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Abstract

Impulse response analysis is typically conducted by fitting an autoregression model to a time series

and calculating the moving average coefficients implied by the estimated autoregression model. The

possible shape and persistence of the impulse response function implied by a parsimonious autoregres-

sion specification are very limited. This paper proposes an alternative approach to estimating impulse

response function, which is asymptotically valid yet is less sensitive to model misspecifications in small

samples. The small sample advantages of the proposed impulse response estimator over the conven-

tional approach is demonstrated by Monte Carlo studies. The large sample validity of the proposed

estimator is also established.

KEY WORDS: Nonparametric; Persistence; Two-Stage Estimation.
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1. INTRODUCTION

Impulse response analysis is widely used for studying the dynamics of economic time series. In this paper,

we will be concerned with impulse response analysis of a univariate time series. Suggestions for how our

methodology can be extended to the multivariate case is provided at the end of the article.

A popular example of the univariate impulse response analysis is found in the purchasing power parity

(PPP) literature, in which economists are concerned about how fast the real exchange rate reverts to its

mean after a shock. Estimated impulse responses are often used to assess the speed of mean reversion

or the degree of persistence for the real exchange rate under study. The common practice in estimating

the impulse response function (IRF) is to fit a pth order autoregression (AR) model to the series, and

calculate the coefficients in the MA(∞) representation of the estimated AR(p) model. For example, Murray

and Papell (2002) among others applies this conventional method to analyze the persistence of the real

exchange rate.

Despite its popularity, the conventional approach is subject to a potential caveat. In small samples, the

order of the autoregression specification used to model a process is typically low. The possible shape and

persistence of the IRF delivered by a parsimonious autoregression specification are very limited (although

this limitation will disappear asymptotically if the model complexity p is allowed to diverge with the

sample size to infinity). In particular, with a low order AR model, the conventional approach tends to

impose a smooth shape on the estimated IRF. This restriction excludes the possibility of richer dynamics

and hence might render incorrect inferences about the persistence of a process. For example, suppose that

an economic series reverts to its mean suddenly after some initial periods in response to a shock, such

that its underlying IRF exhibits a jump to zeros from previous high levels. With a parsimonious model,

the conventional approach will typically overestimate the persistence of such process and underestimate

its speed of mean reversion.

In this paper, we propose an alternative impulse response estimator that is asymptotically valid yet

less sensitive to model misspecifications in small samples. The basic idea is to regress the data Yt on

the estimated innovation at lag k, ε̂t−k, to estimate the impulse response at horizon k. The estimated

innovations can be obtained in a prior stage by fitting a pth order AR model to the data. Because of the way

the proposed estimator is constructed, it does not impose smoothness on the shape of the estimated IRF,

regardless of the parametric model used at the first stage. This makes it possible for the proposed estimator

to detect some interesting features of the true IRF that is excluded by the conventional estimator. Our

Monte Carlo simulations demonstrate that the proposed estimator is superior to the conventional estimator

in small samples, when the AR specification is incorrect for the process. In particular, in the case where
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the DGP exhibits sudden mean reversion in its IRF, the proposed estimator is capable of detecting such

nonsmooth dynamics while the conventional estimator fails to do so, even with as complicated a model as

AR(12). On the other hand, in the ideal case where a finite-order AR specification happens to be correct

for the DGP, the Monte Carlo study shows that the proposed estimator performs comparably well to the

conventional estimator.

The asymptotic validity of our proposed impulse response estimator is established based on the notion

that the error in approximating a potential infinite-dimensional parameter space by finite-dimension pa-

rameterization will vanish provided that the dimension of parametric model is allowed to expand slowly

with the sample size at an appropriate rate. The general idea of successive approximation in estimating a

potentially infinite-dimensional parameter space in the context of distributed lag estimation is discussed

in Sims (1971, 1972).

It is also possible to estimate univariate impulse response function using the frequency domain ap-

proach. Bhansali (1976) proposed a technique to estimate the moving average representation of a sta-

tionary process using the estimated spectrum. This nonparametric approach was evaluated against the

conventional approach by Wright (1999). Although this approach presents another alternative to impulse

response estimation, it is difficult to extend the technique to the multivariate case as there is no closed

form expression for the moving average matrices in terms of the multivariate spectrum (see Wright, 1999,

for detailed discussions).

The rest of the paper is organized as follows. In Section 2, we review the conventional practice of impulse

response estimation and describe our alternative methodology. In Section 3, the asymptotic consistency

of the proposed IRF estimator is established. We then apply the proposed method to the French real

exchange rate and compare the results with the conventional estimates in Section 4. In Section 5, Monte

Carlo simulations are conducted to examine the performance of the conventional and the proposed IRF

estimators in small samples. Final remarks are given in Section 6.

2. IMPULSE RESPONSE ESTIMATION

Let C be the complex plane and D the unit disk in C. In this paper, we consider processes that satisfy the

following assumption:

Assumption 1 {Yt}t∈Z is a univariate, fourth-order stationary process on a probability space (Ω,F , P ),

with mean µ such that the Wold decomposition of {Zt ≡ Yt − µ}t∈Z has no deterministic component.

That is, Zt =
∑∞

j=0 ψjεt−j , t ∈ Z, where {εt}t∈Z is a zero-mean white noise process, and ψ0, ψ1, ψ2, . . . are

real constants with ψ0 = 1. The sequence {ψj : j = 0, 1, 2, . . .} is absolutely summable and satisfies the
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condition that Ψ : D → C vanishes nowhere on D, where Ψ(z) ≡ ∑∞
j=0 ψjz

j , z ∈ D.

Note that the Wold decomposition theorem (e.g., Brockwell and Davis, 1991, Thm. 5.7.1, pp. 187–189)

only guarantees {ψj} to be square-summable. The absolute summability imposed on {ψj} in Assumption 1

is a stronger condition. The MA(∞) representation of Yt given by the Wold decomposition,

Yt = µ +
∞∑

j=0

ψjεt−j , t ∈ Z, (1)

is invertible under Assumption 1, because Ψ vanishes nowhere on D. By the basic properties of analytic

functions, there exists an absolutely summable sequence {φj ∈ R}j∈N such that Ψ(z)−1 = 1−∑∞
j=1 φjz

j ,

for each z ∈ D. Using this series {φj}, we can write Yt as

Yt = µ +
∞∑

j=1

φj(Yt−j − µ) + εt

= α +
∞∑

j=1

φjYt−j + εt, t ∈ Z, (2)

where α ≡ µ
(
1−∑∞

j=1 φj

)
.

The impulse response function of the time series {Yt} at horizon k is ψk in equation (1). It can be

interpreted as the marginal effect of a unit shock at time t − k on Yt. Finding the impulse response

function of {Yt} in (1) requires fitting an infinite number of parameters (ψ1, ψ2, . . .) or (φ1, φ2, . . .) to

the data. With a finite number of observations on {Yt}, this is infeasible. Instead, an AR(pn) model is

usually used to approximate the process, where the finite lag order pn is potentially dependent on the

sample size n. The coefficients of the corresponding MA(∞) representation of the AR(pn) model are the

base for the conventional impulse response estimation. Usually Least Squares (LS) method is used to

estimate the AR(pn) model, and the conventional estimator of the impulse response of {Yt} at horizon k

is the coefficient of the corresponding MA(∞) representation of the estimated AR(pn) model at lag k. We

denote the conventional impulse response estimator ψconv
nk .

The conventional approach, as discussed in the introduction, is sensitive to model misspecifications in

small samples. We proposed an alternative methodology, with which the impulse response at horizon k is

estimated by regressing the data Yt on the estimated innovation at lag k, ε̂t−k. The estimated innovations

can be obtained in a prior stage by fitting an AR(pn) model to the data. In spite that the AR(pn) model

fitted to the process {Yt} in the first stage is still likely to be misspecified, the proposed IRF estimator

is less sensitive to such misspecification and is able to deliver more robust description about the shape

and persistence of the true IRF. These small sample properties of the conventional and proposed impulse
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response estimators will be demonstrated with Monte Carlo simulations in Section 5.

The proof below establishes the asymptotic validity of the proposed impulse response estimator. It

shows that the proposed estimator is consistent for the true impulse response function when the complexity

pn of the fitted AR model is allowed to grow slowly with the sample size at an appropriate rate.

3. NEW IMPULSE RESPONSE ESTIMATOR

We begin by defining some notations and making notes of some mathematical results that will be used

repeatedly in the following proof. First, for each vector x, let |x| denote the Euclidean norm of x and

for each m × n matrix A, let |A| denote the norm of the linear operator x 7→ Ax : Rn → Rm, i.e.,

|A| ≡ sup{|Ax| : |x| = 1, x ∈ Rn}. Note that if A is an arbitrary m× n matrix and x an arbitrary n× 1

vector with length one, then the ith element of the vector Ax is no greater in magnitude than the product

of the length of the ith row of A and the length of x by the Cauchy-Schwartz inequality. Thus, we have

that |Ax| ≤ (tr(AA′))1/2. It follows that |A| ≤ (tr(AA′))1/2. Note also that |A| is equal to the square root

of the maximum eigen value of AA′. Therefore, when A is symmetric, |A| is equal to the maximum of the

absolute values of A’s eigen values. Finally, for each pair of random variables V1 and V2 in L2(Ω,F , P ),

let 〈V1, V2〉 ≡ E[V1V2]. Also, let ‖ · ‖ denote the L2-norm on L2(Ω, F , P ).

Assumption 2 (a)
∑∞

τ=−∞ |γ(τ)| < ∞ where γ(τ) ≡ Cov[Y0, Yτ ] for each τ ∈ Z.

