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ABSTRACT 

 
 

This paper studies various aspects of the optimal design of economic organizations in  

the context of a project selection model, where decisions are made by fallible 

managers regarding the adoption or rejection of investment projects. I analyze the 

role of marginal decision costs, and establish that the sequentia l decision architecture 

is a pair of probability thresholds, and a corresponding pair of majority rules that vary 

with the stage of project evaluation.  The paper also analyzes the adjustment in the 

minimum organizational size and the decision architecture as changes occur in the 

quality of the investment environment and managerial expertise.   
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1. Introduction 

In most economic organizations, matters of strategic importance and which involve 

significant risk are often decided by a team of decision-makers.   The proverbial saying that 

“plans fail for lack of counsel, but with many advisers, they succeed” recognizes that 

individuals may not always have access to all the relevant information or possess the right 

expertise to make correct decisions.  As a result, collective decision-making can potentially  

improve the quality of decisions as well as increase the chances of success of new 

organizational initiatives.   

 

This paper looks at the optimal design of economic organizations in the context of a 

project selection model, where decisions are made by fallible managers regarding the 

adoption or rejection of investment projects.  As is well-known, fallibility in decision-making 

may arise because individuals are limited in their training, ability or experience, and thus may 

not always make the correct decisions.  Errors in judgment occur even if all the pertinent 

information necessary for the decision are available , decision-makers are sincere, have no 

vested interests to act differently  and information is transmitted accurately.  Within the 

fallibility framework, this paper analyzes the various aspects of the optimal organizational 

design: the minimum organizational size, the optimal sequential decision rules, and the impact 

of changes in the quality of the investment environment and the managerial expertise on the 

optimal architecture. 

 

While earlier studies by Ben-Yashar and Nitzan (2001b), and Koh (1992a, 1992b, 

1994b) and (Sah and Stiglitz (1986, 1988) considered specific sequential architectures in 

project evaluation and analyze their comparative properties, this paper considers the role that 

marginal decision costs play in the design of the organizational structure and establish the 

optimal sequential decision architecture.  The motivation for the focus on marginal decision 

costs is the observation that most organizations operate at full managerial capacity, in the 

sense all the available managerial resources are fully deployed in making production and 

investment decisions at any point in time. With a fixed pool of managerial expertise within  

the organization, managerial tasks often have to be prioritized and for each task taken up by a 

group of managers, another task will only be attended to later.  In order to utilize managerial 

time and expertise optimally, the allocation of managerial expertise at each point in time 

should recognize the marginal benefit of further deliberation on a decision versus the 

opportunity costs to the organization of doing so.  The opportunity costs include the impact of 

potential delay in managerial attention on other projects, but also potential monetary loss to 
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the organization, as in the case when first-mover advantage matters in making investment 

decisions – if the project under review is adopted by competitors – as well as the additional 

resources that would be deployed to continuing the evaluation before a decision is made on 

acceptance or rejection. 

 

A contribution of this paper to the literature is to characterize the optimal sequential 

decision architecture in the context of a project selection model, when the marginal decision 

costs are present.  When such marginal decision costs are absent, as may be the case when 

managerial expertise are not fully deployed or when the organization can access additional 

resources at no cost, the optimal decision rule takes the form of an optimal majority rule with 

full participation by all the decision-makers in the decision process.  This is the situation 

studied in the literature in the context of committee decision-making, and the results for 

optimal decision-making in fixed-size committees have been generalized and unified by Ben-

Yashar and Nitzan (1997).  Intuitively, when the decision process is sequential and marginal 

decision costs are positive, the optimal decision architecture includes the option to make the 

decision earlier, as the expected benefits of further deliberation may be out-weighed by the 

opportunity costs involved.  We provide a characterization of the optimal decision rule.  

 

The analysis in this paper is primarily concerned with sequential decision 

architectures that arise due to the presence of marginal decision costs.  There are other reasons 

that may give rise to sequentiality in decision-making; for instance when managers are not 

identical in abilities or hold different portfolios of responsibilities, a pre-ordering of the 

decision-makers in the process is central to decision-making efficiency.  In Section 6 of this 

paper, I shall comment briefly on the issue of heterogeneous managerial ability and its impact 

on the optimal sequential architecture. 

 

Related Literature 

There is an established literature on optimal group decision-making that face 

dichotomous choices. Some of the earlier important work include Nitzan and Paroush (1982, 

1984a, 1984b), Shapley and Grofman (1984), Gradstein and Nitzan (1988) and Heiner (1988).  

The recent literature emphasizing managerial fallibility that is related to this paper include 

Ben-Yashar and Nitzan (1997, 1998, 2001a, 2001b), Koh (1992a, 1992b 1993, 1994a) and 

Sah and Stiglitz (1985, 1986, 1988). The recent research has studied two specific sequential 

architectures – the hierarchy and polyarchy. In a strict hierarchical review process, a project is 

rejected and the evaluation ends if one manager rejects the project. A project is only accepted 
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if the manager at the top of the hierarchy accepts it.  By contrast, in a polyarchical review 

process, a project will be given further chances within the organization if it is turned down, 

and will be accepted once one manager accepts it. Another decision structure that has been the 

subject of much research is the committee with an optimally derived majority decision rule .  

The committee architecture has been studied in Koh (1994a), Ben-Yashar and Nitzan (1997) 

and Sah and Stiglitz (1985, 1988).  

 

Within the framework of the dichotomous-choice model, the literature has studied the 

comparative properties of these organizational architectures, as well as the conditions under 

which a particular architecture dominates the others in terms of the implications on the 

welfare of the organizations and the costs to the organization. Ben-Yashar and Nitzan (2001b) 

and Koh (1992b) noted that the optimality of the hierarchical or polyarchial structures hinges 

on stringent conditions regarding the quality of the investment environment and the 

evaluation expertise of the managers. Koh (1993) discussed the impact of first-mover 

advantage and market competition on the choice of decision architecture.  

 

The techniques used in this paper to characterize the optimal sequential architecture 

for economic organizations are familiar methods employed in the statistical decision literature 

in the determination of optimal stopping rules (see, for instance, Astrom (1970) and Degroot 

(1970)) and in design of sequential probability ratio testing (see, for instance, Bertsekas 

(1987)).   In the terminology of the statistical decision literature, the design of the sequential 

decision architecture we study in this paper is akin to determining the optimal stopping rule 

for a sequential sampling process when a choice has to be made between two hypotheses.  For 

the project selection problem at hand, there are two courses of actions to choose from when 

evaluation ends, and the types of potential errors that can occur are; Type I error when good 

projects are rejected, and Type II errors, when bad projects are accepted.  The analysis in this 

paper thus provides another example of the application of statistical decision theory to the 

study of the economics of organization.  

 

Organization of Paper  

The paper is organized as follows.  Section 2 introduces the project selection model.  

