor; a and b are defined in a general production function 

 ,       (2) ( ) [ ( ), ( )]at btY t F e K t e L t=

where Y is income or output, while (2) in turn implies the technology modes set out in (3) below 

                                                           
1 There is a growing recognition that the elasticity is typically not one, and often quite far from this number. For 
example, Arrow, Chenery, Minhas and Solow (1961, p. 226) showed that the United States of America in the first 
half of the twentieth century had “an over-all elasticity of substitution between capital and labor significantly less 
than unity”. Many studies since then, surveyed in Yuhn (1991, p. 343) reported U.S. elasticities not exceeding 0.76. 
Yuhn however found the Republic of Korea having a significantly higher σ , probably much closer to 1. Duffy and 
Papageorgiou (2000, p. 87) rejected the Cobb-Douglas, and found labor and capital “more substitutable in the richest 
group of countries and are less substitutable in the poorest group of countries”. Klump, McAdam and Wilmann 
(2004) found the elasticity of substitution well below unity for the U.S. economy from 1953 to 1998. Antràs (2004) 
concluded that the U.S. economy was not well described by a Cobb-Douglas aggregate production function. 
Zarembka (1970) and Bernt (1976) found elasticity close to but less than 1. 
 In addition, papers such as Acemoglu’s “Directed Technical Change” (2002) remind us that technical change is 
not always Harrod-neutral. 
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        (3) 
0, 0 Harrod neutrality
0, 0 Solow neutrality

0 Hicks neutrality ;

a b
a b
a b

= > ⇒⎧
⎪ > = ⇒⎨
⎪ = > ⇒⎩

the fourth variable, (0)φ , is the initial share of income earned by capital. We could have used 

initial conditions  instead of ˆ(0)y (0)φ , but that changes little. The important point is that all of 

the exogenous variables in the system are on the right-hand side of (1); all those remaining and 

not included in the equation, namely savings, capital formation, and the factor shares are 

endogenously determined. 

Using (1) we can plot the growth path precisely, and conduct comparative analysis in terms 

of σ , a, b and (0)φ . Because of the familiarity with the balanced path, we contrarily call this the 

un-balanced path. “Unbalanced” does not mean that growth behaves in some unwieldy way. By 

contrast we find the economy neither collapses in the sense of failing to sustain itself, nor 

dwindles to stagnation; instead it converges towards an asymptotic, constant, and positive growth 

rate at least when the elasticity of substitution does not exceed one.  

This dynamic equation has other uses, too. For instance, it helps us to find how long it takes 

to converge to the long-term growth rate, and to answer: Just how long is the long run? It turns 

out that the long run, and even the short run, is much longer than we previously thought. It takes 

hundreds or sometimes thousands of years for the economy to gravitate to its long-term state. 

 Some economists asked “How long is the long run?” a few decades ago, for example 

Atkinson (1969), Drandakis and Phelps (1966), and others. We give a very different answer here, 

and our answer is more accurate because both K̂  and ( )tφ  are endogenous. 

 Our plan of the paper is as follows. Section two traces the factor shares, section three the 

income growth path, both under Hicks-neutral technology with any elasticity. Section four 
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generalizes it to all technology types, comparing and contrasting between them, finding out 

which technology mode is more growth-prone. Section five concludes the paper. 

 

2. Tracing the Factor Shares 

We want finally to be able to trace income growth, but to that end we first need to find the 

path of the factor share. This share is interesting in its own right, depicting as it does the income 

distribution as a nation grows. 

