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Abstract. We propose a communication-efficient authentication scheme to au-
thenticate query results disseminated by untrusted data publishing servers. In our
scheme, signatures of multiple tuples in the result set are aggregated into one
and thus the communication overhead incurred by the signature keeps constant.
Next attr-MHTs (tuple based Merkle Hash Tree) are built to further reduce the
communication overhead incurred by auxiliary authentication information (AAI).
Besides the property of communication-efficiency, our scheme also supports dy-
namic SET operations (UNION, INTERSECTION) and dynamic JOIN with im-
munity to reordering attack.

Keywords: data publishing, authentication, merkle hash tree, aggregated
signature

1 Introduction

1.1 The Third Party Publishing Problem

This paper studies techniques for authenticating query results in the third party publish-
ing scenario shown in Figure 1, where database owners outsource their data manage-
ment to a third party publisher to disseminate data to users on demand. The motivation
of outsourcing is to achieve greater data survivability and higher distribution efficiency:
Firstly, as external servers take care of the data management, organizations can con-
centrate on their core tasks and thus reduce substantial cost on software, hardware and
hiring professionals to maintain the in-house system; Secondly, by adding data process-
ing server(s) near user cluster, users can get faster response to their queries from the
server; Last, secret keys which are used for protection of the database are kept on the
corporate end and not online, so that much better security is achieved.

As valuable information is stored in the third party publishing servers, the servers
as well as the data delivery networks are frequently the targets of malicious attacks.
Furthermore, the server itself might be malicious. A malicious server may attempt to
insert fake records into the database or modify existing records. As a result, the integrity
and origin authenticity of query results coming from these servers must be verified
before a querier can consume them. Especially when the querier is dependent on the
results to make high-stake decisions, she needs strong guarantees of the integrity and
accuracy of the data received.
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Fig. 1. System Set-Up

1.2 Related Work and Our Contributions

We propose a novel scheme to authenticate query results disseminated by an untrusted
third party publishing server. Our scheme is based on the Merkle Hash Tree (MHT) and
aggregated digital signatures. A couple of database authentication schemes employ-
ing MHT (hereafter refereed to as MHT-based schemes) are proposed in the literature
[7,12]. However, the way we make use of MHT is unique. The MHT in previously pro-
posed schemes is constructed over the entire relation, while our MHT (refereed to as
attr-MHT) is constructed on individual tuples in order to reduce communication over-
head incurred by auxiliary authentication information (AAI). In our view, the disad-
vantages of constructing a MHT over the entire relation are as follows: 1) it is very
expensive to perform data update as any change in the relation will have impact on the
whole MHT; 2) as a result of 1), it is not suitable to authenticate frequently changing
data such as stock and sales information; 3) it is difficult to reduce the communica-
tion overhead incurred by AAI and imposes high processing cost on the querier (e. g.,
PROJECT has to be performed by the querier [7]); and 4) it does not support dynamic
JOIN and SET operations.

Our research is motivated by the work done by Mykletun, et. al. [10] (hereafter we
refer to the scheme in [10] as well as our scheme as the aggregated signature based
schemes) which explores the use of aggregated signature schemes in database system
authentication. Their main contribution is the reduction of communication overhead in-
curred by signatures, through an aggregated signature scheme. In this paper, we extend
and improve their work by constructing attr-MHTs over individual tuples to reduce the
communication overhead of AAIs that result mostly from PROJECT operations and ap-
plying to all the relational operations. By using MHT and aggregated signature scheme
synergetically, our scheme is the first authentication scheme which reduces communica-
tion overhead incurred by AAI as well as supports dynamic JOIN and SET operations.
The main contributions of our scheme are: 1) achieve constant communication overhead
for SELECT and allow a querier to verify all the result tuples with just one digital signa-
ture verification operation; 2) minimize communication overhead incurred by AAI for
PROJECT operation through optimized attr-MHT; 3) support dynamic SET operations
(UNION, INTERSECTION); 4) support dynamic JOIN with immunity to reordering
attack.
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2 Preliminaries