(b)
∑∞

τ1=−∞
∑∞

τ2=−∞
∑∞

τ3=−∞ |κ4(0, τ1, τ2, τ3)| < ∞ where κ4(t1, t2, t3, t4) denotes the fourth-order cu-

mulants of (Yt1 , Yt2 , Yt3 , Yt4) for each (t1, t2, t3, t4) ∈ Z4.

(c) The spectral density function f : [−π, π] → R of {Yt} satisfies that f̄1 ≡ infv∈[−π,π] f(v) > 0 and

f̄2 ≡ supv∈[−π,π] f(v) < ∞.

In the above assumption, the absolute summability of {γ(τ)}τ∈Z implies the existence of the spectral

density of {Yt} (see Brockwell and Davis, 1991, Theorem 4.3.2, p. 120), while the absolute summability

of the fourth-order cumulants can be viewed as a restriction on the memory property of the process, as

discussed in Andrews (1991, pp. 823–824). It is also worth noting that all eigen values of the covariance

matrix of (Y1, Y2, . . . , Yn) will fall between 2πf̄1 and 2πf̄2 (see Brockwell and Davis, 1991, Prop. 4.5.3,

pp. 137–138).

In the following assumption, the complexity pn of the AR model used in the first stage is allowed to

grow with the sample size n but at a rate slower than n1/2.
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Assumption 3 {pn}∞n=2 is a sequence of natural numbers starting with p2 = 1 and diverging to ∞ such

that {pn/n}∞n=2 is a nonincreasing sequence, and p2
n/n → 0 as n →∞.

We now formulate the proposed impulse response estimator and prove its consistency for the true

IRF. Consider estimation of the impulse response at lag k. For each k = 0, 1, 2, . . ., let n̄k denote the

minimum natural number n ≥ 2 such that n− pn− k > 0. The first step is to fit the process {Yt} with an

AR(pn) model given the available data and obtain estimated residuals. Define Xnt ≡ (1, Yt−1, . . . , Yt−pn
)′

and R̂n ≡ (n − pn)−1
∑n

t=pn+1 XntX
′
nt, t ∈ Z, n = 2, 3, . . .. Then the OLS estimator of the AR(pn)

model is β̂n ≡ R̂+
n (n − pn)−1

∑n
t=pn+1 XntYt, n = 2, 3, . . ., where R̂+

n denotes the Moore-Penrose inverse

of R̂n (see Magnus and Neudecker, 1988, pp. 32–39), and the estimated residuals are ε̂nt ≡ Yt − X ′
ntβ̂n,

t = pn + 1, . . . , n, n = 2, 3, . . .. The proposed estimator of the impulse response at horizon k is obtained

by regressing Yt on the estimated residual ε̂t−k with k horizon difference. That is,

ψ̂nk ≡





(
(n− pn − k)−1

∑n
t=pn+k+1 ε̂2n,t−k

)+

×(n− pn − k)−1
∑n

t=pn+k+1 ε̂n,t−kYt if k ≤ n− pn − 1,

0 otherwise,

n = 2, 3, . . ., k ∈ N.

Let Rn ≡ E[Xn0X
′
n0], and βn ≡ R−1

n E[Xn0Y0], n = 2, 3, . . .. Also, define Unt ≡ Yt − X ′
ntβn, t ∈ Z,

n = 2, 3, . . ., and ψ̄nk ≡ E[Un,−kY0]/E[U2
n0], n = 2, 3, . . .. Note that in the last equation, E[U2

n0] = E[U2
n,−k],

because Yt is stationary by Assumption 1. We can show the consistency of {ψ̂nk}∞n=2 for ψk for each k ∈ N,

by showing that both terms on the right-hand side of the following equation converges to zero prob-P :

ψ̂nk − ψk = (ψ̂nk − ψ̄nk) + (ψ̄nk − ψk), n = 2, 3, . . . , k ∈ N. (3)

That is, the estimation errors of the impulse response estimator can be decomposed into two components,

the first of which is the sampling error given the AR(pn) model and the second of which is due to the

specification error of the AR(pn) model when used as an approximation for the AR process Yt, whose

order is possibly infinite. The proof below shows that both components of estimation errors converge to

zeros as the sample size tends to infinity.

First, let Fnt be the population forecast of Yt that would be made if the linear process in (2) were

truncated at lag pn and F ∗t the forecast when the whole sequence of past observations are used. That is,

Fnt ≡ α+
∑pn

j=1 φjYt−j , t ∈ Z, n = 2, 3, . . ., and F ∗t ≡ α+
∑∞

j=1 φjYt−j , t ∈ Z. Moreover, let {{βnj}j∈N}∞n=2

be a double array of real numbers such that for each n = 2, 3, . . . and each j = 1, 2, . . . , pn + 1, βnj is the
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jth element of βn, while for each n = 2, 3, . . . and each j = pn + 2, pn + 3, . . ., βnj = 0.

Lemma 1 Suppose that Assumptions 1 and 3 hold. Then ‖Un0‖ → ‖ε0‖, ‖X ′
n0βn − F ∗0 ‖ → 0 and

‖X ′
n0βn − Fn0‖ → 0 as n →∞. If in addition Assumption 2 holds,

(βn1 − α)2 +
∞∑

j=2

(βnj − φj−1)2 → 0 as n →∞, (4)

and

|βn| →

α2 +

∞∑

j=1

φ2
j




1/2

as n →∞. (5)

Proof of Lemma 1. Because X ′
n0βn is the MSE-best linear predictor of Y0 in terms of Xn0, which contains

1, Y−1, . . . , Y−pn
, we have that ‖ε0‖2 ≤ ‖Un0‖2 ≤ ‖Y0 − Fn0‖2. The right-hand side of this inequality is

equal to ‖ε0−(Fn0−F ∗0 )‖2 = ‖ε0‖2+‖Fn0−F ∗0 ‖2, which converges to ‖ε0‖2 as n →∞ under Assumptions 1

and 3. It follows that ‖Un0‖2 → ‖ε0‖2 as n →∞.

Next, note that ‖Un0‖2 = ‖ε0 − (X ′
n0βn −F ∗0 )‖2 = ‖ε0‖2 + ‖X ′

n0βn −F ∗0 ‖2. Because the left-hand side

of this equality converges to ‖ε0‖2 as shown above, ‖X ′
n0βn − F ∗0 ‖ converges to zero as n →∞.

From the above results, it follows immediately that ‖X ′
n0βn − Fn0‖ converges to zero as n → ∞,

because ‖X ′
n0βn − Fn0‖ ≤ ‖X ′

n0βn − F ∗0 ‖+ ‖Fn0 − F ∗0 ‖, n = 2, 3, . . ..

To prove (4), note that (βn1 − α)2 +
∑∞

j=2(βnj − φj−1)2 = |βn − ζn|2 +
∑∞

j=pn+1 φ2
j , where ζn ≡

(α, φ1, φ2, . . . , φpn)′. Because the second term on the right-hand side of the equality converges to zero,

it suffices to show that |βn − ζn|2 converges to zero as n → ∞. First, note that ‖X ′
n0βn − Fn0‖2 =

(βn − ζn)′Rn(βn − ζn), n = 2, 3, . . ..

In the equation, the right-hand side is no smaller than the product of |βn − ζn|2 and the minimum

eigen value of Rn. Because the minimum eigen value of Rn is no less than 2πf̄1, which is positive by

Assumption 2(c), it follows that ‖X ′
n0βn − Fn0‖2 ≥ 2πf̄1|βn − ζn|2 ≥ 0, n = 2, 3, . . .. Since the left-hand

side converges to zero as n →∞, so does {|βn − ζn|}n∈N.

The convergence of (4) implies that the sequence {βnj}∞n=2 converges to the sequence (α, φ1, φ2, . . .) in

the `2 space as n →∞. It follows that the `2-norm of {βnj}∞n=2 converges to that of (α, φ1, φ2, . . .), which

is (α2 +
∑∞

j=1 φ2
j )

1/2. Because |βn| coincides with the `2-norm of {βnj}∞n=2 for each n = 2, 3, . . ., equation

(5) therefore follows.

The following lemma shows that the misspecification error, ψ̄nk−ψk, in equation (3) converges to zeros

as sample size tends to infinity.

Lemma 2 Suppose that Assumptions 1 and 3 hold. Then for each k ∈ N, ψ̄nk − ψk → 0 as n →∞.
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Proof of Lemma 2. Let k be an arbitrary natural number. By Lemma 1, {Un,−k}n∈N converges to ε−k =

Y−k−F ∗−k in terms of the L2-metric. It follows that 〈Un,−k, Y0〉 → 〈ε−k, Y0〉 and ‖Un0‖2 → ‖ε0‖2 as n →∞.

Because ψ̄nk = 〈Un,−k, Y0〉/‖Un0‖2, n ∈ N and ψk = 〈ε−k, Y0〉/‖ε0‖2, the desired result follows.

To prove the convergence of ψ̂nk−ψ̄nk to zero, we use some lemmas given in the Appendix. The memory

condition on the process Yt imposed in Assumption 2(b) and the speed of divergence of pn imposed in

Assumption 3 are essential for the desired results to hold.

Lemma 3 Suppose that Assumptions 1–3 hold. Then for each k ∈ N,

|ψ̂nk − ψ̄nk| = OP (pn/n1/2) as n →∞.

Proof of Lemma 3. The result follows from Lemma A.9 in the Appendix, by (22) of Lemma A.10.

We are now ready to state the consistency of {ψ̂nk}n∈N for ψk.

Theorem 4 Suppose that Assumptions 1–3 hold. Then for each k ∈ N,

ψ̂nk − ψk → 0 as n →∞ prob-P .

