
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

11-2007

Modeling Semantics in Composite Web Service
Requests by Utility Elicitation
Qianhui (Althea) LIANG
Singapore Management University, althealiang@smu.edu.sg

Jen Yao CHUNG
IBM T. J. Watson Research Center

Steven MILLER
Singapore Management University, stevenmiller@smu.edu.sg

DOI: https://doi.org/10.1007/s10115-006-0052-4

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Computer Sciences Commons, and the Management Information Systems Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
LIANG, Qianhui (Althea); CHUNG, Jen Yao; and MILLER, Steven. Modeling Semantics in Composite Web Service Requests by
Utility Elicitation. (2007). Knowledge and Information Systems. 13, (3), 367-394. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/1193

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13242766?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1193&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1193&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1193&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1007/s10115-006-0052-4
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1193&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1193&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/636?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1193&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Knowl Inf Syst (2007)
DOI 10.1007/s10115-006-0052-4

Knowledge and
Information Systems

REGULAR PAPER

Qianhui Althea Liang · Jen-Yao Chung ·
Steven Miller

Modeling semantics in composite Web
service requests by utility elicitation

Received: 20 October 2005 / Revised: 15 March 2006 / Accepted: 18 August 2006

C© Springer-Verlag London Limited 2006

Abstract When meeting the challenges in automatic and semi-automatic Web
service composition, capturing the user’s service demand and preferences is as
important as knowing what the services can do. This paper discusses the idea of
semantic service requests for composite services, and presents a multi-attribute
utility theory (MAUT) based model of composite service requests. Service re-
quests are modeled as user preferences and constraints. Two preference structures,
additive independence and generalized additive independence, are utilized in cal-
culating the expected utilities of service composition outcomes. The model is also
based on an iterative and incremental scheme meant to better capture requirements
in accordance with service consumers’ needs. OWL-S markup vocabularies and
associated inference mechanism are used as a means to bring semantics to ser-
vice requests. Ontology conceptualizations and language constructs are added to
OWL-S as uniform representations of possible aspects of the requests. This model
of semantics in service requests enables unambiguous understanding of the ser-
vice needs and more precise generation of the desired compositions. An applica-
tion scenario is presented to illustrate how the proposed model can be applied in
the real business world.

Keywords Web service composition · MAUT · Semantic service request ·
Expected utility · Preference structure · Additive independence · Generalized
additive independence · Iterative and incremental request elicitation

Q. A. Liang (B) · S. Miller
School of Information Systems, Singapore Management University, Singapore
E-mail: althealiang@smu.edu.sg, stevenmiller@smu.edu.sg

J.-Y. Chung
IBM T. J. Watson Research Center, NY, USA
E-mail: jychung@us.ibm.com

Published online: 5 December 2006

13: 367–394

Published in Knowledge and Information Systems, November 2007,
Volume 13, Issue 3, pp 367-394.
http://doi.org/10.1007/s10115-006-0052-4

Q. A. Liang et al.

1 Introduction

Sharing and reusing resources is made much easier with the Web services model
and through service-oriented software development. A Web services framework
simplifies software development by allowing a new system to be composed out
of existing components which have been made very easy to describe, publish,
find, bind and invoke in the framework. Two related concepts in service-oriented
computing are composite (complex) services and service composition. A complex
(composite) Web service is conceived as a combination of simpler Web services
over a designated flow structure [18]. The elemental services are referred to as
member services or component services. Service composition is the construction
of composite services. Similar ideas, such as compositional verification [7, 21]
have been used in the design of complex knowledge-based systems before service
composition evolved into a separate research topic.

Ontological techniques, including static ontology and dynamic ontology [14]
have been used as representations of semantic Web knowledge. Semantics of Web
services [22, 23, 25] are the key to service composition, especially to automat-
ing the composition process. To satisfy the complex service needs, the discovery
agents will have to pick out “service components” from existing services that can
accomplish certain jobs, and to organize them into a larger service. Behind the
scene, the component services work as a collaborative team and in combination
provide the requested service. Understanding what the registered services actually
provide to its users is important in identifying the required component services,
because the composition system must have this knowledge to tell whether a ser-
vice can perform a certain job within the larger service. WSDL [37], DAML-S [8],
and OWL-S [27] have emerged as marking up languages of Web services. They
allow service providers to present descriptions of their services and to mark up
their service descriptions in order to share knowledge of services and to perform
knowledge inferences.

Service composition or composite service discovery also relies on good un-
derstanding of the service needs and matching the available services with the
service needs. Service needs of service requestors are presented in the form of
service requests. Service requests can be issued by a user looking for services or
by a computer program representing its human clients and discovering services
automatically. Among what makes automatic service composition difficult is the
non-straightforwardness and incompleteness of the service requests, which keeps
service needs from being well understood by machines. Lacking good semantics,
service requests cannot make it clear what client really wants, How to interact
with the user, and what the client prefers and cannot accept. Just as in the physical
service world, only with the client’s need clearly in mind can services be com-
posed correctly. This suggests to us that semantics of service requests make up an
integral part of semantic Web services and have to be addressed properly.

Further, for service composition, semantics of service requests have to be ob-
tained and developed in an incremental and iterative way. Interactions from human
beings are unavoidable, especially when requests need to be modified for various
reasons. Preferences of users must be captured and non-determinism of service
providers and requestors must be considered. Our model is designed to satisfy
these requirements.

368

Modeling semantics in composite Web service requests by utility elicitation

In Sect. 2, we review the composite Web service model and the service compo-
sition approach reported in the previous work. In Sect. 3, we discuss the semantics
of service requests for service composition. In Sect. 4, we present a new multi-
attribute utility theory (MAUT)-based method to model semantic service requests
using the OWL-S semantic framework. Two preference structures, i.e. additive
independence and generalized additive independence, are applied to possible ser-
vice requests and discussed in detail. OWL-S construct extensions for incremental
request elicitation are introduced in this section too. In Sect. 5, we provide an ex-
ample of using the model to represent the semantics for a request for a complex
service and comment on the evaluation of the incremental scheme. We discuss re-
lated work in Sect. 6. Our conclusions are stated in Sect. 7 and a list of references
is given in Sect. 8.

2 Composition in extended Web services model

One purpose of service composition systems is to respond to such service requests
that can only be satisfied with results of compositions of services. Therefore, such
systems can be mutually beneficial with an enhanced Web services model that has
the capability to discover and invoke composite Web services in some automated
manner. We extended the standard Web service model by introducing a Service
Registry that, in addition to the well-known functions, is capable of answering
complex queries by constructing or discovering composite services dynamically
based on the semantic markups of registered services. We also introduced an add-
on component called Composite Service Processor. It is in charge of invoking
composite services discovered according to the interaction policy semantics. Our
belief is that the enhanced model offers an explicit mechanism allowing compos-
ite service processing to be studied in the same framework as simple Web ser-
vices. It, therefore, eases the process of service-oriented application development.
It also provides transparency to requesters, who then do not have to care whether
the requested services are composite or simple services. This enhanced model is
described in detail in our previous papers [18].

Previously, in Su et al. 2003 [33], WSDL has been extended to include spec-
ifications of restrictions on services in service descriptions of service providers.
In this paper, we provide supplementary constructs to the OWL-S semantic Web
service language that enable a service requestor to query the (Intelligent) Service
Registry in a high-level declarative way. With these supplemental language con-
structs (to be described in Sect. 4.2), OWL-S can be used to make up a service
request with the exact semantics required to construct a composite service.

After the (Intelligent) Service Registry receives a semantic service request, it
looks for a registered simple service(s) in its database of services. If necessary, it
may have to construct a composite service(s) on the fly. While constructing the
service, the (Intelligent) Service Registry also ensures that the composite service
is valid against the requestor’s particular requirements. It then generates a com-
posite service specification, which can be registered with the (Intelligent) Service
Registry. If the requestor would like to have the composite service invoked, he
contacts a Composite Service Processor, which takes the composite service spec-
ification, calls the registered component services and returns the result.

369

Q. A. Liang et al.

Because the understanding of the complex service need of a service requestor
is incomplete in most cases and there is non-determinism in resolving a requester’s
preferences on services, the (Intelligent) Service Registry is designed based on a
semi-automatic approach [18]. Besides automatic AI search techniques, comple-
mentary human critiques are also considered and modifications of service requests
may explicitly or implicitly guide the next run of search. This process is iteratively
carried out until an acceptable composition is produced.

