
Singapore Management University
Institutional Knowledge at Singapore Management University
Research Collection Lee Kong Chian School Of
Business Lee Kong Chian School of Business

11-2003

Manpower Allocation with Time Windows and
Job Teaming Constraints
Xi LI
Hong Kong University of Science and Technology

Yan Zhi LI
Hong Kong University of Science and Technology

Andrew LIM
Hong University of Science and Technology

Brian RODRIGUES
Singapore Management University, brianr@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/lkcsb_research

Part of the Operations and Supply Chain Management Commons

This Conference Paper is brought to you for free and open access by the Lee Kong Chian School of Business at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection Lee Kong Chian School Of Business by an authorized administrator
of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
LI, Xi; LI, Yan Zhi; LIM, Andrew; and RODRIGUES, Brian. Manpower Allocation with Time Windows and Job Teaming Constraints.
(2003). Decision Sciences Institute Annual Meeting 2003, November 22-25. 1-6. Research Collection Lee Kong Chian School Of
Business.
Available at: https://ink.library.smu.edu.sg/lkcsb_research/2065

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13242737?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F2065&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/lkcsb_research?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F2065&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/lkcsb_research?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F2065&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/lkcsb?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F2065&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/lkcsb_research?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F2065&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1229?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F2065&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

MANPOWER ALLOCATION WITH TIME WINDOWS AND JOB
TEAMING CONSTRAINTS

X. Li1, Y.Z. Li2, A. Lim2 and B. Rodrigues3

1Dept of Computer Science,National University of Singapore,
3 Science Drive 2,Singapore

lixiaoc@comp.nus.edu.sg

2Dept of IEEM,Hong Kong University of Science and Technology,
Clear Water Bay, Hong Kong.
{ieyanzhi,iealim}@ust.hk

3School of Business,Singapore Management University,
469 Bukit Timah Road,Singapore 259756

br@smu.edu.sg

ABSTRACT

In the Manpower Allocation Problem with Time Windows and Job-Teaming Constraints
(MAPTWTC), we have a set of jobs located at various locations where each job requires a
team of workers. Each job has a time window and a job duration, during which everyone
on the team has to be present. The job requirement is satisfied if and only if the required
composite team works for long enough duration within the job’s time window. The ob-
jective of the problem is find a schedule to minimize a weighted sum of the total number
of workers, the total travelling distances of all workers and their total waiting time. Two
main approaches are proposed in the paper which are shown to be able to obtain very good
performance.
Keywords: Workforce planning,Heuristics,Optimization,Work teams

INTRODUCTION

In present-day business environments, groups of workers in the form of teams are common.
We often see long lists of project team meetings in the busy schedules of investment bankers,
mid-level business representatives or management. A team may consist of people with
different expertise. They can be easily deployed, and can be formed and disbanded flexibly.
Moreover, team members may arrive at a job location separately, as is commonly the case
and since this allows for greater flexibility of deployment. In such situations, the efficient
management of such teams in the context of manpower allocation and scheduling becomes
a priority[1].

As an example, consider a media company which shoots programs at various sites. Each
site may need a number of directors, coordinators, cameramen, lighting staff, recorders,
technicians and stage workers. Programs can share staff members like recorders, cameramen,
technicians and stage workers since their jobs are not quite unique. Each program shoot
has its duration, and in particular, it may need a type of worker for just a fraction of the
entire shooting duration (e.g. stage worker for stage setup). In such a setting, an efficient
sharing scheme of staff members among the various programs may save the corporation
staffing costs. This staffing problem is more conspicuous in organizing large-scale activities
such as large conferences or sports events. Yet another potential application would be in
military planning for special forces teams comprising of members with different expertise
and who can arrive to form teams at different time epochs.

1

The rest of this paper is organized as follows. In next section we first formally state our
problem. Two approaches to tackle this NP-hard problem are presented in the following two
sections. And then experimental results of various approaches are compared and analyzed.
In the final section we conclude our paper.