Proof of Theorem 4. By (3), we have that |ψ̂nk −ψk| ≤ |ψ̂nk − ψ̄nk|+ |ψ̄nk −ψk|, n = n̄k, n̄k + 1, . . .. The

desired result follows from this inequality by Lemmas 2 and 3.

In actual application, the lag order of the AR model is often chosen by using a data-based lag order

selection method. Here we consider the case in which an information criterion is used to select a lag

order among the lag orders that does not exceed the maximum lag order p̄n preselected for each sample

size n. More concretely, suppose that the lag order p among {1, 2, . . . , p̄n} is selected to minimize (n −
p̄n) log Sn(p) + pC(n), where

Sn(p) ≡ min





(n− p̄n)−1
n∑

t=p̄n+1


Yt − b1 −

p∑

j=1

bj+1Yt−j




2

: (b1, b2, . . . , bp+1) ∈ Rp+1





,

n = 2, 3, . . . , p ∈ {1, 2, . . . , p̄n},

C : N→ (0,∞) is a known function, and pC(n) is the penalty term to encourage parsimony.

For each sample size n = 2, 3, . . ., let ε̃n,p̄n+1, ε̃n,p̄n+2, . . . , ε̃n,n be the fitted residuals in the OLS

autoregression of Yt with the selected order p̃n, and ε̌n,p̄n+1, ε̌n,p̄n+2, . . . , ε̌n,n the fitted residuals in the
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OLS autoregression of Yt with the maximum lag order p̄n. Using the fitted residuals from the selected

model, we define an estimator {ψ̃nk}∞n=2 of ψk by

ψ̃nk ≡





(
(n− p̄n − k)−1

∑n
t=p̄n+k+1 ε̃2n,t−k

)+

×(n− p̄n − k)−1
∑n

t=p̄n+k+1 ε̃n,t−kYt if k ≤ n− p̄n − 1,

0 otherwise,

n = 2, 3, . . ., k ∈ N.

Assumption 4 The sequence {p̄n ∈ N}∞n=2 satisfies the conditions for {pn} in Assumption 3.

Assumption 5 C : N→ (0,∞) satisfies that p̄nC(n)/n → 0.

Lemma 5 Suppose that Assumptions 1, 2, 4, and 5 hold. Then for each n = 2, 3, . . .,

(n− p̄n)−1
n∑

t=p̄n+1

(ε̃nt − ε̌nt)2 = OP (p̄nC(n)/n) as n →∞. (6)

Proof of Lemma 5. By definition, we have that Sn(p̃n) = (n − p̄n)−1
∑n

t=p̄n+1 ε̃2nt and Sn(p̄) = (n −
p̄n)−1

∑n
t=p̄n+1 ε̌2nt. Since the larger the lag order is, the better the model fits the data, it follows that

Sn(p̃n)− Sn(p̄n) ≥ 0, n = 2, 3, . . ..

Next, since p̃n is the selected lag order, by construction we have that

(n− p̄n) log Sn(p̃n) + p̃nC(n) ≤ (n− p̄n) log Sn(p̄n) + p̄nC(n), n = 2, 3, . . . .

When Sn(p̄n) > 0, we can rewrite this inequality as

log(Sn(p̃n)/Sn(p̄n)) ≤ (p̄n − p̃n)C(n)/(n− p̄n), n = 2, 3, . . . .

Using the fact that
Sn(p̃n)
Sn(p̄n)

=
Sn(p̃n)− Sn(p̄n)

Sn(p̄n)
+ 1, n = 2, 3, . . . ,

we have that

log
(

Sn(p̃n)− Sn(p̄n)
Sn(p̄n)

+ 1
)
≤ (p̄n − p̃n)C(n)

n− p̄n
≤ p̄nC(n)

n− p̄n
, n = 2, 3, . . . ,

9



or equivalently,

Sn(p̃n)− Sn(p̄n) ≤
(

exp
(

p̄nC(n)
n− p̄n

)
− 1

)
Sn(p̄n), n = 2, 3, . . . .

This inequality holds even when Sn(p̄n) = 0, because Sn(p̃n) = 0 whenever Sn(p̄n) = 0. It follows that

0 ≤ Sn(p̃n)− Sn(p̄n) ≤
(

exp
(

p̄nC(n)
n− p̄n

)
− 1

)
Sn(p̄n), n = 2, 3, . . . .

By using the law of iterated projections (Brockwell and Davis, 1991, Prop. 2.3.2(vii), pp. 52–53) and

the orthogonality condition for the OLS regression, we can easily verify that

Sn(p̃n)− Sn(p̄n) = (n− p̄n)−1
n∑

t=p̄n+1

(ε̃nt − ε̌nt)2, n = 2, 3, . . . .

Given this, we have that

0 ≤ (n− p̄n)−1
n∑

t=p̄n+1

(ε̃nt − ε̌nt)2 ≤
(

exp
(

p̄nC(n)
n− p̄n

)
− 1

)
(n− p̄n)−1

n∑
t=p̄n+1

ε̌2nt, n = 2, 3, . . . .

Under Assumptions 4 and 5, we have that exp(p̄nC(n)(n− p̄n))− 1 = O(p̄nC(n)/n) as n →∞. We also

have that

(n− p̄n)−1
n∑

t=p̄n+1

ε̌2nt =

(
(n− p̄n)−1

n∑
t=p̄n+1

ε̌2nt − E[U2
n,0]

)
+ (E[U2

n,0]− E[ε20]) + E[ε20],

n = 2, 3, . . . .

Applying Lemma A.9 and (21) of Lemma A.10 in the Appendix, we can verify that the first term on the

right-hand side of this equality is OP (p̄n/n1/2) as n →∞. The second term is o(1) by Lemma 1. It follows

that (n− p̄n)−1
∑n

t=p̄n+1 ε̌2nt = OP (1) as n →∞. The desired result (6) therefore follows.

Theorem 6 Suppose that Assumptions 1, 2, 4, and 5 hold. Then for each k ∈ N,

ψ̃nk − ψ̄nk = OP (p̄n/n1/2) + OP (p̄1/2
n C(n)1/2/n1/2) as n →∞,

and

ψ̃nk → ψk as n →∞ prob-P .

Proof of Theorem 6. When setting pn = p̄n, Assumptions 1–3 hold under Assumptions 1, 2, 4, and 5. We
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can apply Lemma A.9 in the Appendix; then it follows from (6) that

(
(n− p̄n)−1

n∑
t=p̄n+1

(ε̃nt − Unt)2
)1/2

≤
(

(n− p̄n)−1
n∑

t=p̄n+1

(ε̃nt − ε̌nt)2
)1/2

+

(
(n− p̄n)−1

n∑
t=p̄n+1

(ε̌nt − Unt)2
)1/2

= OP (p̄1/2
n C(n)1/2/n1/2) + OP (p̄n/n1/2) as n →∞.

Given this, the first result follows by Lemmas A.10 in the Appendix. The second result follows from the

first result and Lemma 2, since |ψ̃nk − ψk| ≤ |ψ̃nk − ψ̄nk|+ |ψ̄nk − ψk|, n = 2, 3, . . . , k ∈ N.

4. EMPIRICAL EXAMPLE

In this section, we use both the conventional and the proposed impulse response estimators to analyze the

dynamics of the French real exchange rate series vis-à-vis the US dollar. The nominal monthly exchange

rate and price indices used to construct the log real exchange rate come from International Financial

Statistics CD-ROM. In particular, the monthly end-of-period nominal exchange rate (line “ae” in the

CD-ROM) and the consumer price index (line 64) were used. The data covers the period from April 1973

to August 1998. This amounts to a sample size of 305.

We use the AIC and SIC to select the model from the AR(p) models with p ≤ 12. Both criteria select

AR(1) for the data under study, and the model estimates of (α, φ1) are presented in Table 1. After the

model is selected and estimated, we can calculate the conventional impulse response estimates ψconv
nk and

the proposed impulse response estimates ψ̃nk. To gauge the uncertainty of these two impulse response

function estimates, we also present their standard errors. The proposed impulse response estimator can

be viewed as a two-stage quasi-maximum likelihood estimator, where the AR(p̃n) model is estimated at

the first stage and ψ̃nk is estimated at the second stage. We can apply the asymptotic normality result

of Theorem 6.10 in White (1994) for two-stage estimation to obtain the covariance matrix estimates of

(β̃n, ψ̃nk). The methodology in Newey and West (1994) is used to obtain positive semi-definite covariance

matrix estimates. In particular, the Bartlett window is used, and the lag selection parameter, used

to compute the bandwidth of the Bartlett window based on the data, is set to be 4(T/100)2/9 (where

T = n− p̄n, in our current context). Since the conventional impulse response estimator ψconv
nk is a function

of β̃n, its variance can be estimated based on the covariance matrix of β̃n using the delta method. These

estimates are presented in Table 2 and plotted in Figure A.

In Figure A, ψconv
nk and ψ̃nk describe the dynamics of the French real exchange rate quite differently.
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In panel (b), ψ̃nk shows nonmonotonic decay in the response of the French real exchange rate to shocks,

which contrasts with the smooth shape of ψconv
nk . There are also some initial hikes in the response function

of ψ̃nk, which ψconv
nk does not indicate. By ψ̃nk, the French real exchange rate also shows a possible drop

in the IRF around the twentieth month. Because negative impulse responses are not sensible in this case,

the fact that French ψ̃nk deviates from zeros and goes into the negative zone after the twentieth month

might be reflecting the estimation errors around the true value close to zero. We may consider the true

IRF in this range to be negligibly small.

The confidence interval of ψconv
nk inflates along the horizon up to a point where it starts to shrink,

which is consistent with the fact that any stationary AR model forces ψconv
nk to converge to zero eventually.