3 Semantics in service requests

In the context of service composition, the role and responsibility of service users
is to provide a request to describe the service need precisely. Considering the fact
that, in most cases, a complex service need cannot be described using one word or
by one parameter, users want to present the description information to the compo-
sition system in a well-structured and easy-understandable way. The issue of how
to make composition systems understand the exact service need goes hand in hand
with the issue of how to allow users to specify their service needs unmistakably.
Due to the limitations in both human cognition and machine representation, both
of these tasks have proven to be major obstacles in automating service composi-
tion. The purpose of the paper is to develop such a semantic model for both the
user and the composition system to communicate and improve the composition
goal in the form of a service request.

A service request serves as the common contract that different roles in the
Web services model can refer to when discovering the services. Semantics of ser-
vice requests refer to the conceptualizations of the types of information required
to describe a request for services. Here, we are only concerned of composite ser-
vices, because requests for simple services are trivial. The conceptualizations of
the information types and their mapping into the elements of the MAUT model
we established for service composition will be discussed in Sects. 4.2.1 and 4.2.2.
When semantics of service descriptions become explicit and understandable to
machines, it is possible to use a piece of software to analyze the specifics of ser-
vices. Similarly, when a Web service request specifies the desired service in such a
way that the service demand is clearly understood by machines, it is also possible
for a piece of software to select and compose services automatically. Furthermore,
since the construction of a composite service involves selecting and organizing
multiple services and dealing with multiple service providers, the importance of
semantics of requests becomes more obvious. Semantics of service requests can
be captured by designing a semantic model of service requests. A good semantic
model must include information that makes automatic service composition possi-
ble and feasible. A good semantic model shall also provide a mechanism that is
natural and easy to use by the requestors. The rest of the section gives a briefing
on these two considerations.

Given service requests, discovering new composite services firstly means con-
structing the flow structure of the component services. In other words, the prob-
lem is to decide what component services shall be selected and in what manner
they shall be organized and collaborating. Prior to a detailed functional and non-
functional description of the desired service, the service composition system can
ask the requestor to identify the domains that the requested service falls in. Au-

370

Modeling semantics in composite Web service requests by utility elicitation

tomatic discovery of composite services is made feasible if the services under
consideration are limited to particular domains. We believe a specific service re-
quest can be narrowed down to one or several service domains under some service
categorizations. Therefore, the composition always happens within the context of
certain domains.

Discovery of composite services also means automatically selecting appro-
priate constituent Web services to perform the sub tasks and to make sure these
services comprise a valid and useful service as requested. The service discovered
must adhere to requested properties [25]. A user located in Singapore may say,
for example, “Make the travel arrangement for my conference trip. If morning
flights are unavailable, I will go by sea.” With such preferences, a composite ser-
vice that uses an airplane as the transportation mode but flies the passenger by an
evening flight is not acceptable to the user. Therefore, in addition to understand
what the requester wants to do, we must also understand the requester’s prefer-
ences and constraints. The composition agent shall compare the constraints of ser-
vice providers, such as “Singapore Airlines does not have morning services from
Singapore to Beijing” with the specification of the concerns of service requesters
to achieve an acceptable composition of services. Further, if there are conflicts
between the user preferences and the service products or between one preference
and another, the composition agent will have to resolve the conflicts.

When getting the requester’s preference and constraints, and resolving the con-
flicts if needed, one requirement is a mechanism that allows the user to elicit ser-
vice requests with preferences easily and that assists the user to achieve their goals
to the greatest extend possible. A good thing to do when modeling the semantics of
requests is to introduce an iterative and incremental mechanism for a flexible yet
effective request elicitation. Most fully automatic approaches to services composi-
tion assume that the requester can put together their requirements and preferences
all at once, within one iteration. They do not allow a user to develop the prefer-
ence model incrementally and make tradeoffs by adjusting the preferences. Such
inflexibility prevents the discovery result from being acceptable.

Please note that although users are obligated to provide description informa-
tion of their needs, not all description information shall be compulsory as user
input for composition. The composition system following the model makes an in-
formed guess if it is not provided with the complete information, and displays a
list of proposed composite services to the user to verify and select from.

4 Modeling semantic service requests for composite Web services

In this section, we discuss the modeling of the requirements of a service request
with the mentioned considerations. Since OWL-S is the most prevalent language
used to encode Web service capabilities both for advertisement and for requests
[22], we chose to model service requests using the OWL-S semantic framework.
However, our modeling is not dependent on a particular semantic framework. Gen-
erally speaking, according to the OWL-S service ontologies [27], requirements on
services can relate to the profile aspect, the grounding aspect or the process model
aspect of the semantic services.

We see the semantic analysis of service requests as an integral part of the Web
service process. As such, we augment [23]’s “Web service lifecycle in OWL-S

371

Q. A. Liang et al.

Fig. 1 Web service lifecycle with request semantic analysis, enhanced from [23]

ontologies” by adding a function for Request Semantic Analysis. The amended
diagram is listed in Fig. 1.

We will discuss semantics of service requests at two levels. The first level
is user requirements presented as constraints and preferences. The second level
is iterative and incremental constraint (preference) revision. We also propose the
OWL-S based service request language constructs to accommodate these seman-
tics.

4.1 Multi-attribute utility theory and service requests

Multi-attribute utility theory (MAUT) and preference elicitation have been stud-
ied extensively in the literature of decision analysis [15]. If a user has preferences
on the multiple attributes of a product or a system, the user needs a systematic
method to make decisions about the kind of multi-dimensional tradeoffs that are
best for his preferences. Without a supporting method, people or agents have prob-
lems with making multi-attribute decisions because the satisfaction of a preference
along one dimension may result in a failure to meet preferences along other di-
mensions. In service-oriented computing, a service is an object that has its own
attributes. A systematic and quantifiable method of meeting service requests us-
ing available services can be based on the same techniques developed for decision
analysis and for analyzing multi-dimensional user preferences in decision-support
systems.

The standard multi-attribute decision analysis is described in [15] and [36].
Applying it to the (Web) service domain, the set of the service alternatives, i.e.,
the outcome, S, is defined by a set of value dimensions, as in (1).

V = {d1, d2, . . . , dn} (1)

372

Modeling semantics in composite Web service requests by utility elicitation

A utility function u of service alternatives is a real value function, all of whose
arguments are in V, i.e.,

u(V) : 2V → R (2)

The process of making decisions is modeled as identifying the best solutions
from 2V options. The following relationship among the outcome services, s, in S
is defined: The preference relation � is an asymmetric (s � s′ ⇒ ¬(s′ � s))
and transitive (s � s′) ∧ (s′ � s′′) ⇒ (s � s′′)) [16] binary relation on the set
of options. s � s′ indicates that the alternative s is preferred to alternative s′. s
and s′ are said to be indifferent, if (¬(s � s′) ∧ ¬(s′ � s)). A utility function is
indicating a unique preference order over the individual outcomes in S, i.e.,

s � s′ ⇔ u(s) > u(s′), s ∈ S, s′ ∈ S (3)

Let’s assume the probability distribution over V is denoted as Pr. Let
Z1, . . . , Zk be a partition of V. Z1, . . . , Zk are said to be additively independent
regarding �, if for any Pr1 and Pr2 that have the same marginal on Zi for all V,
Pr1and Pr2 are indifferent. It has been proved [15] that Z1, . . . , Zk is additively
independent only if the utility function u, can be written as a sum of the utility
functions of Zi , i.e.,

u(V) =
k∑

i=0

ui (Zi) (4)

To use the multi-attribute utility theory to model service requests, there are a
couple of issues. First, in general cases, a dimension d is usually a function of
the relevant simple attributes [31], i.e. d = f (a1, a2, ...). In the case of Web ser-
vices, the variables of services in the service requests are heterogeneous, which
makes it inconvenient to subsume them in a hierarchy. Also, it is sufficient to ask
a requestor to present the required properties in higher-level ontologies of OWL-S
with a flat structure. Based on the above considerations, when modeling the ser-
vice requests, we use a simple model that directly operates on variables avoiding
a more complex model that involves a dimension hierarchy. We will use the fol-
lowing definition of the service outcome space: V = {v1, v2, . . . , vn}, where vi
are service variables that the requester can use to express their desired service.