We begin with a Hick-neutral technology. Write the homogeneous of degree one, strictly 

concave-in-factors production function as 

 ,       (4) ( ) ( ) [ ( ), ( )]Y t A t F K t L t= ⋅

where Y, K, L and A are output, capital, labor and technology, respectively. Define capital’s share 

as 

 ( ) ( )( )
( )

KY t K tt
Y t

φ ≡ ,       (5) 

where and henceforth a subscript denotes a derivative. From (4) we have  

 ( ) ( )( )
( )

KF t K tt
F t

φ ≡ .       (6) 

Let us denote any variable z’s time-derivative by ( ) ( )z t dz t dt≡ , its growth rate by 

ˆ( ) ( ) ( )z t z t z t≡ , and keep the time reference implicit when possible. Differentiating (6) we get  

ˆ ˆ ˆ
KF K Fφ ˆ= + − ; 

differentiating  we find  [ ( ), ( )]F K t L t

ˆ ˆ ˆ ˆ( ) (1 )(K LF F K F Lφ φ= + + − + ˆ) ; 

combining the last two equations we get 
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 ˆ ˆ ˆ ˆ(1 )( ) KK L Fφ φ= − − + .       (7) 

All the variables in (7) are endogenous and can change over time, except L̂ , but of that we have 

no interests.  

 In its intensive form we can write ( , ) ( )F K L Lf k= , where k K L≡ , and K kF f= . 

Differentiating it, and introducing the elasticity of substitution  

 ( )k k

kk

f f k f
k f f

σ −
≡ − ,       (8) 

we have 

 1ˆ ˆ(1 )( )K
ˆF K Lφ

σ
= − − − .       (9) 

Substituting (9) into (7) we get 

 1ˆ ˆ ˆ(1 )(1 )( )K Lφ φ
σ

= − − − .       (10) 

 A variant of equation (10) first appeared in Drandakis and Phelps (1966), and later in 

Atkinson (1969). Notice in obtaining (10) we have not used any growth models, not even the 

traditional assumption that a constant fraction of income is saved. We have merely assumed that 

K and L are paid their competitive returns.  

 Using (10), we could be tempted to perform “back of an envelop” calculations to find ( )tφ .2 

For instance, if σ  is 0.7, K̂  20 per cent per year, L̂  2 per cent per year and φ  40 per cent, φ̂  

would have fallen by about 4.6 per cent per year, and it would have taken merely 6.2 years for 

the capital share to fall by ten percentage points. However, this is wrong, since K̂  and φ  on the 

right-hand side of (10) are erroneously fixed. In fact we should be curious about (10): how could 

                                                           
2 See Atkinson (ibid.). 
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the rate of technical progress, Â , not help determine capital’s share, even when the elasticity is 

not unity? The correct answer is that indeed it should, as we will soon find out.  

 

2.1 Integrating the differential equation 

A straightforward first step is to eliminate ( )tφ  from the right-hand side of (10), and then 

replace it with its initial value. This turns out not to change much, but is nevertheless a necessary 

step to take. Equation (10) can be written as  

 1 ˆ ˆ( ) ( )[1 ( )](1 )( )t t t Kφ φ φ
σ

= − − − L .       (11) 

Treating K̂  and L̂  as constant for now, we integrate (11) as a first-order differential 

equation. Writing , this gives us ˆ ˆ ˆk K L≡ −

 
ˆ

ˆ ˆ
(0)( )

[1 (0)] (0)

k t

k t k t

et
e eσ

φφ
φ φ

=
− +

,       (12) 

where (0)φ  is the initial capital share. 

( )tφ , according to (12), falls even faster than (10). We plot both paths using 0.7σ = , 

(0) 0.4φ = ,  and , and compare them in table 1 below. The ˆ 0.2K = ˆ 0.02L = ( )tφ  row uses 

equation (10), and the ( )*tφ  row (12). Integrating for ( )tφ  has not changed the numbers much,  

suggesting erroneously a short run that is far shorter than it is.  

 

Table 1 

Year(t) 0 10 20 30 40 50 60 70 80 90 100 
( )tφ  0.400 0.252 0.159 0.101 0.063 0.040 0.025 0.016 0.010 0.006 0.004 

( )tφ * 0.400 0.291 0.142 0.066 0.030 0.014 0.007 0.003 0.001 0.001 0.000 
 
Key: the ( )tφ  column uses equation (10); the ( )*tφ  column uses equation (12). 
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2.2 Endogenizing K̂  

Just as the share ( )tφ  change over time, so does the rate of capital accumulation. While a 

poor nation has meager means to accumulate capital, an emerging country saves and accumulates 

vigorously to fuel growth, and a developed nation by contrast prefers spending to saving. Sub-

Saharan Africa, China, and the United States are obvious cases in point. I have examined the 

World Development Indicators published by the World Bank, and found positive and statistically 

significant time-trends for gross capital formation as a percentage of GDP for both the low- and 

middle-income countries, but a negative trend for the developed ones. The need to endogenize 

K̂  is clear. 