PROBLEM STATEMENT

In the Manpower Allocation Problem with Time Windows and Job-Teaming Constraints
(MAPTWTC), we have a set of projects or meetings or jobs (collectively termed jobs)
located at various locations where each job requires a team of workers. We can have different
professions of workers in a team where the expertise make-up of the team can be given as a
requirement for that job. All workers are sent from a single location called a depot. Each
job has a time window that specifies the earliest time the job can begin and latest time
by which the job has to be completed. Each job has a duration, during which everyone on
the team has to be present (pre-emption is not allowed , for example, in a negotiation or a
project team meeting). The job requirement is satisfied if and only if the required composite
team works for the required duration within the job’s time window. This implies that after
a worker comes to the site of a job, he/she has to wait for all his/her teammates to arrive
and then, possibly wait until the start time of the job. They have to be at the job’s location
for the entire duration of that job. We are given a map indicating the time of travel between
every pair of job locations and assume that every worker travels at the same speed. The
objective of the problem is to minimize a weighted sum of the total number of workers, the
total travelling distances of all workers and their total waiting time. The weights represent
the relative importance of these numbers to the management.

Let’s formally state our problems as follows. Given m types of workers, T1, ..., Tm; n jobs,
job i(i = 1, ..., n) is described as a three-tuple {[vi1, ..., vim], pi, [si, ei]} where [vi1, ..., vim]
denotes requirements for each type of workers, pi is the duration of this job and [si, ei] is its
time window. All the workers start from a depot, denoted 0. Job i is located in location i
and time to travel between locations i and j is dij, i, j = 0, 1, ...n, i 6= j. It’s possible that
two locations have no direct link. We are asked to give a schedule to minimize the weighted
sum of total number of different workers L,total travel time T and total waiting time W of
all workers, which can be denotes as αL+βT + γW,α+β + γ = 1,where α, β, γ are relative
weights.

This problem is NP-hard which can be proved by reducing the well-known NP-hard
problem TSP to it.

SIMULATED ANNEALING ON CONSTRUCTION HEURISTIC

Given a jobs sequence, we can form a schedule by some construction heuristics. In the first
approach, we adopt a simulated annealing framework and propose two types of construction
heuristics–simple-append and block-insertion. In simulated annealing, the neighborhood of
a sequence is generated by block transposition and block reverse operators. We’ll sketch
these core components in this section.

In simple-append, we read in jobs one by one from the the jobs sequence and construct a
schedule incrementally. For job i, we find a set from all the current workers who can arrive
at location i before (ei−pi),the latest starting time of job i. If more than enough workers are
available for job i, we randomly choose what we need from the workers set. Otherwise we
simply hire new necessary workers. Job i is started when all the workers have arrived. If the
arriving time is earlier than si, we set starting time to si. simple-append has the following
weakness. If in a worker’s optimal schedule, job i comes before job j while i comes after

2

j in the given permutation, for sure the optimal schedule can’t be found. block-insertion
addresses the defect to some extent.

In block-insertion, for a job i just read in from the sequence, we compute an optimal
subset from the scheduled workers such that: 1) All the workers in the subset have a common
time interval that is within the job’s time window; 2) The subset results in a least number
of new hires for this job. The scheduled start time of job i is the start time of the common
interval that makes the subset eligible. If more workers are needed, we hire new ones. To
compute an optimal subset, we first search all the current workers’ schedules to see whether
there exists a long enough interval for the insertion of job i. We collect all the intervals into
a set I and they apply the following O(|I|2) algorithm to find the optimal subset:

• Sort starting and ending points of intervals in I together into an array in non-
decreasing order. Create a stack.

• Scan the array from beginning one bye one. If the scanned point is a starting point
of a interval, push it to the stack.

• Otherwise, suppose it is end point e of interval v. Examine the stack from top to
bottom to search for a starting point s s.t. (s, e) is a long enough interval. Evaluate
this interval and update the best found. Remove starting point s from the stack and
proceed to scanning procedure.

So now given a jobs permutation, we can construct a feasible schedule from it. Our
simulated annealing can be viewed as search on the permutation space. We find neighbors
of the current permutation by block transposition and block reverse operators. Figure 1
visualizes these two operators.We select the starting and end points of the selection region
randomly. For n jobs, the whole search space has n! permutations. Block transposition and
block reverse can generate n4 and n2 neighbors respectively. So we will not jump between
distant points in the search space with these two operators. In the simulated annealing

Figure 1: Neighborhood operators Block Reverse and Block Transposition

scheme,we use annealing with at most five reheating times. See [2] for a detained discussion
of simulated annealing strategies. In the local search, the size of neighborhood and the
largest distance between the nearest neighbors in the same neighborhood depends on the
ratio of current temperature and the starting temperature. Higher ratio results in more
neighbors in one neighborhood and more distant neighbors in the same neighborhood. The

3

simulate annealing on construction heuristics approach shows quite good performance in
experiments.