Second, the requester’s requirements on services can be either functional or
non-functional, which could span all three classes of service descriptions (profile,
process model and grounding) in OWL-S. A functional requirement consists of
descriptions of functional properties of the service using ontology of service func-
tions in OWL-S. An example is a “Bookselling service” or an “Airline ticketing
service”. A non-functional requirement consists of descriptions of non-functional
properties of the service, which are usually conditions or restrictions, such as
“FlightDepatureDate between June 3rd, and June 5th” or “Encrypt a header with
an X.509 token”. We use the multi-attribute utility to handle all the requirements
in the same framework. To achieve this, we uniformly model all requirements as
“constraints” on services and differentiate hard constraints and soft constraints.

Third, to discover a service based on a higher-level description creates conve-
nience for service users, but at the same time introduces challenges in capturing
the service needs. Denying the requestor’s follow-up descriptions or preference

373

Q. A. Liang et al.

changes to enforce “one-time” decisions or non-intervention are inflexible and re-
stricted. Besides, it limits the exploration of the user’s true service needs and con-
cerns, and makes the discovery harder. All these may lead to the inapplicability of
the discovery results. Therefore, the request semantics must have mechanisms to
allow incremental development of the request model.

4.2 Service request modeling

This section discusses the model of service requests through explaining what do
we mean by service constraints and preferences in Sect. 4.2.1., highlighting the
related ontology conceptualizations of OWL-S and illustrating the service attribute
structure to use when they are all additive independent in Sect. 4.2.2 and when
they are not additive independent in Sect. 4.2.3, and showing the accommodation
of iterative and incremental constraint elicitation in Sect. 4.2.4.

4.2.1 Service constraints and preferences

In this section, we will show how we adapt multi-attribute utility theory to model
service requests, especially for composite services, and describe our efforts to-
wards attacking the three issues mentioned in Sect. 4.1.

Constraints are generally conceived as “hard”, which mean that only services
that meet conditions are acceptable. For example, the user may say that “A first-
class seat is required” when requesting an air ticket booking service. Preferences
are “soft”, which means if there are choices the user will have a preference on
one option over the other. For example, “A first-class seat is preferred” is a prefer-
ence. Since constraints can be seen as a special type of preferences, in this paper,
constraints and preferences are used interchangeably to refer to both hard and soft
constraints.

Constraints are able to, among other things, serve two purposes in service
composition: to provide information in defining the structure of the composite
service and to describe identifying properties that validate suitable component
service providers. Constraints serving the first purpose are usually functional re-
quirements. Some of such constraints indicate control flows that must be satisfied
by two or more component services in the requested service. When defining the
flow structure of the composite service, we extract control flow information from
the requestor’s concerns and establish various links for the involved services in
the solution space. Consequently, the discovered solution complies with the flows
implied by the constraints. Such constraints may also indicate possible usefulness
of a component service that will not be considered as required otherwise. On the
other hand, a majority of constraints are so-called attribute constraints, which are
defined upon attributes or parameters. They describe interesting properties and tell
“qualified” providers of a certain service from “unqualified” ones. They are used
to filter out providers that are in conflict with the requesters’ interests or concerns.
In service-oriented paradigm, attributes are defined for each service object to de-
scribe its identifying properties. Therefore, attribute constraints can be defined as
restrictions imposed on single or multiple attributes of one or more services that
must be complied with. Attribute constraints on a single attribute are referred to

374

Modeling semantics in composite Web service requests by utility elicitation

as single-attribute constraints and attribute constraints on more than one attribute
are referred to as inter-attribute constraints.

4.2.2 Additive independence request structure

In order to take into consideration semantics about a condition that has to be qual-
ified to make a solution acceptable for the request and about the criterion that
makes a solution a better one, we highlight in the paper the following four on-
tological concepts related to composite services, i.e. Service Category, Service
Operation/Atomic Process, Service Parameter and Control Construct. All four
concepts are from OWL-S. The concept of Service operation is in WSDL, which
corresponds to the most canonical grounding of atomic process in OWL-S. We
will use service operation in the rest of the text. With these ontological concepts,
we ask requesters to impose different requirements on a requested composite ser-
vice. Accordingly, we model service requests over a set of variables A of MAUT
[15]. Each requirement is considered as a constraint defined as a relation on any
combination of variables of one of the four variable types corresponding to the
four ontological concepts, indicated in (5) and (6):

a) The single attribute c of type C corresponds to the service categories of the
requested service based on a service categorization scheme or service taxon-
omy such as [32, 35]. It is a multi-value attribute and each value refers to an
identified service category.

b) The single attribute o of type O corresponds to the service operations of the
requested service. It is a multi-value attribute and each value refers to a service
operation.

c) Attributes of type AT define the parameters on the concerned and differentiat-
ing properties of the requested service.

d) Attributes of type OD link operations with one another and are used to define
control constructs of the process model of the requested service.

A = AC ∪ AO ∪ AAT ∪ AOD (5)

where

AC = {c}, AO = {o}, AAT = {a1, . . . , am, . . . , aM },
AOD = {r1, . . . , rl , . . . , rL} (6)

each of which takes on values from a set of domains respectively:

D = {D1, . . . , Dk, . . . , DM+L+2},
Dk = Domain(vark), k = 1, . . . , M + L + 2 and vark ∈ A (7)

The domain of attribute c is all subsets of registered service categories. For
example, c can take {transportation service category} as its value. Within the iden-
tified service categories, there are multiple alternative services for achieving the
requester’s goal. Useful service operations will be referred to by attribute o. For
example, the operation attribute can take the value of {transport by a rental car
service}, or alternatively {transport through an air flying service}. The domain of

375

Q. A. Liang et al.

an attribute of type AT, or a ∈ AAT, is all the values that a can take while satis-
fying the constraints or preferences. All attributes of type OD are binary variables
that are defined on pairs of named operations, i.e. rl = γ (oi , o j), oi , o j ∈ o. The
function γ maps operation pairs to {1, 0}. It is mapped to 1, when the pair has
a precedence relationship, meaning one operation has to be performed before the
other. Otherwise 0, i.e., when there is not a precedence relationship. Note that this
definition of OD attributes only reflects one specific type of such constructs de-
fined in OWL-S, because we do not expect the user to provide complicated control
structures. This definition can be expanded to include more complicated structures
if there’s a need.

A preference or a constraint is a function

uk(v) : Dk → [0, 1] (8)

This function is actually a utility function scaled to the interval of 0 to 1.
The score of a particular composition regarding the preference is scaled to 0, if

the preference or constraint is fully unsatisfied and is scaled to 1, if the preference
is fully satisfied. In this section, we assume that the service variables are additive
independent [15]. Additive independence means that if a set of attributes’ values
are fixed, the preference scores on the solutions with varying values of its comple-
mentary variable set will not be different. For an example, the user’s preference on
air ticket price does not depend on whether or not the ticket booking is processed
before or after the hotel reservation.

Automated Travel Assistant (ATA), an iterative flight itinerary building pro-
totype [20], proposed an interactive user preference assessment model. Assuming
additive independence, the user’s preference on the requested service is formulated
by ATA as a weighted sum of preference functions as in (9). With this assumption,
there are no interactions among any variables of any of the above four types and
thus the preference of a requestor only depends on each variable.

error(v1, . . . , vk, . . .) =
K∑

k=1

Ck(vk)wk (9)

We can adapt the above equation to model the overall preference score of a
candidate composite service. Assuming additive independence, preferences over
service compositions can be formulated as probabilistic estimations on the val-
ues of possible service compositions defined over all its service variables. Ser-
vice providers, under many circumstances, show non-deterministic or probabilis-
tic characteristics. Some variables, therefore, represent certain aspects of the ser-
vice composition process that are probabilistic in nature. For this reason, only the
likelihood of each possible outcome can be known instead of which outcome will
appear for certainty. This is the case for online businesses serving a large amount
of transactions at the same time. The customer cannot be guaranteed by 100%
the availability of the merchandizes or services. In another scenario, the business
model, such as buyer auction as successfully adopted by companies like price-
line.com, determines that the service requester will not be notified of the exact
output. Our model is listed in (10).

score(v1, . . . , vk, . . .) =
∑

s∈S

u(V) Pr(s) =
∑

s∈S

(
K∑

k=1

uk(vk)wk

)
Pr(s) (10)

376

Modeling semantics in composite Web service requests by utility elicitation

Table 1 Example of the weighted preference scores of a composition

SUV Air ticket Hotel Flight departure Air ticket booking,
rental booking reservation time hotel reservation

Score 1 1 1 AM = 1 PM E = 0.5 PM L = 0.2 1

Weight 0.1 0.225 0.225 0.225 0.225

Probability Uniform distribution in the outcome space

Formula (10) models the overall preference score on a candidate compo-
sition by two nested summations. The inner summation sums up the products
of the itemized score of a particular variable instance, uk(vk), and the weight,
wk , or how important it is to satisfy the constraint on that variable. The outer
summation is the expected value of the utility functions on various outcomes,
or EU, as a dot product of the outcome utility vector and the particular lottery
over the outcome space, Pr(s). The weights and preference scores can both be
adjusted for different runs of composition to produce the most preferred ser-
vice. We show an example of the weighted preference scores of a composi-
tion in Table 1. PM E means afternoon flights and PM L means evening flights.
(Air Ticket Booking, Hotel Reservation) means that air ticket booking proceeds
hotel reservation. Since the weight of SUV rental is only 0.1, relatively lower
than all other weights, SUV rental service is not considered as import as other
requirements.