It is customary to model savings as a consequence of individual citizens maximizing their 

discounted future utility from consumption. We normally take for granted the Ramsey utility 

function  

 ( ) 1( ) c tu t
α

α
−

= , 

where α , between 0 and 1, defines  curvature and the speed at which marginal utility 

diminishes as consumption increases. However, new evidence has emerged to question the 

suitability of the Ramsey utility in studying growth. If we suddenly have twice as much to eat 

and to wear, marginal utility would undoubtedly diminish. But if we have twice as much to eat 

and wear in ten, twenty or even fifty year’s time, marginal utility would not fall quite as much, or 

it may not fall at all since life-style, custom, and technology would have changed drastically by 

then. It becomes even more problematic to assume diminishing marginal utility over hundreds or 

more years. La Grandville (2006, 2007) has recently made a striking discovery that this Ramsey 

utility yields an optimal savings rate approaching 100 percent of income within a few years for 

any reasonable initial savings rates, leading him to question the appropriateness of the Ramsey 

( ) 'u t s
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formula. He further shows that replacing   with , or in other words setting ( )u t ( )c t α  to one, 

produces a much more reasonable picture. We will follow Grandville, and work with  

instead of  . 

( )c t

( )u t

L are workers as well as consumers, who consume  in period t, giving rise to the 

aggregate objective function 

( )c t

 ,       (13) 
0

( ) ( )te c t L t dtρ∞ −∫

where ρ  is a constant discount rate, and (13) is maximized subject to a savings-investment 

constraint 

 [ ]( ) ( ) ( ), ( ) ( ) ( )K t A t F K t L t c t L t= ⋅ − .       (14) 

Dynamic optimization yields the Euler’s equation 

 ( ) ( )KA t F t ρ= .       (15) 

Since ρ  is constant, so is . Differentiating this and suppressing the time reference 

we have 

( ) ( )KA t F t

K KF F A A μ= − = − . This constancy of KAF  governs optimal savings. If 0μ = , 

people save and invest in order to keep KF  constant, and that means keeping K K  abreast with 

the exogenous L L . However if 0μ > , we have an additional incentive to save and to add to the 

capital stock. Each unit of new capital alters the marginal product KF  in a way dictated by the 

elasticity of substation between capital and labor, for that reason the elasticity plays a crucial role 

in the process of endogenous growth. 

 In intensive form we have ( ) whereY Ky A f k k
L L

≡ = ⋅ ≡ , and thus ( , ) ( )K kF K L f k= . 

Differentiating it we get K kkF f= k , where kkf  is the second-derivative with respect to k , and we 

can write  
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 [ ]K K kk kF F f f k= .       (16) 

Using (16), the elasticity of substitution ( )k

kk

kf f k f
k f f

σ −
≡ − , and K KF F μ= −  we have 

 
k L

k f
k f k f LF

μσ μσ
⎡ ⎤ F⎡ ⎤

= =⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎣ ⎦
.  (17) 

Since LF LF  is the inverse of the share of labor in national income, we can write 

(1 )k
k

μσ= −φ . Substituting this into (12) we have 

 ( ) ( ) ( 1)t tφ φ μ σ= − ,        

and from which we obtain an equation defining the time-path of capital’s share 

 ( ) (0) exp[ ( 1) ]t tφ φ μ σ= − .       (18) 

Assume 0.02μ = , 0.7σ = , and (0) 0.4φ =  as before, we plotted ( )tφ ** using (18), in table 

2. The numbers from table 1 are included for comparison. 

 

Table 2: The endogenous share of capital ( )tφ  

Year(t) 0 10 20 30 40 50 60 70 80 90 100 
( )tφ  0.400 0.252 0.159 0.101 0.063 0.040 0.025 0.016 0.010 0.006 0.004 
( )tφ * 0.400 0.291 0.142 0.066 0.030 0.014 0.007 0.003 0.001 0.001 0.000 
( )tφ ** 0.400 0.377 0.355 0.334 0.315 0.296 0.279 0.263 0.248 0.233 0.220 

Key:  ( )tφ  and ( )tφ * are values taken from table 1.  

