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The Elasticity of Substitution and Endogenous Growth 

 

ABSTRACT 

The endogenous growth literature focuses exclusively on Cobb-Douglas. Elasticities other 

than unity are ignored. A recent paper by Klump and Grandville (2000) examined other 

elasticities but assumed an exogenous saving rate. By contrast, this paper studies elasticity 

and endogenous growth. Endogeneity is important since elasticity preserves capital’s 

productivity and encourages saving. Two models are presented. The first assumes exogenous 

technological change. We find elasticity to have a positive level effect on income. No rate of 

growth effect is found. The second model allows learning by doing from capital accumulation. 

In addition to the level effect, rate of growth effects are found. 
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The elasticity of substitution between capital and labor is an important aspect of the 

production function. Suppose the capital stock of a country rises. The marginal productivity of 

capital falls more rapidly if the elasticity of substitution is small. This has a direct implication on 

the returns to investment, and the role of the elasticity of substitution in economic growth is thus 

hard to ignore. At present, our understanding of this role is scanty.  

 The recent literature on endogenous growth has not helped very much in this direction. The 

leading models, such as Romer (1985, 1990), Lucas (1988) and Aghion and Howitt (1992) have 

not devoted attention to substitution elasticities. We have learned a great deal about growth when 

the production function is Cobb-Douglas, which has unit elasticity of substitution. Little is 

known, however, when the latter is either less than or greater than 1. Filling this gap in our 

knowledge is important. There is little evidence to believe that the elasticity of substitution 

between capital and labor is, or is even close to, 1.1 

 Two important papers, one old and the other recent, have dealt with this important issue. 

The old one is Professor Robert Solow’s celebrated ‘Contribution’ (1956). His example 3 (p.77) 

examined the case when the elasticity of substitution is 2. The system turned out to be highly 

productive. He then derived the ‘threshold’ – when the saving rate is sufficiently higher than the 

population growth rate – beyond which a balanced growth path will not exist. One gets a hint 

from this that a ‘more elastic system’ is more productive than a less elastic one. For that reason, 

elasticity of substitution might impact positively on growth. The recent paper is Rainer Klump 

and Olivier de La Grandville (2000), which showed that the elasticity of substitution has a 

positive level effect on per-capita income. Starting from the same income level, a country with 

                                                           
1 Four decades ago, Arrow et al. (1961) introduced the constant elasticity of substitution CES form. They motivated 
that by a time-series analysis of all non-farm production in the United States. Their results showed “an over-all 
elasticity of substitution between capital and labor significantly less than unity” (p.226). Many studies since then, 
surveyed in Yuhn (1991, p.343), reported elasticities in the U.S. not exceeding 0.76. 
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higher elasticity will be richer than one with lower elasticity. In a related work, Olivier de La 

Grandville (1989) tried to show that elasticity also had a rate of growth effect. Neither this pair 

of recent papers, nor Solow’s (ibid) earlier, allowed consumption and saving to be endogenously 

chosen by agents in the system. 

 The primary purpose of this paper is to study the role that the elasticity of substitution has in 

endogenous growth. As argued earlier, elasticity affects capital productivity and the incentive to 

save. Thus, treating saving as endogenous is crucial. In our first model (section I), we assume an 

exogenous rate of technological change. In this case, the elasticity of substitution is shown to 

have a positive level effect, but no rate-of-change effect. In the second model (section II), a link 

is inserted between capital accumulation and learning by doing. Here, the elasticity of 

substitution not only has a level effect, but also a rate-of-change effect on per-capita output 

growth.  

 A short concluding remark is provided in section III. 