Therefore, there is less sampling uncertainty about ψconv
nk once the horizon k becomes large. On the other

hand, the confidence interval of ψ̃nk just widens along the horizon. Because ψ̃nk is calculated from the

regression of Yt on ε̃n,t−k. As k increases, ε̃n,t−k has less power in predicting Yt and that leads to higher

noise relative to signals contained in ψ̃nk.

5. MONTE CARLO SIMULATION

The IRF estimator ψ̃nk shows an interesting picture for the dynamics of the French real exchange rates.

The estimated IRF is nonsmooth and exhibits jumps. If this estimated IRF were the true IRF, could the

proposed IRF estimator capture the shape of the IRF well? How about the conventional IRF estimator?

Motivated by these questions, we are going to use this estimated IRF with slight modifications as our

DGP in the following Monte Carlo simulation and see whether the conventional and the proposed IRF

estimator could capture these features successfully. Specifically, we take the IRF estimate ψ̃nk for the

French real exchange rate and truncate the impulse responses at k = 20. The resulting MA(19) process

with coefficients equal to the values of French ψ̃nk for k = 1, 2, · · · , 19 is the DGP used in our Monte Carlo

simulation.

To isolate the effect of uncertainty in model selection, we run our Monte Carlo simulation for each of the

models {AR(p)|p ≤ 12} and compare the performance of ψconv
nk and ψ̃nk. In each simulation, the number

of replications is 1000. The i.i.d. standard Gaussian errors are used for innovations, and the simulated

sample size is 305, which is the size of the empirical example in Section 4. The performance of the impulse

response estimators are compared based on their biases, and root mean squared errors (RMSE). We call

this Monte Carlo simulation I.

The results are reported in Figures A and A. Figure A plots the means of both estimators as opposed

to the true IRF. As can be seen from the figure, ψ̃nk performs remarkably well in detecting the nonsmooth

12



shape of the true IRF. It mimics the shape of the true IRF well when the impulse responses are significant

and, most importantly, it can capture the sudden drop to zeros in the true IRF regardless of the estimation

model. On the other hand, we see that ψconv
nk exhibits a smooth shape and fails to convey irregular changes

of the true IRF. The above result implies that if we use the conventional, instead of the proposed, impulse

response estimator in estimating this kind of true IRF, we could have overestimated the persistence of the

true process or underestimated its degree of mean reversion.

Figure A shows the RMSE’s of these two IRF estimators. As can be seen from the figures, ψ̃nk

has roughly constant RMSE across middle to long horizons, while ψconv
nk exhibits more erratic RMSE

around the mid-range. The smaller RMSE of the ψconv
nk at the long horizons does not mean that ψconv

nk

outperforms ψ̃nk, but it is an artifact resulting from the setup of the conventional method that ψconv
nk is

forced to converge to zero eventually for any stationary AR models.

It is expected that the conventional IRF estimator ψconv
nk will perform well when the model is correctly

specified for the underlying DGP. Meanwhile, the new IRF estimator ψ̃nk should also work well, given

that the estimated innovations {ε̃t} accurately approximate the true innovations {εt}. To verify this, we

run another Monte Carlo simulation. In this simulation, the DGP is set to be AR(2): Yt = 1.2Yt−1 −
0.25Yt−2 + εt, where εt is i.i.d. standard Gaussian errors. The IRF of this DGP exhibits three features. It

shows a hump in the early horizon with a magnitude of 1.2, the impulse response around the mid-range

(k = 20) is still large, but it dies out significantly in the long horizon (k = 40).

Again, we run our Monte Carlo simulation for each of the models {AR(p)|p ≤ 12} and compare the

performance of ψconv
nk and ψ̃nk based on their biases, and RMSE’s. In each simulation, the number of

replications is 1000, and the simulated sample size is 305, the size of the empirical example in Section 4.

We call this Monte Carlo simulation II.

The results are reported in Figures A and A. Figure A plots the means of both estimators as opposed

to the true IRF. As can be seen from the figure, ψconv
nk performs quite well, except for the AR(1) model,

which is still not adequate and misspecified for the true DGP. Meanwhile, the new IRF estimator ψ̃nk is not

affected by such misspecification and performs equally well across all estimation models. Both estimators

exhibit noticeable bias in the mid-range but the conventional estimator improves as the horizon increases,

while the new IRF estimator maintains a similar magnitude of bias into the long horizon. The bias could

be explained by the small sample size of the LS estimation for AR models. It should be improved as the

sample size of the data increases. That the conventional estimator outperforms the new IRF estimator in

the long horizon might be attributed to the fact that the former imposes more structure on the estimated

IRF than the latter. Therefore, when the model is correctly specified for the data, the conventional

estimator could pin down the true IRF in the long horizon more precisely.
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Figure A shows the RMSE’s of these two IRF estimators. Except for the AR(1) model, the pictures are

quite similar across different models. The RMSE’s for both estimators increase in the early horizon, and

start to decrease around the mid-range for the conventional estimator but maintain a roughly constant

magnitude in the case of the new IRF estimator. Combined with the observations on the bias above, we

can see that the difference in the RMSE’s of these two estimators basically reflect the difference in their

biases, and is slightly augmented by the relatively larger sampling uncertainty of the new IRF estimator.

In sum, the Monte Carlo simulations show that when the estimation model is misspecified for the

underlying DGP, the new IRF estimator is still capable of detecting interesting aspects of the true IRF,

whether it is smooth or nonsmooth with sudden reversion to zeros. On the other hand, the conventional

IRF estimator is sensitive to model specifications. It works well when the specified model is correct for

the underlying process, but works poorly if the estimation model is misspecified. In this sense, the new

IRF estimator is a more robust IRF estimator.

6. CONCLUSION

This paper proposes an alternative approach to estimating impulse response function, which is asymptot-

ically valid yet is less sensitive to model misspecifications in small samples. Our Monte Carlo simulations

demonstrate that the proposed estimator is superior to the conventional estimator in small samples when

the estimation model is incorrect for the underlying process. On the other hand, in the ideal case where

the estimation specification happens to be correct for the DGP, the Monte Carlo study shows that the

proposed estimator performs comparably well to the conventional estimator.

Although we only investigate the performance of this new IRF estimator in the univariate case, the

proposed methodology can be generalized to cover the multivariate case. For example, to obtain the new

IRF estimate in a vector autoregression (VAR) framework, we can obtain the estimated vector of residuals

by running OLS, and then regress the vector of variables on the vector of residuals with k horizons difference

to obtain the square matrix of impulse responses of the variables to the (un-orthogonalized) residuals at

horizon k. This generalization is left for future work.
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APPENDIX: LEMMAS FOR SECTION 3

Among the results given in this appendix, Lemmas A.9 and A.10 are directly used in Section 3. All other

results are used to prove Lemmas A.9 and A.10.

Lemma A.1 Suppose that Assumptions 1 and 2(a)(b) hold. Let

A ≡ (1 + 2|µ|)
( ∞∑

τ=−∞
|γ(τ)|

)1/2

+

(
2

∞∑
τ=−∞

γ(τ)2 +
∞∑

τ1=−∞

∞∑
τ2=−∞

∞∑
τ3=−∞

|κ4(0, τ1, τ2, τ3)|
)1/2

.

Then for each integers t1 and t2 such that t1 < t2,

var

[
(t2 − t1)−1

t2∑
t=t1+1

Yt

]
≤ (t2 − t1)−1A2 (7)

and

var

[
(t2 − t1)−1

t2∑
t=t1+1

YtYt+m

]
≤ (t2 − t1)−1A2, m ∈ Z. (8)

Proof of Lemma A.1. Inequality (7) holds because

var

[
(t2 − t1)−1

t2∑
t=t1+1

Yt

]
=(t2 − t1)−2

t2∑
t=t1+1

t2∑
s=t1+1

Cov[Yt, Ys] ≤ (t2 − t1)−2
t2∑

t=t1+1

t2∑
s=t1+1

|γ(t− s)|

=(t2 − t1)−2

(t2−t1−1)∑

τ=−(t2−t1−1)

(t2 − t1 − |τ |)|γ(τ)|

=(t2 − t1)−1

(t2−t1−1)∑

τ=−(t2−t1−1)

(
1− |τ |

t2 − t1

)
|γ(τ)|

≤(t2 − t1)−1

(t2−t1−1)∑

τ=−(t2−t1−1)

|γ(τ)| ≤ (t2 − t1)−1
∞∑

τ=−∞
|γ(τ)|

≤(t2 − t1)−1A2. (9)

To show (8), let m be an arbitrary integer. For each pair of integers, t and s, between t1 and t2, we

have that YtYs = (Zt + µ)(Zs + µ) = ZtZs + µZt + µZs + µ2, and E[YtYs] = γ(s− t) + µ2. It follows that

YtYs − E[YtYs] = (ZtZs − γ(s− t)) + µZt + µZs. Using this fact, we obtain that

var

[
(t2 − t1)−1

t2∑
t=t1+1

YtYt+m

]
= E




(
(t2 − t1)−1

t2∑
t=t1+1

((ZtZt+m − γ(m)) + µZt + µZt+m)

)2

 .
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It follows that

var

[
(t2 − t1)−1

t2∑
t=t1+1

YtYt+m

]1/2

=

∥∥∥∥∥(t2 − t1)−1
t2∑

t=t1+1

((ZtZt+m − γ(m)) + µZt + µZt+m)

∥∥∥∥∥

≤
∥∥∥∥∥(t2 − t1)−1

t2∑
t=t1+1

(ZtZt+m − γ(m))

∥∥∥∥∥ + |µ|
∥∥∥∥∥(t2 − t1)−1

t2∑
t=t1+1

Zt

∥∥∥∥∥ + |µ|
∥∥∥∥∥(t2 − t1)−1

t2∑
t=t1+1

Zt+m

∥∥∥∥∥ .

