
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

11-2003

AA Flexible and Scalable Authentication Scheme
for JPEG 2000 Image Codestreams
Cheng PENG
Institute for Infocomm Research

Robert H. DENG
Singapore Management University, robertdeng@smu.edu.sg

Yongdong WU
Institute for Infocomm Research

Weizhong SHAO
Peking University

DOI: https://doi.org/10.1145/957013.957101

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Information Security Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
PENG, Cheng; DENG, Robert H.; WU, Yongdong; and SHAO, Weizhong. AA Flexible and Scalable Authentication Scheme for JPEG
2000 Image Codestreams. (2003). MM'03: Proceedings of the 11th ACM International Conference on Multimedia, Berkeley, CA, November
4-6, 2003. 441-443. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/1076

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13242773?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1076&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1076&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1076&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1145/957013.957101
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1076&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1076&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

A Flexible and Scalable Authentication Scheme for
JPEG2000 Image Codestreams

Cheng Peng1,2, Robert Deng1, Yongdong Wu1

1 Institute for Infocomm Research
Singapore 119613

{pengcheng, deng, wydong}
@i2r.a-star.edu.sg

Weizhong Shao2

2 Department of Computer Science and Technology
Peking University, Peking

China 100871

wzshao@pku.edu.cn

ABSTRACT
JPEG2000 is an emerging standard for still image compres-
sion and is becoming the solution of choice for many digital
imaging fields and applications. An important aspect of
JPEG2000 is its “compress once, decompress many ways”
property [1], i. e., it allows extraction of various sub-images
(e.g., images with various resolutions, pixel fidelities, tiles
and components) all from a single compressed image code-
stream. In this paper, we present a flexible and scalable
authentication scheme for JPEG2000 images based on the
Merkle hash tree and digital signature. Our scheme is fully
compatible with JPEG2000 and possesses a “sign once, ver-
ify many ways” property. That is, it allows users to verify
the authenticity and integrity of different sub-images ex-
tracted from a single compressed codestream protected with
a single digital signature.

Categories and Subject Descriptors
K.4.4 [Computers and Society]: Electronic Commerce—
intellectual property, security ; I.3.8 [Computer Method-
ologies]: Computer Graphics—applications.

General Terms
Security

Keywords
JPEG2000, Authentication, Digital signature, One-way hash
function, Message digest, Merkle hash tree, Data integrity,
Image compression.

1. INTRODUCTION
JPEG2000 [1, 2, 3] is a wavelet based emerging standard

for still image compression and is fast becoming the solution
of choice for many digital imaging fields and applications.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’03, November 2–8, 2003, Berkeley, California, USA.
Copyright 2003 ACM 1-58113-722-2/03/0011 ...$5.00.

As digital imagery becomes more and more pervasive in our
lives, image compression must not only reduce the amount of
data storage and transmission bandwidth requirements, but
also allow extraction for processing and targeting for differ-
ent devices and applications. JPEG2000 achieves state-of-
the-art low bit rate compression performance and has a rate
distortion advantage over the original JPEG. Moreover, it
is designed for “compress once, decompress many ways” [1],
i. e., it supports extraction of different versions of an image
(e. g., different resolutions, pixel fidelities, components, and
so on), all from a single compressed image codestream. This
allows an application to manipulate or transmit only the es-
sential image data for any target device from any JPEG2000
compressed codestream. In this paper, we refer to images,
with various resolution levels, pixel fidelities, components
and so on, extracted from a single image codestream as the
sub− images of the codestream.

Digital imagery is playing an increasingly important role
in sensitive application fields such as government, finance,
health care and the law. In application fields such as these,
it is critical and often a requirement for recipients to check
the integrity of the received image data as well as the au-
thenticity of the origin of the image. Many data integrity
and origin authentication techniques have been proposed [4,
5]. However, these generic data authentication techniques
completely ignore the internal data structure of the content
under protection. A scheme using digital signature for au-
thenticating JPEG2000 codestreams is proposed in [6]: the
scheme simply signs each code-block and attaches the digital
signature to the end of the code-block bit stream. Hence,
the scheme is neither secure nor efficient. It will generate
many signatures since a codestream may contain many code-
blocks. The scheme is vulnerable to cut-and-paste attack
since it only authenticates individual code-blocks, not the
image codestream as a whole.

Several semi-fragile JPEG2000 image authentication schemes
are presented [7, 8, 9], which aim at authenticating images
under lossy compression and other common image manip-
ulations such as blurring and sharpening. For example,
their schemes accept JPEG lossy compression on the wa-
termarked image to a pre-determined quality factor, and re-
ject malicious attacks. The objective of our authentication
scheme is different from that of [7, 8, 9]: we aim at authen-
ticating the sub-images transcoded from a single original
image codestream. The sub-images have not only differ-
ent qualities, but also different resolutions, components and
spacial regions.

In this paper, we introduce a flexible and scalable authen-
tication scheme for JPEG2000 image codestreams based on
the Merkle hash tree [10] and digital signature. Our scheme
is fully compatible with JPEG2000 and possesses the so
called “sign once, verify many ways” property. That is, it al-
lows users to verify the authenticity and integrity of different
sub-images transcoded from a single compressed codestream
protected with a single digital signature. By doing so, our
scheme preserves the important “compress once, decompress
many ways” property of the JPEG2000 standard.