 

I. A Model with Endogenous Saving and Exogenous Technological Progress 

 The purpose of this paper is to investigate the impact of the elasticity of substitution (σ  

hereafter) on economic growth. Saving should be endogenous in this investigation.  Some 

allowance for endogenous technological progress is important, too, but we leave that for section 

II. The ease with which capital is substituted for labor in production affects the marginal 

productivity of capital at each point in time, and the size of σ , therefore, influences the incentive 

to save. That, in turn, changes the rate of capital accumulation, and, perhaps, the rate of output 

growth. Our results confirm and enrich that of Klump and De La Grandville (2000), which was 

based on the assumption of an exogenous saving rate. 
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Imagine an economy employing capital K and labor L, both having homogenous quality, to 

produce a single output Y. To study σ , we would obviously want to avoid the Cobb-Douglas 

production function. The main assumption we require is the linear homogeneity of output in the 

two inputs used. Technological progress is crucial in this exercise, and for this we assume the 

Hicks-neutral variety. Technology at time t is denoted A t . We may write the production 

function as 

( )

 [ ]( ), ( ), ( ) ( ) [ ( ), ( )]Y A t K t L t A t f K t L t= ⋅ . (1) 

 Capital accumulation is the amount of per-period output not consumed  

 [ ]( ) ( ) ( ), ( ) ( ) ( )K t A t f K t L t c t L t= ⋅ − . (2) 

We will equate the labor force with the population size. Both are denoted L.  

 Preference over the consumption stream is given by  

 
1

0

( ) 1 ( )
1

t c te
α

ρ

α

−∞ − −
⋅

−∫ L t dt  (3) 

where ρ  is time preference and 1 α  is the elasticity of consumption. Per period consumption is 

. The economy is competitive and closed, in which each identical rational agent determines 

his per-period consumption and saving to maximize the discounted utility stream (3).  

( )c t

Using (1) to (3), we formulate the current-value Hamiltonian H with one state variable 

, one control variable , and one costate (shadow price of saving) variable ( )K t ( )c t ( )tθ  

 [
1 1( , , , ) ( , )
1

cH K c t L A f K L cL
α

θ θ
α

− −
= ⋅ + ⋅ −

−
] . (4) 

 By the Maximum Principle, the first order condition from the choice of consumption c is 

 c α θ− = . (5) 

The marginal return from consumption on the left-hand side must be equal to θ  at each t. θ  is 

shadow price of the capital stock. It reflects, among other things, the marginal returns from 
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capital investment. We expect σ , which measures the degree of substitutability between capital 

and labor, to play a role in growth by determining θ .  

K

K

0t =

α

θ

cg

σ

 Again, by the Maximum Principle, the time-path for θ  is  

 A fθ ρθ θ= − ⋅ . (6) 

where ( , )KA f A f K L⋅ = ⋅∂ ∂

lim ( ) ( )te t K

 is the marginal product of capital (MPK). The transversality 

condition is 
t

ρ θ−
→∞

, implying that the shadow value of the accumulated capital 

stock must vanish eventually. It should be clear that if a ‘balanced growth path’ exists, then this 

will be satisfied.  

If MPK is large at time t, the capital stock will be larger in subsequent periods, and (6) 

requires the shadow price of capital stock θ  to fall more rapidly at t. Differentiating (5) with 

respect to time yields ( )c cθ θ = − . We are interested in the balanced path of growth. By 

definition along this path, the growth rate of per-capita consumption c and the growth rate of per-

capita capital accumulation must be constant. Let the constant growth rate of a variable z be 

denoted zz z g= . Combining cgθ α= −  with (6), we get 

 KA f ρ α⋅ = + . (7) 

 Condition (7) tells us a great deal about the balanced growth path, if it exists. Along this 

path, the right-hand side must remain constant and so, too, must the left-hand side. For whatever 

magnitude of , the economic agent’s problem can be seen as choosing an investment plan such 

that the time-profile of the capital stock keeps the MPK 

cg

KA f⋅  constant. We will now examine 

how the economic system solves this problem, given σ  and any constant g . Then, we will 

return to  and see how its magnitude relates to 

c

cg , if it does. 
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 Since technology progresses at an exogenous constant pace A A µ= , (7) implies that the 

Kf  must fall at the same constant rate  

 K

K

f
f

µ= − . (8) 

Further, because of the linear homogeneity of f, Kf  is a function of the capital-labor ratio, 

denoted r K . For L≡ Kf  to fall, r must rise – capital is more abundant, so its marginal product 

declines. How fast r needs to rise in order to satisfy (8) depends critically on the substitution 

relations between K and L, i.e. σ .  