2.1 The Merkle Hash Tree

We illustrate the construction and application of the MHT with a simple example. The
reader is referred to [9] for detailed description. To authenticate data values n1, n2,
. . . , nw, the data source constructs the MHT as depicted in Fig. 2 assuming that w =
4. The values of the four leaf nodes are the message digests, H(ni), i = 1, 2, 3, 4,
respectively, of the data values under a one-way hash function H(·). The value of each
internal node of the tree is derived from its child nodes. For example, the value of
node A is ha = H(H(n1)‖H(n2)) where “‖” denote concatenation. The value of
the root node is hr = H(ha‖hb) which is used to authenticate any subset of the data
values n1, n2, n3, n4, in conjunction with a small amount of AAI. For example, a user,
who is assumed to have the authentic root value hr, requests for n3 and requires the
authentication of the received n3. Besides n3, the source sends the auxiliary information
ha and H(n4) to the user. The user can then check the authenticity of the received n3 as
follows. The user first computes H(n3), hb = H(H(n3)‖H(n4)) and hr = H(ha‖hb),
and then checks if the latter is the same as the authentic root value hr. Only if when this
check is positive, the user accepts n3. The concept of MHT has been used for certifying
query answers over XML documents [6], proving the presence/absence of public key
certificates on revocation lists [8,11], certifying data published by untrusted publishers
[7] and certifying JPEG2000 sub-images [5].

H(n1) H(n2) H(n3) H(n4)

A B

Root

ha hb

hr

Fig. 2. An example Merkle Hash Tree

2.2 Aggregated Signature Scheme

A digital signature algorithm is a cryptographic tool for generating non-repudiation
evidence,for authenticating the integrity of the signed message as well as its origin. An
aggregated signature scheme is a digital signature scheme which allows aggregation
of multiple individual signatures into one unified signature such that verification of
the unified signature is equivalent to verifying individual component signatures. The
concept of aggregated signature is first introduced by Boneh, et al. in [2] (hereafter
referred to as BGLS scheme). According to the ability to aggregate signatures from
different signers, there are single-signer scheme and multi-signer scheme. Single-signer
scheme, like Condensed-RSA [10], aggregates only signatures from the same signer
into one unified signature. Multi-signer scheme, like BGLS, can aggregate signatures
from multiple signers.
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3 System Overview

Our proposed authentication scheme is targeted for the third party publishing model [7]
depicted in Fig. 1. The objective of our scheme is to provide adequate security measures
to protect the stored data from both the malicious outsider attacks and the server itself.

3.1 Trust Model

The owner of data is fully trusted by the queriers. Only the owner knows the private
key for signing individual tuples. Queriers are trusted database clients and a querier
verifies query results by checking the data integrity and data origin based on the owner
signatures. The data processing server is responsible for replication, backup and dis-
semination of the outsourced database that it hosts. However, the server is not trusted
with the integrity of the data.

There are two kinds of attacks: server side attacks and communication channel at-
tack. Server side attacks refers to attacks happening on the server side. The server is
assumed to be unsecured, meaning it is possible for a hacker to tamper (insert, delete,
modify) with the data there. Also, the server itself might be malicious and it may attempt
to tamper with the data it stores or processes. Insertion attack and modification attack of
the data on the sever side can be detected easily at the querier side. Deletion attack is a
bit more complex. There are two kinds of deletion attacks happening on the server side:
permanent deletion of tuples from the database and dynamic deletion of tuples from
the result set (the database remains intact). Dynamic deletion cannot be detected by the
querier. It is an unsolved problem in the literature [7,12,10] and stays unsolved in our
scheme. However we have some methods to detect permanent deletion attack. One way
to detect permanent deletion attack is for the DBMS to maintain a global information
map (such as a MHT on the entire database), and to check the integrity of the database
periodically. How to maintain the global information map for the entire database is be-
yond the scope of this paper. Our strategy is putting the responsibility of integrity check
of the whole database on the owner side. Although the capability provided by perma-
nent deletion detection is limited but still useful, in the sense that users can be sure that
they are working with authentic data, although they cannot be sure they can receive all
the relevant data.

When the querier and the server are not communicating over a secure channel, e.g.,
SSL/TLS, the open communication channel is totally untrusted and the query result set
is vulnerable to communication channel attacks such as deletion of records, insertion
of spurious records, modification of valid records and reordering of query results from
JOIN. Any communication channel attacks can be detected at the querier side.