(10)

For the first term on the right-hand side of (10), we have that

∥∥∥∥∥(t2 − t1)−1
t2∑

t=t1+1

(ZtZt+m − γ(m))

∥∥∥∥∥

2

= (t2 − t1)−2
t2∑

t=t1+1

t2∑
s=t1+1

E[(ZtZt+m − γ(m))(ZsZs+m − γ(m))]

= (t2 − t1)−2
t2∑

t=t1+1

t2∑
s=t1+1

(E[ZtZt+mZsZs+m]− γ(m)2)

= (t2 − t1)−2
t2∑

t=t1+1

t2∑
s=t1+1

(κ4(t, t + m, s, s + m) + γ(s− t)2 + γ(s− t + m)γ(s− t−m))

= (t2 − t1)−2
t2∑

t=t1+1

t2∑
s=t1+1

(κ4(0,m, s− t, s− t + m) + γ(s− t)2 + γ(s− t + m)γ(s− t−m))

= (t2 − t1)−2
t2−t1−1∑

τ=−(t2−t1−1)

(t2 − t1 − |τ |)(κ4(0,m, τ, τ + m) + γ(τ)2 + γ(τ + m)γ(τ −m))

≤ (t2 − t1)−1
t2−t1−1∑

τ=−(t2−t1−1)

(
1− |τ |

t2 − t1

)
(|κ4(0,m, τ, τ + m)|+ γ(τ)2 + |γ(τ + m)γ(τ −m)|)

≤ (t2 − t1)−1
t2−t1−1∑

τ=−(t2−t1−1)

(|κ4(0,m, τ, τ + m)|+ γ(τ)2 + |γ(τ + m)γ(τ −m)|),

where the third equality follows by the fact that

κ4(t1, t2, t3, t4) = E[Zt1Zt2Zt3Zt4 ]− Cov[Zt1 , Zt2 ]Cov[Zt3 , Zt4 ]

− Cov[Zt1 , Zt3 ]Cov[Zt2 , Zt4 ]− Cov[Zt1 , Zt4 ]Cov[Zt2 , Zt3 ], (t1, t2, t3, t4) ∈ Z4.

Because
t2−t1−1∑

τ=−(t2−t1−1)

|κ4(0,m, τ, τ + m)| ≤
∞∑

τ1=−∞

∞∑
τ2=−∞

∞∑
τ3=−∞

|κ4(0, τ1, τ2, τ3)|,

t2−t1−1∑

τ=−(t2−t1−1)

γ(τ)2 ≤
∞∑

τ=−∞
γ(τ)2,
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and

t2−t1−1∑

τ=−(t2−t1−1)

|γ(τ + m)γ(τ −m)| ≤



t2−t1−1∑

τ=−(t2−t1−1)

γ(τ + m)2




1/2 


t2−t1−1∑

τ=−(t2−t1−1)

γ(τ −m)2




1/2

≤
∞∑

τ=−∞
γ(τ)2

by the Cauchy-Schwartz inequality, it follows that

∥∥∥∥∥(t2 − t1)−1
t2∑

t=t1+1

(ZtZt+m − γ(m))

∥∥∥∥∥

≤ (t2 − t1)−1/2

( ∞∑
τ1=−∞

∞∑
τ2=−∞

∞∑
τ3=−∞

|κ4(0, τ1, τ2, τ3)|+ 2
∞∑

τ=−∞
γ(τ)2

)1/2

.

For the second and third term on the right-hand side of (10), we have that

∥∥∥∥∥(t2 − t1)−1
t2∑

t=t1+1

Zt+m

∥∥∥∥∥ =

∥∥∥∥∥(t2 − t1)−1
t2∑

t=t1+1

Zt

∥∥∥∥∥

= var

[
(t2 − t1)−1

t2∑
t=t1+1

Yt

]1/2

≤ (t2 − t1)−1/2

( ∞∑
τ=−∞

|γ(τ)|
)1/2

,

by (9). Thus, we have that

var

[
(t2 − t1)−1

t2∑
t=t1+1

YtYt+m

]1/2

≤ (t2 − t1)−1/2

( ∞∑
τ1=−∞

∞∑
τ2=−∞

∞∑
τ3=−∞

|κ4(0, τ1, τ2, τ3)|+ 2
∞∑

τ=−∞
γ(τ)2

)1/2

+ 2|µ|(t2 − t1)−1/2

( ∞∑
τ=−∞

|γ(τ)|
)1/2

.

Inequality (8) therefore follows.

Lemma A.2 Suppose that Assumptions 1, 2(a)(b), and 3 hold. Then for each k = 0, 1, 2, . . .,

∣∣∣∣∣(n− pn − k)−1
n−k∑

t=pn+1

XntX
′
nt −Rn

∣∣∣∣∣ = OP (pn/n1/2) as n →∞ prob-P, (11)

∣∣∣∣∣(n− pn − k)−1
n−k∑

t=pn+1

XntUnt

∣∣∣∣∣ = OP (pn/n1/2) as n →∞ prob-P, (12)
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∣∣∣∣∣(n− pn − k)−1
n−k∑

t=pn+1

U2
n,t − E[U2

n0]

∣∣∣∣∣ = OP (pn/n1/2) as n →∞ prob-P, (13)

and ∣∣∣∣∣(n− pn − k)−1
n−k∑

t=pn+1

Un,tYt+k − E[Un,−kY0]

∣∣∣∣∣ = OP (p1/2
n /n1/2) as n →∞ prob-P, (14)

Proof of Lemma A.2. Let k be an arbitrary nonnegative integer. To prove (11), note that for each n =

n̄k, n̄k + 1, . . .,

0 ≤
∣∣∣∣∣(n− pn − k)−1

n−k∑
t=pn+1

XntX
′
nt −Rn

∣∣∣∣∣

2

≤ tr




(
(n− pn − k)−1

n−k∑
t=pn+1

XntX
′
nt −Rn

)(
(n− pn − k)−1

n−k∑
t=pn+1

XntX
′
nt −Rn

)′
 .

Because E[XntX
′
nt] = Rn, t ∈ Z, n ∈ N, the mean of the right-hand side in the above inequality is no

greater than (pn + 1)2(n− pn − k)−1A2 by Lemma A.1. Thus, we have that for each n = n̄k, n̄k + 1, . . .

E




(
p2

n

n

)−1
∣∣∣∣∣(n− pn − k)−1

n−k∑
t=pn+1

XntX
′
nt −Rn

∣∣∣∣∣

2

 ≤ (pn + 1)2/p2

n

(n− pn − k)/n
A2.

Because the right-hand side is bounded as n →∞, it follows by the Markov inequality that

(
p2

n

n

)−1
∣∣∣∣∣(n− pn − k)−1

n−k∑
t=pn+1

XntX
′
nt −Rn

∣∣∣∣∣

2

= OP (1) as n →∞.

This leads to the desired result (11).

To show (12), let ηnt ≡ (Yt, 1, Yt−1, . . . , Yt−pn)′, t ∈ Z, n = 2, 3, . . .. Then

Unt = η′nt




1

−βn


 , t ∈ Z, n = 2, 3, . . . .
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Because E[XntUnt] = 0, t ∈ Z, n = 2, 3, . . ., it follows that for each n = n̄k, n̄k + 1, . . .

0 ≤
∣∣∣∣∣(n− pn − k)−1

n−k∑
t=pn+1

XntUnt

∣∣∣∣∣

2

=

∣∣∣∣∣(n− pn − k)−1
n−k∑

t=pn+1

(XntUnt − E[XntUnt])

∣∣∣∣∣

2

=

∣∣∣∣∣∣∣
(n− pn − k)−1

n−k∑
t=pn+1

(Xntη
′
nt − E[Xntη

′
nt])




1

−βn




∣∣∣∣∣∣∣

2

≤
∣∣∣∣∣(n− pn − k)−1

n−k∑
t=pn+1

(Xntη
′
nt − E[Xntη

′
nt])

∣∣∣∣∣

2
∣∣∣∣∣∣∣




1

−βn




∣∣∣∣∣∣∣

2

≤ (1 + |βn|2) tr

((
(n− pn − k)−1

n−k∑
t=pn+1

(Xntη
′
nt − E[Xntη

′
nt])

)

×
(

(n− pn − k)−1
n−k∑

t=pn+1

(Xntη
′
nt − E[Xntη

′
nt])

)′)

Using Lemma A.1, we have that for each n = n̄k, n̄k + 1, . . .

E

[
tr

((
(n− pn − k)−1

n−k∑
t=pn+1

(Xntη
′
nt − E[Xntη

′
nt])

)

×
(

(n− pn − k)−1
n−k∑

t=pn+1

(Xntη
′
nt − E[Xntη

′
nt])

)′)]

≤ (pn + 1)(pn + 2)(n− pn − k)−1A2.

Hence it follows that for each n = n̄k, n̄k + 1, . . .

E




(
p2

n

n

)−1
∣∣∣∣∣(n− pn − k)−1

n−k∑
t=pn+1

XntUnt

∣∣∣∣∣

2

 ≤ (1 + |βn|2) (pn + 1)(pn + 2)/p2

n

(n− pn − k)/n
A2.

The right-hand side is bounded as n →∞, so (12) follows by the Markov inequality.

To show (13), we use the facts that

U2
nt = (1,−β′n)ηntη

′
nt




1

−βn


 , t ∈ Z, n = 2, 3, . . .

and

E[U2
n0] = (1,−β′n)E[ηn0η

′
n0]




1

−βn


 , n = 2, 3, . . . .
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Given these equalities, we have that for each n = 2, 3, . . .

