
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

6-2000

DTD-Miner: A tool for mining DTDs from XML
documents
Moh Chuang HUE

Ee Peng LIM
Singapore Management University, eplim@smu.edu.sg

Wee-Keong NG

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons, and the Numerical Analysis and

Scientific Computing Commons

This Conference Paper is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
HUE, Moh Chuang; LIM, Ee Peng; and NG, Wee-Keong. DTD-Miner: A tool for mining DTDs from XML documents. (2000).
Second International Workshop on Advanced Issues of E-Commerce and Web-based Information Systems (WECWIS 2000). Research
Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/990

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13242772?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F990&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F990&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F990&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F990&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F990&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F990&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F990&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg


DTD-Miner: A Tool for Mining DTD from XML Documents

Chuang-Hue Moh Ee-Peng Lim Wee-Keong Ng

Center for Advanced Information Systems
School of Applied Science

Nanyang Technological University

Nanyang Avenue, Singapore 639798, SINGAPORE

Email: aseplim@ntu.edu.sg

Abstract

XML documents are semistructured and the structure of
the documents is embedded in the tags. Although XML doc-
uments can be accompanied by a DTD that defines the struc-
ture of the documents, the presence of a DTD is not manda-
tory. The difficulty in deriving the DTD for XML documents
lies in the fact that DTDs are of different syntax as XML
and that prior knowledge of the structure of the documents
is required. In this paper, we introduce DTD-Miner, an au-
tomatic structure mining tool for XML documents. Using a
Web-based interface, the user will be able to submit a set
of similarly structured XML documents and the system will
automatically suggest a DTD. The user is also able to fur-
ther refine the DTD generated to reduce the complexity by
relaxing some the rules used in the system.

1 Introduction

1.1 Background

The World-Wide Web (WWW) is one of the richest
repositories of information in the world today. People no
longer use the Web simply for browsing but also for nu-
merous E-Commerce applications like making airline ticket
and hotel reservations, and performing banking transac-
tions. Nevertheless, for Web based E-commerce to be suc-
cessful, one has to overcome the interoperability issues be-
tween different E-commerce sites. At present, most of the
E-commerce sites present their products and services in
Web documents that are not very well structured.

The emergence of the Extensible Markup Language
(XML) [7] provides a partial solution to this problem. XML
is a structured format for data interchange over the Web.
The main difference between HTML and XML (and also

the reason for the uprising of XML over HTML) is the
use of tags - while HTML tags are primarily used to de-
scribe they way in which a data item is displayed on Web
browsers, XML tags describe the data itself. The effect is
that XML documents are self-describing and this facilitates
the post-processing of Web documents, promising a com-
plete change in the “behavior” of the Web in the near future.

Although the structures for a set of structurally similar
XML documents can be found in the Document Type Defi-
nition (DTD), there are a few problems associated with the
use of DTDs as the “schema” for XML documents:

� For a given set of XML documents, the presence of
the DTD is not mandatory i.e., we cannot be sure that
the DTD will be available with certainty. Note that
XML documents that follow the syntax of the XML
specification are considered aswell-formedXML doc-
uments.Valid XML documents arewell-formedXML
documents accompanied by a corresponding DTD.

� A majority of the Web documents on the WWW today
are still in HTML format and do not have any DTD
to describe their structure. Refer to [12] regarding the
issues involved in “recycling” HTML documents into
XML documents.

� The process of defining a DTD for a given set of XML
documents is often a complicated and tedious one. In
order to define the DTD for the documents, the user
must have a clear idea how these documents are struc-
tured. To add to the complexity, DTDs do not follow
the same syntax as the XML documents themselves.
Hence we predict that quite a good number of Web
pages on the WWW will not have any DTDs.

The derivation of DTDs for XML documents is indeed a
non-trivial task. Many researchers have already recognized
the difficulty in deriving DTDs. In [10] it was proposed that



the document types and structures be specified in the XML
syntax itself. Further proposals like Schema for Object-
oriented XML (SOX) [8], Document Content Description
(DCD) [6] and the more recent XML Schema [4, 5] were
also based on the similar concept of describing the struc-
tures of XML documents using the XML syntax instead of
the DTD syntax.

1.2 Objectives

The approach that we have taken to overcome the dif-
ficulty in deriving DTDs is to build a tool that will auto-
matically suggest the DTD for a collection of XML docu-
ments provided by the user. These XML documents are well
formed but do not come with a DTD. The derived DTD will
provide an overall schema for the document collection. The
assumption that we have made here is that the collection
of documents are similarly structured and follows a single
naming convention for the tags.