3.2 Overview of System Operation

Using our scheme, the system in Fig. 1 operates as follows:

1. An owner prepares an authenticated tuple in the database by constructing a MHT
on the tuple. As the leaves of our MHT are the digests of attribute values in the
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tuple, we refer to such a MHT as attr-MHT to distinguish it from the MHT con-
structed on the entire table. The owner signs on the root value of the attr-MHT. The
authenticated table, consisting of all the tuples and their corresponding signatures,
are then uploaded to the publishing server(s) through a high bandwidth channel.

2. The server executes a client’s query by selecting records that match the query pred-
icate, generates a verification object V O = {σ1,t, Λ} and sends back the V O along
with the result set. A verification object is an object which contains enough infor-
mation for the client to verify the query result set. The V O consists of two parts.
The first part σ1,t is a unified aggregated signature calculated from all the tuple
signatures in the result set. The second part Λ represents authentication auxiliary
information (AAI) which is necessary to authenticate the result set.

3. The client, or the querier, after receiving the result set and the V O, verifies the
authenticity of the result set using the V O. As the queriers may have a diversified
range of computation and communication capabilities, an important design objec-
tive of our authentication scheme is to minimize communication and computation
overhead at the querier side.

4 The Scheme

First, we show how to construct attr-MHT and generate tuple signature over it. Next we
illustrate how to aggregate tuple signatures over a query result set and discuss consid-
erations in choosing one of the aggregated signature schemes. We then present details
on how to construct V Os of result sets from various basic algebraic operations [3].

4.1 The attr-MHT and Calculating Tuple Signature

An attr-MHT is a MHT built on an individual tuple. We use an example to illustrate the
construction of an attr-MHT. Suppose there is a table with 16 attributes, for each tuple in
the table, we construct an attr-MHT. Fig. 3 shows a binary attr-MHT constructed from
one tuple in the table. Though the attr-MHT in our example is a binary and balanced
tree, in general it can be non-binary and unbalanced. In the tree of Fig. 3, a leaf node cor-
responds to an attribute in the tuple and is assigned a value which is the message digest
of the attribute value of this tuple. The internal nodes are assigned with values derived
from its two child nodes. This process continues until the root value h is computed.
The owner generates a tuple digital signature σ on the root value h: σ = SIGN(h). To
verify the authenticity of this tuple, the querier reconstructs the attr-MHT to compute
the root value and then verifies the digital signature using the owners’s public key and
the computed root value. The querier accepts the received tuple as authentic only if the
verification is successful.

The purpose of using attr-MHT in our authentication scheme is to reduce the com-
munication overhead incurred by AAI which is used to verify a record from a PROJECT
operation. For example, without using attr-MHT, if attributes A10 to A16 are filtered out,
to authenticate record < A1, A2, · · · , A9 >, the server needs to send seven hash values
(the hash values of nodes A10 to A16) to the querier. With the help of attr-MHT, only
three hash values (the hash values of nodes A10, N36 and N24) need to be sent out to
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A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16

N38N31 N32 N33 N34 N35 N36 N37

N24
N21 N22 N23

N11 N12

Root

Sign

σ

Fig. 3. An example attr-MHT

the querier. More details on how to optimize the attr-MHT to further reduce the size of
AAI are discussed in Section 4.3.

When there exist multiple relations in the database, to identify a tuple in a speci-
fied relation, the owner generates a digital signature for this tuple with the relation’s
name. The signature generated with relation’s name is represented as σ̃ = SIGN(h̃),
where h̃ = H(h‖RELATION NAME) (h is the root value of the tuple attr-MHT).
For example, for a tuple in a relation named “R”, its signature with relation’s name is
calculated as: σ̃ = SIGN(H(h‖“R”)). After generating all the tuple signatures in the
database, the owner uploads the authentic database (the original database and all the
tuple signatures) to the server.

4.2 Aggregating Tuple Signatures

A query result set usually includes tens, hundreds or even thousands of records. To
verify these records, a straightforward solution is that the server sends one signature
per record to the querier and the querier verifies these records one by one. This direct
solution is not very attractive on two counts. First it is not efficient because it is ex-
pensive to verify these records one by one. We thus favor a solution that enables the
querier to do batch-verification: verify once and verify all the records. Furthermore,
as the size of a database record can be small (relative to the signature and digest) in
many cases, the communication overhead incurred by tuple signatures is not negligible.
Aggregated signature schemes provide a near perfect solution. Mykletun, et. al. [10]
is the first to use aggregate signature schemes to authenticate query results from out-
sourced databases under three system models, i.e., Unified-Client model, Multi-Querier
model, and Multi-Owner model, to reduce communication overhead. Suppose there are
n tuples in the result set, the server aggregates these tuple signatures. The aggregation
process is depicted in Fig. 4.2 where σi denotes the signature of tuple i in the result set
and σ1,n denotes the aggregated signature of the result set. The aggregated signature
σ1,n, instead of the n individual tuple signatures, is sent to the querier as part of V O
for query result verification.