Section 3 derives the optimal majority rule for an accept-reject decision, which forms part of 

the optimal sequential decision rule. When marginal decision costs are zero, this optimal 

majority rule is also the optimal decision rule for the organization.  Section 4 discusses the 

properties of the optimal organizational structure and analyzes the impact on the 
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organizational structure as the quality of the investment environment and the level of 

managerial expertise varies.  Section 5 derives the optimal sequential decision architecture, 

when marginal decision costs are positive, and discuss its implications.  Section 6 provides 

some concluding remarks. 

 

Summary of main results 

We present a summary of the results of the paper. In the project selection model, 

presented in Section 2, a project that is either good or bad is evaluated sequentially by 

managers who then vote to accept or reject the project.  Each additional evaluation incurs a 

constant marginal decision cost to the organization.  At each stage of the project evaluation 

process, the organization has to decide if the evaluation process should be completed by either 

accepting or rejecting the project or to proceed for further evaluation and incurring further 

organizational costs.  The objective of the organization is to determine an optimal sequential 

decision architecture that maximizes the expected payoff net of total decision costs.  

 

In Section 3, we analyze the decision to accept or reject the project when it has 

undergone a series of evaluation and show that this decision will be based on an optimal 

majority rule (given in Proposition 1) that varies with the stage of evaluation, the quality of 

the investment environment and the expertise of the managers.  This optimal majority rule  

forms part of the optimal sequential decision architecture, as by definition, the organization 

makes an “accept” or “reject” decision when the evaluation process were to reach maximum 

possible  number of reviews, as set by the size of the management organization.   

 

In Section 4, I discuss the quality of the organizational decision-making process.  

When the optimal organizational decision rule in Proposition 1 is implemented, the 

hierarchical or polyarchical decision architectures can be shown to be feasible architectures 

under particular conditions of the investment environment and managerial expertise 

(Propositions 2). The optimality of these architectures is discussed, and it is noted that in 

situations when the organizational size is constrained, the hierarchy or polyarchy architectures 

are general suboptimal structures, and will be dominated by a trivial decision to either always 

reject or always accept.   

 

Furthermore, in Proposition 3, I note that the optimal decision architecture is not 

strictly sequential in the sense that the evaluation process would begin with a single manager, 

and a decision is then made if the project should proceed for further evaluation.  Even if 
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marginal decision costs are zero, the investment environment and the quality of managerial 

expertise generally dictates a minimum organizational organization, denoted Mmin, which is 

greater than one.  The optimal decision architecture is to begin the decision process with an 

initial review by the team of Mmin, managers.  The intuition for this result is that generally, the 

quality of investment environment is not neutral, in the sense that there is often a natural bias 

to make only “accept” or only “reject” decisions if no evaluation is undertaken.  Thus, for 

project evaluation to be informative, a minimum number of evaluations must be undertaken if 

the decision process is not dominated by a naïve strategy of either always accepting projects 

or not always rejecting projects.   

 

Beginning with the initial review by the team of Mmin, managers in a committee 

setting, there are now three possible decisions at each evaluation stage : (1) accept the project 

and end the review process, (2) reject the project and end the review process, or (3) request 

for an additional evaluation.  In Section 5, I establish, in Proposition 5, that the optimal 

sequential decision architecture is characterized by two probability thresholds at each stage of 

evaluation: if the conditional probability that the project is good exceeds the upper probability 

threshold, the project will be accepted without further evaluation; similarly, if the said 

conditional probability is below the lower probability threshold, the project will be rejected 

and evaluation ends. Otherwise, an additional review is desirable. Corresponding to the pair 

of probability thresholds is a pair of sequential majority rules, one for acceptance and another 

for rejection. When marginal decision costs are positive, the minimum size of the 

organization, as presented in Proposition 2, will be larger, as the presence of positive marginal 

decision costs makes the naïve strategies of always accepting or always rejecting more 

attractive. In Proposition 6, I show that it is possible to recursively derive the optimal 

sequential majority rules, which define the range within which an additional project review is 

desirable . 

 

2.   The Model 

Consider an economic organization whose objective is to maximize the net expected 

payoffs from selecting and implementing investment projects, and faces the following 

investment environment: good projects yield a fixed payoff of πGA if correctly chosen and πGR 

if incorrectly rejected; bad projects yield a payoff of πBR if correctly rejected and πBA if 

incorrectly adopted.  Let the proportion of good projects be α, so that the proportion of bad 
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projects is (1 – α).1  We can think of α and (1 – α) as, respectively, the a-priori probabilities 

that a project is good or bad.  We require πGA > πGR and πBR > πBA.   Without loss of 

generality, we assume that πBR > πGR
2.   

 

Project evaluation is to be carried out managers who can differentiate good projects 

from bad ones, but only imperfectly.  They make independent decisions to approve or reject 

projects but are otherwise identical in their expertise.  Let the probability that a manager will 

approve a good project be g, and the probability that he will approve a bad project be b.  

Expertise is modeled by requiring g > b.  Evaluation of the project is to take place 

sequentially and each evaluation incurs a constant marginal decision cost of C.  For the 

analysis later in the paper, define δa ≡ g/b measure the ability to discriminate good projects; 

correspondingly, δr ≡  (1 – b)/(1 – g) measure the ability to discriminate bad projects.  Since g 

> b, it follows that δa  > 1 and  δr  > 1, so that the product δa δr  = δ  > 1.   

 

Let m be the number of evaluations to date. Furthermore, denote zi, i = 1, …, m, as an 

independent Bernoulli variable representing the outcome of the ith review: zi = 1 represents a 

positive vote and zi = 0 represents a negative vote. Let P(m, n) denote the posterior probability 

that a prospect is good after m inspections with n favorable reviews, where ∑
=

=
m

i
izn

1

.   The 
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where Γ(1|G) = g, Γ(0|G) = (1 – g), Γ(1|B) = b, Γ(0|B) = (1 – b).   We can simplify the 

expression in ( 1 ), using recursion to yield 
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where P(0, 0) = α.  The formula for P(m, n) indicates that the decision at stage m – whether to 

accept or reject the project, or proceed for an additional evaluation – is based on the degree of 

agreement about the project’s quality, and not on the history of the evaluation and the 

particular order in which opinions were formed.  This is due to the assumption of identical, 

                                                 
1 The formulation of the model and the notation used in this paper can be recast 
straightforwardly into an equivalent setting shown in Ben-Yashar and Nitzan (1997). 
2  Our analysis is equally applicable in both situations: (1) πGA > πBR ≥  πGR > πBA; (2) πGA > 
πGR ≥  πBR > πBA. 
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independent managerial expertise, so that P(m, n) is a sufficient statistic for the history of 

evaluation.  When managers are not identical in their abilities, the ordering of the managers 

and the resultant evaluation history would be important for the decision on each project.  

Since g > b, it is a routine matter to note the following relationships hold: (i) P(m, n+1) > 

P(m, n), (ii) P(m+1, n) < P(m, n), and (iii) P(m+1, n+1) > P(m, n).    