The tool known asDTD-Miner has been developed
based on our proposed algorithms for structural discovery
of XML documents. In our approach, the structure of each
instance of the XML document collection is represented as
a Document Tree and the overall structure of the collection
of XML documents is represented using a Spanning Graph.
The proposed algorithm derives the Spanning Graph incre-
mentally as one Document Tree is “merged” into the Span-
ning Graph one at a time. The process ends when all the
Document Trees are merged into the Spanning Graph.

DTD-Miner is further equipped with a frame-based Web
user interface that allows XML documents to be uploaded
from the client computers and presents the derived DTD
in the Web browser. It further allows users to refine and
simplify the derived DTDs by adjusting an input parameter
known asmaximum repetition factor.

1.3 Paper Outline

In this paper, we describe the design and implementa-
tion of DTD-Miner. We will cover its system architecture in
Section 2. Section 3 gives a brief overview of the Document
Tree and Spanning Graph data structures used to represent
the instance structure of an XML document and the over-
all structure of a collection of these documents respectively.
Section 4 briefly discusses the heuristic rules used to derive
the DTD from the Spanning Graph and also the relaxation of
the generated DTD to reduce its complexity. A first version
of the DTD-Miner has been implemented and described in
Section 6. In Section 5, we walk through an example of
using the DTD-Miner. Section 7 describes some related re-
search before Section 8 concludes the paper.

2 System Architecture

The DTD-Miner is made up of various modules as shown
in Figure 1.

� DTD-Miner Web Interface : The Web Interface al-
lows the user to submit XML files. The Web Inter-
face is also responsible for displaying the generated
DTD. In addition, it also allows the user to refine the
DTD so as to reduce its complexity using a parame-
ter Maximum Repetition Factor, which represents the
maximum number of times a child element may appear
in the parent element’s definition in the DTD.

� Pre-processing Module: An XML file may contain
various types of information such as tags, textual data
and comments. The Pre-processing module extracts
the XML tags (including attribute names) into interme-
diate files. Apart from simplifying the mining process,
the use of intermediate files also allows the user to iter-
atively refine the DTD generated without involving the
original XML files.

� DTD Generation Module: This is the main module
responsible for the generation of the DTD for a set of
structurally similar XML documents supplied by the
user. The DTD Generation module consists of the fol-
lowing sub-modules:

– Document Tree Extraction Sub-Module: The
main responsibility of this sub-module is to ex-
tract the information contained in the intermedi-
ate files generated by the Pre-processor module
into a Document Tree data structure.

– Spanning Graph Construction Sub-Module:
The Spanning Graph Construction sub-module’s
primary function is to construct the Spanning
Graph from a set of Document Trees (each repre-
senting the structure of one XML document in the
collection). At each iteration taken by the sub-
module, one Document Tree is “merged” into the
Spanning Graph and the final Spanning Graph is
obtained when all the Document Trees have been
“merged” into the Spanning Graph.

– DTD Construction Sub-Module: The DTD
Construction sub-module will derive a DTD (text
file) from the Spanning Graph by applying the set
of heuristic rules. In addition, this sub-module
will also perform relaxation of the DTD gener-
ated according to the Maximum Repetition Fac-
tor if the parameter is specified by the user.

2



System Buffer

Intermediate
file(s)

Intermediate
file(s)

Pre-processor
Module

extract filename

loadfile.cgi

generate.cgi

Web Interface

dtdMiner [filename ...] [-r[MAXREP]]

Document
Tree

Spanning Graph
Construction
Sub-module

Document Tree
Extraction
Sub-module

Spanning
Graph

DTD Construction
Sub-module

User parameter
MAXREP (optional)

XML file(s)
DTD file
(HTML format)

Browser
Web

USER

DTD file

XML file(s) User parameter
MAXREP (Optional)

DTD Generation Module

User parameter
MAXREP (optional)

Server

Client

Figure 1. System Architecture Diagram of the
DTD-Miner

3 Representing Structures Using Document
Trees and the Spanning Graph

In this section, we give a very brief overview of the data
structures that we have proposed to represent the structure
of Web document instances i.e., Document Trees and that to
represent the overall structure of a collection of Web docu-
ments i.e., the Spanning Graph.