One candidate composition is preferred to the other, if the first induces greater
expected utility. The candidate compositions are represented by probability distri-
butions over the outcome space, S. (11) shows the preference relationships among
candidate compositions.

Pr1 � Pr2 iff score1(v1, . . . , vk, . . .) > score2(v1, . . . , vk, . . .) (11)

We accommodate the above user preference model of composite service
requests into our service request language by introducing the language con-
structs. Due to space limit, only a few snippets of the constructs are in
list 1.

In order to apply this model, there must be prepared statistic data about ser-
vice providers for the composing system to use. Such service data can be obtained
from marketing research companies that constantly conduct customer surveys to
collect service data and observe service provider behavior or from the customer
feedback provided to the organization that runs the composing system. Data from
the latter source may be limited to a small number of businesses. However, most
businesses in the same domain usually share common types of business rules in
handling customer demands when they do not have the capacity to meet all in-
dividual customers. We believe it is reasonable to assume at this stage that data
obtained from a small sample of businesses is likely to be applicable to other busi-
nesses in the same business domain. An alternative way to obtain this information
is for service providers to provide such statistics to the service composition sys-
tem, which uses it only for composition purpose without releasing the business
confidential information to the public.

377

Q. A. Liang et al.

List 1. Snippet of language constructs for user preference model of composite
service requests

4.2.3 Generalized additive independence request structure

In some circumstances, the assumption of variables being additively independent,
as Sect. 4.2.2., may not be true to the complete set of individual variables. For
example, how much an operation is preferred by the requestor as necessary will
change the structure of the preference relation of outputs. At the very least, those
outputs with different satisfaction levels on that particular operation will be af-
fected. In this case, we need to generalize the assumption of additive indepen-
dence.

Generalized Additive Independence (GAI) is a generalization of additive util-
ities. Unlike additive independence, it allows interactions between variables and
decomposes the utility function into a sum of sub-utilities on the sets of interacting
attributes. If there exists a not necessarily disjoint partition of the original variables
set, such that the utility function, u(·) can be decomposed as a summation of the
utility functions of the partitioned variable sets [10], these variables are referred
to as generalized additive independent for the preference relation defined by u(·).
GAI is a less stronger independence assumption than additive independence and
provides more flexibility in the structure of utility function [1, 10–12]. Since GAI
is reasonably applicable to the service composition domain, we model the user
utility function as GAI by rewriting (10) into (13) through the substitution of (12).
Variable set {vk} are decomposed into {VIk′ |VIk′ ⊂ {vk}}, where Ik′ is an index

set to v and ∪K ′
k′=1 Ik′ = {1, . . . , K }. Ik′ and VIk′ , may overlap with each other

378

Modeling semantics in composite Web service requests by utility elicitation

respectively. The union of all VIk′ is the original variable set.

u(V) =
K ′∑

k′=1

ūk′(VIk′)

=
K ′∑

k′=1

wk′uk′(VIk′), where {v1, . . . , vk, . . .} = ∪K ′
k′=1VIk′ (12)

score(v1, . . . , vk, . . .) =
∑

s∈S

⎛

⎝
K ′∑

k′=1

uk′(VIk′)wk′

⎞

⎠ Pr(s), where ∪K ′
k′=1 VIk′

= {v1, . . . , vk, . . .} (13)

Referring to four types of variables in service requests discussed in the previ-
ous section, different types of variables can correlate to other variables in different
ways. Studying whether variables interact with each other and what variables in-
teract with each other is necessary to decide the partition of the variables. Variable
c identifies the service categories involved. It represents what the service requestor
wants to do, which shall not be affected by the distribution of other aspects of the
outcome. Therefore, this variable forms the first participation. Variable o deter-
mines the service operations that are believed to be useful constituency of the
complex service. It may correlate with the variables of type AT. For example,
whether a traveler considers taking a train or a flight may depend on whether a
nonstop-flight is likely or whether the discount ticket fare is likely. Variable o may
also interact with the variables of type OD. The traveler preference of a flight or
a train may affect his preference of a taxi pick-up before checking into the hotel,
given the common sense that airports always locate far away from the city while
train stations may be close to the city area. A variable of type AT may correlate
with other variables of its own type. For example, the preference over price may
depend on whether a flight departs during the preferred timeframe.

The algorithm listed below establishes service variable partitions {VIi } for de-
composing the composition utility. It starts by instantiating service variables c and
o. c is assigned all service categories selected by the user as in step (b) and o is as-
signed all service operations picked from the selected categories as in step (c). The
algorithm then goes to set the binary variables of type OD as in step (d) through
to step (e). For each operation pair in o, if the user has defined a precedence over
it, the corresponding variable in OD is set to 1, otherwise 0. Since there are J × J
possible ordered pairs (where J is the number of operations in o), the variables can
be indexed by a linear order indicated in the algorithm. After these initializations,
algorithm starts creating partitions of service variables. It firstly creates a partition
for the single variable of type C as in step (f). Each inter-attribute constraint is
then examined and a new partition is created as in step (g) through to step (k). The
algorithm repeatedly does the following two things: Whenever an attribute that is
not already in this partition is seen, it is added to the current partition. Whenever
an operation is seen, o is added to the current partition if not already in. After
inter-attribute constraints, the algorithm checks each single-attribute constraint. If
the attribute is not in any of the created partitions, a new singly partition is created

379

Q. A. Liang et al.

for that attribute as in step (h). The last two jobs of the algorithm are to create a
partition for each non-zero variable of OD if that variable is not part of the created
partitions as in step (i), and to create a partition for variable o if it is not in any
partitions as in step (j).

Algorithm 1. Algorithm to establish service variable partitions for decomposing
the composition utility

After partitioning the variable set, we need to calculate the sub-utility function
of each variable sub set in the partition, or uk′(VIk′) as in (12) and (13), so that we

380

Modeling semantics in composite Web service requests by utility elicitation

can build the utility function of the complete variable set, or score(v1, . . . , vk, . . .)
as in (13).