 

Examples of dichotomous choice problems within economic organizations occur in 

the selection of projects for R&D funding or the determination of startup companies for 

venture investment. In the model presented here, we can think of the investment environment 

– represented by the proportion of good projects ( α ) and the set of payoffs {πGA , πBR, πGR, 

πBA } facing an organization as either the same for all firms within the industry, or, perhaps, 

more realistically, specific to each firm. Using the venture capital industry as an illustration, 

top-tier venture firms typically receive a higher proportion of the better projects or ideas (with 

also higher expected payoffs if successful), while lesser-known firms receive a relatively 

larger proportion of weaker projects.  We may further generalize the setting to one where the 

a-prior probability of a project’s quality ( α ) is dependent on the originator of the project or 

the idea, based on the past track record of the originator.  This interpretation of the project-

selection setting is particularly applicable to the problem internal resource allocation. Within 

organizations, business divisions routinely present business proposals or projects for 

budgetary approval; this is typically accompanied by a risk-return study of the potential 

payoffs and downside risks.  Optimal decision-making in such a situation can be modeled as a 

project selection problem by the management team tasked to evaluate and decide on the 

merits of these competing proposals. 

 

3. The Decision to Accept or Reject  

Let M denote the organizational size, which sets the maximum possible  number of 

evaluations 3.  We begin by analyzing the decision to accept or reject the project at stage m ( = 

1, …, M) of the evaluation process.  Define Za(P(m, n)) and Zr(P(m, n)) to be, respectively, 

the expected payoff from accepting and rejecting the project after m evaluations, where         

 Za(P(m, n)) = P(m, n)πGA  + (1 – P(m, n))πBA                                                                                            ( 3 ) 

Zr(P(m, n)) =  P(m, n)πGR  + (1 – P(m, n))πBR 

                                                 
3  The fixed costs of hiring the M managers are incurred upfront, and so would not affect the 
determination of the optimal decision architecture.   
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Given our assumption of πGA ≥  πBR > πGR > πBA, Za(p) is linear and increasing in p and Zr(p) 

is linear and decreasing in p. (See Figure 3 for an illustration.) 

 

Proposition 1: There exists a majority decision rule N(m) such that at stage m of the 

evaluation process, the project should be considered for adoption if the number of approvals 

exceeds N(m); otherwise, the project should be considered for rejection.   

 

The derivation of N(m) is straightforward. For the decision to accept (reject) at stage m to be 

the optimal course of action, we show that Za(P(m, n)) > ( < ) Zr(P(m, n)), which is equivalent 

to the condition that P(m, n) > ( < ) Qc  where  

BABRGRGA

BABRc

π−π+π−π
π−π

≡Q        ( 4 )  

Define γ(m) as a function such that P(m, γ(m)) = Qc.  Using the definition of P(m, n) in ( 2 ), 

we can solve for an explicit solution of γ(m) to yield :  

( )rmm? δ+β−
δ

= lnln
ln
1

)(                                                                                      ( 5 )  

where    

))(1(
)(

BABR

GRGA

π−πα−
π−πα

≡β                                                                                           ( 6 ) 

and δ = δa δr  as defined earlier.   Next, we note that depending on the parameters, β, δa  and δr, 

γ(m) may be less than zero or greater than m.  (A full characterization of γ(m) in provided in 

the Appendix).  The optimal majority rule N(m) is therefore defined as follows: 

( ){ }( ))(0,Max,MinInt)( mmmN γ≡                                          ( 7 ) 

where Int( x ) denotes the smallest integer greater than or equal to x.   

  In Section 5, I will show that if the marginal decision cost is constant at each stage, 

the optimal decision architecture is characterized by a probability range (qr(m), qa(m)), and an 

equivalent pair of majority rules {Nr(m), Na(m)}, where Nr(m) < N(m) < Na(m), for m = 1, …, 

M–1.  If the number of approvals exceeds Na(m), the project will be accepted, and if the 

number of approvals is fewer than Nr(m), the project will be rejected. Otherwise, an additional 

review is beneficial in terms of a higher expected net project payoff.  Since the maximum 

number of evaluations is set by M, it follows that Nr(M) = N(M) = Na(M).  Therefore, N(M) 

provides the decision rule for the case if the evaluation process were to reach stage M, the last 

possible evaluation stage. Furthermore, if managerial expertise is not fully deployed within 

the organization, so that marginal decision costs are zero, every project should be reviewed by 

all the M managers, so that N(M) is the optimal decision rule for the organization.   
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  Figure 1 illustrates the different possible variations for the optimal decision rule 

N(m), for different organizational sizes, when there are no variable costs.   

 

---------------------------------- 

FIGURE 1 ABOUT HERE 

---------------------------------- 

 

 

4. The Quality of Organizational Decision-Making     

This section analyzes the optimal adjustment of the decision rule N(m) when changes 

occur in the quality of the investment environment and managerial expertise.  As will be 

shown in the next section, under the optimal sequential architecture, the pair of majority rules 

{Nr(m), Na(m)} bounds and tracks N(m), and converges to N(m) at m = M. 4  It follows that as 

the organization carry out adjustments to {Nr(m), Na(m)} in response to changes in the 

investment environment and managerial expertise, to maintain the optimality of the decision 

architecture, corresponding adjustments occur in N(m) as well.  Hence, an analysis of N(m) 

allows us to understand the qualitative aspects of the optimal adjustments of the optimal 

sequential architecture {Nr(m), Na(m)}.   

 

We begin by noting that there are two indicators of the quality of the investment 

environment: β (defined in ( 6 )) and Qc (defined in ( 4 )).  Firstly, β is the ratio of the 

expected payoff gains in the two states of the investment environment when the right 

decisions are made for each type of project.  It is straightforward to show that 

β > 1 corresponds to a situation when no evaluation is to be undertaken, always accepting 

projects is preferred. Similarly, when β < 1, this corresponds to a situation where if no 

evaluation is to be undertaken, always rejecting projects is preferred.  In this sense, β > 1 

describes a favorable investment environment while β < 1 describes a mediocre investment 

environment.  Lastly, β = 1 describes a neutral environment, in which the organization, 

without further information on a project, is indifferent towards pursuing every project (always 

accept) or not getting into business (always reject).  The objective of an economic  

organization, when faced with these different investment environments, is to decide if it 

should invest and acquire the ability to make informed decisions, rather than adopt naïve 

                                                 
4 This will be shown in Proposition 6 and illustrated in Figures 5, 6 and 7. 
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strategies of pursuing every project (always accept) or not getting involved in the business at 

all (i.e. always reject).   

   

Qc is another indicator of the quality of the investment environment; it is increasing in  

(πBR –  πBA) and decreasing in (πGA –  πGR).  Since a project will be considered for acceptance 

if the conditional probability P(m, n) is greater than Qc, it can be thought of as defining the 

threshold conditional quality for a project to be considered for acceptance.  Since P(m, γ(m)) 

= Qc, it follows that γ(m) is increasing in Qc, holding m constant; therefore, N(m) is non-

decreasing in Qc. The economic interpretation of Qc is that it measures the importance of 

making the right decision for each type of project. As the payoff differential of bad projects 

increases, making it relatively more important for the organization not to accept bad projects, 

the quality of the organizational decision-making, as represented by N(m), becomes more 

stringent; i.e. the bar for acceptance will be raised.  Similarly, as the payoff differential of 

good projects widens, the decision rule N(m), will be adjusted so that the likelihood of 

acceptance is improved.   