3.1 Document Trees

The structure of XML documents are represented using
directed n-ary trees called Document Trees. Each Docu-
ment Tree is an ordered n-ary tree structure that is uniquely
identified by theDocument-ID(DocID). Each node in the
Document Tree is uniquely identified by a system generated
Node-ID(NID). Note that theNID is also unique across all
the Document Trees of the collection of structurally similar
documents input by the user. The other attributes in each
nodeiinclude:

� TagName: Tag name of the document element repre-
sented by the node.

� AttList: List of attributes of the corresponding doc-
ument element.

� PCData: Boolean variable to indicate whether the cor-
responding document element containsParsed Char-
acter Data (PCDATA).

<?xml version="1.0"?>
<!DOCTYPE PLAY SYSTEM "play.dtd">
<PLAY>
<TITLE>All’s Well That Ends Well</TITLE>
<FM> <P>Text placed in ...</P>
<P>SGML markup by Jon Bosak, 1992-1994.</P>
<P>XML version by Jon Bosak, 1996-1998.</P>
<P>This work may be freely ...</P> </FM>

<PERSONAE> <TITLE>Dramatis Personae</TITLE>
<PERSONA>KING OF FRANCE</PERSONA>
<PERSONA>DUKE OF FLORENCE</PERSONA>
<PERSONA>BERTRAM, Count of Rousillon.</PERSONA>
<PERSONA>LAFEU, an old lord.</PERSONA>
<PERSONA>PAROLLES, a follower of Bertram.</PERSONA>
<PGROUP> <PERSONA>Steward</PERSONA>
<PERSONA>Clown</PERSONA>
<GRPDESCR>servants to the ...</GRPDESCR> </PGROUP>

... </PERSONAE>
<SCNDESCR>SCENE Rousillon; ...</SCNDESCR>
<PLAYSUBT>ALL’S WELL THAT ENDS WELL</PLAYSUBT>
...
</PLAY>

Figure 2. XML Document - “All’s Well That
Ends Well”

The hierarchical structure present in XML documents can
be mapped naturally into the n-ary tree structure of the Doc-
ument Tree i.e., the parent-child relationship between tree
nodes is used to represent the nesting relationship of the
document elements. Document Trees are ordered as the
ordering information of sub-elements under any parent el-
ement will be used to generate the DTD later.

Figures 2 (allwell.xml) and 3 (win tale.xml)
show portions of two documents from the XML document
collection of “The Life of Henry the Fifth” for the plays
“All’s Well That Ends Well” and “The Winter’s Tale”. The
Document Trees for these documents are shown in Figures 4
and 5 respectively. Note that each node in the Document
Trees is uniquely identified by aNID attribute shown in the
nodes of the Document Trees e.g., the node representing
<PGROUP> </PGROUP> in the Document Tree of “The
Winter’s Tale” has aNID of 34 and this is unique across
both the Document Trees.

3.2 The Spanning Graph

The Spanning Graph data structure is used to represent
the overall structure of a collection of structurally similar
XML Document Trees. It can be viewed as an ordered,di-
rected acyclic graph (DAG)that encapsulates in it, all the
structural information of every Document Tree that it spans
i.e., all the the structurally similar Document Trees in the
collection. The Spanning Graph is very similar to the Docu-
ment Tree representation defined for instances of XML doc-
uments and is logically similar to the DTD of these XML
documents as described below:

� Similar to Document Trees, the edges in the Spanning

3



<?xml version="1.0"?>
<!DOCTYPE PLAY SYSTEM "play.dtd">
<PLAY>
<TITLE>The Winter’s Tale</TITLE>
<FM> <P>Text placed in the ...</P>
<P>SGML markup by Jon Bosak, 1992-1994.</P>
<P>XML version by Jon Bosak, 1996-1998.</P>
<P>This work may be freely ...</P> </FM>
<PERSONAE> <TITLE>Dramatis Personae</TITLE>
<PERSONA>LEONTES, king of Sicilia.</PERSONA>
<PERSONA>MAMILLIUS, young prince of Sicilia.</PERSONA>
<PGROUP>
<PERSONA>CAMILLO</PERSONA>
<PERSONA>ANTIGONUS</PERSONA>
<PERSONA>CLEOMENES</PERSONA>
<PERSONA>DION</PERSONA>
<GRPDESCR>Four Lords of ...</GRPDESCR> </PGROUP>

...
</PERSONAE>
<SCNDESCR>SCENE Sicilia, and Bohemia.</SCNDESCR>
<PLAYSUBT>THE WINTER’S TALE</PLAYSUBT>
...
</PLAY>

Figure 3. XML Document - “The Winter’s Tale”

...