 

 The difference between the bottom row and the other rows speaks volumes about the 

importance of endogenizing . The technology progress rate ( )K t μ  plays a pivotal role in (18); 

for instance a larger μ  speeds up the decline of capital’s share, when capital is not good enough 

a substitute for labor (σ  is less than 1). This is precisely what we would expect, because then 
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capital’s marginal reward falls disproportionately faster than capital is added to production. In 

addition, capital accumulates more rapidly the larger is μ .  

 The long run seems quite long, taking hundreds of years for the factor shares to change 

significantly. The factor share path gives a glimpse of what a country’s growth path might look 

like – per capita income probably takes just as long to change as the factor share. This conjecture 

will be proved correct in what follows. However, it is imperative to know precisely how  

behaves over time because, as it turns out, the shares path misses something critical, making it a 

poor proxy for gauging the incomes path. We will soon verify this.  

ŷ

 

3. The Incomes Path 

 We will find in the next section a dynamic income growth equation that admits all three 

technology modes, but for the moment focus only on the Hicks-neutral technology. 

Differentiating KF K Fφ =  we may write 

 ˆˆ ˆ ˆ
KF F K φ= + − .       (19) 

Since technology is Hicks-neutral, we can use ˆ ( 1φ μ σ )= −  from (18) in (19) to get 

 ˆ ˆF K μσ= − .       (20) 

 From (17) we also have 

 ˆ ˆ
(1 )

K Lμσ
φ

= +
−

.       (21) 

Using (21) in (20), adding μ  to both sides and noting ˆ ˆŷ Fμ L= + − , we have 

 ( )ˆ( ) 1
1 ( )

ty t
t

φμ σ
φ

⎡ ⎤⎛ ⎞
= +⎢ ⎥⎜ ⎟−⎝ ⎠⎣ ⎦

.       (22) 
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Substituting to eliminate ( )tφ  using (18), we have an income growth path entirely in terms 

of the exogenous parameters and t 

   exp[ ]ˆ( ) 1 (0)
exp[ ] exp[ ] (0)

ty t
t t

μσμ φ σ
μ μσ φ

⎧ ⎫⎛ ⎞⎪ ⎪= +⎨ ⎬⎜ −⎪ ⎪⎝ ⎠⎩ ⎭
⎟ .       (23) 

We may sometimes want to consider 

 
ˆ( ) exp[ ]1 (0)

exp[ ] exp[ ] (0)
y t t

t t
μσφ σ

μ μ μσ
⎛

= + ⎜ −⎝ ⎠φ
⎞
⎟ ,       (24) 

which is the per capita income growth for each percentage technical improvement μ . There are 

three cases to consider. 

 

3.1 1σ =  

 Substituting 1σ =  into (24) we get 

 
ˆ( ) 1

1 (0
y t

)μ φ
=

−
.       (25) 

This is well known but still worth spelling out: when 1σ = ,  stays constant at a multiple of the 

speed of technical progress. If the initial capital share is 

ŷ

(0) 0.4φ = , per capita income grows at 

5 3 times the technology growth rate. We know also, using (18), that ( )tφ  stays constant at all t. 

Thus we have a striking result: a country grows faster if a larger share of income goes to capital 

and a smaller share to labor, given a Hicksian technology and a unitary elasticity of substitution.  