 

Clearly, changes in the investment environment and managerial expertise, affects 

N(m), and in turn, will impact the choice of the optimal organizational size M.  From Figure 

1, we note that if β ≠ 1,  the decision rule N(m) is trivially 0 or m when the organization is 

below a certain size.  For instance, (A) when β > 1 and M < Int 





δ
β

rln
ln , N(m) = 0 ∀  m M≤  

and (B) when β <?1 and M < Int 







δ
β

−
aln

ln
, N(m) = m ∀  m M≤ .  If the size of the 

management organization is set below the minimum level, project evaluation is clearly  un-

informative in the sense that under scenario (A), the decision rule is dominated by accepting 

all projects without evaluation and not incurring and any evaluation costs, while in scenario 

(B), rejecting all projects and not getting into business is the optimal course of action. When 

there are no marginal decision costs, we can state the following: 

Proposition 2: (a) When β > 1, the minimum size of the organization is Mmin = Int 







δ
β

rln
ln

, 

with an optimal decision rule N(Mmin) = 1; (b) When β < 1, the minimum size of the 

organization is Mmin = Int 







δ
β

−
aln

ln
, with an optimal decision rule N(Mmin) = Mmin.   



 11 

The intuition for this result is that the investment environment and the quality of the 

managerial expertise creates a natural bias, in the absence of any evaluation, either to accept 

all projects when β > 1, or reject all projects – i.e. not to enter into business at all –when β < 

1.  Hence, under either scenario of the investment environment, the value of the initial 

evaluation is to generate information of sufficient value – in the sense that neither the 

“accept” nor “reject” decision is the dominant choice – to overcome this natural environment 

bias. The minimum organizational size simply indicates the smallest initial management team 

needed to produce informative evaluation to overcome the initial environmental bias.   

 

It is straightforward to see from Figure 1 that if the size of the management 

organization is fixed at the minimum size described in Proposition 2, then the basic 

management organization described in Proposition 2a is a polyarchy while the basic 

management organization described in Proposition 2b is a hierarchy5, in the sense defined in 

the introductory section of this paper. It is straightforward to see that the optimality of both 

the hierarchy and the polyarchy architectures are sensitive to slight variations in the 

organizationa l size , the investment environment as well as managerial expertise. Thus, unless 

the optimal size of the organization happens also to be the minimum organizational size 

described in Proposition 2, the hierarchy as well as the polyarchy is sub-optimal decis ion 

architectures.  Furthermore, if budgetary constraints force the organization to reduce its size 

below the minimum level required for informative evaluation in the sense discussed earlier, 

the hierarchy is dominated by not considering any investment, and the polyarchy is dominated 

by simply accepting all projects.  Therefore, the robustness of the hierarchy and the polyarchy 

as optimal decision architectures is weak, and the conditions for their optimality are very 

stringent.  While the literature has studied the comparative merits of these two sequential 

architectures, the analysis here illustrates that these architectures are generally non-optimal 

architectures if externally imposed on the organization6.    

 

The minimum organizational size stated in Propositions 2a and 2b applies strictly to 

the situation when marginal decision costs are zero. In situations where marginal decision 

costs are positive, the minimum organizational size will be larger when the optimal sequential 

decision architecture is implemented, as will be shown in Section 5.  Figure 6 illustrates that 

when β < 1, the minimum organizational size for a hierarchy will increase to Ma
min, and each 

                                                 
5 Generally, the hierarchy and the polyarchy are feasible organizational structures for an 
organizational size of Mmin, and possibly for Mmin +1.   
6 The results presented here complement those in Ben-Yashar and Nitzan (2001b), which 
examined the robustness of the polyarchy and the hierarchy as optimal architectures.   
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project now requires at least Ma
min  approvals before it is accepted.  Similarly, Figure 7 shows 

that when β > 1, the minimum organizational size for a polyarchy is also larger, given by 

Mr
min, and each project now requires at least Mr

min rejections before evaluation is terminated.  

The reason for the increase in the minimum organizational size for these two architectures 

follows from our earlier comment that the investment environment and the quality of 

managerial expertise creates a natural bias in favour of a naïve strategy of either accepting all 

or rejecting all projects.  If marginal decision costs are positive, the attractiveness of the naïve 

strategies becomes greater ex-ante, which translates into a larger minimum organizational size 

for informative evaluation to dominate the naïve strategies. 

 

 From the above discussion, it should be apparent that once the minimum 

organizational size is implemented, it does not make a difference if the project is initially 

reviewed in a sequential process or simultaneously, as in a committee setting, by the initial 

team of  Mmin managers.  Indeed, if speed in decision-making is desirable, due to, for instance, 

the existence of first-mover advantage (as discussed in Koh (1993)), it would be preferable 

for the initial review to be carried out simultaneously. The corollary, within the context of our 

model, is that re-organizing an existing strict sequential decision architecture into one that 

begins with an initial review carried out simultaneously by a team of the Mmin managers 

would potentially improve organizational performance.  We can state the following:  

Proposition 3:  In the project selection model, the initial review of the project will be carried 

out simultaneously by a team of Mmin managers, where Mmin = 
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Subsequent evaluation, if desired, will be carried out sequentially.   

Next, we analyze how the decision rule N(m) varies with the investment environment 

and the quality of managerial expertise.  This is carried out by obtaining the comparative 

statics for γ(m), defined in ( 5 ). For the purpose of our analysis, and without loss to generality 

to the results, we shall consider N(m) as continuous, and conduct the analysis with γ(m).  We 

make the further assumption that γ(m) is twice continuously differentiable.  We provide the 

following derivatives for easy reference: 
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The derivative in ( 8 ) provides the marginal decision rule; i.e. for an increase in size 

of the economic organization, the corresponding optimal adjustment in the decision rule N(m).  

It is straightforward to see that the marginal decision rule will be a marginal majority rule, i.e. 

dmmd /)(γ = 0.5, only if the probability of a manager accepting good or bad projects are 

equal, in i.e. g = b = 0.5.  Since g ≥  b, Figure 2 shows the different combinations of g and b 

that result in 5.0
)(

<
>γ

dm
md

.  

---------------------------------- 

FIGURE 2 ABOUT HERE 

---------------------------------- 

 

 

When marginal decision costs are zero, it is well-known that the simple (50%) 

majority rule is the optimal decision rule when β = 1 and δa = δr (which requires that g = b = 

0.5) regardless of the size of the organization.  When managerial quality is unknown (or 

untested), it is reasonable to model such situations by assuming g = b = 0.5.  Thus, the 

marginal majority rule in this case is 0.5, so that N(M)/M→  0.5 as M ∞→ , regardless of the 

quality of the investment environment.  In other words , as the size of the organization 

expands, the simple majority rule is approximately optimal regardless of the investment 

environment.  The corollary of this well-known result is that if the abilities of the decision-

makers are known or if the abilit ies of the managers improve – either in making “accept” or 

reject” decisions or both – a simple majority rule is invariably sub-optimal.  The organization 

would improve the quality of its decision process, and thereby enhance its profitability, if it 

takes into account these asymmetries and optimally utilize them in setting its decision rule. 
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Quality of investment environment   

As shown in ( 9 ), a better investment environment, as represented by a higher β, will 

lead the organization to optimally lower the majority required for accepting projects, but at a 

decelerating pace, ceteris paribus.  More interestingly, we note an improvement in β increases 

the minimum organizational size if β > 1, and reduces the minimum organizational size if 

β > 1.  The reasoning here is that when β > 1, an increase in β increases the desirability of 

accepting every project.  By raising the minimum organizational size required for informative 

evaluation, it leads potentially to a situation that unless the organization can obtain additional 

managerial resources to conduct the evaluation of the investment projects, the optimal 

strategy here may be to simply accept all projects, as the environmental bias makes the initial 

evaluation less desirable. 