The concept of Merkle hash tree has been used for certify-
ing answers to queries over XML documents [11], for proving
the presence or absence of public key certificates on revoca-
tion lists [12, 13], and for certifying data published by un-
trusted publishers [14]. However, authenticating JPEG2000
image codestreams requires more careful treatment since
these streams are not as structured and are subject to var-
ious progression orders which further complicates the issue.
The innovative contribution of this paper is the development
of a general authentication model of JPEG2000 codestreams
using the Merkle hash tree which supports authentication
of various sub-images with only one pre-computed digital
signature and a small amount of auxiliary information. An-
other important contribution of the paper is the construction
of the optimized Merkle hash tree which allows for minimum
amount of auxiliary information being sent to the verifying
users.

The rest of the paper is organized as follows. In Section
2, we present two concepts of related cryptographic primi-
tives and give a concise description on the internal structure
of JPEG2000 codestreams. We also show the construction
of the Merkle hash tree and how to use it to authenticate
sub-sets of data. In Section 3, we first introduce our basic
authentication scheme, and then improve it based on user
request strategies and patterns. In Section 4, we apply our
scheme in the third party publication scenario. In Section 5,
we describe briefly the results of our experiments. Section 6
contains our concluding remarks.

2. PRELIMINARIES

2.1 Two Cryptographic Primitives
The following cryptographic primitives will be used in the

rest of the paper.
One-way hash function: A hash function takes a variable-

length input string and converts it to a fixed-length output
string, called a hash value. A one-way hash function, de-
noted as h(.), is a hash function that works in one direction:
it is easy to compute a hash value h(m) from a pre-image
m; however, it is hard to find a pre-image that hashes to
a particular hash value. There are many existing one-way
hash functions, such as MD5[15] and SHA[16]. The hash
value of a one-way hash function is also called a message
digest. We will use the terms hash, hash value and message
digest interchangeably.

Digital signature: A digital signature algorithm is a cryp-
tographic tool for generating non-repudiation evidence, au-
thenticating the integrity of the signed message as well as
its origin. In a digital signature algorithm, a signer keeps
a private key secret and publishes the corresponding public
key. The private key is used only by the signer to generate
digital signatures on messages and the public key is used
by anyone to verify the signatures on messages. The digi-

tal signature algorithms mostly used are RSA [17] and DSA
[18].

2.2 Structures of JPEG2000 Codestreams
A JPEG2000 image codestream is organized hierarchi-

cally with several kinds of structural elements - tiles, com-
ponents, tile-components, resolution levels, precincts, layers
and packets [1, 3].

Tiles: JPEG2000 allows an image to be divided into smaller
rectangular regions known as tiles, each of which is treated
as a small independent image for the purpose of compres-
sion. Tiles are used to partition the image data into spatial
regions. We denote tiles of an image as T0, ..., Tnt−1, where
nt is the number of tiles of the image.

Components and Tile-components : A component refers
to an element of a color space, such as R, G, B. A tile-
component is all the samples of a given component in a tile.
There is a tile-component for every component and every
tile. If a tile is partitioned into nc tile-components, then we
denote these tile-components as C0, ..., Cnc−1.

Resolution levels: Given a tile-component, a multiple-level
dyadic wavelet transform is performed. The first wavelet
transform decomposes a tile-component into four sub-bands
LL1, LH1, HL1, HH1 where LL1 is the lowest frequency sub-
band. The second wavelet transform decomposes LL1 into
another four sub-bands LL2, LH2, HL2, HH2. Applying the
wavelet transform continuously on each LL sub-band gen-
erates a series of sub-bands belonging to different trans-
form levels. A (nr − 1)-level wavelet transform generates
nr sets of sub-bands, denoted as R0 = {LLnr−1}, R1 =
{LHnr−1, HLnr−1, HHnr−1}, ..., Rnr−1 = {LH1, HL1, HH1}.
We refer to Ri as resolution level i.

Resolutions: The sub-image constructed from R0 is a
small “thumbnail” of the original image. The sub-image
constructed from R0 and R1 together is a bigger “thumb-
nail” of the original image. The sub-image constructed by
R0, R1 and R2 is an even bigger “thumbnail” of the original
image. Continue like this, we get a series of “thumbnails”
and the last “thumbnail” is the original image, which is con-
structed from R0, R1, ..., Rnr−1. We refer to these “thumb-
nails” as sub-images of resolution 0, resolution 1, ..., and
resolution nr − 1, respectively. Note that resolution level
and resolution are two different concepts according to our
definitions.

Precincts: Each resolution of a tile-component is parti-
tioned into several rectangle regions, called precincts. Precincts
are used to make it easier to access the wavelet coefficients
corresponding to a particular spatial region of the image. If
a resolution level is partitioned into np precincts, then these
np precincts are denoted as P0, ..., Pnp−1.

Layers and Quality levels : Each precinct goes through a
number of coding passes, and a precinct contributes some
data for each pass. All the data assembled during a coding
pass in a tile forms a layer, which represents an image quality
increment. Assuming that a tile is partitioned into nl layers,
we denote these layers as Li, i = 0, 1, ..., nl − 1. A quality
level is composed of a set of continuous layers. Specifically,
quality level i, 0 ≤ i ≤ nl−1, is composed of the set of layers
from L0 to Li. The sub-image with the quality level 0 has
the lowest quality, and the sub-image with the quality level
nl − 1 is the original image which has the highest quality.

Packets: Packets are the most fundamental building block
of JPEG2000 codestreams. A JPEG2000 codestream can be

viewed as a set of packets. For a given tile, four parameters
- component, resolution level, precinct and layer, uniquely
identify a packet and the packet contains the data corre-
sponding to these four parameters.