There are some concerns in choosing one of the two aggregated signature schemes
to be used in an authentication scheme. First, bandwidth cost concern. The Condensed-



382 D. Ma et al.

nσ2σ1σ

Aggregate

n,1σ

Fig. 4. Aggregating tuple signatures

RSA scheme achieves constant bandwidth in both the Unified-Client and Multi-Querier
models but not in the Multi-Owner model while the BGLS scheme achieves constant
bandwidth in all the three models.

Second, verification cost and system model concern. The verification costs of both
schemes are linear to the number of signatures. The Condensed-RSA scheme is not
suitable for the Multi-Owner model, that is, tuples in a database are signed by differ-
ent signers who create them. For example, a McDonalds database would have sales
information from each franchise and each franchise could sign its own sales data. The
BGLS signature scheme can aggregate signatures by distinct users into one short signa-
ture, however the computational complexity is unfortunately quite high Compared with
the Condensed-RSA scheme.

In a Multi-Owner scenario, the BGLS scheme is more favored since it can aggregate
any two or more signatures from different signers. Although Condensed-RSA cannot
aggregate signatures from different signers, to achieve more computation efficiency, it
still can be used in our authentication scheme with a slight modification. If we regard
the whole database as a property of an organization, every tuple is owned by the orga-
nization and should be organization-signed. In a multi-signer application, if we choose
to use organization-signed tuple signatures instead of individual creator signed tuple
signatures, Condensed-RSA can be used in the same way as the BGLS is used. In the
rest of the paper, we use BGLS as the default signature scheme to illustrate our authen-
tication scheme.

4.3 V Os for Relational Algebraic Operations

In the relational data model, queries against a database are formulated in SQL [4]. Such
queries are then typically translated by the DBMS query processing engine into expres-
sions of the relational algebra for the purpose of query optimization and execution. We
mainly concerns about providing V O for query results where the queries are formulated
as expressions of relational algebra. We will illustrate in this Section how to construct
V Os for various relational algebraic operations: SELECT, PROJECT, SET operations
(UNION, INTERSECT), and JOIN. They are the basic algebraic operations in a rela-
tional database system. Although we present a solution for each operation separately,
the solutions for individual operations can be combined together to provide a solution
for complicated queries, e.g. a SELECT-PROJECT-JOIN query.

V O for SELECT. SELECT is defined as: σC(R) := {t|t ∈ R and C(t)} where R is
a relation, C is a condition of the form AiΘc where Ai is an attribute of R, c ∈ Di, Di



Authenticating Query Results in Data Publishing 383

is the domain on which attribute Ai is defined, and Θ ∈ {=, �=, <, >,≤,≥}. It extracts
specified tuples from a target relation.

With the definition of V O given in Section 3, the use of aggregated signature to
construct a V O is straightforward. Suppose there are t tuples in the result set, the V O
for this result set is: V O = {σ1,t, φ}, where σ1,t is the aggregated signature calculated
from signatures of the t tuples in the result set and φ denotes null. To verify the result
set, the querier reconstructs the attr-MHT for each tuple in the result set and calculate
the root value of the attr-MHT: hi, i = 1, 2, · · · , t. Next the querier verifies the query
result with σ1,t and the calculated hi.

V O for PROJECT. PROJECT is defined as: πAk,···,Al(R) := {< t.Ak, · · · , t.Al >
|t ∈ R}. It extracts specified attributes from a target relation. For queries involving
PROJECT operations, some attributes of the tuple are filtered out. In this case, addi-
tional information need to be sent to the querier to reconstruct the attr-MHT. Suppose
there are t records in the result set, the V O for this result set is: V O = {σ1,t, Λ} and
Λ = {Λi|i = 1, 2, · · · , t}. σ1,t is the aggregated signature calculated from the cor-
responding tuple signatures. Λi is the AAI to authenticate record i in the result set.
It consists of all the values of the sibling nodes of those nodes on the path from the
selected leaf attribute nodes to the root.