We adopt what was proposed by Fishburn [10] to construct the sub-utility func-
tions for each sub set of the variable set. We continue to use the same notation of
V and VIi . V denotes the complete set of service variables and VIi denotes the
sub set of variables indexed by the numbers in Ii . To simplify the notation, we
use Vi to denote VIi . Under GAI, the sub-utility functions for each sub set can be
shown as in (14). Sub-utility uk′(·) on subset Vk′ , or uk′(Vk′), is calculated as a
sum of utilities of certain several other outcomes, u(V [I]). These outcomes have
the same value as Vk′ on some variables and have the default values on the rest
variables. For example, outcome V [I1] has the same values as in V for variables
that are index by the numbers in I1 and has default values for all other variables.
There are two important related notions. The notion of a default outcome, denoted
by V 0 = (v0

1, v0
2, . . . , v0

k), refers to an arbitrary assignment to the set of variables.
V [I] refers to a (complete) outcome where variables in I remain the same value
as in V and all others are set to the corresponding arbitrary value in V 0. The sec-
ond formula in (14) tells that the sub-utility function uk′(·) on the local sub set of
variables, Vk′ , is defined as the sum of the utility function of outcome V [Ik′] and a
two-level nested summation. In the outer summation, it switches the sign of the in-
ner summation between 1 and −1 to indicate either adding or lessing the result of
the inner summation. The inner summation iterates through a certain number, j, of
sub sets to find out the intersection between each sub set Vis iterated through and
the local sub set Vk′ . j intersecting sets are then intersected again to get the utility
function on V [⋂ j

s=1 · · ·]. All utilities with different iteration numbers j , ranging
from 1 to k′ − 1, are then added together and multiply by 1 or −1.

u1(V1) = u(V [I1]),

uk′(Vk′) = u(V [Ik′]) +
k′−1∑

j=1

(−1) j
∑

1≤i1···<i j <k′
u

⎛

⎝V

⎡

⎣
j⋂

s=1

Iis ∩Ik′

⎤

⎦

⎞

⎠ (14)

Now the elicitation of the utility of an outcome is simplified to specifying util-
ities of certain several outcomes. However, notice that V [Ik′] is still a complete
outcome over all variables in the complete variable set. This means that to cal-
culate sub-utilities, the user still has to assess the tradeoffs in domains of many
variables, which may be hard for the user. To further reduce the complexity, we
can restrict elicitations to utilities of subsets of variables instead of the complete
variable set. Braziunas et al. suggested separating the elicitation process into local
elicitation and global scaling [6], which we adopted.

For each subset Ii , a top and bottom anchor outcome, V [Ii]T = (V T
Ii
, V 0

I C
i
) and

V [Ii]⊥ = (V ⊥
Ii

, V 0
I C
i
) are chosen. V T

Ii
and V ⊥

Ii
are the top and bottom values of Ii

respectively. Ci is the conditioning set of Ii , defined as the union of all subsets that
overlap with Ii excluding the variables in Ii , or C j = ⋃

j∈Ii
(
⋃

k: j∈Ik
Ik) − Ii .

To give an example, if V = {flightStops, flightDepartureTime, Airlines},
V1 = {flightStops, Airlines} and V2 = {flightDepartureTime, Airlines}. V 0 =
{v0

1, v0
2, v0

3} = {1, 8:00 AM, UnitedAirlines}. V T
I1

= {0, Northwest}. V ⊥
I1

= {3,

Budget}. C1 = {v2} = {flightDepartureTime} and V 0
I C
1

= {8:00 AM}. Therefore,

381

Q. A. Liang et al.

the top anchor outcome of I1is V [I1]T = (V T
I1
, V 0

I C
1
) = {0, 8:00 AM, NorthWest}

and the bottom anchor outcome of I1 is V [I1]⊥ = (V ⊥
I1

, V 0
I C
1
) = {3, 8:00 AM,

Budget}.
It was proven in [6] that local elicitations with respect to local anchors can

be used to evaluate local outcomes, because the rest variables are irrelevant to
the local outcome preference levels. Using local value functions, which are only
locally calibrated value functions, sub-utility functions can be defined on v(·),
local value functions, and uT

i = u(V [Ii]T) and u⊥
i = u(V [Ii]⊥), utilities of the

anchor outcomes. For details, please refer to [17].

4.2.4 Iterative and incremental request elicitation

Iterative and incremental request elicitation improves the effectiveness of compos-
ite service building. Such process gives service requestors more flexibility when
describing their needs and allows decision-support systems to improve the utility
model to deliver better payoff to the user. We would like to discuss briefly why we
need iterative and incremental service request elicitation.

The first reason is that users’ service needs are not straightforward to the com-
position system, due to their cognitive limitation in describing the service needs.
Automated generation of a service process structure can only be based on an ‘es-
timation’ of the customer’s service need. The automation process relies on the
requestor’s critiques to make the decision. Research on incremental utility elic-
itation [3, 13, 30] has also provided proof that an incremental and interactive
theoretic framework can benefit the decision making by updating the incomplete
model based on user feedback.

Second, a user has preferences and constraints. According to the SWSL
group’s requirement document [34], when composing a service, relaxation or
tightening the constraints shall be allowed. To take advantage of this flexibil-
ity, requesters tend to iteratively revise their preferences in achieving their main
objectives. Third, services over the Web show very varying, dynamic and non-
deterministic features. Users’ constraints may be in conflict with the existing ser-
vices or even themselves. These conflicts are not obvious until the composition
system builds the user preference model and tries to resolve them. Resolving the
conflicts is an iterative process, which gives opportunities for the user to adapt
their needs to the available services in the real world.

The need for an incremental elicitation scheme can be interpreted as the
need for feedbacks on service attribute constraints provided by the requestors
such that the request can be modified into a more complete or non-conflict one.
Feedbacks can take different forms depending on the problems in the requests. If
a requested data entity cannot be generated due to not enough input data entities
provided, possible operations and the data entity input(s) that may have to be
provided to produce the requested output shall be reminded using attribute o. If
the failure of service composition is due to a particular non-satisfiable constraint,
the constraint will be prompted to the user, along with a suggestion for how to
relax that constraint via the attributes of type AT.

382

Modeling semantics in composite Web service requests by utility elicitation

4.2.4.1 Iterative elicitation. Iterative elicitation refers to user changing their previ-
ous specifications on the weights and scores, possibly in repetition. This provides
the system with the adaptability of changes of both users and the service providers.
This also provides opportunities for the decision making process to retreat from
unsuccessful efforts in solving unsolvable problems.

Several ontology conceptualizations need to be introduced for this purpose
including version, validity, weight and score. We introduce corresponding lan-
guage constructs to make the iterative process easy both for the requesters to
make changes on their previous requests and preferences, and for the compo-
sition system to produce the acceptable composition. Please refer to List 2 for
details. We tend to keep the history of all incremental changes making the ser-
vice requests stateful. UserConstraint encloses language constructs that capture
the version evolvement of the user constraint and the validity of the constraint.
Each elicitation of user preference is labeled with a version number, which takes
on non-negative integer numbers and is incremented by 1 for every change on the
preference. In this case, the user is allowed to change six times. At the same time,
every time the user weight or score is revised, the new weight or score is appended
to the end of the weight list or score list. In order to support history recording, the
ranges of hasWeight and hasScore are declared as container resources.

List 2. Language constructs to make iterative process

383

Q. A. Liang et al.

4.2.4.2 Incremental elicitation. Incremental elicitation refers to user adding new
preferences to give more complete descriptions of the utility model of service
compositions. Incremental elicitation helps to achieve better utility function esti-
mations, when the utility functions cannot be precisely derived based on the lim-
ited number of user elicitations. In the case that the utility function estimation does
not turn out to be satisfying, incremental elicitation drives the system towards a
better solution.

In the case of additive independence, the utility function can be seen as a linear
estimation from a number of single-variable sub-utility functions as shown in (4).
Each of the sub-utility function is then factored into a local value function uk(vk)
and a weighting factor wk , as in (10). When a new preference on two outcomes,

a � b, is added, we get
⇀
w ·a >

⇀
w ·b, where

⇀
w is the weighting vector. So

⇀
w ·(a −

b) > 0. We can now transform the problem of introducing the new elicitation into
the old utility model to the problem of solving the following set of constraints, as
suggested in Bylthe [3]:

Maximize c · ⇀
w

A · ⇀
w > 0, −1 ≤ wi ≤ 1, 1 ≤ i ≤ n

In the above constraints, c can be assigned the previous utility estimates, lead-

ing to a conservative updating scheme [3].
⇀
w is an n-dimension weighting vector.

A has rows of preference vectors
−−−→
a − b.

5 Application scenario and scheme evaluation

In this section, we demonstrate how the proposed approach of modeling service
requests is applied to a real-world business scenario. We will first give an example
for additive independence. We then revise this example to show how GAI works
for composite service requests. We also propose a possible way to evaluate the
iterative and incremental scheme of the model.

384

Modeling semantics in composite Web service requests by utility elicitation

5.1 Additive independence

The case is about a service request for a composition of a travel arrangement
service. Assume the requestor wants a package of a round trip flights, 2-day hotel
reservation service and preferably 2-day SUV rental service. Air ticket booking
must be done before hotel reservation. The cost must be between $650 and $900
and cost must be minimized. Travel on 22nd May or 23rd May. Morning flights
are preferred. This could be from an agency or an individual. The scenario of the
service client is as follows:

• Travel Arrangement category.
• Need Air ticket booking service.
• Need hotel reservation.
• SUV Rental is preferred.
• Cost <$650 preferred and Cost >$900 not acceptable.
• FlightDepartureDateTime <12 PM on 22nd May or 23rd May is preferred.
• Air ticket booking precedes hotel reservation.