Workers may still gain if the national cake enlarges fast enough to more than offset their reduced 

share, but the Hicks-neutral technology is biased towards capital. This is the only case precisely 

known hitherto. 
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3.2 1σ <  

 Differentiating the fractional term in (24) with respect to t we get 

 
{ }2

exp[ (1 )] (1 )exp[ ]
exp[ ] exp[ ] (0) exp[ ] exp[ ] (0)

ttd dt
t t t t

μ σ μ σμσ
μ μσ φ μ μσ φ

⎛ ⎞ + −
= −⎜ ⎟− −⎝ ⎠

,       (26) 

which is negative for 1σ < . From this we know  must be falling at all t. ˆ ( )y t

 It is easy to verify that for all 1σ < ,  

 
( )

exp[ ] 0
exp[ ] exp[ ] (0)

t

tLim
t t

μσ
μ μσ φ

→∞

⎛ ⎞
=⎜ ⎟−⎝ ⎠

.       (27) 

It follows that  is initially greater than ŷ μ , falling at all t, and asymptotically reaches μ .  

 If 0.02μ = , 0.7σ =  and (0) 0.4φ = , it takes between 700 to 800 years for  to reach ŷ μ , as 

shown in figure 1 below. 

200 400 600 800 1000
t

1.1

1.2

1.3

1.4

yfl
cccc
μ

 

Figure 1: 
PlotA1+ φ0σ 

i
k

Æμ σ t

Æμ t− Æμ σ t φ0
y
{
ê.8μ → .02, σ → .7, φ0 → .4<, 8t, 0, 1000<E
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 Increasing σ  towards 1 lengthens the time needed to reach μ , which makes sense because 

of what we found in section 3.1 above. Figure 2 below shows that if σ  goes from 0.7 to 0.8,  

takes thousands instead of hundreds of years to reach 

ŷ

μ . 

 

2000 4000 6000 8000 10000
t

1.01

1.02

1.03

1.04

1.05

1.06

yfl
cccc
μ

 

Figure 2: 
PlotA1+ φ0σ 

i
k

Æμ σ t

Æμ t − Æμ σ t φ0
y
{
ê.8μ → .02, σ → .9, φ0 → .4<, 8t, 0, 10000<E

 

  

Using (24) we can plot any growth path using whatever parameter values we deem suitable. 

Generally speaking, a larger μ , a smaller σ , and a larger (0)φ  make the curve steeper, shifting 

it to the left, shortening the short-run; and conversely. For as long as 1σ < ,  gravitates towards ŷ

μ , and it takes longer to do so if σ  is closer to 1. If  σ  reaches 1, however,  jumps abruptly 

and permanently to 

ŷ

1 [1 ( )]tφ−  times μ , whereupon ( )tφ  itself becomes a constant. In this way, 

σ  controls a “gearing” mechanism, leveraging  upwards, using ŷ μ  as a base. 
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3.3 1σ >  

 It is common knowledge that 1σ >  leads to an upwardly explosive growth, and ˆ 0dy dt >  

from (26) reinforces that belief. It is interesting, nonetheless, to plot a typical path using (24), as 

we have done in figure 3. 

 

200 400 600 800 1000

-60

-40

-20

20

40

60

 

Figure 3: 
PlotA1 + φ0 σ 

i
k

Æμ σ t

Æμ t − Æμ σ t φ0
y
{
ê. 8μ → .02, σ → 1.2, φ0 → .4<, 8t, 0, 1000<E

 

  

It first appears that the path turns from +∞  to −∞  at some t above 200 years; but from (18), 

( )tφ  becomes unity at exactly 229.073 years using the parameters in figure 3, and from that point 

on capital receives more than 100 per cent of national income. We must therefore rule out the 

region to the right of 229.073 years in figure 3.  

 Growth positively explodes at some finite time for all 1σ > . A larger μ , a larger σ , or a 

larger (0)φ  bring that explosive date sooner. Although we know very little what explosive 

growth means in practice, a larger σ  without doubt is growth-promoting. 
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4. A General Technology 

Instead of the Hicks-neutral (4) suppose we have 

 .       (28) ( ) [ ( ), ( )], ( ) ( ) ( ), , 0at btY t F G t H t G e K t and H t e L t a b= ≡ ≡ >

The variables G and H stand for efficiency units of capital and labor. If  we are back to a b=

(4) and the conclusions reached there apply. The capital ˆ ( )K t  comes from endogenous savings 

as before, and ˆ( )L t  is assumed exogenously constant. Our aim here is to discover which 

technology mode yields faster income growth. Recall from (3) that a  describes a more 

Solow-neutral mode, etc. We first need an equation for the factor shares. 

b

 

4.1 The factor shares 

We will show that the factor shares path is completely independent of b , but the incomes 

path is not. Consequently, the factor share is a poor proxy for the income growth path. 