 Differentiating the partial derivative ( ),Kf K L  with respect to time, we have 

 
2 2

2
K

K KK KL
df d f dK d f dLf f K f L
dt dK dt dKdL dt

= = + = + . 

Dividing through by Kf  and using (8), we get 

K KK KL

K K K

f f fK L
f f f

µ= + = − . 

Using the familiar property of the linear homogeneity of f, KK
L

KLf f
K

= − . Rearranging this gives  

       KL

K

f K LL
f K L

µ
 

− − = 
 

− . 

Finally, introducing K L

KL

f f
f f

σ =  we obtain 

 
L

r K L f
r K L Lf

µσ≡ − = . (9)  

 Using the consumption good as numeraire, the fraction on the right-hand side Lf Lf  is the 

inverse of labor’s relative share in national income. Since ( ) [0,1]LLf f ∈ , ( ) [1, )Lf Lf ∈ ∞ . 
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Further, for , 0µ σ > , (9) implies . We know that as K rises (relative to L), 0r > Lf  rises relative 

to Kf , but the share of L in total output is determined by whether σ  is greater than, equal to, or 

less than unity. This important result is attributed to the late J.R. Hicks, who stated as his third 

proposition in the famous chapter six, “Distribution and Economic Progress”, of his Theory of 

Wages in 1932,  

L
<

 
 
 
 
 
 

f L >

−

K L
K L

 
 
 

“An increase in the supply of any factor will increase its relative share (i.e. its proportion of 

the National Dividend) if its ‘elasticity of substitution’ is greater than unity.” (Hicks, ibid. 

p.117; for proof see his appendix on pp.246-247) 

 More concretely, it follows from this proposition that 

0 as 1

fd
Lf
Kd
L

σ
> >

<
= .        (10)  =

Recall that [1, )Lf ∈ ∞ , and r  indefinitely. It follows from (10) and 0 ( ) [1, )Lf Lf ∈ ∞  

that asymptotically Lf Lf  must reach one of its limits, thus proving Proposition 1 below. This 

proposition establishes the constancy of r  along the steady-state balanced growth path, which 

only exists if 

r

0 1σ< < . 

 

PROPOSITION 1. Assuming a positive rate of technological progress 0µ > , the asymptotic 

capital-labor ratio is given by 

(i) If 0 1σ< < , then lim 1
t

K L
K L

µ σ µ
→∞

 
= ⋅ ⋅ = ⋅ 

 
. σ

(ii) If 1σ > , then lim
t

µ σ
→∞

− = ⋅ ⋅∞ = . ∞
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For the economy to possess a steady-state balanced growth path, the capital-labor ratio must 

be a finite constant along this path. We have to conclude from Proposition 1 that such a path 

exists only if 1σ ≤ . We may recall when Solow (1956) examined the case of CES with 2σ = , 

assuming an exogenous saving rate (his ‘third example’, pp.77-78), he found that a balanced 

growth path might not exist unless the saving rate is less than the exogenous rate of population 

growth. But the endogenous saving rate must be bigger when σ  is bigger. This is because easier 

substitution increases the marginal productivity of capital and the incentive to save. Our first 

contribution here is to show, in Proposition 1, that the threshold for the balanced path to exist 

should be expressed as 1σ ≤  in the case of exogenous technological change, µ . 

In addition, part (i) of Proposition 1 says that for 1σ ≤ , the capital-labor ratio grows at a 

constant rate, which is directly proportional to σ . In other words, an economy with higher 

elasticity of substitution between capital and labor will experience faster growth in its capital 

stock. We will show shortly that this is not sufficient to guarantee a higher growth rate of per-

capita output along the balanced path. Before examining this rate-of-change effect, we present a 

relatively straightforward result concerning the level effect of σ . 