What is available through the registered services is as follows:

EZ Airlines, Royal Hotel, Budget Hotel, TrainTrans Online, and Enter-Car
are the companies that provide travel services and are registered with the
service registry. EZ Airlines provides a service called AirTicketProcessing.
One of its operations, AirTicketBooking, allows clients to book air tickets.
Both Royal Hotel and Budget Hotel provide a service called roomEPassIs-
sue to issue electronic passes and a promotional rate, through an operation
called PromotionalEPass. Enter-car provides SUV reservation through its
SUVRental operation. TrainTrans Online provides TrainTicketBooking for
ticket booking.

The list of the constraints of the different players in this scenario in the service
registry is as follows:

EZAirline: Evening seats on May 23rd, and morning seats on May 22nd,
may be available. Payment must be made by a VISA or MASTER card.
Fare is between $200 and $250.

RoyalHotel: PromotionalEPass is only available between May 23rd, and
June 24th, which may provide a special rate as low as $125.00 each night.
Regular price is $250 each night. Accept all major credit cards. The oper-
ation requires that the message must use a reliable messaging protocol and
encrypt a header with WS-Security using a X. 509 token.

Enter-Car: SUVRental provides SUV rental for $100 daily.

BudgetHotel: PromotionalEPass is only available between May 23rd, and
June 24th, which may provide a special rate as low as $175.00 each night.
Regular price is $200 each night. Accept all major credit cards.

To help understand the request elicitation and decision making process with
this model, we will walk through how the process proceeds and how tradeoffs in
different aspects of possible service compositions are assessed. We ask the user

385

Q. A. Liang et al.

Table 2 Royal Hotel’s lottery

FlightDepartureDateTime Cost SUVRental AirTicket
Booking

PromotionalEPass

Morning 22 MayEvening 23 May (650,900] [0,650]

(Air Ticket Booking,
PromotionalEPass)

Score 1 1 1 1 0.2 0.5 1 1

Weight 10% 18% 18% 18% 18% 18%

Product (S, W) 0.1 0.18 0.18 0.18 0.036 0.09 0.18 0.18

Probability 0.5 0.5 0.5 0.5

Table 3 Budget Hotel’s lottery

FlightDepartureDateTime Cost SUVRental AirTicket
Booking

PromotionalEPass

Morning 22 May Evening 23 May (750,800] [0,750]

(Air Ticket Booking,
PromotionalEPass)

Score 1 1 1 1 0.2 0.6 0.8 1

Weight 10% 18% 18% 18% 18% 18%

Product (S, W) 0.1 0.18 0.18 0.18 0.036 0.108 0.146 0.18

Probability 0.3 0.7 0.3 0.7

to select service categories and pick service operations. We when ask the user to
specify all constraints, which are what we have in the first part of the scenario
description at the beginning of this section. The above information will be used
to establish service variables and populate some of the variables. We will then
build the partitions of the variables. In the case of the additive independent request
structure, all partitions are singly partitions. We will then get the utility of certain
values. For example, u1(a1 = $650) = 1 and u1(a1 = $901) = 0, if a1 represents
Cost. The user also has to explicitly give the weights of all the variables.

In order to build the probabilistic distribution functions, we can collect
statistic data of certain values. For example, PrRoyalHotel(a1 < $650) = 0.5,
PrRoyalHotel(a1 ∈ [$650, $900]) = 0.5. In the rest of this section, we will as-
sume that the statistics of taking on different data values can be collected and the
probabilistic distributions can be induced from the data.

The above process is exactly the same for both additive independent request
and GAI requests.

The decision making process can be put in tables. We can list the preference
scores of all the attributes, weights and probability distribution of different out-
comes in tables against all various lotteries. In our case, Table 2 is for Royal
Hotel’s lottery and Table 3 is for Budget Hotel’s lottery. In both tables, we use
different shades to show different sub-outcomes. Probabilities of outcomes are
also given in cells with corresponding shades. We calculate the expected utilities
of two options and select the one has a large expected utility.

Utility estimation of Royal Hotel

= 0.5 ∗ (0.1 + 0.18 + 0.18 + 0.18 + 0.09 + 0.18)

+0.5 ∗ (0.1 + 0.18 + 0.18 + 0.036 + 0.18 + 0.18) = 0.883

Utility estimation of Budget Hotel

= 0.3 ∗ (0.1 + 0.18 + 0.18 + 0.18 + 0.108 + 0.18)

+0.7 ∗ (0.1 + 0.18 + 0.18 + 0.036 + 0.146 + 0.18) = 0.8538

386

Modeling semantics in composite Web service requests by utility elicitation

Royal Hotel seems to be the better choice. Below is an intuitive explanation.
If we sketch out possible solutions, the alternatives are between Royal Hotel and
Budget Hotel with tradeoffs between different travel time and the availability of
promotional hotel booking. For both hotels, the only two possibilities are to fly
on 22nd by a morning flight without the discount hotel rate or to fly on 23rd
evening and enjoy the discount hotel rate. Budget Hotel has a lower regular rate
and a higher discount rate compared to Royal Hotel. Understandingly, its utility
on regular rate is higher and the utility on discount rate is lower compared to those
of Royal Hotel. We need also take into consideration the probability distributions
of both hotels, which is 30–70% for Budget Hotel and 50–50% for Royal Hotel.
Because the latter shows dominance in higher utility, it turns out to be a better
choice.

5.2 Generalized additive independence

To make the previous scenario a bit more complicated, we add in two constraints
i.e. “If the flight is a morning flight (arrival during working hours), a rental car is
more preferred”, and “If the flight is a morning flight, the user is more willing to
pay a higher price.”

– FlightDepartureTime <12 PM → Rental car service is more preferred.
– FlightDepartureTime <12 PM → Preference on a relatively higher cost in-

creases.

Using Algorithm 1, the variables are defined and initialized as follows:

AC = {c}, c = {travel arrangement};
AO = {o}, o = {Air ticket booking, RoomEPassIssue, SUV Rental};
AAT = {a1, a2, a3}, a1 = FlightDepartureTime, a2 = Cost, a3 = FlightDepar-

tureDate
AOD = {r1, r2, r3}, r1 = γ (Air ticket booking, RoomEPassIssue) = 1, r2 = γ

(Air ticket booking, SUV Rental) = 0, r3 = γ (RoomEPassIssue, SUV Rental)
= 0

Using Algorithm 1, the variables can be partitioned as follows:

VI1 = {c};
VI2 = {a1, o};
VI3 = {a1, a2};
VI4 = {a3}
VI5 = {r1}

Given the above partition of the variables, we have the following utility func-
tion decomposition.

u(c, o, a1, a2, a3, r1) = u1(c) + u2(a1, o) + u3(a1, a2) + u4(a3) + u5(r1)

387

Q. A. Liang et al.

Effectiveness in functional requirements Effectiveness in Non-functional requirements
Correctness in functional requirements Correctness in Non-functional requirements

Effectiveness

Correctness

Functional requirements Non-Functional requirements

Fig. 2 Simple two-dimensional evaluation matrix against various types of composition tasks

Following formulas in [17], we then define sub-utility functions by local value
functions and utilities of the anchor outcomes as:

u1(c) = (
uT

1 − u⊥
1

)
v1(c) + u⊥

1 ,

u2(a1, o) = (
uT

2 − u⊥
2

)[
v2(a1, o) − v2(a

0
1, o0)

]
,

u3(a1, a2) = (
uT

3 − u⊥
3

)[
v3(a1, a2) − v3(a

0
1, a0

2)
] + [

uT
3 − 2uT

3 + 2uT
3

]

= (uT
3 − u⊥

3)
[
v3(a1, a2) − v3(a

0
1, a0

2)
] + uT

3 ,

u4(a3) = (
uT

4 − u⊥
4

)[
v4(a3) − v4(a

0
3)

] + [
uT

4 − 3uT
4 + 3uT

4 − 3uT
4

]

= (uT
4 − u⊥

4)
[
v4(a3) − v4(a

0
3)

] − 2uT
4 ,

u5(r1) = (
uT

5 − u⊥
5

)[
v5(r1) − v5(r

0
1)

] + [
uT

5 − 4uT
5 + 4uT

5 − 4uT
5 + 4uT

5

]

= (uT
5 − u⊥

5)
[
v5(r1) − v5(r

0
1)

] + uT
5

5.3 Proposed effectiveness measurement

We have walked through the travel scenario to prove the applicability of the model
by showing how the model works for both additive and generalized additive re-
quest structures. The other important issue is to evaluate the effectiveness of the
iterative and incremental scheme of the model and show how this scheme helps
the process of composition. Intuitively, for complex services, most users are not
able to put together all their requirements at once nor are they able to guarantee
the requirements they have are not in conflict. Such an iterative and incremental
scheme will be needed under most circumstances to fix the tentative problems of
the users communicating service needs to the system.