...

PLAY PERSONAE

FM

TITLE

SCNDESCR

PLAYSUBT

TITLE

P

P

P

P

PERSONA

PERSONA

PGROUP PERSONA

PERSONA

PERSONA

PERSONA

GRDPDESC

PERSONA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Figure 4. Document Tree for “All’s Well That
Ends Well”

...

...

PLAY PERSONAE

FM

TITLE

SCNDESCR

PLAYSUBT

TITLE

PERSONA

PERSONA

PGROUP

P

P

P

P

PERSONA

PERSONA

PERSONA

PERSONA

GRDPDESC

21

22

23

24

25

26

27

28

29

30

21

32

33

34

35

36

37

38

39

Figure 5. Document Tree for “The Winter’s
Tale”

Graph models the hierarchical relationships between
document elements.

� Each node in the Spanning Graph consolidates all in-
formation about nodes from the Document Trees shar-
ing the sameTagName. In addition, each node con-
tains the following attributes:

– TagName: Similar to that of the Document Tree,
except that each node in the Spanning Graph has
a uniqueTagName.

– AttList: A list of attributes for the document
element. This is a union of all theAttList
in the nodes of the Document Trees carrying the
sameTagName.

– NodeIDList: A list of nodes from all the Doc-
ument Trees carrying the sameTagName.

� The left-right ordering of sibling edges denotes the left-
right ordering of sub-elements of a parent document el-
ement. For example, if the nodecoordinates is the
left sibling of the nodearea in the Spanning Graph,
then in every XML document spanned by the Spanning
Graph and having the two tag pairs as sibling nodes,
the tag pairs<coordinates> </coordinates>
must appear before<area> </area>.

� Each Spanning Graph edge consolidates information
about the parent-child relationship between document

4



elements found in the Document Trees. Each edge
contains anEdgeIDList which is similar to the
NodeIDList of the nodes. TheEdgeIDList in
each edge identifies the parent nodes in the Docu-
ment Trees in which the parent-child relationship rep-
resented by this Spanning Graph edge exists.

Since every node in the Spanning Graph has a unique
TagName, it uniquely represents an element in the DTD
of the XML documents. The number of nodes in the Span-
ning Graph hence represents the number of elements in the
DTD. The edge between two nodes therefore represents a
element to sub-element relationship in the DTD. The Span-
ning Graph representing the combined structure of the XML
documents “All’s Well That Ends Well” and “The Winter’s
Tale” is shown in Figure 6. In the Spanning Graph, each
edge contains anEdgeIDList. For instance, the Spanning
Graph edge<PLAY,FM> hasEdgeIDList = f1,21g.
TheEdgeIDList corresponds to theNIDs of the parent
nodes in the parent-child relationship betweenPLAY and
FM in both the Document Trees. Each node in the Span-
ning Graph has aNodeIDList. For example, the node
PLAYSUBT in the Spanning Graph has aNodeIDList of
[6,26]. TheNIDs corresponds to the nodes in the two
Document Trees of withTagName of PLAYSUBT.

4 Heuristic Rules for DTD Construction &
The Relaxation of the DTD Generated

In this section, we outline the heuristic rules that is used
to modify the Spanning Graph before generating the DTD.
We also discuss the relaxation of the DTD generated.

There are three heuristic rules that are applied to the
Spanning Graph for DTD generation:

1. Define Optionality: This rule determines whether an
element is a mandatory or optional child element of its
parent element.

2. Merge Repeat: This rule identifies repeating (adja-
cent) child element of a parent element. Merged ele-
ments are eitherOne-Or-More or Zero-Or-More .

3. Define Group: This rules is used to define repeating
groups of child elements. Two groups of child ele-
ments identified must have identical member elements
before they can be merged to form a repeating group.
The repeating group of elements can beOne-Or-More
or Zero-Or-More .

If the generate DTD has too many rules, it will be too
complicated to be of any value to the user. The approach
that we have taken to solve this problem is that we allow
the user to iteratively relax the generated DTD. The relax-
ation process is dictated by the Maximum Repetition Factor,

...

...

{a,b,c,...} EdgeIDList

NodeIDList[a,b,c,...]