Differentiating (28), rearranging it, and analogous to (10) we get 

 1ˆ ˆ ˆ(1 )(1 )[( ) ( )]a b K Lφ φ
σ

= − − − + − .       (29) 

The variables φ , K̂  and L̂  on the right-hand side are endogenous, but we can find them using 

the method used before.  

Notice that the aggregate consumption term in the investment equation is in terms of L  and 

not H . Physical capital accumulates according to 

 ,       (30) ( ) [ ( ), ( )] ( ) ( )K t F G t H t c t L t= −

and the Hamiltonian, denoted Γ  since H is efficiency labor, is 

 ( ) ( ) ( ) { [ ( ), ( )] ( ) ( )}t c t L t F G t H t c t L tθΓ = − − .       (31) 

Keeping the time-reference implicit, the Euler equation is 
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 at
Ge F ρ= .       (32) 

Differentiating this gives 

 ĜF a= .       (33) 

 But the intensive form is in terms of H  and not L . Hence we have 

 ( ) ( ),1 ( ) where
bt

bt a b t a b tF e G G Ky F e f g g e e
L H H H L

− −⎡ ⎤≡ = = ≡ = =⎢ ⎥⎣ ⎦
k .       (34) 

We may also write . Differentiating it we have ( , )F G H Hf= G g gF G Hf= . Using G gH=  

and thus  this becomes . Differentiating we get , or gG H= GF f= g gG ggF f= G G gg gF F f g f= . 

Introducing the elasticity of substitution 
( )g g

gg

f f g f
g f f

σ
−

≡ − , and rearranging, we have 

 1
(1 )

g a
g

σ
φ

=
−

.       (35) 

 From  we know . Substituting this into ( )a b tg e k−= ˆ ˆˆ ( ) (g a b K L= − + − )

t

(35) and then into 

(29) we get . Integrating it, we finally have  ˆ( ) ( 1)t aφ σ= −

 ( ) (0) exp[ ( 1) ]t aφ φ σ= − ,       (36) 

which is almost identical to (18). This is what we claimed earlier: the path of the factors’ shares 

is completely independent of the human capital accumulation rate .  b

 Notice that (36) shows something we have known all along – that the factor shares will stay 

constant under either the Harrod-neutral technology 0a = , or the Cobb-Douglas technology 

1σ = . What we did not know is the exactly manner in which ( )tφ  evolves, which is now 

displayed vividly in (36). ( )tφ  is a bad proxy for  because the latter is very much a function 

of b. 

( )y t
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4.2 The income path 

Differentiating ( )bty e f g=  from (34) we have 

 ˆŷ b f= + .       (37) 

Notice gf f g= , and thus 

 ˆgg ff g g
f f g

φ= = .       (38) 

Using this and (35) in (37) we have  

 ( )ˆ( )
[1 ( )]

ty t b a
t

φσ
φ

= +
−

.       (39) 

Using (36), we finally have 

 (0)exp[ ( 1) ]ˆ( )
1 (0)exp[ ( 1) ]

a ty t b a
a t

φ σσ
φ σ

−
= +

− −
.       (40) 

It is straightforward to check that  is constant if either ˆ( )y t 1σ = , or 0a =  and .  0b >

Two results emerge immediately. First, there is a one-to-one positive relationship between 

the human capital and the per capita incomes growth rate b, even though b has no impact on 

( )tφ . 