 

PROPOSITION 2. Assume 1σ ≤ . For two economies starting from the same economic base at 

time t  and both experiencing the same rate of technological change, the one with a larger 

elasticity of substitution between capital and labor will enjoy a higher level of per-capita income 

at every time  along the balanced path. 

0=

0t >

PROOF. By constant returns, the per-capita output function is A r( ,1)φ , r K L=  and φ  

increases with r. Proposition 2 is directly implied by Proposition 1.     Q.E.D. 
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 The result of Proposition 2 differs from Klump and De La Grandville’s (2000) Theorem 1 

(p.285) in two respects. First, we do not assume an exogenous saving rate. This brings our results 

closer to the neo-classical growth literature. Second, we show that there must be technological 

progress if the elasticity of substitution is to make a difference to output levels along the 

balanced path. If 0µ = , 0r r =  from Proposition 1 and A r( ,1)φ  is constant. Per-capita output 

must be constant no matter what elasticity we have. This, of course, is simply reiterating the 

result of Solow (ibid). 

 Even though the level of per-capita output is higher when substitution is more elastic, the 

same cannot be said about its rate of growth along the balanced path, at least not under an 

exogenous constant µ . This is shown in the following proposition.  

 

PROPOSITION 3. Assume 1σ ≤ . Suppose an economy is described by a CES production 

function 
1

K Lλ λY A λ
−− −= +  and it experiences a constant rate of technological change A A µ= . 

Along its balanced growth path, per-capita income grows at the rate µ  for all 1σ ≤ . 

PROOF. For the CES production function specified, 1
1

σ
λ

=
+

. We may write it in per-capita 

income terms 
1

/ L A r λ 1y Y λ
−− ≡ = +  . Now, differentiate this with respect to time to get 

1 1 1 11 1A r rλ λλ λ
− − −− − + + y A r = +  rλ− − . Dividing through by y and simplifying, we get 

 
1

y A r r
y A r r

λ

λ

−

−

 
= + ⋅ + 

. (11)  

We know from Proposition 1 that 0>r r  for all 0σ > . By  rule we obtain ˆL'Hopital's
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     lim 0
1r

r
r

λ

λ

−

−→∞

 
= + 

 if 0 λ< < ∞  (i.e. 0 1σ< < ). 

Using this in (11) completes the proof.         Q.E.D. 

 

 The two terms on the right-hand side of (11) show rather nicely the two effects acting on the 

per-capita income growth path. σ  changes the productivity of capital and the incentives to 

accumulate it, thus affecting g  in the second term. This influence ceases, however, when the 

balanced path is reached. That leaves g  to be determined entirely by the exogenous 

technological change. 

r

y

σ  loses its rate-of-change effect along the balanced path.  

In short, the neo-classical conclusion that per-capita output growth rate is determined by the 

exogenous technological change rate µ  carries over intact for all 1σ ≤ . Elasticity of substitution 

adds only level effects, but not rate of growth effects. A country with greater  will be 

richer everywhere along the balanced growth path, but she will not grow faster. This should not 

be very surprising. Capital that is more easily substitutable for labor is more productive. A 

country with such advantages will accumulate a larger capital stock, which produces larger 

output per-capita. However, along the balanced path this richer country will not accumulate at a 

faster rate, because the larger capital stock leads to a lower marginal product of capital that 

counters any additional incentive to invest. The absolute amount saved and invested at each 

period is larger for the richer country, but the rate of saving and growth will not be different 

between countries with different 

( 1σ ≤ )

σ . Much of this, as we will show next, depends on the 

assumption of exogenous µ .  
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II. Learning by Doing 

The purpose of the present section is to show that the conclusions of the last section are 

substantially altered when the rate of technological change is endogenously determined. In 

particular, the elasticity of factor substitution σ  will be shown not only to have level effects but 

also rate of growth effects. There is more than one way to introduce endogenous technological 

change, and probably just as many ways to introduce the rate of growth effects from σ . Our 

focus on the learning by doing model is largely a strategic one. The main purpose here is to show 

that σ  can make a difference to long-term growth rates. It turns out that the intuition may be 

exposed most clearly in a simple model of learning by doing.  