For filtered attributes, we have a definition of Highest Common Ancestor (HCA):
Several attributes are said to have a HCA if there exist a subtree in the attr-MHT which
has all these attributes and only these attributes as leaf nodes and the root of this subtree
is not an ancestor of any other attribute. The root of the subtree is called the HCA of
these attributes. In a special case, when a filtered attribute has no common ancestor with
all the other filtered attributes, it is said the HCA of this attribute is itself. To illustrate,
in Fig. 3 A10 is the HCA of itself; N36 is the HCA of A11 and A12; N24 is the HCA of
A13, A14, A15 and A16. Apparently, HCAs are the AAI data needed to be sent to the
querier.

To minimize the size of AAI or the number of HCAs, the attr-MHT can be optimized
by sorting the attributes according to the attribute query frequency (AQF): the frequency
at which an attribute is queried, which can be obtained by query statistics. We give
an example to show how to sort the attributes here. Let the most frequently selected
attributes come first in the attr-MHT, and the less frequently requested attributes come
later. The purpose of this sorting is to produce an ordering of the filtered attributes like
A10 to A16 in Fig. 3, to increase the probability that more attributes will have a HCA
and thus reduce the total number of HCAs as far as possible.

V O for SET Operations. We consider SET operations of UNION and INTERSECT.
They are both binary operations which build a new logical relation from two specified
relations. A tuple in the logical relation can be mapped into a tuple in either of the two
specified relations. The construction of V O for these operations over two relations uses
tuple signatures with relation’s name: σ̃.

UNION is defined as: R ∪ S := {t|t ∈ R or t ∈ S}. It builds a logical relation
consisting of all tuples appearing in either or both of two specified relations: R and S.
For a tuple which belongs to both relations, we make the following rule in choosing
which signature for aggregation and verification: if a tuple appears in both relations,
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its signature generated by a signer in R (or S) is chosen for signature aggregation; the
public key of the signer from R (or S) who signs this tuple is chosen accordingly for
signature verification.

Suppose the query result set from a UNIONed operation contains totally t tuples,
m (inclusive tuples appearing in both relations) from relation R, n (exclusive tuples
appearing in both relations) from relation S, and m + n = t. Let σ̃R

i (i = 1, 2, · · · , m)

denote the signature of tuple i from R, σ̃S
j (j = 1, 2, · · · , n) the signature of tuple

j from S. The V O for this result set is: V O = {σ1,t, φ} where σ1,t is calculated

as σ1,t =
∏m

i=1 σ̃R
i × ∏n

j=1 σ̃S
j . The querier verifies the result set according to the

equation e(σ1,t, g2) =
∏m

i=1 e(h̃R
i , vR

i ) × ∏n
j=1 e(h̃S

j , vS
j ) where h̃R

i = H(hR
i ‖“R”)

and h̃S
j = H(hS

j ‖“S”)). The querier is able to verify the result set containing tuples
from either or both of the two relations.

INTERSECT is defined as: R ∩ S := {t|t ∈ R and t ∈ S}. The INTERSECT
operation builds a logical relation consisting of all tuples appearing in both of two
specified relations. The querier needs to verify that every tuple in the result set appears
in both relations.

Suppose the query result set from a INTERSECTed operation contains totally t tu-
ples. Let hi (i = 1, 2, · · · , t) denote the root value of the attr-MHT for tuple i. Let σ̃R

i

denote its signature with R’s name in R, σ̃S
i its signature with S’s name in S. The V O

for this result set is: V O = {σ1,t, φ} where σ1,t is calculated as σ1,t =
∏t

i=1(σ̃
R
i ×σ̃S

i ).
The querier verifies the result set according to the equation e(σ1,t, g2) =
∏t

i=1(e(h̃
R
i , vR

i ) × e(h̃S
i , vS

i )). The querier is able to verify the result set containing
tuples from both of the two relations.