∣∣∣∣∣(n− pn − k)−1
n−k∑

t=pn+1

U2
n,t − E[U2

n0]

∣∣∣∣∣

2

≤

∣∣∣∣∣∣∣
(1,−β′n)(n− pn − k)−1

n−k∑
t=pn+1

(ηntη
′
nt − E[ηn0η

′
n0])




1

−βn




∣∣∣∣∣∣∣

2

≤ tr




(
(n− pn − k)−1

n−k∑
t=pn+1

(ηntη
′
nt − E[ηn0η

′
n0])

)(
(n− pn − k)−1

n−k∑
t=pn+1

(ηntη
′
nt − E[ηn0η

′
n0])

)′


×

∣∣∣∣∣∣∣




1

−βn




∣∣∣∣∣∣∣

4

.

Divide both sides of this inequality by (p2
n/n) and take expectations on both sides. We can apply

Lemma A.1 in a similar fashion and obtain that

E




(
p2

n

n

)−1
∣∣∣∣∣(n− pn − k)−1

n−k∑
t=pn+1

U2
n,t − E[U2

n0]

∣∣∣∣∣

2

 ≤ (1 + |βn|2)2 (pn + 2)2/p2

n

(n− pn − k)/n
A2, n = 2, 3, . . . .

Because the right-hand side is bounded as n →∞, (13) therefore follows by the Markov inequality.

To prove (14), note that UntYt+k = (1,−β′n)ηntYt+k and E[UntYt+k] = (1,−β′n)E[ηn,−kY0], t ∈ Z,

n = 2, 3, . . .. Given these facts, we have that

∣∣∣∣∣(n− pn − k)−1
n−k∑

t=pn+1

Un,tYt+k − E[Un,−kY0]

∣∣∣∣∣

=

∣∣∣∣∣(1,−β′n)(n− pn − k)−1
n−k∑

t=pn+1

(ηntYt+k − E[ηn,−kY0])

∣∣∣∣∣

≤

∣∣∣∣∣∣∣




1

−βn




∣∣∣∣∣∣∣

∣∣∣∣∣

(
(n− pn − k)−1

n−k∑
t=pn+1

(ηntYt+k − E[ηn,−kY0])

)∣∣∣∣∣ .

It follows by Lemma A.1 that

E


(pn/n)−1

∣∣∣∣∣(n− pn − k)−1
n−k∑

t=pn+1

Un,tYt+k − E[Un,−kY0]

∣∣∣∣∣

2



≤ (1 + |βn|2)E



∣∣∣∣∣(n− pn − k)−1
n−k∑

t=pn+1

(ηntYt+k − E[ηn,−kY0])

∣∣∣∣∣

2

 /(pn/n)

≤ (1 + |βn|2)(pn + 2) (n− pn − k)−1A2/(pn/n) = (1 + |βn|2) (pn + 2)/pn

(n− pn − k)/n
A2.
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Because the right-hand side is bounded as n →∞, the desired result (14) follows by the Markov inequality.

Lemma A.3 Suppose that Assumptions 1, 2(a)(b), and 3 hold. Let λn1 and λn2 be the minimum and

maximum eigenvalues of Rn, respectively, n = 2, 3, . . .. Also, let λ̂n1 and λ̂n2 be the minimum and

maximum eigenvalues of R̂n, respectively, n = 2, 3, . . .. Then |λ̂n1−λn1| = OP (pn/n1/2) and |λ̂n2−λn2| =
OP (pn/n1/2) as n →∞ prob-P .

Proof of Lemma A.3. Let Sm−1 denote the unit sphere in the m-dimensional Euclidean space for each

m ∈ N. Then for each n ∈ N,

λ̂n1 = min
a∈Spn

a′R̂na = min
a∈Spn

a′(Rn + (R̂n −Rn))a

≥ min
a∈Spn

a′Rna− max
a∈Spn

|a′(R̂n −Rn)a| = λn1 − |R̂n −Rn|,

and

λn1 = min
a∈Spn

a′Rna = min
a∈Spn

a′(R̂n + (Rn − R̂n))a

≥ min
a∈Spn

a′R̂na− max
a∈Spn

|a′(Rn − R̂n)a| = λ̂n1 − |R̂n −Rn|.

Rewriting these inequalities, we obtain that |λ̂n1 − λn1| ≤ |R̂n − Rn|, n = 2, 3, . . .. Because |R̂n − Rn| =
OP (pn/n1/2) as n → ∞ by Lemma A.2, the first result follows. The second result can be analogously

proved.

Lemma A.4 Suppose that Assumptions 1–3 hold. Then |Rn| = O(pn) as n →∞.

Proof of Lemma A.4. Let en be the pn × 1 vector, all of whose elements are ones, and Γn the covariance

matrix of (Y−1, Y−2, . . . , Y−pn), n = 2, 3, . . .. Also, let Sm−1 denote the unit sphere in the m-dimensional

Euclidean space for each m ∈ N. Then

Rn =




0 0

0 Γn


 +




1

µen


 (1, µe′n).

It follows that

|Rn| = max
a∈Spn

a′Rna ≤ max
b∈Spn−1

b′Γnb + max
a∈Spn

((1, µe′n)a)2

≤2πf̄2 + |(1, µe′n)|2 = 2πf̄2 + (1 + µ2pn) = O(pn) as n →∞.
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Lemma A.5 Suppose that Assumptions 1–3 hold. Then {λ1n}∞n=2 is uniformly positive (hence Rn is

nonsingular for each n = 2, 3, . . .), and {|R−1
n |}∞n=2 is bounded.

Proof of Lemma A.5. Let {Γn}∞n=2 and {en}∞n=2 be as in the proof of Lemma A.4. Then we have that for

each n = 2, 3, . . ., λ1n = mina∈Spn a′Rna ≥ mina∈Spn−1 a′Γna ≥ 2πf̄1 > 0. Thus, {λ1n}n∈N is uniformly

positive, and {|R−1
n | = 1/λ1n}∞n=2 is bounded.

Lemma A.6 Suppose that Assumptions 1–3 hold. Then

|R̂+
n −R−1

n | = OP (pn/n1/2) as n →∞ (15)

and

RnR̂+
n = OP (1) as n →∞. (16)

Proof of Lemma A.6. Define a sequence of random matrices {Ξn}∞n=2 by Ξn ≡ (R̂+
n − R−1

n ) − R̂+
n (Rn −

R̂n)R−1
n . Then we have that R̂+

n −R−1
n = R̂+

n (Rn − R̂n)R−1
n + Ξn, so that

|R̂+
n −R−1

n | ≤ |R̂+
n | |Rn − R̂n| |R−1

n |+ |Ξn|, n = 2, 3, . . . .

It is straightforward to verify that Ξn is zero if R̂n is nonsingular. It follows that for each positive real

number δ,

P [|(pn/n1/2)−1Ξn| > δ] ≤ P [|Ξn| > 0] ≤ P [λ̂n1 = 0] → 0,

where the convergence of the last term to zero follows by Lemmas A.3 and A.5. Thus, |Ξn| = oP (pn/n1/2)

as n →∞. We also have that |R̂+
n | = OP (1) and R−1

n = O(1) as n →∞ by Lemmas A.3 and A.5. Because

|Rn − R̂n| = OP (pn/n1/2) as n →∞ by Lemma A.2, result (15) therefore follows.

For (16), rewrite RnR̂+
n as

RnR̂+
n =(R̂n − (R̂n −Rn))R̂+

n = R̂nR̂+
n − (R̂n −Rn)R̂+

n

=(R̂nR̂+
n − I)− (R̂n −Rn)R̂+

n + I, n = 2, 3, . . . .

Thus, we have that

|RnR̂+
n | ≤ |R̂nR̂+

n − I|+ |R̂n −Rn| |R̂+
n |+ |I|, n = 2, 3, . . . .
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It is straightforward to show that the first term on the right-hand side of this inequality converges to zero

prob-P (it is actually oP (cn) for any sequence {cn}n∈N of nonzero real numbers). The second term is

OP (pn/n1/2), because |R̂n −Rn| = OP (pn/n1/2) (Lemma A.2) and |R̂+
n | = OP (1) (Lemmas A.3 and A.5)

as n →∞. The third term is one for each n. Result (16) therefore follows.

Lemma A.7 Suppose that Assumptions 1–3 hold. Then

∣∣∣∣∣β̂n − βn − R̂+
n (n− pn)−1

n∑
t=pn+1

XntUnt

∣∣∣∣∣ = oP (cn) as n →∞, (17)

where {cn}n∈N is an arbitrary sequence of nonzero real numbers. Also, it holds that

∣∣∣∣∣β̂n − βn −R−1
n (n− pn)−1

n∑
t=pn+1

XntUnt

∣∣∣∣∣ = oP (pn/n1/2) as n →∞, (18)

and

|β̂n − βn| = OP (pn/n1/2) as n →∞. (19)

Proof of Lemma A.7. By definition of {β̂n} and {Unt}, we have that for each n = 2, 3, . . .,

β̂n =R̂+
n (n− pn)−1

n∑
t=pn+1

XntYnt

=R̂+
n (n− pn)−1

n∑
t=pn+1

Xnt(X ′
ntβn + Unt)

=R̂+
n R̂nβn + R̂+

n (n− pn)−1
n∑

t=pn+1

XntUnt.

Therefore,

β̂n − βn − R̂+
n (n− pn)−1

n∑
t=pn+1

XntUnt = (R̂+
n R̂n − I)βn, n = 2, 3, . . . .

It follows that

∣∣∣∣∣β̂n − βn − R̂+
n (n− pn)−1

n∑
t=pn+1

XntUnt

∣∣∣∣∣ ≤ |R̂+
n R̂n − I| |βn|, n = 2, 3, . . . .