Figure 1 shows the packet generation process for a code-
stream. The process consists of five steps:

1. Decompose a tile into several tile-components.
2. Transform a tile-component into several resolution

levels.
3. Partition a resolution level into several precincts.
4. Partition a precinct into several layers.
5. Form a packet from the bit stream corresponding to a

given tile-component, resolution-level, precinct and layer.

.-.-...-....,,,

.

/

0

12

?685> ?685+4;9<;:5:?>

<=546:4?>

83B5=>

<3475?

=5>;8@?6;: 85A58>

Figure 1: The packet generation process in code-
stream.

From Figure 1 we see that, a packet in a given tile is
uniquely identified by four parameters: C (component), R
(resolution level), P (precinct) and L (layer). The pack-
ets of an image codestream are sorted with respect to these
four parameters in some orders, called progression orders.
JPEG2000 allows five progression orders - LRCP, RLCP,
RPCL, PCRL and CPRL. For example, a tile with progres-
sion order LRCP can be constructed by writing the packets
using four nested loops (see Table 1). The innermost loop
is precinct, followed by component, followed by resolution
level, and finally by layer.

2.3 The Merkle Hash Tree
We illustrate the construction and application of the Merkle

hash tree with a simple example. The reader is refereed to
[10] for detailed descriptions.

To authenticate data values n1, ..., nw, the data source
constructs the Merkle hash tree as depicted in Figure 2 as-
suming that w = 8. Each node in the tree is assigned a
value. The values of the 8 leaf nodes are the message digests,
h(n1), ..., h(n8), respectively, of the data values under a one-
way hash function h(.). The value of each internal node of
the tree is derived from its child nodes. For example, the
values of node A and node B are ha = h(h(n1)|h(n2)) and
hb = h(h(n3)|h(n4)) respectively, where “|” denotes con-
catenation. And, the value of node C is hc = h(ha|hb). The
data source completes the levels of the tree recursively from
the leaf nodes to the root node.

The value of the root node E is he = h(hc|hd) which is
used to commit to the entire tree. It can be used to authenti-
cate any subset of the data values (n1, ..., n8), in conjunction
with a small amount of auxiliary information. For example,
a client, who is assumed to have the authentic root value

9*:,+ 9*:-+ 9*:.+ 9*:/+ 9*:0+ 9*:1+ 9*:2+ 9*:3+

94 95

96

98

97

; <

=

?

>

Figure 2: An example Merkle hash tree.

he, requests for n3 and requires the authentication of the
received n3. Besides n3, the source sends the auxiliary infor-
mation h(n4), ha and hd to the client. The client can then
check the authenticity of the received n3 as follows. The
client first computes h(n3) and h(h(ha|h(h(n3)|h(n4)))|hd)
and then checks if the latter is the same as the root value he.
If this check is positive, the client accepts n3. In general, to
authenticate the data value ni, the auxiliary information is
the values of all the sibling nodes of those nodes on the path
from the leaf node h(ni) to the root.

The Merkle hash tree can prevent an adversary, who im-
personates as the source, from sending bogus data to the
client. In the example of above, an adversary impersonat-
ing as the source can not sends a bogus n′3 to the client,
because he can not find h(n4)

′, h′a and h′d such that

h(h(h′a|h(h(n′3)|h(n4)
′))|h′d)=he,

since h(.) is a one-way hash function. More details about
the security of the Merkle hash tree are described in [10].
For the same reason, the integrity of the transferred data
can be guaranteed by the Merkle hash tree, i.e, any tamper
of the transferred data can be detected.

Though the Merkle hash tree in our example is a binary
and balanced tree, generally, it can be non-binary and un-
balanced.

3. OUR AUTHENTICATION SCHEME
From the description given in Section 2.3, we note that

the root value of the Merkle hash tree must be forwarded to
the receiver in an authentic manner; otherwise any Merkle
tree based authentication scheme will not be secure [10]. In
our authentication scheme, we assume that the data source
has a pair of private and public keys in a digital signature
scheme and the public key can be distributed to receivers
through authentic channels using, for example, a public key
infrastructure [19].

The operation of our authentication scheme can be sum-
marized as follows. The source of a JPEG2000 codestream
first constructs a Merkle hash tree of the codestream and
then computes a signature on the root value of the tree.
Upon request of a user, the source sends the packets of the
requested sub-image (e. g., the image with a certain res-
olution and quality layer), the signature on the root value,
and a small amount of auxiliary information to the user who
can then successfully verify the authenticity of the received
sub-image based on the signature and the auxiliary infor-
mation. Note that the source only needs to compute one
signature per JEPG2000 codestream and this single signa-
ture allows users to authenticate all the possible sub-images
generated from the same codestream. Hence, our authen-

for each l = 0, ... , nl − 1 //nl is the number of layers
for each r = 0, ... , nr − 1 //nr is the number of resolution levels

for each c = 0, ... , nc − 1 //nc is the number of components
for each p = 0, ... , np − 1 //np is the number of precincts

packet for component c, resolution r, precinct p, layer l

Table 1: The sort of packets under the progression order LRCP.

tication scheme achieves the design objective of “sign once,
verify many ways”.

In the following, we will omit the description of digital
signature generation and verification. Instead, we will focus
on the construction of the Merkle hash tree for JPEG2000
codestreams. We first describe how to construct a basic
Merkle hash tree for authenticating generic JPEG2000 code-
streams. We then introduce two optimizations of the basic
Merkle hash tree.