Adopt the same production function as in section I. This is [ ]( ) ( ), ( )A t f K t L t  where [ ]f ⋅  is 

linearly homogenous in K and L. Following Arrow (1962), we link the accumulation of 

experience, or learning, to the process of capital accumulation. The stock of experience is 

captured by ( )A t . Suppose its rate of change ( ) ( )A tA t  is linked to the rate of capital 

accumulation ( )K t ( )K t . For notation, write this as ( )A Kg gφ= .  

To begin with, we assume strict concavity of the function ( )Kgφ . There are two 

justifications for this assumption. The first is that learning is bounded [Young (1993)]. Second 

and more importantly, ( )Kgφ  links the speed of learning to the speed of information arrival, 

which is represented by the rate of capital accumulation. Learning takes time. When anyone 

performs a task, there is probably some optimal speed at which information arrives for it to be 

properly studied, digested and absorbed. Nelson and Phelps (1966) argued that on the one hand, 

the environment has to be changing to provide the stimulus for learning. On the other hand, 

Atkinson and Stiglitz (1969) and more recently Basu and Weil (1998) pointed out that an 

excessively rapid pace of technological change may make learning difficult. Assumption (12) 
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below requires capital accumulation within an appropriate range of speed for learning to take 

place. This will be relaxed later in our investigation. 

 

ASSUMPTION.       
( ) ( ) ( ), 0 0 for 0

' 0, '(0) , and " 0.
A K K Kg g g gφ φ φ

φ φ φ

= = = <

> = ∞ <

;< ∞
 (12)  

 
Assumption (12) gives rise to a learning-investment curve with the shape of a parabolic arc 

as shown in Figure 1. Learning takes place when 0 K Kg g< < . The condition '(0)φ = ∞  means 

that the marginal benefit to learning is large as the company begins to learn. We include this to 

ensure the existence of equilibrium. The strict concavity of φ  implies the existence of 

( ) ( )ˆ maxK Kg gφ φ= . 

The economy described by equations (3) to (10) remains unchanged, except that the 

exogenous µ  is now replaced by ( )Kgφ . The capital-labor ratio r along the steady-state 

balanced path behaves quite differently compared to that of Proposition 1 above. Assume, for 

simplicity, . This assumption implies g0=Lg r gK= , but obviously none of our results will 

depend on this. We focus on 0 1σ< ≤ . The case of 1σ >  is discussed later in this section.  

 

PROPOSITION 4. Assuming (12), and 0 1σ< ≤ , capital-labor ratio along the balanced path 

(asterisked) is characterized by 

( ) ( ) ( )*
* *lim , 0 and 0K

K K Kt

dgK L g g g
K L d

σ
σ σ

σ→∞

 
− = < ≤ > 

 
. 

PROOF. Follow the argument we used in the proof of Proposition 1. The equilibrium path is 

given by (9). Using (10) , we know for 0 1σ< ≤   
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( )* *lim K Kt

K g g
K

φ σ
→∞

≡ = ⋅ . 

Thus ( )* *
K Kg gσ φ= , which is the inverse of the slope of the rays from origin to φ . At 1σ = , 

the slope of the ray is 1, and by the Inada condition (12) K must grow at a rate *

1K Kg g<
σ =

 (see 

Figure 1). As σ  falls below 1 towards 0, the ray becomes steeper, tracing out a monotonic 

decline in *
Kg .               Q.E.D. 