 In the case where β < 1, when the quality of the investment environment improves – 

as represented by an increases in β − a smaller team is now required to conduct the initial 

evaluation of the project, thereby making it more attractive for new businesses of smaller 

minimum size to be established, if previously, it was uneconomical to do so.  Conversely, if 

the investment environment deteriorates, and firms differ in terms of their decision-making 

abilities, we should also see an exit of weaker, less profitable  firms from the industry; firms 

that remain are those who have better decision-making ability.  Similarly, if firms do not face 

the same investment environment, a general decline in the quality of the investment 

environment will negatively impact those firms who face investment environments below the 

industry average, while firms who face above-average investment environments specific to 

themselves will survive.   

 

One observation that is relevant to the preceding discussion is that in the wake of the 

bursting of the dotcom bubbles, many small venture capital firms, established in the last few 

years, have exited the industry; the venture capital firms that continue to do well are those that 

are recognized for their expertise and who have the pick of the best investment opportunities 

in the market.  Of course, other factors are at play as well, as these established top-tier firms 

have had a strong investment track record, and therefore have an advantage in terms of their 

access to investment funds, which is critical to continued operations. 

 

Quality of Managerial expertise  

Improvements in managerial expertise are captured by improvements in δa and δr, 

which define the comparative skills in making “accept” and “reject” decisions.   The partial 
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derivatives in ( 10 ) indicate that the marginal decision rule will be tightened if the expertise 

in making “reject” decisions improves (as represented by an increase in δr), but will be made 

less stringent, if the expertise in making “accept” decisions improves (as represented by an 

increase in δa).  Thus, the organization optimally adjusts the marginal decision rule to balance 

the organizational expertise in both the “accept’ and “reject” decisions, when managerial 

expertise in either area improves.  An increase in δa or δr may be due to a rise in the 

probability of accepting good projects, g, or a decrease in the probability of accepting bad 

projects, b, or both.  The results in ( 11 ) and ( 12 ) can be explained similarly.   When the 

managerial ability to discriminate bad projects and make “reject” decisions  improves, the 

organization will optimally respond by setting tighter standards for approving projects, in the 

form of requiring a higher majority for acceptance.  Similarly, an improvement in the ability 

to discriminate and accept good projects leads to a less stringent decision rule.    

 

Furthermore, improvements in either δa or δr also affect the minimum organizational 

size.  Suppose marginal decision costs are zero. In the case where β > 1, the minimum 

organizational size Mmin, would also be reduced if δa improves, while in the case where β < 1, 

Mmin, would also be reduced if δr improves.  Thus, the improvement in managerial expertise is 

compensated by appropriate adjustments in both the minimum organizational size and the 

marginal decision rule.  In many organizations, it is generally the case that managerial 

expertise improves with on-the-job learning experience. In the context of the project selection 

model, if on-the-job experiences lead to better decision-making ability, then an organization 

should regularly adjust its quality of its decision-making processes, in order to ensure the 

decision-making process does not become overly stringent.  With the possibility of 

improvement in managerial expertise, we should also observe that organizations will start out 

initially with a stringent decision-making process; this is then gradually relaxed over time, as 

the ability to discriminate between good and bad projects improves.  

 

Furthermore, even though the investment environment may remain constant over 

time, as managerial expertise improves, the minimum organizational size to establish a 

business operation will also decrease, thus allowing for the entry of new firms into the 

industry, if it was previously unprofitable to do so.  Thus, if the promotion of competition is a 

desired policy objective for the governments, the analysis suggests that improving the overall 

level of industry expertise will serve to lower the barriers to entry as the minimum firm size 

will be reduced.  This suggests a potential linkage between an improvement in the quality of 

organizational decision-making and market structure. This is the subject of further research.  
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Again, drawing an observation from the private equity industry, the Singapore government’s 

Economic Development Board has recently mooted the idea to establish an Asia-Pacific 

Training Institute for Private Equity, with the objective of raising the level of expertise in the 

private equity industry, and encouraging the establishment of new venture capital firms in 

Singapore7.    

 

5. The Optimal Sequential Organizational Architecture  

In this section, we characterize optimal sequential decision architecture when 

marginal decision costs are positive8.  Define Am(P(m, n)) to be the expected project payoff if 

the decision is to proceed for an additional review, after m reviews has been carried out, and 

let the constant marginal decision cost be C.  The decision at stage m is to choose the action – 

accept, reject, proceed for another review – that maximizes the conditional expected payoff to 

the organization, given the project under review.  Denote                                         

                Vm(P(m, n)) ≡  Max {Za(P(m, n)),  Zr(P(m, n)),  Am(P(m, n)) – C}                     ( 13 ) 

The value function Vm(P(m, n)) describes the maximum expected payoff at stage m, given the 

evaluation history.  It follows then that  

   Am(P(m, n)) ≡  E[Vm+1(P(m +1, n + z m+1)]        z m+1∈{0 , 1}                              ( 14 ) 

where the expectation is taken over zm+1 with respect to the probabilities:                                                                                                                                 

 Η(zm+1|P(m, n)) = P(m, n).Γ(zm+1|G) + (1 − P(m, n)).Γ(zm+1|B)                             ( 15 ) 

             Η(z1| α) = αΓ(z1|G) + (1 − α)Γ(z1|B) 

where P(0, 0) = α  and Γ(1|G) = g, Γ(0|G) = (1 – g), Γ(1|B) = b, Γ(0|B) = (1 – b). For the rest 

of our analysis, we may on occasion suppress the variable n, and denote P(m, n) simply as p, 

to ease notation, unless otherwise indicated.  The following lemmas, with proofs contained in 

the Appendix , are used in the proof of Proposition 4. 