3.1 The Basic Merkle Hash Tree for JPEG2000
codestreams

Figure 1 in Section 2.2 shows clearly a hierarchical struc-
ture of JPEG2000 codestreams: an image is partitioned into
tiles, tiles into tile-components, tile-components into resolu-
tion levels, resolution levels into precincts, finally precincts
into packets. Assume that an JPEG2000 image has nt tiles,
each tile has nc tile-components, each tile-component is de-
composed into nr resolution levels, each resolution level is
partitioned into np precincts, and each precinct is parti-
tioned into nl layers, the basic Merkle hash tree for this
image codestream is depicted in Figure 3. This tree has 6
levels which correspond, from top to bottom, to the root
node, tiles, tile-components, resolution levels, precincts and
layers, respectively.

.+ .43*,

/+ /45*,

0+ 046*,

-+ -42*,

1+

-+ -42*,

0+ 046*,

/+ /45*,

.+ .43*,

147*,

Figure 3: The basic Merkle hash tree for a
JPEG2000 codestream.

Recall that, given a tile, four parameters - component, res-
olution level, precinct and layer, uniquely identify a packet.
Therefore, the nodes on the unique path from the root to a
leaf node in Figure 3 identify a unique packet. We assign the
message digest of the packet under a one-way hash function
as the value of the leaf node. For example, the nodes on the
path from the root to the leftmost L0 node in Figure 3 are
T0, C0, R0, P0 and L0. Hence the value of this leaf node is
the message digest of the packet which corresponds to tile
0, tile-component 0, resolution level 0, precinct 0 and layer
0. Once the values of all the leaf nodes are assigned, the
values of the other nodes, including that of the root, can be
calculated recursively.

A JPEG2000 codestream header specifies important pa-

rameters of the codestream such as size, number of layers,
number of resolutions and the progression order [1]. It is
important to protect the integrity of the header in order
to correctly decode the codestream. This can be achieved
by hashing the header together with the root value of the
Merkle hash tree and let the owner sign the output of the
hash function. However, to keep the presentation simple, we
will not mention this explicitly in the rest of the paper.

We use an example to further illustrate the above descrip-
tion. Consider an image with 2 tiles, 2 tile-components per
tile, 3 resolution levels per tile-component, 2 precincts per
resolution level and 3 layers per precinct. Its basic Merkle
hash tree is given in Figure 4. We first compute the value
for each leaf node. For example, the third leaf node from the
left labeled L2 corresponds to the packet which belongs to
tile 0, component 0, resolution level 0, precinct 0 and layer
2, since the nodes on the path from the root to this leaf
are T0, C0, R0, P0 and L2. Then we can compute its node
value as the message digest of the corresponding packet. Af-
ter computing all the leaf node values, we can compute the
non-leaf node values level by level up to the root.

.*

/* /+

0*

-* -+

1*

.+ .,

0+ 0,

1+

-* -+

0* 0+ 0,

/* /+

.* .+ .,

Figure 4: The basic Merkle hash tree of an image
with 2 tiles, 2 tile-components per tile, 3 resolution
levels per tile-component, 2 precincts per resolution
level and 3 layers per precinct.

Now we can authenticate various sub-images using this
basic Merkle hash tree. For example, if a user requests the
sub-image of resolution 0, i.e. all the packets of resolution
level 0, we first send to him the packets belonging to reso-
lution level 0, then send to him auxiliary information that
are the node values of those nodes labeled as R1 and R2

in Figure 4. Since each C node has 2 such child nodes and
there are 4 C nodes, the auxiliary information consists of
8 hash values. As another example, if the user requests a
sub-image of quality level 0, i.e. all the packets of layer 0,
we first send to him the packets belonging to layer 0, then
send to him auxiliary information that are the node values
of those nodes labeled as L1 and L2 in Figure 4. The aux-
iliary information this time consists of 48 hash values. In
the two following sections, we will modify this basic Merkle
hash tree to reduce the amount of auxiliary information.

3.2 Adaption to Resolution-Level-Requests and
Layer-Requests

A request for only one of the four parameters - compo-
nent, resolution level, precinct and layer, is called a single-
parameter request. A request for more than one parameters
is called a multiple-parameter request. JPEG2000 allows
both single- and multiple-parameter requests. In addition,
we call a single-parameter request for resolution level as
a resolution-level-request, that for layer as a layer-request,
that for precinct as a precinct-request, and that for compo-
nent as a component-request.

In this section, our interest is on resolution-level-requests
and layer-requests. Recall the discussion in Section 2.2 that
resolution level and resolution are two different concepts:
a resolution level only represents incremental data, but a
resolution represents a meaningful sub-image. Therefore,
almost all resolution-level-requests would ask for the sets of
continuous resolution levels starting from resolution level 0.
Similarly, almost all layer-requests would ask for the sets of
continuous layers starting from layer 0.

Based on the above observation, we modify the basic Merkle
hash tree of Figure 3 for resolution-level-requests and layer-
requests using the algorithm shown below.

Algorithm 1:
1)Move the subtree rooted at Ri, i = 1, ..., nr − 1, below

Ri−1 such that Ri becomes the right most child of Ri−1.
For example, when i = 1, move the subtree rooted at
R1 below R0 and let R1 be the right most child of R0.

2)Move the subtree rooted at Li, i = 1, ..., nl − 1, below
Li−1 such that Li becomes the right most child of Li−1.
For example, when i = 2, move the subtree rooted at
L2 below L1 and let L2 become the right most child of
L1.