In order to take a quantitative measurement, one alterative is to identify a group
of human subjects as service users and to design some experiments on composing
services for their service requests. We propose a simple two-dimensional evalu-
ation matrix against various types of composition tasks submitted by the group
of subjects, as shown in Fig. 2. The upper bound of the interactions allowed for
between the system and the users is also assumed.

On one dimension of the evaluation matrix are functional requirements ver-
sus non-functional requirements. On the other dimension are effectiveness and
correctness. First, how effective the scheme is in terms of helping satisfy the func-
tional requirements of the users is evaluated. The frequency that the functional
requirements of service requests are met by one-time composition effort can be
measured. One minus this frequency gives us the effectiveness of the scheme on
this dimension. The frequency of unsatisfied composition results despite of the

388

Modeling semantics in composite Web service requests by utility elicitation

allowed number of interactions is observed, one minus which gives us the cor-
rectness of the scheme on this dimension. Second, how helpful the scheme is in
terms of framing out the reasonable non-functional requirements of the users and
satisfying the requirements is evaluated. For the same functional requirements,
the frequency that the non-functional requirements of service requests are met by
one-time composition effort can be measured. One minus this frequency gives us
the effectiveness of the scheme on the non-functional dimension. The frequency of
various non-functional requirements of the same functional requirements that are
failed by the system with the model despite of the maximum number of allowed
interactions is also recorded. An average of such frequencies over all functional
requirements is taken. One minus the average gives the correctness of the scheme
on the non-functional dimension.

6 Related work

The concept of Semantic Web services was first proposed by McIlraith et al. [25].
These researchers initiated the discussion on the semantic Web technology and
on how it makes information on the Web better understood by computers. McIl-
raith et al. applied Semantic Web to Web services and developed markups of Web
services that benefit Web service discovery, execution and composition [25]. They
also pointed out that user constraints and preferences are the main thing that makes
service discovery, execution and composition difficult. In that paper and in related
papers [24], they described a semantic Web service composition system based on
a LP language and AI planning techniques. They believe that requests of com-
plex services are often for a limited number of common services with different
personalized preferences. Therefore, most of requests can be fulfilled by making
use of pre-built general templates. We argue that sometimes requests are not able
to be represented by general templates. Automatic or semi-automatic composi-
tion should facilitate construction of the service process structure given a request,
without assuming whether the request can be represented by a limited number of
general templates. At the same time, the incompleteness of knowledge on the ser-
vice need makes discovering the service process structure even more challenging.
We propose the interactive and interactive semi-automatic approach for service
composition, also keeping in mind the needs of interactions in resolving user con-
straints and preferences.

Medjahed et al. reported in their paper “Composing Web services on the Se-
mantic Web” an ontology-based framework for automatic Web service compo-
sition [26]. They use a high-level declarative language to describe services and
“composability rules” to check the composability of services from both the syn-
tactic and semantic perspectives. The proposed ontology-based descriptions of
Web services are modeled as a graph composed of nodes and edges representing
the WSDL and extended service description concepts and relationships of these
concepts respectively. Based on the ontology, they define the concepts of mode,
message, operation and Web services, on top of which, they demonstrate syntac
composability (mode and binding composability) and semantics composability
(message composability, operation semantics composability, qualitative compos-
ability and composition soundness). The composition algorithm is composed of
four phases including the specification phase using a CSSL language, matchmak-

389

Q. A. Liang et al.

ing phase using the composability rules defined, selection phase based on quality
of composition and the generation phase to generate a detailed composite service
description. Their work is similar to ours in the high-level declarative descriptions
of services and their concept composability is very similar to service constraints.
Our MAUT model serves as a mapping between the description of the service
need and the complete process of service composition in a streamlined manner,
which irons out a better-formalized systematic approach to service composition.

User preference elicitation has been extensively studied in the literatures of in-
teractive decision systems [4, 11, 12, 20, 29]. Literatures have reported a number
of interactive and incremental ways to help the user to establish a preference model
and to make decisions on tradeoffs among multiple preferences. Reported research
on user preference elicitation focuses on the design of effective interaction inter-
faces, and on developing appropriate models of the preference or utility function
[6, 10–12]. Some of the work has been targeted towards applications in certain
vertical domains such as the airline and travel business. On the other hand, there
are a few efforts in making use of decision theories in selecting service providers.
For example, Benatallah et al. presented a model-driven service composition sys-
tem and peer to peer service orchestration with multi-attribute provider selection
policies [2]. They suggested a set of predefined attributes, such as execution price,
execution duration, reputation and etc., and their corresponding score functions.
Liang et al. models service attribute constraints by MAUT and solves the compo-
sition problem by decision-support system techniques [19]. As another example,
Fakas et al. developed a multi-context information based intelligent navigation
system to incorporate user profile including their preferences and interests [9]. In
this paper, we consider multi-dimensional preferences in the semantic Web service
request context, and study the applicability of MAUT as the enabling model for
both functional and non-functional requirement satisfaction on complex services.
In our model, MAUT serves a more general role in selecting and composing the
desired services, compared to quality comparisons in Benatallah et al. [2].

Research to date on Web service requests for service composition mostly
comes from the AI community. In [17, 28], the authors pointed out that BPEL
[5] lacks the flexibility in responding to the unforeseen situation. They reported a
request language called XML Service Request Language (XSRL) that integrates
AI planning and constraint satisfaction techniques, and a planning architecture that
accepts requests in XSRL. The planning strategy is on an interleaving of planning
and execution. We tried to take into consideration user preferences for service
composition, and to present them in the semantic Web framework. We perceive
that the semantics of the request have to be analyzed against the whole composite
service instead of its component services and therefore, see it beneficial to com-
pose the service first before actually invoking the service.

7 Conclusions

The contribution of the paper is to demonstrate the applicability of multi-attribute
utility techniques to the problem of modeling semantics in service requests for
composite services. The key to the idea is to model the request semantics as revis-
able user constraints and preferences and apply multi-attribute utility techniques
to resolve the user preferences. In this model, non-deterministic aspects in service

390

Modeling semantics in composite Web service requests by utility elicitation

composition are captured in expected utilities. Two preference structures, i.e. addi-
tive independence and generalized additive independence, are discussed in detail
for the model. We enhance OWL-S with language construct extensions that make
possible a clear and uniform way of representing the semantics of both functional
and non-functional aspects of service requests. We also work out an example to
demonstrate the process of modeling the service requests and of comparing vari-
ous solutions according to the preferences.

The significance of the contribution is that it strengthens the service request
processing capability of the Web services model as it eases the interfacing of the
service demand descriptions with service discovery and composition. Benefits of
Web services framework favor a roll out of the request processing capability that
adds value to the automatic service discovery, invocation and integration. Bet-
ter request processing relies on a model where semantics of service requests can
be captured by machines. This model must handle a range of requests. Requests
can range from very brief ones that have only a single operation to very compli-
cated ones that provide sophisticated structure of operations with constraints on
correlated multiple service variables. Our work provides a design of such request
models that facilitate the request processing and promote better service discovery
and integration.

Based on the result reported in this paper, we suggest the following ways to
continue extending the models and methods for semi-automatic and automatic
composition of Web services. (1) There are uncertainties involved when discover-
ing and composing Web services. In some cases, probability distributions cannot
be derived. Extensions towards an appropriate uncertainty model can be made to
complement the request processing. (2) Some criteria regarding services may be
common to all customers. Extension work on identifying both the aspects that
can be treated as common and their criteria is valuable. (3) As part of the future
work, we will look into deploying the implementation of the model/system into
the public domain in order to carry out evaluation based on real usage and user
experience.