Note:

PLAY PERSONAE

FM

TITLE

SCNDESCR

PLAYSUBT

PGROUP

GRDPDESC

[1,21]

{1,21}

{1,21}

{1,21}

{1,21}

{1,21}

[3,23]

[4,24]

[5,25]

[6,26]

P{3,23}

{3,23}

{3,23}

{3,23}

[7,8,9,10,27,28,29,30]

{4,24}

PERSONA

{4,24}

{4,24}

{4}

{4}

{4}

[20,39]

[12,13,14,15,16,18,19,32,33,35,36,37,38]

[17,34]

{17,34}{17,34}{34} {34}

[2,11,22,31]

{4,24}

Figure 6. Spanning Graph Constructed for
“‘All’s Well That Ends Well” and “The Winter’s
Tale”

which is the maximum number of time a child element can
appear in the parent element’s definition. Using this param-
eter, we repeatedly merge groups of child elements until the
number of repetition of all the child elements is less than or
equal to the Maximum Repetition Factor.

5 Web User Interface of the DTD-Miner

In this section, we give an illustration of an interaction
with the prototype system in order to provide a feel of how
the DTD-Miner system works. There are three main screens
of the DTD-Miner system: the initial document input screen
(Figure 7), the file directory screen (Figure 8) and the DTD
display screen (Figure 9).

The system begins at the initial document input screen
(Figure 7). The first thing that the user needs to do is to clear
away any old files present in the system buffer by click-
ing on the “Start/Restart” button. The file directory
screen (Figure 8) showing no files in the buffer should ap-
pear. The user can then submit his own XML documents by
first selecting the XML document in his local machine us-
ing the “Browse...” button and then upload the file to the

5



Figure 9. DTD Display Screen

Figure 7. Initial Document Input Screen
Figure 8. File Directory Screen

6



Figure 10. DTD Display Screen (Maximum
Repetition Factor of 2)

system buffer using the “Add File” button and the added
file should be reflected in the file directory screen. The
Maximum Repetition Factor can also be optionally specified
here by entering the required value in the text box provided.
If this parameter is not specified no relaxation of the DTD
will be performed. Finally, the “Generate DTD!” will be
use to generate a DTD based on the structures of the docu-
ments submitted. When the DTD is generated successfully,
the file directory screen will be replaced by the DTD display
screen (Figure 9).

If the DTD generated need to be relaxed, the user can
simply enter the appropriate Maximum Repetition Fac-
tor value in the document input screen and click on the
“Generate DTD!” button. The re-submission of XML
files will not be required. The user can use the “List
files” button to bring up the file directory screen and
check that all the required XML files are already in the sys-
tem buffer. The DTD display screen that is shown when we
relax the DTD with a Maximum Repetition Factor of 2 is
shown in Figure 10.

6 Implementation

The implementation of the DTD-Miner is basically sepa-
rated into the pre-processor program “extract”, the main
DTD-Miner program “dtdMiner” and the Web user in-
terface as shown in Figure 1. The programs “extract”
and “dtdMiner” are implemented using C++ and Stan-
dard Template Library (STL).

The pre-processor program is mainly responsible for ex-
tracting the appropriate data into intermediate files. These
intermediate files are used by the “dtdMiner” program to
generate the DTD instead of the actual XML files.

The Web user interface is implemented using HTML
(forms) and CGI scripts (Perl 5). The user input via the

HTML form will be processed by the CGI scripts that will
in turn call the DTD-Miner program and supplying the ap-
propriate parameter to the program (with respect to the user
inputs). As shown in Figure 1, the Web user interface con-
sist of two CGI scripts, namely “loadfile.cgi” and
“generate.cgi”. The script “loadfile.cgi” han-
dles the user input and parameters, include the uploaded
XML files. The “generate.cgi” script, on the other
hand, is responsible for invoking the “extract” program
for pre-processing of the XML files and the invoking the
“dtdMiner” program with the appropriate parameters for
generating the DTD.

7 Related Work

The DTD-Miner System is a prototype for the structural
re-engineering framework proposed in [11]. It enables the
automatic generation of a DTD from a large set of XML
documents while not compromising the ease of use of the
user.

The system built by Ashish and Knoblock [3] is one re-
search effort that draws some conceptual resemblance to the
DTD-Miner. The system attempts to infer the structure of
HTML documents by drawing clues from display and for-
matting information of the HTML tags and also the inden-
tation to guess the structure of the Web documents. The
system however does not deal with XML and DTD.

The structural mining component of the NoDoSE [1] by
Adelbreg also draws some similarities to DTD-Miner. No-
DoSE is a semi-automatic system for data extraction. No-
DoSE is primarily based on plain text files but the HTML
Parser component allows HTML files to be handled. There
are two main drawbacks of this system for mining struc-
tures from XML documents. Firstly, we feel that the degree
for user intervention is too extensive and may prove to be
tedious for the user when the documents to be parsed are
large. Secondly, the NoDoSE does not support XML. The
difference between HTML and XML is that in XML docu-
ments, the structure of the document can be enclosed within
user defined tags.