 

 Proposition 4(i) is in some ways quite similar to Proposition 1(i). Easier substitution 

between factors encourages capital to accumulate, which is accomplished by slowing down the 

fall of the marginal product of capital. Learning introduces a feedback loop that affects income 

and in turn regulates Kg . The shape of the learning curve assumed in (12) implies that if 1σ = , 

equilibrium occurs on the falling portion of this curve (see Figure 1). The Inada assumption 

 implies that maximum learning speed is achieved at some ( )' 0φ = ∞ ˆ 1σ < .  

 We finally come to the rate-of-change effect of σ . Again, we deploy the CES production 

function.  

 

PROPOSITION 5. Assume 0 1σ< ≤  and (12). Suppose an economy is described by the CES 

production function 
1

λY A K Lλ λ
−− − + 

1

= . Then 

(i) a balanced growth path exists;  

(ii) there exists a unique 0 σ̂< <

( )*
Yg

 such that per-capita income grows at a maximum rate 

( )* ˆ maxYg σ σ=   . The comparative statics between σ  and the per-capita 

income growth rate along the balanced path is given by 
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*

*

ˆfor 0 , 0
ˆfor 1, 0.

Y

Y

g
g

σ σ σ
σ σ σ

 < < ∂ ∂ >


< < ∂ ∂ <
 

PROOF. Using the same procedure as in Proposition 3 yields equation (11): 

1y
y A r rg
y A r r

λ

λ

−

−

 
≡ = + ⋅ + 

. By L  rule,ˆ'Hopital's lim 0
1r

r
r

λ

λ

−

−→∞

 
= + 

 for ( )0 i.e. 0λ σ 1≤ < ∞ < ≤ . 

Hence, . Using Proposition 4, we have * * 0y Ag g= > ( )*
yg φ σ= . This proves (i) of the proposition. 

 Since the maximum learning speed is given by ( )ˆφ σ , ( )* ˆ maxYg g ( )*
Yσ σ =    of (ii) follows 

immediately. It follows from Proposition 4 that  

*

*

ˆfor 0 , 0
ˆfor 1, 0.

Y

Y

g
g

σ σ σ
σ σ σ

 < < ∂ ∂ >


< < ∂ ∂ <
     Q.E.D. 

 

 Again, the two terms on the right-hand side of (11) show the two effects of σ  on the growth 

rate. σ  directly affects the second effect 
1

r
r r

λ

λ

−

−

r 
⋅ + 

 by changing the incentive to accumulate 

capital. As in the case of exogenous µ  this effect vanishes along the balanced path. But now σ  

retains an indirect effect, via ( )Kgφ , on  along the balanced path in the long run. Ag

 

 Finally, we take a quick look at the remaining case 1σ > . 

 

PROPOSITION 6. Assume (12), and 1σ > . Then  

(i) ; lim 0Kt
g

→∞
=

(ii) . * 0yg =

13 

 
 
 



 

PROOF. Follow the argument we used in the proof of Proposition 4. From (9) we have 

( )K K
L

fg g
Lf

φ σ= . Using (10), noting g  and 0K > 1σ > , 
L

f
Lf

 would rise indefinitely. But this 

cannot be. Once Kg  reaches Kg , ( )K 0Kg gφ= = . So the only situation that can satisfy 

( )K K
L

fg g
Lf

φ σ= is  (the origin in Figure 1). This proves (i). g  follows 

immediately from 

0Kg = * 0y =

( )Kg gφ= 0K = .          Q.E.D. 

 

 Proposition 6 is a somewhat extreme result. It says that an economy accumulating capital 

“too fast” would miss learning opportunities entirely and degenerate to total stagnation. 

Although in the model this occurs when 1σ > , it is directly caused by assumption (12) and in 

particular ( ) 0Kgφ = . We will now alter this assumption in order to test the robustness of 

Propositions 5 and 6. 

 Assumption (12) contains two elements. We will retain the boundedness of learning, but 

relax ( ) 0Kgφ = . See also Figure 2. 