V O for JOIN. JOIN is defined as: R ��C S := {tq|t ∈ R and q ∈ S and C(t, q)}
where tq is a tuple pair, C is condition of the form AjΘAk , Aj and Ak are attributes
of relations R and S respectively, and Θ ∈ {=, �=, <, >,≤,≥}. It builds a relation
from two specified relations consisting of all possible concatenated pairs of tuples, one
from each of the two specified relations, such that in each pair the two tuples satisfy
the specified condition. Without loss of generality, let T denote the relation resulted
from a JOIN R ��C S, that is: T = R ��C S = {pi|i = 1, 2, · · · , n} = {(tiqi)|i =
1, 2, · · · , n. ti ∈ R, qi ∈ S, and ti.AjΘqi.Ak = TRUE}, where pi is a tuple of
relation T and it is in the form of a fixed tuple pair (tiqi).

The V O for a JOIN is in the form of {σ1,n, φ}. σ1,n is the aggregated signature by
aggregating the signatures of all the n tuples in relation T and is calculated as σ1,n =∏n

i=1 σR
i × ∏n

i=1 σS
i . The querier uses the equation e(σ1,n, g2) =

∏n
i=1 e(hR

i , vR
i ) ×∏n

i=1 e(hS
i , vS

i ) to verify the result set from a JOIN. In case that all the tuples are signed
by the same entity, vR

i = vS
i .

However this single step cryptographic signature verification is not enough to au-
thenticate the result set as it cannot detect the reordering attack which is illustrated
in Fig. 5. An attacker switches the q element in the two tuples p1 = (t1q1) and
p2 = (t2q2). After the switch, p1 becomes p′1 = (t1q2) and p2 becomes p′2 = (t2q1)
and the conditions C(t1, q2) and C(t2, q1) may no longer hold. Because p1 and p′1, p2

and p′2 are different in values, they may convey wrong results to the querier and thus en-
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danger the querier’s decisions. The reordering attack can occur both on the server side
when the server behaves maliciously or is compromised by an outside attacker or during
the transmission process when the querier and the server are not communicating over a
secure channel, e.g., SSL/TLS. When the server is compromised, the attacker controls
the server and reorders the result set before the server sends it out to the querier. When
the querier and the server are not communicating over a secure channel, the attacker is
able to eavesdrop on the conversation and reorders the result set without destroying it.
This reordering attack cannot be detected using only cryptographic verification because
the verification of an aggregated signature is order independent and does not check the
validity of JOIN condition.

t1   q1

t2   q2

tn   qn

switch
t1   q2

t2   q1

tn   qn

Fig. 5. Reordering attack

To detect reordering attacks, besides the cryptographic signature verification, the
querier must also check if the condition C(ti, qi) still holds for each pi in the received
result set. Thus the authentication process for a JOIN consists of two steps: condition
check and signature verification. Before constructing the two attr-MHTs for each tuple
pi in the result set, the querier checks the condition C(ti, qi) in pi first. If the condition
C(ti, qi) does not hold the authentication of the result set fails. If the condition check
for all the tuples in the result set are successful, the querier further cryptographically
verifies the aggregated signature with all the calculated attr-MHT root values. Only
when the condition check and the signature verification are both successful can the
result set be regarded as authenticated.

4.4 Update Operations

As our attr-MTH is built on individual tuple and each tuple in the table is signed sep-
arately and the signature aggregate function is accumulative and communicative, up-
date operations (INSERT, DELETE and UPDATE) can be processed in a direct way:
DELETE can be processed by the server with the owner modifying the database’s global
information map accordingly; INSERT and UPDATE have to be channelled back to the
owner as only the owner possesses the private key for generating new signatures. The
owner signs on the new (updated) tuple and sends the new (updated) tuple with the
newly generated signature to the server. There is no need to lock the whole table during
the updating process. However, to ensure data consistency, the update operations should
be done under a concurrency control mechanism like basic 2PL [1].
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5 Analysis and Evaluation

We analyze our scheme in terms of the following five overheads as defined in [10]:
querier communication, querier computation, server computation, server storage and
owner computation. The parameters used in the analysis are summarized in Tab. 1:

Table 1. Notations

Notation Meaning Default

|S| Length of a signature (Bytes) 128
|D| Length of a hash value (Bytes) 16
TR Number of tuples/rows in table (million) 1
TA Number of attributes/columns in table 10
QR Number of tuples in the result set -
QA Number of filtered attributes -
|Ai| Size of attribute Ai (Bytes) -

5.1 Querier Communication Overhead

The querier communication overhead consists of two parts: overhead incurred by the
aggregated signature and overhead incurred by AAIs. We analyze these two kinds of
overheads separately.