3)Add a left child node PKi to each Li, i = 0, ..., nl− 1 .
As in the basic hash tree, each leaf node in the adapted

hash tree shown in Figure 5 is assigned the message digest
of a unique packet. However, there are multiple nodes of
the same type on the path from the root to a leaf node. For
example, the nodes on the path from the root to the left
most PK2 node are T0, C0, R0, P0, L0, L1 and L2. There
are 3 nodes of type L on this path. Hence, the method of
mapping a leaf node to a packet as described in Section 3.1
needs to be modified here. The modification is simple, we
just ignore the nodes of the same type except the one closest
to the leaf node. In the example above, we ignore L0 and L1

so the nodes on the pruned path are T0, C0, R0, P0 and L2.
Hence the value of the leftmost PK2 node is the message
digest of the packet corresponding to tile 0, tile-component
0, resolution level 0, precinct 0 and layer 2.

Theorem 1. If a resolution-level-request (layer-request)
asks for resolution levels (layers) 0 to m − 1 of an image
with n (m < n) resolution levels (layers), the amount of
auxiliary information required for the tree of Figure 5 is less
than or equal to that for the tree of Figure 3.

Proof. In Figure 3, n−m values of nodes Rm(Lm), ...,
Rn−1(Ln−1) are needed to re-compute the root node value,
because the value of each C node (P node) depends on all the
values R0(L0), R1(L1), ..., Rn−1(Ln−1). In Figure 5, only
one value of node Rm(Lm) is needed, because the value of
each C node (P node) depends indirectly only on Rm(Lm).
Since n−m ≥ 1, this theorem is proved.

++++++

1,

1-

1.

20,

20-

20.

176*-

2076*-

1,

1-

1.

20,

20-

20.

176*-

2076*-

3,

3-

3.

379*-

/, /75*-

4,

2, 278*-

1,

1-

1.

20,

20-

20.

176*-

2076*-

1,

1-

1.

20,

20-

20.

176*-

2076*-

3,

3-

3.

379*-

/, /75*-

2, 278*-

47:*-

++++++ ++++++

++++++ ++++++

Figure 5: The Merkle hash tree adapted for
resolution-level-requests and layer-requests.

Continue with the example of Section 3.1. Applying Algo-
rithm 1, the basic Merkle hash tree in figure 4 is changed to
the tree in Figure 6. Now, if a user requests the sub-image of
resolution 0, i.e. all the packets of resolution level 0, we first
send to him the packets belonging to resolution level 0, then
send to him auxiliary information that are the node values
of those nodes labeled as R1 in Figure 6. Since each C node
has 1 such child node and there are 4 C nodes, the auxiliary
information consists of 4 hash values (while 8 hash values
are needed for the tree of Figure 4). If the user requests the
sub-image of quality level 0, i.e. all the packets of layer 0,
we first send to him the packets belonging to layer 0, then
send to him auxiliary information that are the node values
of those nodes labeled as L1 in Figure 6. The auxiliary in-
formation consists of 24 hash values (while 48 hash values
are needed for the tree of Figure 4).

/*

/+

/,

0.*

0.+

0.,

/*

/+

/,

0.*

0.+

0.,

1*

1+

1,

-* -+

2*

0* 0+

/*

/+

/,

0.*

0.+

0.,

/*

/+

/,

0.*

0.+

0.,

1*

1+

1,

-* -+

0* 0+

2+

Figure 6: The Merkle hash tree adapted from Figure
4 for resolution-level-requests and layer-requests.

3.3 Adaption to Progression Orders
As has been introduced to in Section 2.2, five types of pro-

gression orders are supported by JPEG2000 to suit differ-
ent application requirements. In an image database brows-
ing application, where progressively refining the quality of
an image may be desirable, LRCP is the best progression
order because, when the source sends the codestream se-
quentially, the client constructs a series of sub-images with
progressively refined quality. In client-server applications,

where different client might demand images at different res-
olutions, RLCP is the best progression order.

As a result, for image codestreams with different progres-
sion orders, the request patterns will be different. For an
image codestream with a specific progression order, most
requests will be on the first parameter. For an image code-
stream with progression order LRCP, most requests will be
layer-requests such as “request layer 0”, “request layer 0
through 1”, “request layer 0 through nl − 1”; while for an
image codestream with progression order RLCP, most re-
quests will be resolution-level-requests.

Based on this observation, we construct the Merkle hash
tree optimized for a given progression order to further re-
duce the amount of auxiliary information. Denote a pro-
gression order as Ord, and denote the ith parameter of the
progression order as Ord(i), i = 1, 2, 3, 4. As an example, if
Ord = LRCP , then Ord(1) = L, Ord(2) = R, Ord(3) = C
and Ord(4) = P . The algorithm for optimizing the Merkle
hash tree for a given progression order Ord is as follows.

Algorithm 2:
1) Let the children of the root be T nodes.
2) Let the children of each T node be Ord(1) nodes.
3) Let the children of each Ord(1) node be Ord(2) nodes.
4) Let the children of each Ord(2) node be Ord(3) nodes.
5) Let the children of each Ord(3) node be Ord(4) nodes.

At this point, we have the basic Merkle hash tree
arranged by Ord.

6) Move the subtree rooted at Ri, i = 1, ..., nr − 1 below
Ri−1 such that Ri becomes the right most child of Ri−1.

7) Move the subtree rooted at Li, i = 1, ..., nl − 1 below
Li−1 such that Li becomes the right most child of Li−1.

8) If Ord(4) = L, then add a left child node PKi to each
Li node, i = 0, ..., nl − 1. If Ord(4) = R, add a child
node PKi to each Ri node, i = 0, ..., nr − 1.