Lemma 1:  Vm(p) ≥  Vm+1(p) and Am(p) ≥  Am+1(p)     ∀ m = 1, …, M–1 and p ∈ [0, 1] 

Lemma 29:  Vm(p) and Am(p) are convex in p.          ∀ m = 1, …, M–1 and p ∈ [0, 1] 

                                                 
7  As reported in The Straits Times, Singapore, June 28, 2002. 
8 Formally, we shall assume the marginal decision costs are small relative to the potential 
payoff of selecting a good project and the minimum organizational size is feasible .  
9 We have assumed that πBR > πGR in our analysis, so that Zr(p) is decreasing in p. This 
assumption is not critical to the derivation of Proposition 4.  If πBR < πGR, this would then 
imply Zr(p) is increasing in p.  The critical conditions for our results are in Lemma 2, that 
Vm(p) and Am(p) are convex in p, ∀ m = 1, …, M–1 and p ∈ [0, 1].   The assumption that πGA 
>  πBR  >  πGR > πBA implies Za(Qc)  = Zr(Qc) < πBR, with Qc defined in ( 4 ).  Propositions 4 
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Utilizing Lemmas 1 and 2, we prove in the Appendix, the following Proposition, which 

establishes the optimal sequential decision rule: 

 

Proposition 4:  At each stage m of the decision process, there exists two probability 

thresholds, an upper bound qa(m) and a lower bound qr(m), where qr(m) < Qc < qa(m) ∀ m = 

1, …, M–1.  Also, qa(m)  is decreasing in m, qr(m)  is increasing in m and qa(M) = Qc = qr(M) 

as M defines size of the organization.  If P(m, n) > qa(m), the project is accepted and the 

evaluation ends; if P(m, n) < qr(m), the project is rejected and the evaluation stops.  If P(m, n) 

∈ (qr(m), qa(m)), m  = 1, …, M−1, a further review should be carried out.  

 

The intuition behind the existence of the two probability thresholds and the 

probability range (qr(m), qa(m)) is straightforward. Suppose after the initial review by a team 

of Mmin  managers, the conditional probability that the project is a good project is close to one.  

Then the value of further evaluation – in terms of improving the expected organizational 

payoff – is lower compared with the case when the conditional probability is close to Qc, 

which defines the marginal case for considering acceptance.  When a further evaluation incurs 

a marginal cost, the optimal decision for the organization is to weigh the net gain in expected 

payoff from making a more informed decision against the cost of doing so.  A similar 

argument applies in the case when the conditional probability is close to zero. The probability 

thresholds –  qr(m) and qa(m) – define the cases where the value of additional evaluation is 

equal to the marginal decis ion cost. 

 

Figure 3 below provides an illustration of the general relationship between Am(p) – C, 

Vm(p), Za(p) and Zr(p) while Figure 4 provides an illustration of the probability range (qr(m), 

qa(m)), m = 1, …, M and the decision spaces at  each stage of the evaluation process10.  

 

------------------------------------------- 

FIGURES 3 and 4 ABOUT HERE 

------------------------------------------- 

                                                                                                                                            
and 5 continue to hold if we assume πBR ≤  πGR.  In fact, if πBR ≤  πGR, it is straightforward to 
show that Vm(p) and Am(p) are increasing in p, ∀ m = 1, …, M–1 and p ∈ [0, 1], and the 
results in this paper continue to hold.   

10 In order that our problem is non-trivial, we require that Am(1) – C > Za(Qc) = Zr(Qc).  
Otherwise, it is not worthwhile to become fully informed about the quality of the good 
project.  Graphically (see Figure 3), it implies that (Am(p) – C) intersects the right axis, when 
p = 1, at a level higher than Za(Qc).  This is necessary; otherwise, the sequential decision rule 
{Nr(m), Na(m)} would not exist, and the optimal decision is to always accept or always reject. 
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Corresponding to (qr(m), qa(m)) is an optimal sequential architecture {Na(m), Nr(m)}: 

Proposition 5:  At each stage m, there exists two majority rules – an upper bound Na(m) and a 

lower bound Nr(m), ∀ m = 1, …, M–1.  By definition of M as the optimal organizational size, 

Na(M) = Nr(M) = N(M).  If the number of approvals exceeds Na(m), the project is accepted, 

and evaluation ends.  If the number of approvals falls below Nr(m), the project is rejected, and 

evaluation ends. Otherwise, an additional evaluation is beneficial.   

 

The existence of the sequential majority rules Nr(m)and Na(m) follows directly from the fact 

that, by definition, P(m, Nr(m)) = qr(m) and P(m, Na(m)) = qa(m), so that 










































+








−
−











−
= mm

mq

mq
mN rr

r
r ,dln

a1
a

ln
)(1

)(
ln

dln
1

MinInt)(                   ( 16a ) 










































+








−
−











−
= 0,dln

a1
a

ln
)(1

)(
ln

dln
1

MaxInt)( ra

a
a m

mq

mq
mN                  ( 16b )                                         

From ( 16a ) and ( 16b ), there exist Mr
min and Ma

min such that for m < Mr
min , Nr(m) = m and 

for m < Ma
min , Na(m) = 0.  Routine calculation yields the following relationships : 
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Since both (Qc – qr(m)) and (qa(m) – Qc) are decreasing in m, it follows that  when m > Mr
min , 

(N(m) – Nr(m)) is decreasing in m; similarly, when m > Ma
min , (Na(m) –  N(m)) is decreasing 

in m. Hence, both Na(m) and Nr(m) converge to N(m). More precisely, we are able to establish 

in Proposition 6 the following properties for {Nr(m), Na(m)} (see the Appendix for the proof): 

Proposition 6:  For m < M−1,   (a) Nr(m) + 
δ

δ
ln

ln r < Nr(m+1) < Nr(m) +1;  

(b) Na(m) < Na(m+1) < Na(m) + 
δ

δ
ln

ln r  

Using the properties of Nr(m) and Na(m) stated in Proposition 6, and beginning with the 

following relationships for stage (M−1) of the evaluation process, the explicit form of the 
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decision rules Nr(m) and Na(m) can be derived recursively 11, (the derivation is contained in the 

Appendix) : 
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Figures 5, 6 and 7 provide, respectively, illustrations of the optimal sequential 

decision architecture for the cases when β = 1, β < 1 and β >1.  

 

----------------------------------------- 

FIGURES 5, 6, 7 ABOUT HERE 

----------------------------------------- 

 

In Section 3, we noted that in a neutral investment environment, i.e. when β = 1, the 

optimal decision architecture is potentially strictly sequential (i.e. starting the initial review 

with one manager), while in other cases, there is a minimum organizational size before project 

valuation can meaningfully improve decision-making (see Figure 1).  This is true only when 

the marginal decision costs are zero. When we consider the benefit of a further review, as 

represented by Am(p) – C, against the decision to accept or reject (as represented by Za(p) and 

Zr(p) respectively), the minimum organizational size will be larger than one even for the case 

when β = 1.  As illustrated in Figure 5, this is given by Ma
min, so that after the initial review by 

the team of Ma
min managers, the organization can decide if the project should be accepted or 

proceed for further review. In general, the minimum organizational size is given by 

Min{Mr
min, Ma

min}.  This applies also in the case for β < 1 (see Figure 6) and β > 1 (see Figure 

7).  The intuition, as noted before, is that when marginal decision costs are positive, the 

attractiveness of a naïve strategy to accept or reject all projects becomes greater; thus, the 

                                                 
11   I have explored two approximations to the optimal decision rule: a myopic  one-step-look-
ahead decision rule (i.e. assuming that the only decision available in the next stage of 
evaluation is an “accept” or “reject” decision) and a linear approximation to the decision rule 
{Na(m), Nr(m)}, utilizing our knowledge of  Na(M−1), Nr(M−1) and N(M).  The performance 
of both approximations, in terms of the deviation from the optimal decision architecture, 
depends on the particular specifications of the model. 