Overhead Incurred by Signature. The communication overhead incurred by signa-
ture remains constant as |S|, the same as in [10]. It is independent on the number of
records in the result set. In contrast, the communication overhead incurred by signature
in the MHT-based schemes is linear to QR.

Overhead Incurred by Authentication Auxiliary Information. Let NA denote the
number of digests as AAI per tuple in the result. Suppose the QA filtered attributes are
in a continuous sequence in the end of the sorted attribute list. NA can be represented
as:

NA =
{

1, if log2 QA is an integer;
[2, 2�log2 QA� + 1], if log2 QA is not an integer.

When log2 QA is an integer, that is QA = 1, 2, 4, · · ·, only one digest per record needs
to be sent out. When log2 QA is not an integer, NA is in the range of [2, 2�log2 QA� +1].
Its maximum value 2�log2 QA� + 1 is obtained when log2(QA + 1) is an integer. Thus
in the worst case when log2(QA + 1) = n (n is an integer), the ratio of NA/QA is:

NA

QA
=

2�log2 QA� + 1
QA

=
2�log2(2

n−1)� + 1
2n − 1

=
2n−1 − 1
2n − 1

<
1
2

(1)

From Eq. 1, we conclude that by employing attr-MHT our scheme reduces the com-
munication overhead incurred by AAI at least by half compared with all the existing
authentication schemes.
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5.2 Querier Computation Cost

The querier computation cost consists of two parts: hashing cost spent on the recon-
struction of the attr-MHTs and verifying cost on the aggregated signature.

Hashing cost on the reconstruction of the attr-MHTs is not significant compared to
the cost on the aggregated signature verification which is a very expensive operation.
Normally, hash functions are about 100 times faster than RSA signature verification
[13], more than 1000 times faster than BGLS signature verification. The cost of hashing
is dependent on the total length of input bits and is represented as: Comphashing =
QR ∗ (2 ∗ (TA − 1) ∗ |D| + ∑TA

i=1 |Ai|).
With signature aggregation the querier only verifies one signature to authenticate

multiple tuples which is very efficient compared with a naive solution which verifies
tuple signatures one by one. To verify a BGLS aggregated signature generated from
these k × t component signatures, it costs k + 1 bilinear mapping plus k × t − 1
multiplication operations, that is: Compaggregated

Q = Multik∗t−1(p) + BM(k + 1).
To authenticate a query result set from a JOIN, there are additional computation cost
incurred by condition check for the querier. However, condition check incurs only a
little computation overhead as the comparison operation is very efficiently implemented
in modern computers.

5.3 Server Computation Cost

Upon a query, besides preparing the result set, the server needs to construct a V O
for the result set by aggregating multiple signatures. The server computation cost is
calculated as: CompS = MultiQR−1(p) = 0.12 × (QR − 1). The multiplication
operation cost involved are not expensive given that Mult1(1) = 0.12ms [10], and can
be easily mitigated with a powerful server machine. Furthermore the resulting savings
in communication overhead and processing cost at the querier side more than justify
our proposed scheme.

5.4 Server Storage Cost

From the system management angle, although the disk units get cheaper, storage man-
agement costs are not getting cheaper and thus the server storage cost is a concern
especially in outsourcing models. The attr-MHT incurs no server storage cost. After the
signature is calculated, the tree structure which stores all the hash values of the inter-
mediate nodes in the attr-MHT is discarded and only the signature is stored with the
physical database. Thus the total cost of server storage of our scheme is calculated as:
StorageS = TR ∗ |S|.

5.5 Owner Computation Cost

To construct an authentic database, the owner needs to construct an attr-MHT and cal-
culate a signature based on the root value of the attr-MHT for each tuple in the database.
The signature generation process can be done off-line. As stated in Section 4.4, because
the signature aggregate function is accumulative and communicative, update operations
can be processed in a simple and direct way and there is no need to lock the whole table.
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6 Conclusion

In this paper, we proposed a communication-efficient scheme based on aggregated sig-
nature schemes and MHT to authenticate query results disseminated by an untrusted
data processing server. To our knowledge, this is the first work that addresses the is-
sue of reducing communication overhead incurred by AAI and the first authentication
scheme which supports dynamic JOIN and SET operations.
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