Another research effort that is closely related to the
DTD-Miner is the DTD Generator [9] by Michael Kay. The
DTD Generator is a tool that is able to generate the DTD for
a given XML document. The main problem with the DTDs
generated from the DTD Generator is that it will generate a
DTD for every document i.e., the system cannot handle the
generation of an overall DTD for a set of structurally similar
XML documents. One of the main features of XML is that it
allows the user to define their own grammar rules. However,
in our opinion, the user would usually define a set of rules
for a collection of Web documents rather than a separate set
of rules for a single document. This makes the ability for the
system to generate an overall DTD essential. It is however,

7



interesting to note the way the DTD Generator attempts to
handle attribute and attribute types.

In [2], an automatic DTD generation tool for SGML doc-
uments was described. The work, however, does not address
how generated DTDs can be simplified by users using some
quantitative measure.

8 Conclusion

With the increasing complexities of Web documents and
the emergence of XML, user will have a strong need for a
tool to automatically extract structures of Web documents.
This paper describes the DTD-Miner that is designed for
these purposes. The DTD-Miner is a prototype system build
from the framework for structural re-engineering XML doc-
uments. It has the ability to automatically generate DTD
from a set of similarly structured XML documents submit-
ted by the user.

However, the DTD-Miner does not support the genera-
tion of attribute types and entity references and does not
handle hyperlinks and multimedia data. We are currently
looking to further extensions to support attribute types and
entity reference generation and also the use of hyperlinks to
create inter-document structures. Work is also being done
in various methods of simplifying the DTDs generated.

References

[1] B. AdelBerg. NoDoSE - A Tool for Semi-Automatically
Extracting Semi-Structured Data from Text Documents. In
ACM SIGMOD International Conference on Management of
Data, pages 283–294, 1998.

[2] H. Ahonen. Automatic generation of sgml content models.
In Electronic Publishing, pages 195–206, Helsinki, Finland,
1996. Wiley Publishers.

[3] N. Ashish and C. Knoblock. Wrapper Generation for
Semi-structured Internet Sources.ACM SIGMOD Record,
26(4):8–15, 1997.

[4] D. Beech, S. Lawrence, and M. Maloney.
XML Schema Part 1: Structures. Tech-
nical report, World Wide Web Consortium,
http://www.w3.org/1999/05/06-xmlschema-1,
1999.

[5] P. Biron and A. Malhotra. XML Schema Part 2:
Datatypes. Technical report, World Wide Web Consortium,
http://www.w3.org/TR/xmlschema-2/, 1998.

[6] T. Bray, C. Frankston, and A. Malhotra. Doc-
ument Content Description for XML. Tech-
nical report, World Wide Web Consortium,
http://www.w3.org/TR/1998/NOTE-dcd-19980731.html,
1998.

[7] T. Bray, J. Paoli, and C. Sperberg. Exten-
sible Markup Language (XML) 1.0. Tech-
nical report, World Wide Web Consortium,
http://www.w3.org/TR/1998/REC-xml-19980210,
1998.

[8] M. Fuchs, M. Maloney, and A. Milowski. Schema for
Object-oriented XML. Technical report, World Wide Web
Constorium, http://www.w3.org/TR/NOTE-SOX,
1998.

[9] M. Kay. SAXON DTD Generator - A Tool to Generate XML
DTDs. At http://home.iclweb.com/icl2/mhkay/dtdgen.html.

[10] A. Layman, E. Jung, and E. Maler. XML-Data.
Technical report, World Wide Web Consortium,
http://www.w3.org/TR/NOTE-XML-data, 1998.

[11] C.-H. Moh, E.-P. Lim, and W.-K. Ng. Re-engineering Struc-
tures from Web Documents. Submitted to conference, 2000.

[12] A. Sahuguet and F. Azavant. Web Ecology: Recycling
HTML pages as XML documents using W4F. InACM
Workshop on the Web and Database (WebDB), pages 31–36,
1999.

8


	Singapore Management University
	Institutional Knowledge at Singapore Management University
	6-2000

	DTD-Miner: A tool for mining DTDs from XML documents
	Moh Chuang HUE
	Ee Peng LIM
	Wee-Keong NG
	Citation


	paper.dvi