 20 

threshold for informative evaluation, as reflected in an increase in the minimum 

organizational size, is raised.   

 

The marginal decision costs  

From the preceding analysis, it is clear that the optimal sequential decision 

architecture and the desirability of additional evaluation, as represented by the probability 

range (qr(m), qa(m)), m = 1, …M, depends on the magnitude of the marginal decision cost.  

While we have assumed that marginal decision costs are constant in the analysis, the results 

generalize to situations where the marginal decision costs are increasing with the stage of the 

evaluation, as would be the case where senior managers face multiple demands on their time, 

or when further delay in decision-making may adversely affect the organization’s chances of 

investing in the project. The impact of increasing marginal decision costs will make the 

probability range (qr(m), qa(m)) tighter at later stages of the evaluation, and correspondingly, 

the likelihood of an additional evaluation is reduced.  In general, an increase in C will lead to 

a narrowing of the probability range (qr(m), qa(m)) ),∀ m = 1, …, M–1, so that the expected 

number of evaluations of a project will become smaller.   

 

Conversely, if there is a reduction the marginal decision cost, the expected number of 

evaluations will increase, since the relative benefit of an additional evaluation increases.  In 

the limit when the marginal decision cost C tends to zero, it is routine to verify that Am(0) →  

πBR, Am(1) →  πGA, so that qr(m) →  0 and qa(m) →1.  Therefore, the probability range (qr(m), 

qa(m)) converges to (0, 1).  Intuitively, additional reviews of the project are always desirable 

if they do not incur marginal decision costs to the organization.  In the limit, the optimal 

organizational architecture converges to a fixed-size committee of size M, with a simple 

majority decision rule of N(M), and each project undergoes M reviews in a committee.   

 

When the optimal sequential decision rule {Nr(m), Na(m)} is implemented in each 

organization, the strategy to solve for the optimal organizational size is to compare the 

expected payoff of different organizations and select the organizational size that provides the 

highest expected terminal payoff less the expected evaluation costs. An explicit solution of 

the optimal organizational size M requires further specification of the model12.   

                                                 
12 We can derive an upper bound to the size of the management organization.  Let B(M) 
denote the (unconditional) gross expected payoff to the organization when the optimal 
sequential decision architecture {Nr(m), Na(m)} is implemented. Note that B(M) < απGA  +  
(1−α)π BR, as this occurs only if the quality of each project can be ascertained perfectly.   
Under the optimal sequential decision rule, the expected number of evaluations for a project is 
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6. Concluding Comments  

In this paper, we have characterized the optimal sequential decision architecture   

when marginal decision costs are positive. We also note that the quality of the investment 

environment and the level of managerial expertise entail a minimum organizational size, in 

order that project evaluation is informative and is not dominated by a simple strategy of 

always accepting projects or always rejecting projects.  In our analysis, we have not 

considered several issues that are clearly important in understanding the optimal design of 

organizations. For instance, we have not considered the possibility of managers investing in 

acquiring skills or a better understanding of the investment environment, that could aid in 

improving the ir expertise in evaluating and choosing projects.  This issue is important when 

the size of the organization is constrained, as the economic organization will direct managers 

to optimally adjust their decision criteria in response to changes in the investment 

environment.  Ben-Yashar and Nitzan (1998) and Koh (1992b, 1994a) have studied this 

aspect of collective decision-making in organizations.  

 

While our analysis considered the case that evaluation at each stage is undertaken by 

one manager, we can generalize the results to situations where the decision at each stage is 

undertaken by a committee.  This has the effect of quickening the decision process, reduce the 

risk that other rival firms will adopt the project earlier – which may adversely impact its 

chances of success should it decide to pursue the same investment opportunity, as is the case 

in most venture capital investments where the first-mover advantage may be significant.    

                                                                                                                                            
smaller than M.  Assuming other costs of the organization are K, the optimal organizational 
size M* satisfies  M* < {B(M) – K}/C < {(απGA + (1−α)πBR) −Κ}/C. 
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Appendix  

 

Characterization of  γ(m), for the illustration in Figure 1 :   

From ( 5 ), we note the following:  

 γ(m)  <  0     if   β > 1 and m < 
rδ

β
ln
ln

                                                     

 γ(m)  =  0      if   β = 1 at m = 0,  β > 1 at m  =  
rδ

β
ln
ln

                                           

 γ(m)  >  0       if   β < 1, ∀ m;   β = 1, m > 0; β > 1 and m > 
rδ

β
ln
ln

         

For m > 0,                                                                      

 γ(m)  <   m     if   β ≥  1,∀ m; β < 1 and  m > −
aδ

β
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 γ(m)  =   m     if β < 1  and  m  =  −
aδ

β
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 γ(m)   >  m   if  β < 1  and  m  <  −
aδ

β
ln
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Proof of Lemma 1: We first show that if Vm(p) ≥  Vm+1(p) is true for some m, then Vm−1(p) ≥  

Vm(p).  Suppose Vm(p) ≥  Vm+1(p), we have Am−1(pm−1) = E[Vm(pm)]  ≥   E[Vm+1(pm)] = Am(pm−1).  

Therefore,  

   Vm−1(pm−1)   =   Max { Za(pm−1), Zr(pm−1), Am-1(pm−1) – C } 

                                  ≥   Max { Za(pm−1), Zr(pm−1), Am(pm−1)  – C  } 

                     =  Vm(pm−1) 

Next, we show that VM−1(p) ≥  VM(p).  This is obvious, by the definition of the fact that M 

denotes the maximum number of evaluations,   

  VM−1(pM−1)  =   Max { Za(pM−1), Zr(pM−1), AM−1(pM−1) – C }  

                     ≥    Max { Za(pM−1), Zr(pM−1) }  

                     =   VM(p M−1)  
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Proof of Lemma 2:   

First, it is obvious that VM(p) is convex is p since it is the maximum of two linear functions, 

Za(p) and Zr(p).  Assume there exists some m such that Vm+1(p) is convex in p. First, note that  
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We can rewrite Am(p) =  U(1| p) + U(0| p)  where  
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and Γ(1|G) = g, Γ(0|G) = (1 – g), Γ(1|B) = b, Γ(0|B) = (1 – b). To show the convexity of 

Am(p) in p, ∀ m = 1, …, M–1 and p ∈ [0, 1], it is sufficient to show that Am(p) is convex in p 

in he above expression.  Indeed, assume Vm+1(p) is convex in p for some m.  To demonstrate 

the convexity of U(zm| p) in p and therefore the convexity of Am(p) in p, we must show that 

for every λ ∈ [0, 1], and p1 and p2 ∈ [0, 1], we must have  

λU(zm+1| p1) +(1−λ )U(zm+1| p2)  ≥  U(zm+1|λ p1 + (1−λ) p2) 