The assignment of message digests to leaf nodes follows
the same approach of Section 3.2. Applying Algorithm 2 to
an image with progression order LRCP, we obtain the hash
tree shown in Figure 7.

++++++ ++++++ +++

+++

++++++

++++++

1, 167*- 1, 167*-

/, /64*-

2,

2-

2.

268*-

0,

0-

0.

065*-

+++++++++++++++

+++

++++++

++++++

1, 167*- 1,

268*-

065*-

2.

2-0.

0-

0,

2,

/, /64*-

3, 369*-++++++

167*-

Figure 7: The Merkle hash tree optimized for pro-
gression order LRCP.

Theorem 2. Let E1 and E2 be two node types and tree1

and tree2 be two Merkle hash trees. The tree tree1 has n1

nodes of type E1, labeled as E1,1, ..., E1,n, and the subtree
rooted at each node of type E1 has n2 child nodes of type
E2. The tree tree2 has n2 nodes of type E2, and the subtree

rooted at each node of type E2 has n1 child nodes of type
E1, labeled as E1,1, ..., E1,n. If the auxiliary information for
an E1-request are the node values labeled as E1,i1 , ..., E1,im ,
then the amount of auxiliary information corresponding to
the request for tree1 is less than that for tree2.

Proof. The amount of auxiliary information for tree1 is
m, but that for tree2 is m × n2. Since m < m × n2, the
theorem is proved.

Theorem 2 tells us that the most frequently requested
node type should be placed as high as possible in the hash
tree in order to reduce the amount of auxiliary information.
This justifies the hash tree construction process specified by
Algorithm 2.

Consider the example of Section 3.1 again. Its hash tree
optimized for the progression order LRCP is shown in Figure
8. Let us compare the average amount of auxiliary informa-
tion for the trees in Figure 6 and Figure 8. The result is
shown in Table 2.

/* /+ /* /+

-* -+

0*

0+

0,

.*

.+

.,

/* /+ /* /+

0,

0+.,

.+

.*

0*

-* -+

1* 1+

Figure 8: The Merkle hash tree adapted from Figure
4 for progression order LRCP.

First, consider the tree of Figure 8. It is easy to see that a
layer-request asking for layer 0 needs 2 node values as auxil-
iary information, a layer-request asking for both layer 0 and
1 also needs 2 node values as auxiliary information, and a
layer-request asking for layer 0, layer 1 and layer 2 needs
no auxiliary information. Assuming that the frequencies
of these three layer-requests are the same, then the aver-
age amount of auxiliary information of layer-requests is 4/3
node values. Similarly, the average amount of auxiliary in-
formation of resolution-level-requests is 4 node values, that
of component-requests is 9 node values, and that of precinct-
requests is 18 node values.

Next, consider the tree of Figure 6. Under the same as-
sumption as above, the average amount of auxiliary infor-
mation of layer-requests is 16 node values, that of resolution-
level-requests is 8/3 node values, that of component-requests
is 1 node values, and that of precinct-requests is 6 node val-
ues.

The first row of Table 2 contains the average amount of
auxiliary information of the tree in Figure 8 under three
request frequency distributions respectively. The second
row contains that of the tree in Figure 6 under the same
three request frequency distributions. Consider the first
request frequency distribution as an example, where 90%
are layer-requests, 5% are resolution-level-requests, 3% are
component-requests and 2% are precinct-requests, the aver-
age amount of auxiliary information for the tree of Figure 8

is 90%×4/3+5%×4+3%×9+2%×18 = 2.03, while that for
the tree of Figure 6 is 90%×16+5%×8/3+3%×1+2%×6 =
14.68. From this table, we see clearly that the tree of Figure
8 requires much less auxiliary information compared to the
tree of Figure 6.

4. THE THIRD-PARTY PUBLICATION
MODEL FOR JPEG2000 IMAGES

In this section, we use a third-party publication model to
illustrate the practical applications of our JPEG2000 image
codestreams authentication scheme. The model is shown in
Figure 9, where an image owner prepares JPEG2000 code-
streams for a publisher (the third party) to disseminate to
clients on demand. The responses from the publisher to
clients’ requests are sub-images. In security-sensitive appli-
cations, it is highly desirable or even mandatory for clients
to verify the authenticity of a received response, to make
sure that the sub-image is indeed originated from the owner
as claimed and that the content of the sub-image has not
been modified during the transmission.

0D=6@

1C3;:A96@ /;:6=B-
.

AC3,:<286+ A:8=2BC@6+
2CE:;:2@F :=7>@<2B:>=

4>56AB@62<+ A:8=2BC@6

@6?C6AB 2 AC3,:<286

Figure 9: Application of our authentication scheme
in the third-party publication model.

A straightforward solution is to let the publisher digitally
sign each requested sub-image in real-time. This requires
that the publisher be trusted by the clients and does not
tamper the original owner’s image streams. It also requires
that the private signing key be made on-line. Generally
speaking, an on-line signing key is vulnerable to both ex-
ternal hacking and insider attacks. Another naive approach
is to have the owner pre-compute signatures for all possible
sub-images and forward them together with the codestream
to the publisher for distribution to clients. This approach
is infeasible in practice since there are too many sub-images
for a codestream. The approach is also not scalable to large
number of codestreams.

Our authentication scheme presented in the last section
allows for “sign once, verify many ways”; hence, it addresses
exactly the authentication problem in the third party pub-
lication model. Using our scheme, the system in Figure 9
operates as follows.