References

1. Bacchus F, Grove A (1995) Graphical models for preference and utility. In: Proceedings of
the UAI-95, Montreal, pp 3–10

2. Benatallah B, Dumas M, Sheng QZ (2005) Facilitating the rapid development and scalable
orchestration of composite web services. Distrib Parallel Dat 17(1):5–37

3. Blythe J (2002) Visual exploration and incremental utility elicitation. In: Proceedings of the
18th national conference on artificial intelligence

4. Boutilier C, Bacchus F, Brafman RI (2001) UCP-networks: a directed graphical representa-
tion of conditional utilities. In: Proceedings of the 17th conference on uncertainty in artifi-
cial intelligence (UAI), University of Washington, Seattle, Washington, USA

5. BPEL (2005) http://www-106.ibm.com/developerworks/library/ws-bpel/
6. Braziunas D, Boutilier C (2005) Local utility elicitation in GAI models. In: Proceedings of

the IJCAI-05 multidisciplinary workshop on advances in preference handling, Edinburgh,
Scotland

7. Cornelissen F, Jonker CM, Treur J (2003) Compositional verification of knowledge-based
task models and problem-solving methods. Knowl Inf Syst J 5(3):337–367

8. DAML-S (2001) http://www.daml.org/services/daml-s/0.9/
9. Fakas G, Kakas AC, Schizas C (2004) Electronic roads: intelligent navigation through

multi-contextual information. Knowl Inf Syst J 6(1):103–124

391

Q. A. Liang et al.

10. Fishburn PC (1967) Interdependence and additivity in multivariate, unidimentional ex-
pected utility theory. Int Econ Rev 8:335–342

11. Gonzales C, Perny P (2004a) GAI networks for utility elicitation. In: Proceedings of the 9th
international conference (KR2004) on principles of knowledge representation and reason-
ing, pp 224–234

12. Gonzales C, Perny P (2004b) Graphical models for utility elicitation. In: Proceedings of the
DIMACS/LAMSADE workshop on computer science and decision theory, France

13. Ha V, Haddawy P (1997) Problem-focused incremental elicitation of multi-attribute utility
models. In: Proceedings of the 13th conference on uncertainty in artificial intelligence, pp
215–222

14. Jurisica I, Mylopoulos J, Yu SKE (2004) Ontologies for knowledge management: an infor-
mation systems perspective. Knowl Inf Syst J 6(4):380–401

15. Keeney RL, Raiffa H (1976) Decisions with multiple objectives: preferences and value
tradeoffs. Wiley and Sons, New York

16. Kreps DM (1988) Notes on the theory of choice. Under-ground classics in economics. West-
view Press, Boulder

17. Lazovik A, Aiello M, Papazoglou M (2003) Planning and monitoring the execution of web
service requests. Technical report #DIT-03-049, University of Trento

18. Liang Q, Chakarapani LN, Su SYW, et al. (2004) A semi-automatic approach to composite
web service discovery, description and invocation. Int J Web Serv Res 1(4):64–89

19. Liang Q, Chung J, Miller S (2005) Towards semantic service request of web service com-
position. In: Proceedings of the IEEE conference on e-business engineering (ICEBE 2005)

20. Linden G, Hanks S, Lesh N (1997) Interactive assessment of user preference models: the
automated travel assistant. In: Proceedings of the user modeling ‘97

21. Long DE (1993) Model checking, abstraction and compositional verification. PhD thesis,
Carnegie Mellon University

22. Martin D, Paolucci M, McIlraith S, et al. (2004) Bringing semantics to web services: the
OWL-S Approach. In: Proceedings of the first international workshop on semantic web
services and web process composition (SWSWPC 2004), San Diego

23. McIlraith S, Martin D (2003) Bringing semantics to web services. IEEE Intell Syst Arch
18(1):90–93

24. McIlraith S, Son TC (2002) Adapting golog for composition of semantic web services. In:
Proceedings of 8th conference on knowledge representation and reasoning (KR2002)

25. McIlraith S, Son TC, Zeng H (2001) Semantic web services. IEEE Intell Syst, Spl Issue
Semantic Web 16(2):46–53

26. Medjahed B, Bouguettaya A, Elmagarmid AK (2003) Composing web services on the se-
mantic web. VLDB J 12(4):333–351

27. OWL-S: Semantic Markup for Web Services (2006)
http://www.ai.sri.com/daml/services/owl-s/1.2/

28. Papazoglou M, Aiello M, Pistore M, et al. (2002) Planning for requests against web services.
IEEE Data Eng Bull 25(4):41–46

29. Pu P (2003) User-involved preference elicitation. In: Proceedings of the 18th international
joint conference on artificial intelligence, Workshop on Configuration, Mexico

30. Pu P, Faltings B (2000) Enriching buyers’ experiences: the smartclient approach. In: Pro-
ceedings of the ACM CHI conference on human factors in computing systems, pp 289–296

31. Schafer R (2001) http://www.kbs.uni-hannover.de/ henze/ABIS Workshop2001/final/Schaefer
final. pdf

32. Strikeiron, http://www.strikeiron.com/StrikeIronServices.aspx
33. Su SYW, Liang Q, Chakarapani LN, et al. (2003) A web service composition framework:

discovery, description and invocation. In: Proceedings of the ICECR-6, Texas
34. SWSL (2005) http://www.daml.org/services/swsl/
35. UNSCSP, http://www.unspsc.org/
36. von Winterfeld D, Edwards W (1986) Decision analysis and behavioral research. Cam-

bridge University Press, Cambridge, UK
37. Web Services Description Language (WSDL) 1.1, W3C Note 15 March 2001,

http://www.w3.org/TR/wsdl

392

Modeling semantics in composite Web service requests by utility elicitation

Author Biographies

Qianhui Althea Liang received her Ph.D from the Depart-
ment of Electrical and Computer Engineering, University of
Florida in 2004. While pursuing her Ph.D, she was a mem-
ber of Database Systems Research and Development Cen-
ter at the University of Florida. She received both her bach-
elor’s and master’s from the Department of Computer Sci-
ence and Engineering, Zhejiang University, China. She joined
the School of Information Systems at Singapore Management
University, Singapore, as an assistant professor in 2005. Her
major research interests are service composition, dynamic
service discovery, multimedia Web services, and applied arti-
ficial intelligence.

Jen-Yao Chung received the M.S. and Ph.D degrees
in computer science from the University of Illinois at
Urbana-Champaign. Currently, he is the senior manager for
Engineering and Technology Services Innovation, where
he was responsible for identifying and creating emergent
solutions. He was Chief Technology Officer for IBM Global
Electronics Industry. Before that, he was program director
for IBM Institute for Advanced Commerce Technology
office. He is the co-founder of IEEE technical committee
on e-Commerce (TCEC). He has served as general chair
and program chair for many international conferences, most
recently he served as the steering committee chair for the
IEEE International Conference on e-Commerce Technology
(CEC06) and general chair for the IEEE International
Conference on e-Business Engineering (ICEBE06). He
has authored or coauthored over 150 technical papers in
published journals or conference proceedings. He is a senior

member of the IEEE and a member of ACM.

393

Q. A. Liang et al.

Steven Miller is founding Dean of the School of Information
Systems (SIS) at Singapore Management University, and also
serves as Practice Professor of Information Systems. Since
2003, he has led efforts to launch and establish the undergrad-
uate, graduate and professional programs of the SIS. Imme-
diately prior to joining SMU, Dr. Miller served as Chief Ar-
chitect Executive for the Business Consulting Services unit
of IBM Global Services in Asia Pacific. He held prior in-
dustry appointments with Fujitsu Network Systems, and with
RWD Technologies. Dr. Miller started his professional career
as an Assistant Professor at Carnegie Mellon University, con-
ducting research and teaching related to Computer-Integrated
Manufacturing and Robotics applications and impacts. He
has a Bachelors of Engineering Degree in Systems Engineer-
ing (Magna Cum Laude) from the University of Pennsylvania
and a Masters of Science in Statistics and a Ph.D in Engineer-
ing and Public Policy from Carnegie Mellon University.

394

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	11-2007

	Modeling Semantics in Composite Web Service Requests by Utility Elicitation
	Qianhui (Althea) LIANG
	Jen Yao CHUNG
	Steven MILLER
	Citation

	tmp.1498114100.pdf.HnHYJ

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