NETWORK FLOW MODELS

Given a time scheduling of all jobs, we can show that the problem to minimize the total
number of workers can be transformed to a maximum flow problem(MFP). MFP can be
solved optimally and efficiently. Thus our original problem will be changed to look for the
best one in the time scheduling space. In the following of this section we first illustrate the
transformation to MFP and then show how to find the best time scheduling.

Suppose a fixed time scheduling for all jobs is given. We say job j is compatible to job
k if a worker can serve j in specified time interval and then arrive at location k no later
than the specified start time of job k. We note that this relationship is anti-symmetric. Our
Manpower Flow Graph(MFG) consists of all jobs as nodes. There is a directed edge from
j to k if and only if pair (j, k) is compatible.Workers can travel along any directed path in
MFG and every directed path denotes a feasible worker schedule. Notice that MFG is the
same for all types of workers. So the discussion in this section will focus on optimization of
one single worker type,say, Ti.

We label the edges to represent worker flow from job to job. Edge e = (j, k) is labelled
with label(e) if there are label(e) workers of type Ti who perform job j and then travel to
location k immediately. It is easy to see that the MFT is feasible if, for any job j, the
following two upper bounds hold:∑

∀k, e=(k,j)∈MFG
label(e) ≤ vij (1)∑

∀k, e=(j,k)∈MFG
label(e) ≤ vij (2)

The first bound says that we require no more than vij workers type Ti to come to j and the
second bound says that the number of Ti workers who depart from j can not be larger than
vij.

If we are given a labelled MFG, it’s easy to recover schedules of type Ti workers. Since for
a given fixed time schedule no cycle exists in the graph, we just need travel all the paths with
nonzero labels to get all the schedules. If there exist unsatisfied job requirements, we simply
hire extra workers. We note that in such a sitting, the number of extra type Ti workers
needed for job j equals: vij −

∑
∀k, e=(k,j)∈MFG label(e). Summing up, for all jobs, the total

number of Ti workers needed for the given time schedule is:
∑n

j=1 vij −
∑

e∈MFG label(e).
Because

∑n
j=1 vij is a fixed term, to get the minimum number of type Ti workers, we shall

label MFG to maximize
∑

e∈MFG label(e).
In order to apply maximum flow algorithms directly, we need to make a transformation

for our network flow model. We spit each node j to two nodes in(j) and out(j). For each
edge (j, k), add an edge (in(j), out(k)) with infinite capacity to the new graph,denoted
as MFG. Source s and sink t are added to MFG and for each node j,add two edges
(s, in(j)), (out(j), t) both with capacity vij.

There is one-to-one correspondence between edges in MFT and edges in MFG which
are incident neither on s nor on t. Thus,∑

e∈MFG
label(e) =

∑e∈MFG

∀k,e6=(k,t)∧e6=(s,k)
flow(e) = flow(MFG) (3)

The first equality is established by correspondence between edges in the two graphs and the
second equality can be easily seen as due to the mass balance constraint on the max-flow
problem.

4

We claim that any feasible flow in MFG corresponds to a feasible labelling in MFG
because incoming edges to sink node enforce MFG upper bound (1) and outgoing edges
from source node enforce MFG upper bound (2). On the other hand, the mass balance
constraint in MFG does not add any more restrictions to flow in MFG because for any
nodes j, k and any feasible label of (∗, k) and (j, ∗) in MFG, upper bounds (1) and (2)
dictate that the edges (s, in(k)) and (out(j), t) have sufficient capacity to balance the nodes
in(k) and out(j). Thus, any feasible labelling in MFG has a corresponding balanced flow in
MFG. In the light of that, a maximum flow in MFG corresponds to a maximum labelling
in MFG.

Meta-heuristic searches for optimal job time schedules

We have shown that given a fixed scheduling, exact optimal total number of workers can be
obtained. Since usually total number of workers is our most important aim, we can change
our problem to find the best time scheduling.

Two meta-heuristic approach are implemented. One is Ant Colony Optimization(ACO)
and the other is Tabu embedded Simulated Annealing(TSA). ACO is a meta-heuristic method
that simulates the process of ants as they seek for food[3]. We have implemented a standard
ACO approach while it shows less powerful than TSA approach.