1. The owner of an image codestream constructs a Merkle
hash tree using a one-way hash function and generates
a digital signature on the root value of the tree. The
owner then forwards the codestream and the signature
to the publisher.

2. The client requests a sub-image of the codestream.
3. Upon receiving the request, the publisher generates

auxiliary information using the same one-way hash
function as that of the owner, and sends the requested
sub-image, the owner’s signature and the auxiliary

information to the client.
4. The client verifies the authenticity of the sub-image

and if the verification is successful, accepts the
sub-image.

Using our authentication scheme in third party publica-
tions has three important advantages: 1) the owner only
needs to compute the signature once instead of pre-computing
signatures for all possible sub-images, 2) the owner need not
sign sub-images in real time so that much better security is
achieved since the private signing key is not kept on-line and,
3) it requires less trust on the publisher since the publisher is
only used for information dissemination, not for generation
of digital signatures on behalf of the owner.

Instead of forwarding the entire codestream and its dig-
ital signature to the publisher, the owner can also forward
a sub-image, the digital signature and the corresponding
auxiliary information to the publisher for dissemination to
clients. More generally, our model can be extended to the
scenario where there exist multiple intermediate publishers:
each publisher, except the first and the last, is the “owner”
of its succeeding publisher and the “client” of its preceding
publisher. As a result, all entities, including owner, pub-
lisher and client, form a chain. The owner, the source of the
chain, owns the entire codestream. Every other entity ex-
cept the owner requests a sub-image of the image owned by
its preceding entity, which in turn replies with the requested
sub-image, the owner’s digital signature and the necessary
auxiliary information.

5. EXPERIMENT RESULTS
We have designed and implemented a prototype of the

above third-party publication model in C++ on a PC with
an Intel P4 2.4Ghz processor. The prototype consists of
3 modules - an owner module, a publisher module and a
client module. We use MD5 [15] and a 1024-bit RSA [17]
as the one-way hash function and the digital signature al-
gorithm, respectively. Both MD5 and RSA can be car-
ried out very efficiently. According to [20], on a PC with
a Celeron 850MHz processor under Windows 2000, MD5
achieves 100.7 MBytes/s, and the 1024-bit RSA requires
10.23 milliseconds to generate a signature and 0.32 millisec-
onds to verify it. Most tested images we use has 1 tile, 3
components, 7 resolution levels for each tile-component, 16
precincts for each resolution level on average, and 10 layers.
Their storage is about 200k bytes per image.

The owner module takes a JPEG2000 image codestream
as input, generates the Merkle hash tree, signs the root
value, and forwards the codestream and the digital signa-
ture to the publisher module. Our owner module can gener-
ate the Merkle hash trees and signatures for 400 images per
second. The owner module embeds the 1024-bit signature
into each image delimited by the marker 0xfffe (JPEG2000
uses two byte markers, with the first byte as 0xff, to de-
limit and signal the characteristics of codestreams). As a
result, our authentication scheme only needs 130 bytes stor-
age (the 1024-bit signature plus the 2-byte marker) for the
authentication data per image.

The publisher module manages the signed JPEG2000 im-
age codestreams provided by the owner module and is re-
sponsible for distributing them to the client module. When
the publisher module receives a request from the client mod-
ule, it analyzes the request, computes auxiliary information
and sends to the client the requested sub-image, the signa-

L-requests(90%) L-requests(70%) L-requests(50%)
R-requests(5%) R-requests(20%) R-requests(30%)
C-requests(3%) C-requests(6%) C-requests(15%)
P-requests(2%) P-requests(4%) P-requests(5%)

Figure 8 2.03 2.99 3.75
Figure 6 14.68 11.03 9.13

Table 2: The average amount of auxiliary information of the two trees in Figure 8 and Figure 6 under three
request frequency distributions.

ture and the auxiliary information. In our experiment, we
assumed that 90% of the client requests are single-parameter
requests for the first parameter of the progression order
and 10% of the client requests as multiple-parameter re-
quests. For single-parameter requests, the auxiliary infor-
mation consists of 1 hash value for codestreams with pro-
gression order LRCP, RLCP or RPCL, 2 hash values for
CPRL and 8 hash values for PCRL, respectively, on the
average. For multiple-parameter requests, the average aux-
iliary information is 12 hash values.

After receiving the sub-image, the signature and the aux-
iliary information, the client module verifies the authenticity
of the sub-image by reconstructing the Merkle hash tree and
comparing the signed root hash value and the reconstructed
root hash value.

Any tamper on an image can be detected by our client
model. Figures 10 and 11 show a simple example of tamper
detection. The image on the left of Figure 10 is the origi-
nal image, which has 6 resolution levels and 8 layers, and is
signed by the owner’s module. The image on the right is the
tampered version of the original image (note that the differ-
ence is the string “tampered” in the right image). Assume
that the client module requests a sub-image with resolution
4 (i.e resolution levels from 0 through 4) and quality level 3
(i.e layers from 0 through 3). The un-tampered sub-image
is shown on left in Figure 11. However, because the original
image is tampered, the sub-image the client module receives
is the one on the right in Figure 11. Our client module de-
tects the tamper successfully and rejects it.

Figure 10: The original image and its tampered ver-
sion.