For any sequence {cn}n∈N of nonzero real numbers, we have that for each positive real number δ,

P [|cn|−1|R̂+
n R̂n − I| > δ] ≤ P [|R̂+

n R̂n − I| > 0] ≤ P [λ̂n1 = 0] → 0

by Lemmas A.3 and A.5 in the Appendix. Therefore, it follows that |R̂+
n R̂n − I| = oP (cn) as n → ∞.
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Moreover, because {|βn|}n∈N is bounded by (5) of Lemma 1, the desired result (17) therefore follows.

Setting cn = pn/n1/2 in (17), we have that
∣∣∣β̂n − βn − R̂+

n (n− pn)−1
∑n

t=pn+1 XntUnt

∣∣∣ = oP (pn/n1/2)

as n →∞. Given the fact that R̂+
n = R−1

n + (R̂+
n −R−1

n ), we can obtain that

∣∣∣∣∣β̂n − βn −R−1
n (n− pn)−1

n∑
t=pn+1

XntUnt

∣∣∣∣∣−
∣∣∣∣∣(R̂

+
n −R−1

n ) (n− pn)−1
n∑

t=pn+1

XntUnt

∣∣∣∣∣

≤
∣∣∣∣∣β̂n − βn − R̂+

n (n− pn)−1
n∑

t=pn+1

XntUnt

∣∣∣∣∣ .

The second term on the left-hand side is dominated by |R̂+
n − R−1

n |
∣∣∣(n− pn)−1

∑n
t=pn+1 XntUnt

∣∣∣ =

OP (p2
n/n) as n →∞, where the convergence rate is given by (12) of Lemma A.2 and (15) of Lemma A.6

in the Appendix. Result (18) therefore follows.

To prove (19), note that
∣∣∣R−1

n (n− pn)−1
∑n

t=pn+1 XntUnt

∣∣∣ ≤ |R−1
n |

∣∣∣(n− pn)−1
∑n

t=pn+1 XntUnt

∣∣∣ =

OP (pn/n1/2) as n →∞ by (12) of Lemma A.2 and Lemma A.5 in the Appendix. Because

∣∣∣∣∣|β̂n − βn| −
∣∣∣∣∣R
−1
n (n− pn)−1

n∑
t=pn+1

XntUnt

∣∣∣∣∣

∣∣∣∣∣

≤
∣∣∣∣∣β̂n − βn −R−1

n (n− pn)−1
n∑

t=pn+1

XntUnt

∣∣∣∣∣ , n = 2, 3, . . . ,

where the second term on the left-hand side is OP (pn/n1/2) as shown above and the right-hand side is

oP (pn/n1/2), result (19) follows immediately.

Corollary A.8 Suppose that Assumptions 1–3 hold. Then for each k = 0, 1, 2, . . .,

∣∣∣∣∣∣
(β̂n − βn)′


(n− pn − k)−1

n∑

t=pn+k+1

Xn,t−kX ′
n,t−k


 (β̂n − βn)

∣∣∣∣∣∣
= OP (p2

n/n) as n →∞.

Proof of Corollary A.8. Because

(β̂n − βn)′


(n− pn − k)−1

n∑

t=pn+k+1

Xn,t−kX ′
n,t−k


 (β̂n − βn)

= (β̂n − βn)′





(n− pn − k)−1

n∑

t=pn+k+1

Xn,t−kX ′
n,t−k −Rn


 + Rn


 (β̂n − βn)

= (β̂n − βn)′


(n− pn − k)−1

n∑

t=pn+k+1

Xn,t−kX ′
n,t−k −Rn


 (β̂n − βn)

+ (β̂n − βn)′Rn(β̂n − βn), n = n̄k, n̄k + 1, . . . ,
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we have that

∣∣∣∣∣∣
(β̂n − βn)′


(n− pn − k)−1

n∑

t=pn+k+1

Xn,t−kX ′
n,t−k


 (β̂n − βn)

∣∣∣∣∣∣

≤ |β̂n − βn|2
∣∣∣∣∣∣
(n− pn − k)−1

n∑

t=pn+k+1

Xn,t−kX ′
n,t−k −Rn

∣∣∣∣∣∣

+
∣∣∣(β̂n − βn)′Rn(β̂n − βn)

∣∣∣ , n = n̄k, n̄k + 1, . . . .

By (11) of Lemma A.2 and (19) of Lemma A.7, the first term on the right-hand side of this inequality is

OP (p3
n/n3/2). It thus suffices to show that the second term is OP (p2

n/n). Define

ξn ≡ β̂n − βn − R̂+
n (n− pn)−1

n∑
t=pn+1

XntUnt, n = 2, 3, . . . .

Then |ξn| = oP (1/n1/2) as n → ∞ by (17) of Lemma A.7. Using this {ξn}, we have that β̂n − βn =

R̂+
n (n− pn)−1

∑n
t=pn+1 XntUnt + ξn, n = 2, 3, . . .. It follows that

(β̂n − βn)′Rn(β̂n − βn)

=

(
(n− pn)−1

n∑
t=pn+1

XntUnt

)′

R̂+
n RnR̂+

n

(
(n− pn)−1

n∑
t=pn+1

XntUnt

)

+ 2ξ′nRnR̂+
n

(
(n− pn)−1

n∑
t=pn+1

XntUnt

)
+ ξ′nRnξn, n = 2, 3, . . . .

We thus have that

∣∣∣(β̂n − βn)′Rn(β̂n − βn)
∣∣∣ ≤ |R̂+

n | |RnR̂+
n |

∣∣∣∣∣(n− pn)−1
n∑

t=pn+1

XntUnt

∣∣∣∣∣

2

+ 2|ξn| |RnR̂+
n |

∣∣∣∣∣(n− pn)−1
n∑

t=pn+1

XntUnt

∣∣∣∣∣ + |ξn|2 |Rn|, n = 2, 3, . . . .

By applying Lemmas A.2, A.3, A.4, A.5, and A.6, we can verify that the first term on the right-hand

side of the above inequality is OP (p2
n/n), the second term is oP (pn/n), and the third term is oP (pn/n) as

n →∞. The desired result therefore follows.

Lemma A.9 Suppose that Assumptions 1–3 hold. Then

(n− pn)−1
n∑

t=pn+1

(ε̂nt − Unt)2 = OP (p2
n/n) as n →∞.

25



Proof of Lemma A.9. Because ε̂nt − Unt = −X ′
nt(β̂n − βn), t ∈ Z, n = 2, 3, . . ., we have that for each

n = 2, 3, . . ., (ε̂nt − Unt)2 = (β̂n − βn)′XntX
′
nt(β̂n − βn), t = pn + 1, . . . , n, so that

∣∣∣∣∣(n− pn)−1
n∑

t=pn+1

(ε̂nt − Unt)2
∣∣∣∣∣ =

∣∣∣∣∣(β̂n − βn)′
(

(n− pn)−1
∑

t=pn+1

XntX
′
nt

)
(β̂n − βn)

∣∣∣∣∣ ,

n = 2, 3, . . .. Since the right-hand side of the above equality is OP (p2
n/n) as n →∞ by Corollary A.8, the

desired result therefore follows.

Lemma A.10 Suppose that Assumptions 1–3 hold. Also, let {{ε̈nt}n
t=pn+1}∞n=2 be a double array of ran-

dom variables such that

η̈n ≡ (n− pn)
n∑

t=pn+1

(ε̈nt − Unt)2 → 0 as n →∞ prob-P .

For each k ∈ N, define a sequence of random variables {ψ̈nk}∞n=2 by

ψ̈nk ≡





(
(n− pn − k)−1

∑n
t=pn+k+1 ε̈2n,t−k

)+

×(n− pn − k)−1
∑n

t=pn+k+1 ε̈n,t−kYt if k ≤ n− pn − 1,

0 otherwise,

n = 2, 3, . . .. Then for each k ∈ N,

(n− pn − k)−1
n∑

t=pn+k+1

ε̈n,t−kYt − E[Un,−kY0] = OP (p1/2
n /n1/2) + OP (η̈1/2

n ) as n →∞, (20)

(n− pn − k)−1
n∑

t=pn+k+1

ε̈2n,t−k − E[U2
n,0] = OP (pn/n1/2) + OP (η̈1/2

n ) as n →∞, (21)

and

ψ̈nk − ψ̄nk = OP (pn/n1/2) + OP (η̈1/2
n ) as n →∞. (22)

Proof of Lemma A.10. Let k be an arbitrary natural number. For convenience, write

C̈n ≡ (n− pn − k)−1
n∑

t=pn+k+1

ε̈n,t−kYt, n = n̄k, n̄k + 1, . . . ,

Cn ≡ E[Un,−kY0], n = 2, 3, . . . ,

D̈n ≡ (n− pn − k)−1
n∑

t=pn+k+1

ε̈2n,t−k, n = n̄k, n̄k + 1, . . . ,
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and

Dn ≡ E[U2
n0], n = 2, 3, . . . .

Then for each n = n̄k, n̄k + 1, . . ., ψ̈nk = C̈n/D̈n, and ψ̄nk = Cn/Dn. Because for each n = n̄k, n̄k + 1, . . .,

C̈n − Cn =(n− pn − k)−1
n∑

t=pn+k+1

(ε̈n,t−k − Un,t−k)Yt

+ (n− pn − k)−1
n∑

t=pn+k+1

Un,t−kYt − E[Un,−kY0],

we have that

|C̈n − Cn| ≤
∣∣∣∣∣∣
(n− pn − k)−1

n∑

t=pn+k+1

(ε̈n,t−k − Un,t−k)Yt

∣∣∣∣∣∣

+

∣∣∣∣∣∣
(n− pn − k)−1

n∑

t=pn+k+1

Un,t−kYt − E[Un,−kY0]

∣∣∣∣∣∣

≤

(n− pn − k)−1

n∑

t=pn+k+1

(ε̈n,t−k − Un,t−k)2




1/2 
(n− pn − k)−1

n∑

t=pn+k+1

Y 2
t




1/2

+

∣∣∣∣∣∣
(n− pn − k)−1

n∑

t=pn+k+1

Un,t−kYt − E[Un,−kY0]

∣∣∣∣∣∣
, n = n̄k, n̄k + 1, . . . . (23)

By (8) of Lemma A.1, we have that var
[
(n− pn − k)−1

∑n
t=pn+k+1 Y 2

t

]
≤ (n−pn−k)−1A2 → 0 as n →∞.