 Second, the relations between  and a  is a complex one. If ˆ( )y t 1σ < , the exponential terms 

go to 0 as t goes to infinity, and asymptotically  converges to b. Since that takes a very long 

time to happen, it is important to know more than just the asymptote. To get a clearer picture we 

can differentiate 

ˆ( )y t

(40) with respect to a to get 

 { }
{ }2

(0)exp[ ( 1) ] 1 (1 ) (0)exp[ ( 1) ]ˆ( )
1 (0)exp[ ( 1) ]

a t at a tdy t
da a t

φ σ σ φ σ

φ σ

− − − − −
=

− −
,       (41) 

which when plotted yields figure 4.  
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Figure 4: 

PlotA−
ÆatH−1+σLσ φ0H−1+ aHt− tσL+ ÆatH−1+σLφ0L

H−1+ ÆatH−1+σL φ0L2
ê.8φ0 → .4, σ → .7, a → .05<, 8t, 0, 500<E

 

 

What this says is that raising the technology progress rate of physical capital, a, would raise 

the per capita income growth rate for some 50 years, but lowering it thereafter, and the net effect 

fizzles out eventually. Using other parameter values of (0)φ  and a leaves the pattern largely 

unaltered – the time profile always has a positive section followed by a negative one. 

 For 1σ >  however, ˆ( )dy t da  is always positive, giving a picture such as figure 5. 
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Figure 5: 

PlotA−
ÆatH−1+σL σ φ0H−1 + aHt− t σL + ÆatH−1+σL φ0L

H−1+ ÆatH−1+σL φ0L2
ê.8φ0 → .4, σ → 1.1, a → .05<, 8t, 0, 200<E

 



 

 Using our previous reasoning, ˆ( )dy t da  after the spike at about 185 years is not meaningful 

since ( )tφ  would then have reached 1. 

 As an exercise suppose . Figure 6 gives a slide-show of reducing a and 

increasing b, keeping their sum equal to 0.06. As the technology mode shifts towards Harrod-

neutral from Solow-neutral (increasing b and decreasing a), the curve in figure 6 shifts towards 

the northeast direction. Improving human capital leads to a faster and longer lasting growth, than 

improving the efficiency of physical capital. 

0.06a b+ =

 

100 200 300 400 500
t

0.0025

0.005

0.0075

0.01

0.0125

0.015

yfl

  100 200 300 400 500
t

0.0225

0.025

0.0275

0.03

0.0325

0.035

0.0375

yfl

 

           0.06, 0a b= = 0.04, 0.02a b= =  

200 400 600 800 1000
t

0.042

0.044

0.046

0.048

yfl

  200 400 600 800 1000
t

0.02

0.04

0.06

0.08

0.1

0.12

yfl
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Figure 6: plotting  using equation ˆ( )y t (40), and 0.7σ = , (0) 0.4φ =  
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5. Conclusions 

 Some findings in the foregoing are familiar, the others are relatively new. The major ones 

may be summarized more systematically as follows. 

1. A larger elasticity of substitution in general leads to faster and longer-lasting growth in 

per capita income. 

2. A more Harrod-neutral type of technical progress has more growth-promoting properties, 

than a more Solow-neutral type. 

3. It is quite sensible to talk about long-term growth when the elasticity of substitution 

between capital and labor is not one. Even the short-run is quite long, taking hundreds or 

more years for the growth rate to settle to its long-term constant rate. It is time we 

focused more on phenomena other than the “balanced path.” 

4. Similarly it is quite reasonable to talk about the non-Harrod-neutral growth. A rise in the 

technical progress rate has very long-lasting benefits on income growth. 

The main theoretical contribution of this paper is the derivation of a dynamic growth 

equation that is much more general than what we have known from the literature. This equation 

allows all elasticities and all technology modes, as shown in (40). It should be straightforward to 

test this equation empirically, if we have good data, and good estimates of the elasticities and the 

other variables. The incomes and the factor shares paths have something in common – they both 

take hundreds of years to return to their long term level. Even when there are limited 

opportunities to substitute capital for labor—when the elasticity of substitution is low—and even 

when physical capital improves faster than human capital, each mode of technical change have 

prolonged boosting effects on income which, over time, accumulates to tremendous 

improvements on our standards of living.  
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