 

ASSUMPTION.       
( ) ( ) ( ), 0 0, lim = 0

' 0, '(0) , and " 0.
K

A K Kg
g g gφ φ φ

φ φ φ
→∞

= = Ω <

> = ∞ <

;Ω < ∞
 (13)  

 
 The important change in our results concerns with the comparative statics of σ . Under 

assumption (12) the balanced growth rate rises and then falls with σ . Under (13), growth rate 

rises monotonically with σ . 
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PROPOSITION 5’. Assume 0 1σ< ≤ , and the CES function 
1

K Lλ λY A λ
−− − = +  . Adopt 

assumption (13). Then 

(i) a balanced growth path exists;  

(ii) * 0Yg σ∂ ∂ ≥  ; ( ) ( )* *1 maxY Yg g σ =   . 

PROOF. Using the same procedure as in Proposition 3 and 5 yields g g . Using 

assumption (13), we have 0 . This proves (i) of the proposition. Part (ii) follows from 

inspection of Figure 2.              Q.E.D. 

* * 0y A= >

*
yg< ≤ Ω

 

 Proposition 6 has to be revised also. Under assumption (12), the output growth rate falls to 

zero and the system is stagnant. Under (13), the system becomes highly productive. A constant-

rate balanced growth path again fails to exist because the growth rate will become infinitely high. 

 

PROPOSITION 6’. Assume (13), and 1σ > . Then  

(i) ; lim Kt
g

→∞
= ∞

(ii) . *
yg = ∞

PROOF. From (9) we have ( )K K
L

fg g
Lf

φ σ= . Using (10), noting  and 0Kg > 1σ > , 
L

f
Lf

 rises 

indefinitely. , ( )lim
K

Kg
gφ

→∞
= Ω 1σ >  so (i) follows immediately.  
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Again using the CES function 
1y

y A r r
y A r r

λ

λ

−

−g
 

≡ = + ⋅ + 
ˆL'Hopital's. By  rule, lim 1

1r

r
r

λ

λ

−

−→∞

 
= + 

 

for − ≤ . Hence (1 0 i.e.λ σ< > )1
1

r r
r r

λ

λ

−

−

 
⋅ = ∞

+ 
   using (i). This proves (ii) of the proposition.

                 Q.E.D. 

 

We have to conclude that a balanced growth path, in general, may not exist in the case of 

1σ > . 

 

III. Concluding Remarks 

 In the course of our investigation, two different effects of the elasticity of substitution are 

found. The first is a direct one. A higher elasticity slows down the fall of the marginal product of 

capital, which encourages capital accumulation and saving. Because the added incentive from 

elasticity is counteracted by the resulting larger stock of capital, the direct effect influences only 

income levels but not the balanced growth rate. The second effect is an indirect one. We assume 

capital accumulation to be related to learning by doing. More specifically, the speed of capital 

accumulation may raise or lower the speed of learning. The speed of learning, in turn, affects the 

rate of technological change. In this way, elasticity maintains a rate-of-change effect on growth. 

 In our inquiry, we have paid particular attention to the elasticity of substitution being less 

than 1. The case of elasticity greater than 1 generally led to the non-existence of a balanced path. 

There is some indication in the literature that the elasticity is empirically more likely to be less 

than 1 (see footnote 1 above). It is hard to believe, however, that a country with substitution 

elasticity greater than one will necessarily be heading for an explosive growth or stagnation. 

More work is perhaps needed in this direction. 
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 Again, for future research directions, it would be rewarding to investigate empirically the 

relations between elasticity, income levels, and income growth rates. Our results suggest such 

relations may not be monotonic. Furthermore, only learning by doing is investigated here. The 

relation between elasticity and human capital growth, for instance, seems an interesting topic for 

future research. 
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( )Kg K K=Kg

( )Kgφ

1Kg σ =
ˆKg  

450 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

 

 

 

Figure 1. The learning-investment curve and growth according to assumption (12). 
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Figure 2. The learning-investment curve and growth according to assumption (13). 
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	More concretely, it follows from this proposition that