Moreover, it holds that E
[
(n− pn − k)−1

∑n
t=pn+k+1 Y 2

t

]
= E[Y 2

0 ]. It follows by the Chebyshev inequality

that

(n− pn − k)−1
n∑

t=pn+k+1

Y 2
t → E[Y 2

0 ] as n →∞ prob-P .

Therefore, the first term on the right-hand side of (23) is OP (η̈1/2
n ) as n → ∞. Furthermore, the second

term is OP (p1/2
n /n1/2) as shown in (14) of Lemma A.2. Thus, we have that C̈n − Cn = OP (p1/2

n /n1/2) +

OP (η̈1/2
n ) as n →∞, and (20) holds.

Next, we examine D̈n −Dn. Because for each n = n̄k, n̄k + 1, . . .,

D̈n −Dn =(n− pn − k)−1
n∑

t=pn+k+1

(ε̈2n,t−k − U2
n,t−k) + (n− pn − k)−1

n∑

t=pn+k+1

U2
n,t−k − E[U2

n,−k]

=(n− pn − k)−1
n∑

t=pn+k+1

(ε̈n,t−k − Un,t−k)(ε̈n,t−k + Un,t−k)

+ (n− pn − k)−1
n∑

t=pn+k+1

U2
n,t−k − E[U2

n,−k],
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we have that for each n = n̄k, n̄k + 1, . . .,

|D̈n −Dn| ≤
∣∣∣∣∣∣
(n− pn − k)−1

n∑

t=pn+k+1

(ε̈n,t−k − Un,t−k)(ε̈n,t−k + Un,t−k)

∣∣∣∣∣∣

+

∣∣∣∣∣∣
(n− pn − k)−1

n∑

t=pn+k+1

U2
n,t−k − E[U2

n,−k]

∣∣∣∣∣∣
.

The second term on the right-hand side of this inequality is OP (pn/n1/2) by (13) of Lemma A.2. For the

first term, applying the Cauchy-Schwartz inequality and the Minkowsky inequality, we have that for each

n = n̄k, n̄k + 1, . . .,

∣∣∣∣∣∣
(n− pn − k)−1

n∑

t=pn+k+1

(ε̈n,t−k − Un,t−k)(ε̈n,t−k + Un,t−k)

∣∣∣∣∣∣

≤

(n− pn − k)−1

n∑

t=pn+k+1

(ε̈n,t−k − Un,t−k)2




1/2 
(n− pn − k)−1

n∑

t=pn+k+1

(ε̈n,t−k + Un,t−k)2




1/2

=


(n− pn − k)−1

n∑

t=pn+k+1

(ε̈n,t−k − Un,t−k)2




1/2

×

(n− pn − k)−1

n∑

t=pn+k+1

((ε̈n,t−k − Un,t−k) + 2Un,t−k)2




1/2

≤

(n− pn − k)−1

n∑

t=pn+k+1

(ε̈n,t−k − Un,t−k)2




1/2

×





(n− pn − k)−1

n∑

t=pn+k+1

(ε̈n,t−k − Un,t−k)2




1/2

+ 2


(n− pn − k)−1

n∑

t=pn+k+1

U2
n,t−k




1/2

 .

The second term in the second factor on the right-hand side of this inequality is OP (1) by Lemma 1 and

(13) of Lemma A.2. For the first factor on the right-hand side and the first term in the second factor, we

have that


(n− pn − k)−1

n∑

t=pn+k+1

(ε̈n,t−k − Un,t−k)2




1/2

≤
(

(n− pn − k)−1
n∑

t=pn+1

(ε̈n,t − Un,t)2
)1/2

=
(

n− pn

n− pn − k

)1/2
(

(n− pn)−1
n∑

t=pn+1

(ε̈n,t − Un,t)2
)1/2

, n = n̄k, n̄k + 1, . . . ,

28



where the right-hand side is OP (η̈1/2
n ) by assumption. It follows that

∣∣∣∣∣∣
(n− pn − k)−1

n∑

t=pn+k+1

(ε̈n,t−k − Un,t−k)(ε̈n,t−k + Un,t−k)

∣∣∣∣∣∣
= OP (η̈1/2

n ) as n →∞.

Therefore, D̈n −Dn = OP (pn/n1/2) + OP (η̈1/2
n ) as n →∞, and (21) holds.

We now apply the standard linearization method to (21) and (13) of Lemma A.2 to obtain that

D̈+
n −D−1

n = −D−2
n

(
D̈n −Dn

)
+ oP (pn/n1/2) + oP (η̈1/2

n ) = OP (pn/n1/2) + OP (η̈1/2
n ) as n →∞.

Using C̈n, Cn, D̈n, and Dn, we can write ψ̈nk − ψ̄nk as

ψ̈nk − ψ̄nk =D̈+
n C̈n −D−1

n Cn

=Cn(D̈+
n −D−1

n ) + D−1
n (C̈n − Cn) + (D̈+

n −D−1
n )(C̈n − Cn).

By applying the rate of convergence stated above to each term on the right-hand side of the above equality,

we can derive the desired result (22).
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Table 1: The Estimated AR(1) Model for the French Real Exchange Rate

Parameter Estimate (Std. Err.)
α 0.0375 (0.0274)
φ1 0.9791 (0.0156)
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(a) FR/US − conventional IRF estimator

0 10 20 30 40
−3

−2

−1

0

1

2

3

month

C
um

ul
at

iv
e 

im
pu

ls
e 

re
sp

on
se

(b) FR/US − new IRF estimator
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Figure 1: The IRF Estimates of the French Real Exchange Rate
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Table 2: The IRF Estimates of the French Real Exchange Rate

k ψconv
nk (std) ψ̃nk (std)

0 1.0000 (0.0000) 1.0000 (0.0000)
1 0.9791 (0.0156) 0.9972 (0.0758)
2 0.9585 (0.0306) 1.1697 (0.1601)
3 0.9385 (0.0449) 1.0709 (0.1338)
4 0.9188 (0.0586) 1.1025 (0.1556)
5 0.8996 (0.0717) 1.2873 (0.2460)
6 0.8807 (0.0842) 1.0863 (0.2211)
7 0.8623 (0.0962) 1.1595 (0.2418)
8 0.8442 (0.1077) 0.9775 (0.2820)
9 0.8265 (0.1186) 0.9110 (0.3453)

10 0.8092 (0.1290) 0.7760 (0.4391)
11 0.7923 (0.1389) 0.9963 (0.3578)
12 0.7757 (0.1484) 1.0642 (0.3579)
13 0.7594 (0.1574) 1.2649 (0.4158)
14 0.7435 (0.1659) 0.9036 (0.4554)
15 0.7279 (0.1741) 0.6891 (0.5232)
16 0.7127 (0.1818) 0.8186 (0.5024)
17 0.6978 (0.1891) 0.5043 (0.6019)
18 0.6831 (0.1960) 0.5158 (0.5955)
19 0.6688 (0.2026) 0.2010 (0.6997)
20 0.6548 (0.2088) -0.2035 (0.9112)
21 0.6411 (0.2146) -0.1736 (0.9133)
22 0.6277 (0.2201) -0.2794 (0.9920)
23 0.6145 (0.2253) -0.2045 (0.9572)
24 0.6017 (0.2302) -0.3378 (0.9940)
25 0.5891 (0.2348) -0.4660 (1.0458)
26 0.5767 (0.2390) -0.2924 (1.0036)
27 0.5646 (0.2430) -0.2272 (1.0103)
28 0.5528 (0.2468) -0.3545 (1.0229)
29 0.5412 (0.2502) -0.5043 (1.0409)
30 0.5299 (0.2534) -0.5182 (1.0461)
31 0.5188 (0.2564) -0.4328 (1.0574)
32 0.5079 (0.2591) -0.6639 (1.1007)
33 0.4973 (0.2616) -0.6255 (1.0769)
34 0.4869 (0.2639) -0.6985 (1.0883)
35 0.4767 (0.2660) -0.7422 (1.0987)
36 0.4667 (0.2678) -0.5848 (1.1018)
37 0.4569 (0.2695) -1.0347 (1.1314)
38 0.4473 (0.2710) -0.8657 (1.1150)
39 0.4380 (0.2723) -0.9127 (1.1119)
40 0.4288 (0.2734) -0.9186 (1.1140)
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Figure 2: Monte Carlo Simulation I - Mean of the IRF Estimators
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Figure 2: Monte Carlo Simulation I - Mean of the IRF Estimators (continued)
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Figure 3: Monte Carlo Simulation I - RMSE of the IRF Estimators
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Figure 3: Monte Carlo Simulation I - RMSE of the IRF Estimators (continued)
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Figure 4: Monte Carlo Simulation II - Mean of the IRF Estimators
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Figure 4: Monte Carlo Simulation II - Mean of the IRF Estimators (continued)
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Figure 5: Monte Carlo Simulation II - RMSE of the IRF Estimators
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Figure 5: Monte Carlo Simulation II - RMSE of the IRF Estimators (continued)
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