This expression can be rewritten, suppressing the subscript for z, to be 
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where )|( pzH is defined in ( 15 ). The relationship as derived above is implied by our 

assumption that Vm+1(p) is convex in p.  If Am(p) is convex in p, it follows that since Vm(p) is 

the maximum of three convex functions, it is also convex in p.   
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Proof of Proposition 4:   

First, we note that as p →1, Am(p) →  Za(1) = πGA; similarly, as p →  0, Am(p) →  Zr(0) = 

πBR , ∀ m = 1, …, M.  This is clearly seen from the formula given for Am(p) in the proof of 

Lemma 2.  In Footnote 11, we noted that one of the condit ions we need to assume, in order 

that our problem is non-trivial, is that Am(1) – C > Za(Qc) = Zr(Qc).  Otherwise, it is not 

worthwhile to become informed about the quality of a good project. Furthermore, we have 

Za(Qc) = Zr(Qc) < Am(0), by our assumption that πBR ≥  πGR.  Figure 3 illustrates the 

relationship.  Since M denotes the organizational size, no further reviews should be carried 

out if a project reaches the Mth stage, and a decision to accept or reject needs to be taken.  By 

its definition, we have  

AM(Qc) – C = Za(Qc) = Zr(Qc) so that VM(Qc) =  Max {Za(Qc), Zr(Qc)}.   

Next, we note from Lemma 2, that  Am-1(p) ≥  Am(p), so that for stage M−1, we would have      

AM-1(Qc) – C > Za(Qc) = Zr(Qc) 

Since Za(p) and Zr(p) are linear, and Am(p) is convex in p, with Am(1) – C > Za(Qc) = Zr(Qc) 

and Am(0) > Za(Qc) = Zr(Qc), it is straightforward to see that the function {AM−1(p) – C} 

intersects the function Max{Za(p), Zr(p)} at two points, (qa(M−1), Za(qa(M−1))) and     

(qr(M−1), Zr(qr(M−1))) so that  

AM−1(qa(M−1)) – C =  Za(qa(M−1))    

AM−1(qr(M−1)) – C =  Zr(qr(M−1))     

and  qr(M−1) <  Qc < qa(M−1).  Thus, if P(M−1, n) ∈ (qr(M−1), qa(M−1)), requesting for 

another review of the project is the correct decision.    

Next, utilizing Lemma 2, it follows that the probability range (qr(m), qa(m)) narrows 

as m increases and converges to zero at m = M, since by definition, M denotes the final stage 

of evaluation when it is reached.  Since Am−1(p) ≥  Am(p) for p ≠ 0 or 1, it is obvious that qa(m) 

is decreasing in p and qr(m) is increasing in p.  
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Proof of Proposition 6:  To prove that for m = 1, …, M−1, (a) Nr(m) +
δ

δ
ln

ln r < Nr(m+1) < 

Nr(m) +1.  First, we note from Proposition 4 that  qr(m) is increasing, so that  qr(m) < qr(m+1); 

this implies P(m, Nr(m)) < P(m+1, Nr(m+1)).  Using the definition of P(m, n) in ( 2 ), it is 

routine to show that Nr(m) + 
δ

δ
ln

ln r < Nr(m+1).  Next, to show that Nr(m+1) < Nr(m) +1, 

suppose that nm+1 ≤  Nr(m+1).  This implies that Vm+1(P(m+1, nm+1)) = Zr(P(m+1, nm+1)) 

and Vm+1(P(m+1, nm))  = Zr(P(m+1, nm)).   This in turn implies, using ( 14 ) and ( 15 )  to take 

conditional expectation, that Am(P(m, nm)) = Zr(P(m, nm)).  Therefore, we have Vm(P(m, nm)) 

= Zr(P(m, nm)).  Since this is true for nm < Nr(m), it follows from our assumption that nm+1 ≤  

Nr(m+1) that  nm+1 ≤   Nr(m+1) < Nr(m) +1.   

Next, to prove that for m = 1, …, M−1, (b) Na(m) < Na(m+1) < Na(m) + 
δ

δ
ln

ln r .  

Again, we note from Proposition 4 that qa(m) is decreasing, so that  qa(m) > qa(m+1); this 

implies P(m, Na(m)) > P(m+1, Na(m+1)). Similarly, using the definition of P(m, n) in ( 2 ), it 

is routine to show that Na(m+1) < Na(m) + 
δ

δ
ln

ln r . Next, to show that Na(m) < Na(m+1), 

suppose that nm ≥  Na(m+1). This implies that Vm+1(P(m+1, nm+1)) = Za(P(m+1, nm+1)) and 

Vm+1(P(m+1, nm))  = Za(P(m+1, nm)).  This in turn implies, using ( 14 ) and ( 15 )  to take 

conditional expectation, Am(P(m, nm)) = Za(P(m, nm)).  Therefore, we have Vm(P(m, nm)) = 

Za(P(m, nm)).  Since this is true for nm > Na(m), it follows from our assumption that nm ≥  

Na(m+1) that nm ≥  Na(m+1) > Na(m).  

 

 

Derivation of the results in ( 18 ) to ( 21 ):  Consider the case for qr(M−1).  By definition, 

qr(M−1) = P(M−1,  Nr(M−1)).  Using Proposition 6a, and noting that Nr(M) = Na(M), it 

follows that VΜ(P(M,  Nr(M−1)+1)) = Za(P(M,  Nr(M−1)+1)) and VΜ(P(M,  Nr(M−1)) = 

Zr(P(M, Nr(M−1)).  Next, using ( 14 ) and ( 15 ), and writing qr(M−1) as rq 1M− for short,   

     BR1MGR1MBA1MGA1M1M1-M )1)(1()1()1()( ππππ bqgqbqgqqA rrrrr −−+−+−+= −−−−−    

Noting that ))1M(( C))1M((1-M −≥−− r
r

r qZqA , we derive the results in ( 18 ) and ( 19 ).  

The derivation for ( 20 ) and ( 21 ) is similarly carried out.  
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Figure 1: 

 

The optimal decision rule for an accept-reject decision  

N(m) = Int( Min {m, Max{0, γ(m)}} ) 
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Figure 2: 

 

The conditions for g and b under which the marginal decision rule  

is greater or less than 0.5  
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Figure 3:  

 

An illustration of the general relationship between  

Am(p), Vm(p), Za(p) and Zr(p)  

 

                                           Vm(p) ≡  Max {Za(p), Zr(p), Am(p) – C}    
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Figure 4:  

 

An illustration of the relationship between Qc and  

the probability range (qr(m), qa(m))  
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Figure 5: 

 

An illustration of the optimal sequential decision architecture {Nr(m) Na(m)}   

when β = 1 
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Figure 6: 

 

An illustration of the optimal sequential decision architecture {Nr(m) Na(m)}   

when β < 1 

 

 

N(m)  
 

                    Mr
min         Ma

min                                                                  M 0 

Na(m) 

Nr(m) 

Reject 

Accept 

Further 
review 



 34 

Figure 7: 

 

An illustration of the optimal sequential decision architecture {Nr(m) Na(m)}   

when β > 1 
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