The simulate annealing scheme of TSA is the same as presented in the solution used
on the construction heuristics. However, when we generate neighbors in TSA we first
check against tabu list and only investigate those neighbors that are not tabu(see [4] for an
overview of tabu search). A solution is represented by a set of time slot choices. The data
is put in an array,choice[1..n],with choice[j] denoting the choice of time slot for job j. To
generate the neighborhood, for each solution choice[1..n], the algorithm randomly selects a
time slot within a range of the current solution. The higher the temperature is, the larger
the range size. For each possible choice of a specific job, the tabu list keeps a record on the
times this choice has been chosen recently. If the times exceeds a limit, this choice is tabued.
When making a neighborhood move on the current solution, we calculate how many of its
choices are tabued. If the number of tabued choices exceeds a certain preset ratio measure
relative to the total number of jobs, the neighbor is tabued. When too many choices are
tabued, we will have a lot of neighbor moves rejected by the tabu data structure;if so,the
algorithm will forget part of the tabu list.

EXPERIMENTAL RESULTS

Test cases generation

Since no benchmark data is available for the new MAPTWTC, we use newly generated test
cases. In each test case, we specify a set of clusters. Each cluster is a circle with a given
central point and a radius. The number of jobs in a unit area is constant in each cluster.
Each cluster specifies the number of jobs in it, a time distribution of jobs and a worker
type demand distribution. A important parameter is the ratio between job duration and
job time window, which influences the performance of our lower bound.

Lower bounds

The lower bounds of number of hires are calculated using a relaxation of our network
flow model. There is one major relaxation in Relaxed Manpower F low Graph(RMFG)

5

compared with MFG. The definition of compatible relationship is relaxed. Without given
a fixed time scheduling,if a worker is possible to perform job k immediately after job j, we
say job j is compatible to job k. We can see any feasible MFG must be a sub-graph of
the RMFG; thus RMFG must have a maximal flow no less than any MFG does. So we
obtain a lower bound by solving maximum flow on the RMFG. The bound is loose if the
RMFG contains many cycles. A low ratio of job duration to time window leads to many
cycles and thus loose bounds.

Results analysis

We have implemented different approaches presented above and extensive experiments have
been conducted. Due to space limitation, we may not give details of the experimental
results. Here are conclusions drawn from the results.

• In the scenarios of high ratio(≥ 0.8)–job duration to time window, all our algorithms
achieve solutions less than 10% over lower bounds. Since the lower bound is possibly
not tight, such performance is satisfactory. Among all the approaches, the simulated
annealing scheme on block-insertion heuristic(SABI) method achieves best perfor-
mance.

• In scenarios of lower ratio of job duration to time window, results of our algorithms
have considerable gaps to lower bounds. This is expected since many cycles exists in
RMFG for lower ratios and thus we may often get infeasible solutions when seeking
for a lower bound. SABI approach also performs the best in this situation.

CONCLUSIONS

In this paper, we studied the manpower allocation problem with time window and teaming
constraints. This is a new and relevant problem in manpower scheduling. Two approaches
were proposed to tackle this NP-hard problem. One is simulated annealing on construction
heuristics and the other utilizes network flow model and embeds it in the simulated annealing
framework as well. The experiments showed our algorithms performed well.

Future work may be done on tight lower bounds and more complicated MAPTWTC
such as considering different costs for hiring different types of workers.

References

[1] Abboud, N., Inuiguchi, M., Sakawa, M., Uemura, Y., (1998), Manpower allocation
using genetic annealing, European Journal of Operational Research, 111:405-420

[2] Dowsland K. (1993) Simulated annealing. In Reeves C. R. (1995) Modern Heuristic
Techniques for Combinatorial Problems. Blackwell Scientific Publications, Oxford

[3] Garbardella, L.M. (2000), An Ant Colony System Hybridized with A New Local Search
for the Sequential Ordering Problem, Informs Journal on Computing 3, pp. 237 - 255.

[4] Glover, F., Laguna, M., (1997), Tabu Search, Kluwer Academic Publishers

6

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	11-2003

	Manpower Allocation with Time Windows and Job Teaming Constraints
	Xi LI
	Yan Zhi LI
	Andrew LIM
	Brian RODRIGUES
	Citation

	tmp.1457681225.pdf.VODsw