6. CONCLUSIONS
Image compression plays a central role in modern mul-

timedia communications and compressed images arguably
represent the dominant source of Internet traffic today. JPEG2000
is an advanced image compression standard designed as the
successor of JPEG in many of its application areas. In

Figure 11: The original sub-image and its tampered
version.

this paper, we have introduced a scheme for authenticat-
ing JPEG2000 image codestreams. The scheme is designed
based on the Merkle hash tree and digital signatures. Uti-
lizing the hierarchical structure of a JPEG2000 codestream,
we constructed in Section 3.1 the basic Merkle hash tree
which can be used to authenticate any sub-image from one
codestream using just one digital signature and relatively
small amount of auxiliary information.

In JPEG2000, the resolution levels and layers in code-
stream are formed such that images with large resolution
or higher quality can be obtained by requesting incremental
data. Based on this observation, we presented in Section 3.2
the modified Merkle hash trees which are specially adapted
for resolution-level-requests and layer-requests. The adapted
trees require smaller amount of auxiliary information com-
pared with the basic Merkle hash tree. By taking advantage
of user request patterns, we further modified in Section 3.3
the Merkle hash trees of Section 3.2 to make them more
efficient for images with specific progression orders.

To illustrate the practical applications of our authentica-
tion scheme, we showed in Section 4 how it can be used to
authenticate JPEG2000 images in a third party publication
model. A prototype of the third party publication model
using our authentication scheme has been implemented and
the system demo was given to the plenary session of the
JPEG2000 standards meeting held during 10-15th March
2003 in Seoul, South Korea.

Finally we remark that although our scheme is presented
in the context of authenticating JPEG2000 codestreams, it
can be applied for efficient and flexible authentication of
any structured data sets, including other image codestreams
such as MPEG4 codestreams.

7. REFERENCES
[1] D. S. Taubman and M. W. Marcellin, JPEG2000 -

Image Compression Fundamentals, Standards and
Practice, Kluwer Academic Publishers, 2001.

[2] M. Rabbani and R. Joshi, “An overview of the JPEG
2000 still image compression standard”, Signal
Processing: Image Communication, Vol. 17, No. 1, pp.
3-48, Elsevier, 2002.

[3] “Information technology - JPEG 2000 image coding
system”, ISO/IEC International Standard 15444-1,
ITU Recommendation T.800, 2000

[4] B. Schneier, Applied Cryptography, John Wiley &
Sons, 1996.

[5] A. J. Menezes, P. C. van Oorschot, and S. A.
Vanstone, Handbook of Applied Cryptography, CRC
Press, 1996.

[6] R. Grosbois, P. Gerbelot and T. Ebrahimi,
“Authentication and Access Control in the JPEG
2000 Compressed Domain”, Proc. of the SPIE 46th
Annual Meeting, Applications of Digital Image
Processing XXIV, Vol. 4472, pp. 95-104, 2001.

[7] C. Y. Lin and S. F. Chang, “Semi-Fragile
Watermarking for Authenticating JPEG Visual
Content”, SPIE Security and Watermarking of
Multimedia Contents II EI ’00, 2000.

[8] Q. Sun and S. F. Chang, “Semi-fragile image
authentication using generic wavelet domain features
and ECC”, Proc. of ICIP 2002, 2002.

[9] Q. Sun, S. F. Chang, M. Kurato and M. Suto, “A
quantative semi-fragile JPEG2000 image
authentication system”, Proc. of ICIP 2002, 2002.

[10] R. C. Merkle, “A certified digital signature”, Proc. of
Advances in Cryptology-Crypto ’89, Lecture Notes on
Computer Science, Vol. 0435, pp. 218-238,
Spriner-Verlag, 1989.

[11] P. Devanbu, M. Gertz, A. Kwong, C. Martel, G.
Nuckolls and G. Stubblebine, “Flexible authentication
of XML documents”, Proc. of the 8th ACM conference
on Computer and Communication Security, pp.
136-145, 2001.

[12] M. T. Goodrich, R. Tamassia, and A. Schwerin,
“Implementation of an Authenticated Dictionary with
Skip Lists and Commutative Hashing”, Proc. of
DISCEX II’01, Vol. 2, pp. 1068-1083, 2001.

[13] M. Naor and K. Nissim. “Certificate Revocation and
Certificate Update”, Proc. of the 7th USENIX
Security Symposium, pp. 217-230, 1999.

[14] P. Devanbu, M. Gertz, C. Martel and S. Stubblebine,
“Authentic Third-party Data Publication”, Proc. of
the 14th IFIP WG11.3 Working Conference in
Database Security, IFIP Conference Proceedings, Vol.
201, pp. 101-112, Kluwer, 2001

[15] R. Rivest, “The MD5 Message Digest Algorithm”,
RFC 1321, 1992

[16] National Institure of Standards and Technology,
“Secure Hash Standard (SHS)”, FIPS Publication
180-1, 1995.

[17] R. L. Rivest, A. Shamir, and L. M. Adleman, “A
method for obtaining digital signatures and public-key
cryptosystems”, Communications of the ACM, Vol.
21, No. 2, pp. 120-126, 1978.

[18] National Institure of Standards and Technology,
“Proposed Federal Information Processing Standard
for Digital Signature Standard (DSS)”, Federal
Register, Vol. 56, No. 169, pp. 42980-42982, 1991.

[19] R. Housley, W. Ford, W. Polk and D. Solo, “Internet
X.509 Public Key Infrastructure Certificate and CRL
Profile”, RFC 2459, 1999.

[20] http://www.eskimo.com/sweidai/benchmarks.html.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	11-2003

	AA Flexible and Scalable Authentication Scheme for JPEG 2000 Image Codestreams
	Cheng PENG
	Robert H. DENG
	Yongdong WU
	Weizhong SHAO
	Citation

	tmp.1450595026.pdf.mcA9N

